THE ALMOST PRESUMABLE MAXIMALITY OF SOME TOPOLOGICAL LEMMA

Florian Munteanu*, Octavian Mustafa ${ }^{\dagger}$
Department of Mathematics, University of Craiova
13, Al. I. Cuza st., Craiova 1100, Romania

Abstract

Some splitting lemma of topological nature provides fundamental information when dealing with dynamics (see [1], pg.79). Because the set involved, namely $X \backslash \mathcal{P}_{s}$, is neither open nor closed, a natural question arise: can this set be modified in order to obtain aditional data ? Unfortunately, the answer is negative.

For a metric space X which is locally connected and locally compact and for some continuous mapping $f: X \rightarrow X$, the set ω-set of each element x of X is given by the formula

$$
\omega(x)=\left\{y \in X \mid y=\lim _{n \rightarrow+\infty} f^{k_{n}}(x), \lim _{n \rightarrow+\infty} k_{n}=+\infty\right\} .
$$

We also denote by $\omega_{j}(x), 1 \leq j \leq r$, the set

$$
\omega_{j}(x)=\left\{y \in X \mid y=\lim _{n \rightarrow+\infty} f^{m_{n} \cdot \tau+j}(x), \lim _{n \rightarrow+\infty} m_{n}=+\infty\right\}
$$

Now, $\omega(x)$ can be splitted according to the following lemma.
Lemma 1 a) $\omega(x)=\bigcup_{j=1}^{T} \omega_{j}(x)$;
b) $f\left(\omega_{j}(x)\right) \subset \omega_{(j+1) \bmod r}$.

[^0]Its proof relies upon the properties of $\omega(x)$.
Lemma 2 For some nonvoid subset S of X we consider C a component of $X \backslash S$. i.e. a maximal connected set (see [2], pg. 54). Then:
a) $\bar{C}^{X} \subset C \cup\left(S \cap \partial^{X} S\right)$:
b) $\partial^{X} C \subset\left(C \cap \partial^{X} C\right) \cup\left(S \cap \partial^{X} S\right)$, where \bar{C}^{X} signifies the closure of C under the topology of X while $\partial^{Y} C$ is the boundary of C under the same topology.

Remark 1 For instance, if S is closed, then $\partial^{X} C \subset \partial^{X} S$ as the components of a locally connected space are open.

Proof. a) First, let's show that $\bar{C}^{X} \subset C \cup S$. For $x \in X \backslash(C \cup S)=$ $(X \backslash S) \backslash C$, as C is closed in $X \backslash S$, there will be some open $G \subset X$ such that

$$
x \in G \cap(X \backslash S) \subset X \backslash(C \cup S)
$$

Obviously;

$$
[G \cap(X \backslash S)] \cap C=G \cap C=\emptyset
$$

and so

$$
x \notin \bar{C}^{X}
$$

Further on, let's assume that $x \in \bar{C}^{X} \cap S$. If $x \in X \backslash \partial^{X} S$, then $x \notin \overline{X \backslash S}^{X}$. There will be some open $W \subset X$ such that

$$
x \in W ; W \cap \overline{X \backslash S}^{X}=\emptyset
$$

In particular, $W \cap C=\emptyset$ and so $x \notin \bar{C}^{X}$.
b) According to a), we have:

$$
\begin{aligned}
\bar{C}^{X} \cap \overline{X \backslash C}^{X} & =\partial^{X} C \subset(C \cap \overline{X \backslash C} \\
& X \\
& =\left(C \cap\left[\left(S \cap \partial^{X} S\right) \cap \overline{X \backslash C}^{X}\right) \cup\left(S \cap \partial^{X} S\right)\right. \\
& =
\end{aligned}
$$

because of $S \cap \partial^{X} S \subset S \subset X \backslash C$.
Obviously,

$$
C \cap \overline{X \backslash C}^{X}=\left(C \cap \overline{X \backslash C}^{X}\right) \cap \bar{C}^{X}=C \cap \partial^{X} C
$$

Remark 2 It worths noticing that the sets $\left(C \cap \partial^{X} C\right)$ and $\left(S \cap \partial^{X} S\right)$ are disjoint; in other words, $\partial^{X} C$ is piecewise-made. Lemma 2 works equally well in any topological space.

Lemma 3 (Melbourne, Dellnitz, Golubitsky)
For some nonvoid subset S of X. we denote by \mathcal{P}_{s} the union

$$
\mathcal{P}_{s}(f)=\bigcup_{n=0}^{\infty}\left(f^{n}\right)^{-1}(S)
$$

Let x be some element of S. Then either $\omega(x) \subset \overline{\mathcal{P}}_{s}^{X}$ or the following are valid:
a) $\omega(x) \backslash \mathcal{P}_{s}$ is covered by finitely many (connected) components $C_{0}, \ldots, C_{\tau-1}$ of $X \backslash \mathcal{P}_{s}$;
b) These components can be ordered so that
$f\left(C_{i}\right) \subset C_{(i+1)} \bmod _{r}$;
c) $\omega(x) \subset \bar{C}_{0}^{X} \cup \ldots \cup \bar{C}_{r-1}^{X}$.

Remark 3 Notice the splitting in relation with lemma 1. As we mentioned in the Abstract. it is quite natural to ask if $X \backslash \mathcal{P}_{s}$ can be replaced by the easier-to-work-with $X \backslash \overline{\mathcal{P}}_{s}$. The following lemma shows that this would imply no more the presence of finitely many components.

Lemma 4 Let S be some nonvoid subset of X which is not dense in X, i.e. $\bar{S}^{X} \neq X$. We consider C a component of $X \backslash \bar{S}^{X}$ and D a component of $X \backslash S$ such that $C \subset D$. Then any element x of $D \backslash C$ belongs either to $\partial^{X} S$ or to any other component of $X \backslash \bar{S}^{X}$.
Proof. If $x \notin X \backslash \bar{S}$ then $x \in(X \backslash S) \cap \bar{S}^{X} \subset \partial^{X} S$.
An example would be appropriate: in \mathbf{R}^{2}, we denote by $\mathcal{D}(0, r)$ the r-disk centered in 0 . Now, for $X=\overline{\mathcal{D}(0,2)} \mathbf{R}^{\mathbf{R}^{2}}, S=\mathcal{D}(0,1) \cup(1,2] \cup$ $[-2,-1)$, we have

$$
\begin{gathered}
\bar{S}^{\mathbf{R}^{2}}=\overline{\mathcal{D}(0,1)} \overline{\mathbf{R}}^{2} \cup[1 ; 2] \cup[-2,-1] \\
D=X \backslash S, C \in\left\{\left(X \backslash \bar{S}^{\mathbf{R}^{2}}\right) \cap(y>0),\left(X \backslash \bar{S}^{\mathbf{R}^{2}}\right) \cap(y<0)\right\} .
\end{gathered}
$$

Further exemples can be architectured easily even to obtain infinitely many components of $X \backslash \bar{S}^{X}$.
In other words, finitely many components of $X \backslash S$ may include infinitely many components of $X \backslash \bar{S}^{X}$.

References

[1] I. Melbourne, M. Dellnitz, M. Golubitsky; The structure of symmetric attractors, Arch. Rational Mech. Anal., 123, pp. 75-98, 1993
[2] J. L. Kelley; General topology, D. Von Nostrand Comp., 1955

[^0]: *e-mail address: munteanufm@hotmail.com

 - ϵ-mail address: Octawian@mail.yahoo.com

