The equations $m \cdot S(m)=n \cdot S(n)$ and $m \cdot S(n)=n \cdot S(m)$ have infinitily many solutions

Vasile Seleacu, Constantin A. Dumitrescu

University of Craiova, Department of Mathematics, A.I.Cuza street 13, (110) Craiova, ROMANIA

Let be $S: N^{*} \rightarrow N^{*}$ the Smarandache function.

$$
S(n)=\min \left\{k \mid n \leq_{\mathrm{d}} k!\right\}
$$

where \leq_{d} is the order generated by:

$$
\begin{aligned}
& \hat{d}=\text { g.c.d. } \\
& d \\
& v=\text { s.c.m. }
\end{aligned}
$$

on set N^{*}.
It is known that $\mathcal{N}_{\mathrm{d}}=\left(N^{*}, \wedge_{d}^{\stackrel{d}{v}}\right)$ is a lattice where 1 is the smallest element and 0 is the biggest element. The order \leq_{d} is defined like in any lattice by:

$$
n \leq_{d} m \Leftrightarrow n \wedge \underset{d}{ } m=n \Leftrightarrow n \vee m=m
$$

or, in other terms:

$$
n \leq_{d} m \Leftrightarrow n \mid m .
$$

Next we will study two diophantine equations which contain the Smarandache function.
Reminding of two of the features of Smarandache's function which we will need further.

1. Smarandache's function satisfies:

$$
S(m \vee n)=\max \{S(m), S(n)\}
$$

2. To calculate $S\left(p^{\alpha}\right)$:
2.a. we will write the exponent in the generalized base $[p]$ definite by the sequence with general term:

$$
a_{i}(p)=\frac{p^{i}-1}{p-1}
$$

who satisfies:

$$
a_{i+1}(p)=p \cdot a_{i}(p)+1
$$

that is:

$$
[p]: a_{1}(p), a_{2}(p), \ldots
$$

2.b. the result is read in the standard base (p) definite by the sequence:

$$
b_{i}(p)=p^{i}
$$

who satisfies:

$$
b_{i+1}(p)=p \cdot b_{i}(p)
$$

that is:

$$
(p): 1, p, p^{2}, p^{3}, \ldots
$$

2.c. the number obtained will be multiply by p.

Proposition: \mid The equation

$$
\begin{equation*}
m S(m)=n S(n) \tag{1}
\end{equation*}
$$

has infinity many solutions in the next two cases:

1. $m=n$-obvious
2. $m>n$ with $m=d \cdot a, n=d \cdot b$ satisfying $m \wedge n=d, d \wedge a=1$,
$d \wedge_{d} b>1$ and the dual of this condition for $m<n$.
The equation

$$
\begin{equation*}
m S(n)=n S(m) \tag{2}
\end{equation*}
$$

has infinity many solutions in the next two cases:

1. $m=n$-obvious
2. $m>n$ and $\underset{d}{m \wedge} n=1$

Proof

Let's consider $m>n$. We distinguish the next cases:

1. $m \wedge n=1$ that is $(m, n)=1$.

Then from equation (1) we can deduce: $m \leq_{d} S(n)$; then $m \leq S(n)$. But $S(n) \leq n$ for every n and as $n<m$ we get the contradiction: $S(n)<m$.

For the equation (2) we have: $m \leq_{d} S(m) \Rightarrow m \leq S(m) \Rightarrow m=S(m) \Rightarrow m=4$ or m is a prime number. If $m=4$ the equation becomes:

$$
4 \cdot S(n)=4 \cdot n \Rightarrow n=S(n) \Rightarrow n=4 \text { or } n \text { is a prime number }
$$

So in this case the equation has for solutions the pairs of numbers:

$$
(4,4),(4, p),(p, 4),(p, q) \text { with } p, q \text { prime numbers. }
$$

2. If $\underset{d}{\wedge} n=d \neq 1$, so:

$$
\left\{\begin{array}{l}
m=d \cdot a \tag{3}\\
n=d \cdot b
\end{array}, \operatorname{cu} a_{d} b=1\right.
$$

the equation (1) becomes:

$$
\begin{equation*}
a \cdot S(m)=b \cdot S(n) \tag{4}
\end{equation*}
$$

From condition $m>n$ we deduce:

$$
a>b
$$

We can distinguish the next possibilities:
a) $d \wedge_{d} a=1, d \wedge_{d} b=1$

