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Abstract: In this paper \ve prove that there has only the consecutive 

tenns of the Sn1arandache cOinbinatorial sequence of degree two are 
" . palrWlse coprune. 
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Let r bea positive integer with r> 1. Let SCS(r)= {a( r; n) };::::l be 

the Sn1arandache cOlnbinatorial sequence of degree r. Then we h~ve 

a(r,n)=n(n= 1 ,2~'" ,r) and a(r,n)(n r) is the sum of all the products of 

the previous teqTIs of the sequence taking r tenns at a time. In [2J, 

Murthy asked that how tnany of the consecutive terms of SeS(r) are 
" . paIrWIse coprllne. 

In this papeI' vve sol 'It this prolJlenl for r-2. " r YVe prove 
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Theoren1. For any positive integer t7, 'vve have a(2, n+ 1 )=0 (lTIod 

a (2,n)). 

By the above tnentioned theoren1, 'vve obtain the following 

corollary in11nediately. 

Corollary. There has only the consecutive tenns 1,2 of SCS(2) are 

.. . 
pairWlse coprllne. 

Proof of Theorem. Let 6(n)=a(2,/1) for any n. Then we have 

b( 1 1 and 6(2)=2. It ilnplies that the theoretn holds for n=1. 

By the define of SCS(2), if n 1, then we have 

b (n ) = b (1 )b (2) + ... + 6 (n - 2 )b (n - 1) 

~ ((b(1)+ooo+b(n-l))2 -(b2(1)+ooo+b2(n-l))} 
( 1 ) 

and 

using the basic properties of congruence (see [1, Chapter yTJ), vve get 

from (1) and (2) that , 

b(1l + 1):= l((b(l)+ ... + b(n-l))2 - (b 2 (1)+.·. + b2 (11-1))) 
2 

== b(n) == O(mod b( 11)). 

Thus, the theorem is proved. 
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