THE ALMOST PRESUMABLE MAXIMALITY OF SOME TOPOLOGICAL LEMMA

Florian Munteanu^{*}, Octavian Mustafa[†] Department of Mathematics, University of Craiova 13, Al. I. Cuza st., Craiova 1100, Romania

Abstract

Some splitting lemma of topological nature provides fundamental information when dealing with dynamics (see [1], pg.79). Because the set involved, namely $X \setminus \mathcal{P}_s$, is neither open nor closed, a natural question arise: can this set be modified in order to obtain aditional data? Unfortunately, the answer is negative.

For a metric space X which is locally connected and locally compact and for some continuous mapping $f: X \to X$, the set ω -set of each element x of X is given by the formula

$$\omega(x) = \left\{ y \in X | y = \lim_{n \to +\infty} f^{k_n}(x), \lim_{n \to +\infty} k_n = +\infty \right\}.$$

We also denote by $\omega_j(x)\,,\; 1\leq j\leq r\,,$ the set

$$\omega_j(x) = \left\{ y \in X | y = \lim_{n \to +\infty} f^{m_n \cdot \tau + j}(x), \lim_{n \to +\infty} m_n = +\infty \right\}.$$

Now, $\omega(x)$ can be splitted according to the following lemma.

Lemma 1 a)
$$\omega(x) = \bigcup_{j=1}^{r} \omega_j(x);$$

b) $f(\omega_j(x)) \subset \omega_{(j+1) \mod r}.$

[•]e-mail address: munteanufm@hotmail.com

e-mail address: Octawian@mail.yahoo.com

Its proof relies upon the properties of $\omega(x)$.

Lemma 2 For some nonvoid subset S of X we consider C a component of $X \setminus S$. i.e. a maximal connected set (see [2], pg. 54). Then: a) $\overline{C}^X \subset C \cup (S \cap \partial^X S)$: b) $\partial^X C \subset (C \cap \partial^X C) \cup (S \cap \partial^X S)$,

where \overline{C}^X signifies the closure of C under the topology of X while $\partial^X C$ is the boundary of C under the same topology.

Remark 1 For instance, if S is closed, then $\partial^X C \subset \partial^X S$ as the components of a locally connected space are open.

Proof. a) First, let's show that $\overline{C}^X \subset C \cup S$. For $x \in X \setminus (C \cup S) = (X \setminus S) \setminus C$, as C is closed in $X \setminus S$, there will be some open $G \subset X$ such that

$$x \in G \cap (X \setminus S) \subset X \setminus (C \cup S).$$

Obviously,

$$[G \cap (X \setminus S)] \cap C = G \cap C = \emptyset$$

and so

$$x \notin \overline{C}^X$$

Further on, let's assume that $x \in \overline{C}^X \cap S$. If $x \in X \setminus \partial^X S$, then $x \notin \overline{X \setminus S}^X$. There will be some open $W \subset X$ such that

$$x \in W ; W \cap \overline{X \setminus S}^X = \emptyset$$

In particular, $W \cap C = \emptyset$ and so $x \notin \overline{C}^X$. b) According to a), we have:

$$\overline{C}^{X} \cap \overline{X \setminus C}^{X} = \partial^{X} C \subset \left(C \cap \overline{X \setminus C}^{X}\right) \cup \left[\left(S \cap \partial^{X} S\right) \cap \overline{X \setminus C}^{X}\right]$$
$$= \left(C \cap \overline{X \setminus C}^{X}\right) \cup \left(S \cap \partial^{X} S\right)$$

because of $S \cap \partial^X S \subset S \subset X \setminus C$. Obviously,

$$C \cap \overline{X \setminus C}^X = \left(C \cap \overline{X \setminus C}^X \right) \cap \overline{C}^X = C \cap \partial^X C.$$

Remark 2 It worths noticing that the sets $(C \cap \partial^X C)$ and $(S \cap \partial^X S)$ are disjoint; in other words, $\partial^X C$ is piecewise-made. Lemma 2 works equally well in any topological space.

Lemma 3 (Melbourne, Dellnitz, Golubitsky) For some nonvoid subset S of X. we denote by \mathcal{P}_s the union

$$\mathcal{P}s(f) = \bigcup_{n=0}^{\infty} \left(f^n\right)^{-1} \left(S\right)$$

Let x be some element of S. Then either $\omega(x) \subset \overline{\mathcal{P}}_s^X$ or the following are valid: a) $\omega(x) \setminus \mathcal{P}_s$ is covered by finitely many (connected) components C_0, \ldots, C_{r-1} of $X \setminus \mathcal{P}_s$; b) These components can be ordered so that $f(C_i) \subset C_{(i+1) \mod r}$; c) $\omega(x) \subset \overline{C}_0^X \cup \ldots \cup \overline{C}_{r-1}^X$.

Remark 3 Notice the splitting in relation with lemma 1. As we mentioned in the Abstract. it is quite natural to ask if $X \setminus \mathcal{P}_s$ can be replaced by the easier-to-work-with $X \setminus \overline{\mathcal{P}}_s$. The following lemma shows that this would imply no more the presence of finitely many components.

Lemma 4 Let S be some nonvoid subset of X which is not dense in X, i.e. $\overline{S}^X \neq X$. We consider C a component of $X \setminus \overline{S}^X$ and D a component of $X \setminus S$ such that $C \subset D$. Then any element x of $D \setminus C$ belongs either to $\partial^X S$ or to any other component of $X \setminus \overline{S}^X$.

Proof. If $x \notin X \setminus \overline{S}$ then $x \in (X \setminus S) \cap \overline{S}^X \subset \partial^X S$. An example would be appropriate: in \mathbb{R}^2 , we denote by $\mathcal{D}(0,r)$ the *r*-disk centered in 0. Now, for $X = \overline{\mathcal{D}(0,2)}^{\mathbb{R}^2}$, $S = \mathcal{D}(0,1) \cup (1,2] \cup [-2,-1)$, we have

$$\overline{S}^{\mathbf{R}^2} = \overline{\mathcal{D}(0,1)}^{\mathbf{R}^2} \cup [1,2] \cup [-2,-1]$$
$$D = X \setminus S, \ C \in \left\{ \left(X \setminus \overline{S}^{\mathbf{R}^2} \right) \cap (y > 0), \left(X \setminus \overline{S}^{\mathbf{R}^2} \right) \cap (y < 0) \right\}.$$

Further exemples can be architectured easily even to obtain infinitely many components of $X\setminus \overline{S}^X$.

In other words, finitely many components of $X \setminus S$ may include infinitely many components of $X \setminus \overline{S}^X$.

References

- I. Melbourne, M. Dellnitz, M. Golubitsky, The structure of symmetric attractors, Arch. Rational Mech. Anal., 123, pp. 75-98, 1993
- [2] J. L. Kelley, General topology, D. Von Nostrand Comp., 1955

•