If we note:

$$
\mu=S(m), v=S(n)
$$

we have:

$$
\begin{gather*}
\mu=S(m)=S(d \cdot a)=S(d \vee a)=\max (S(d), S(a)) \\
\nu=S(n)=S(d \cdot b)=S(d \vee b)=\max (S(d), S(b)) \tag{5}
\end{gather*}
$$

and the equation (1) is equivalent with:

$$
\begin{equation*}
\frac{m}{n}=\frac{S(n)}{S(m)} \Leftrightarrow \frac{a}{b}=\frac{v}{\mu} \tag{6}
\end{equation*}
$$

From (5) we deduce for μ and v the possibilities:
a1) $\mu=S(d), v=S(d)$, that is:

$$
S(d) \geq S(a) \text { and } S(d) \geq S(b)
$$

In this case (6) becomes:

$$
\frac{a}{b}=1-\text { false }
$$

a2) $\mu=S(d), v=S(b)$, that is:

$$
S(d) \geq S(a) \text { and } S(d)<S(b)
$$

In this case (6) becomes:

$$
\frac{a}{b}=\frac{S(b)}{S(d)} \Rightarrow a S(d)=b S(b)
$$

But $a \wedge_{d} b=1$, so we must have:

$$
\begin{equation*}
a \leq_{d} S(b) \text { so } a \leq S(b) \tag{7}
\end{equation*}
$$

and in the same time:

$$
S(b) \leq b<a-\text { contradicts }(7)
$$

a3) $\mu=S(a), v=S(d)$ that is:

$$
\begin{equation*}
S(a)>S(d) \text { and } S(d) \geq S(b) \tag{8}
\end{equation*}
$$

In this case the equation (6) is:

$$
\frac{a}{b}=\frac{S(d)}{S(a)}
$$

that is:

$$
\begin{equation*}
a S(a)=b S(d) \tag{9}
\end{equation*}
$$

Then from $\underset{d}{\wedge_{d}} b=1 \Rightarrow a \leq_{d} S(d)$ and $b \leq_{d} S(a)$. So:

$$
S(a) \leq a \leq S(d) \text { - contradicts }(8)
$$

a4) $\mu=S(a), v=S(b)$
In this case the equation (6) becomes:

$$
\frac{a}{b}=\frac{S(b)}{S(a)} \text { with } a_{d} b=1
$$

and we are in the case 1.

For the equation (2) which can be also write:

$$
\begin{equation*}
a S(n)=b S(m) \tag{10}
\end{equation*}
$$

that is: $a \nu=b \mu$

- in the conditions a1) it becomes:

$$
a=b \text { - false }
$$

- in the conditions 22) it becomes:

$$
a S(b)=b S(d)
$$

and as $a \wedge b=1$ we deduce:

$$
a \leq_{d} S(d), \quad b \leq_{d} S(b)
$$

So $b \leq S(b)$, that is $b=S(b)$, so $b=4$ or $b=p$-prime number and the equation becomes:

$$
a=S(d)
$$

and as $S(d) \wedge d>1$ we obtain the contradiction:

$$
a \wedge \underset{d}{ } d>1
$$

- in the conditions a3) it becomes:

$$
a S(d)=b S(a)
$$

and because $a \wedge_{d} b=1$ we must have $a \leq_{d} S(a)$ that is $a=S(a)$.
So the equation is:

$$
S(d)=b
$$

As $d_{d} S(d)>1$ it results $d_{d} b>1$ - false.

