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Abstract: In this paper we prove that there has only the consecutive
terms of the Smarandache combinatorial sequence of degree two are
pairwise coprime.
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Let r bea positive integer with »r>1. Let SCS(r)= {a(r,n)}f:l be
the Smarandache combinatoriall sequence of degree r. Then we hz}v’e
a(r,)=n(n=1,2,+r) and a(r,7)(n>r) is the sum of all the products of
the previous terms of the sequence taking r terms at a time. In [2],
Murthy asked that how many of the consecutive terms of SCS(r) are
pairwise coprime.
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Theorem. For any positive integer n, we have a(2, n+1)=0 (mod
a (2,n)).

By the above mentioned theorem, we obtain the following
corollary immediately.

Corollary. There has only the consecutive terms 1,2 of SCS(2) are
pairwise coprime.

Proof of Theorem. Let b(n)=a(2,n) for any n. Then we have
b(1)=1 and b(2)=2. It implies that the theorem holds for n=1.

By the define of SCS(2), it n=>1, then we have

b(n)=b(1)b(2)+ -+ bln—=2)b(n = 1)

B et S
b(n) = b(1)6(2)++-+bln = 2)b(n ~1) |
(60) -+ b 1) (a)F () 4520 )

from (1) and (2)1that
bl +1)= -12—((b(1)+ g b(n =) = (B ()40 - 1})}
= b(r) = O(mod b(r)).

Thus, the theorem is proved.
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