THE EQUALITY $\beta^{2}(k+2, S(n))=\beta^{2}(k+1, S(n))+\beta^{2}(k, S(n))$

Xingen Chen

Abstract. For any positive integer a, let $S(a)$ be the Smarandache function of a. For any positive integer r and b, let $\beta(r, b)$ be the last r digits of b. In this paper we determine all positive integer pairs (n, k) for which the title equality holds.

Key words: Smarandache function, digit, equality

For any positive integer a, let $S(a)$ be the Smarandache function of a. For any positive integer

$$
\begin{equation*}
b=\overline{t_{s} \cdots t_{2} t_{1}} \tag{1}
\end{equation*}
$$

with s digits, let

$$
\begin{equation*}
\beta(r, b)=\overline{t_{r} \cdots t_{1}} \tag{2}
\end{equation*}
$$

be the last r digits of b. Recently, Bencze [1] proposed the following problem:

Problem Determine all positive integer pairs (n, k) for which

$$
\begin{equation*}
\beta^{2}(k+2, S(n))=\beta^{2}(k+1, S(n))+\beta^{2}(k, S(n)) . \tag{3}
\end{equation*}
$$

In this paper we completely solve the above-mentioned problem as follows.

Theorem A positive integer pair (n, k) satisfies (3) if and only if n satisfy

$$
\begin{equation*}
S(n)=10^{k+2} c+10^{k} d, \tag{4}
\end{equation*}
$$

where c is a nonnegative integer, d is a positive integer with $1 \leqslant d \leqslant 9$.
By the definition of the Smarandache function (see [2]), we have $S(m!)=m$ for any positive integer m. Therefore, by the above theorem, we obtain the following corollary immediately.

Corollary For any fixed positive integer k, there exists infinitely many positive integers

$$
\begin{equation*}
n=\left(10^{k+2} c+10^{k} d\right)!, c \geq 0, d=1,2, \cdots, 9 \tag{5}
\end{equation*}
$$

Satisfying (3).
The proof of Theorem Let (n, k) be a positive integer pair satisfying (3), and let $b=S(n)$. Then b is a positive integer. We may assume that b has s digits as (1). For any positive integer r, by the definition (2) of $\beta(r, b)$, we have

$$
\begin{equation*}
0 \leq \beta(r, b)<10^{r} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta(r+1, b)=\beta(r, b)+10^{r} t_{r+1} . \tag{7}
\end{equation*}
$$

If $t_{k+2} \neq 0$, then from (6) and (7) we get

$$
\begin{equation*}
\beta(k+2, b) \geq \beta(k+1, b)+10^{k+1}>\beta(k+1, b)+\beta(k, b) . \tag{8}
\end{equation*}
$$

It implies that

$$
\begin{equation*}
\beta^{2}(k+2, b)>\beta^{2}(k+1, b)+\beta^{2}(k, b) \tag{9}
\end{equation*}
$$

which contradicts (3).
If $t_{k+2}=0$, then from (7) we get

$$
\begin{equation*}
\beta(k+2, b)=\beta(k+1, b) . \tag{10}
\end{equation*}
$$

Substitute (10) into (3), we get $\beta(k, b)=0$. It implies that $t_{1}=\cdots=t_{k}=0$
by (2). Thus, $b=S(n)$ satisfies (4). The theorem is proved.

References

[1] M. Bencze, Open questions for the Smarandache function, Smarandache Notions J. 12(2001), 201-203.
[2] F. Smarandache, A function in number theory, Ann. Univ. Timisoara XVIII, 1980.

Department of Mathematics
Maoming College
Maoming, Guangdong
P. R. CHINA

