THE EQUATION $a^{2}(k+2, S(n))=a^{2}(k+1, S(n))+a^{2}(k, S(n))$

Xigeng Chen

Abstract

For any positive integer a, let $S(a)$ be the Smarandache function of a. For any positive integers r and b, let $a(r, b)$ be the first r digits of b. In this paper we prove that the title equation has no positive integer solutions (n, k).

Key words: Smarandache function, diophantine equation

Let \mathbf{N} be the set of all positive integers. For any positive integer a, let $S(a)$ be the Smarandache function of a. For any positive integer

$$
\begin{equation*}
b=\overline{t_{s} \cdots t_{2} t_{1}} \tag{1}
\end{equation*}
$$

with s digits, let

$$
\begin{equation*}
\alpha(r, b)=\overline{t_{s} \cdots t_{s-r+1}} \tag{2}
\end{equation*}
$$

be the first r digits of b. Recently, Bencze [1] proposed the following problem:

Problem Determine all solutions (n, k) of the equation

$$
\begin{equation*}
\alpha^{2}(k+2, S(n))=\alpha^{2}(k+1, S(n))+\alpha^{2}(k, S(n)), n, k \in \mathbf{N} . \tag{3}
\end{equation*}
$$

In this paper we completely solve the above-mentioned problem as follows.

Theorem The equation (3) has no solutions (n, k).
Proof. Let (n, k) be a solution of (3). It is a well known fact that $S(n)$ is a positive integer (see [2]). Let $b=S(n)$. We may assume that b
has s digits as (1). For any positive integer r, by the definition (2) of $a(r, b)$, we have

$$
\alpha(r+1, b)= \begin{cases}10 . \alpha(r, b)+t_{s-r+1}, & \text { if } r<s, \tag{4}\\ \alpha(r, b), & \text { if } r \geq s\end{cases}
$$

If $k>s-1$, then from (4) we get $a(k+2, b)=a(k+1, b)$. Hence, by (3), we obtain $a(k, b)=0$, a contradiction.

If $k<s-1$, then from (4) we get

$$
\begin{equation*}
\alpha(k+2, b) \geq 10 \cdot \alpha(k+1, b) . \tag{5}
\end{equation*}
$$

Hence, by (3) and (5), we get

$$
\begin{equation*}
99 \cdot \alpha^{2}(k+1, b) \leq \alpha^{2}(k, b) . \tag{6}
\end{equation*}
$$

However, we see from (4) that $a(k+1, b) \geqslant a(k, b)$. Therefore, (6) is impossible. Thus, the equation (3) has no solutions (n, k).

References

[1] M. Bencze, Open questions for the Smarandache function, Smarandache Notions J. 12(2001), 201-203.
[2] F. Smarandache, A function in number theory, Ann. Univ. Timisoara XVIII, 1980.

Department of Mathematics
Maoming College
Maoming Guangdong
P. R. CHINA