- in the conditions a4) the equation becomes:

$$
a S(b)=b S(a)
$$

that is the equation (2) in the case 1 .
b) $d_{\wedge} a>1$ and $d_{d} b=1$

As (1) is equivalent with (4) from $a_{d} b=1$ it results:

$$
a \leq_{d} S(n) \text { and } b \leq_{d} S(m)
$$

From the hypothesis. $\left(d_{\hat{d}} a>1\right)$ it results:

$$
\begin{equation*}
S(m)=S(a \cdot d) \geq \max \{S(a), S(d)\} \tag{11}
\end{equation*}
$$

If in (11) the inequality is not top, that is:

$$
S(m)=\max \{S(d), S(a)\}
$$

and as

$$
\begin{equation*}
S(n)=\max \{S(d), S(b)\} \tag{12}
\end{equation*}
$$

we are in the in the case a). Let's suppose that in (11) the inequality is top:

$$
S(m)>\max \{S(a), S(d)\}
$$

It results:

$$
\begin{align*}
& S(m)>S(a) \tag{13}\\
& S(m)>S(d) \tag{14}
\end{align*}
$$

Reminding of (11) we have the next cases:
b1) $S(n)=S(d)$
The equation(4) becomes:

$$
a S(m)=b S(d)
$$

and from $a>b$ it results $S(d)>S(m)$ - false (13).
b2) $S(n)=S(b)$
The equation (4) becomes:

$$
a S(m)=b S(b)
$$

As $\operatorname{gcd}(a, b)=1$ it results $a \leq_{d} S(b)$ so $a \leq S(b)$ - false because $S(b) \leq b<a$.
c) $d_{\hat{d}} a=1$ and $d{ }_{d} b>1$

We get:

$$
\begin{aligned}
& S(m)=S(d \cdot a)=S(d \vee a)=\max \{S(d), S(a)\} \\
& S(n)=S(d \cdot b) \geq \max \{S(d), S(b)\}
\end{aligned}
$$

If the last inequality is not top, we have the case a). So let it be:

$$
S(n)>\max \{S(d), S(b)\},
$$

that is:

$$
\begin{equation*}
S(n)>S(d) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n)>S(b) \tag{16}
\end{equation*}
$$

c1) $S(m)=S(d)$, that is $S(d) \geq S(a)$. The equation becomes:

$$
a S(d)=b S(n)
$$

We can't get a contradiction and we can see that the equation has solutions like this:

$$
\begin{aligned}
& m=p^{\alpha} \cdot a \\
& n=p^{\alpha+x}
\end{aligned}
$$

So $b=p^{x}, d=p^{\alpha}$. The condition $a>b$ becomes $a>p^{x}$. We must have also $a \wedge_{d} p^{\alpha}=1$, that is $a \wedge_{d} p=1$.
The equation becomes:

$$
p^{\alpha} a \cdot S\left(p^{\alpha}\right)=p^{\alpha+x} S \cdot\left(p^{\alpha+x}\right)
$$

It results:

$$
a=\frac{p^{x} S\left(p^{\alpha+x}\right)}{S\left(p^{\alpha}\right)}=\frac{p^{x} p\left((\alpha+x)_{[p]}\right)_{(p)}}{p\left(\alpha_{[p]}\right)_{(p)}}=\frac{p^{x}\left((\alpha+x)_{[p]}\right)_{(p)}}{\left(\alpha_{[p]}\right)_{(p)}} .
$$

We can see that choosing α this way:

$$
\left(\alpha_{[p]}\right)_{(p)}=p^{x}=(\underbrace{100 \ldots .0}_{x \text { imes }})_{(p)} \Rightarrow \alpha=\alpha_{[p]}=(\underbrace{100 \ldots 0}_{x \text { imes }})_{[p]}=a_{x+1}(p)
$$

we get:

$$
a=\left((\alpha+x)_{[p]}\right)_{(p)} \in N
$$

We must also put the condition $a \underset{d}{\wedge} p=1$ which we can get choosing convenient values for x.

Example: For $n=3$ we have:
(3): $1,3,9,27, \ldots$
[3]: $1,4,13,40,121, \ldots$
Considering $x=2$ we get (from condition $\left.\left(\alpha_{[p]}\right)_{(p)}=p^{x}\right)$:

$$
\begin{gathered}
\left(\alpha_{[3]}\right)_{(3)}=3^{x}=3^{2}=100_{(3)} \Rightarrow \alpha=100_{[3]}=13 \Rightarrow \\
a=S\left(p^{\alpha+x}\right)=S\left(3^{13+2}\right)=S\left(3^{15}\right)=\left(15_{[3]}\right)_{(3)}=102_{(3)}=11
\end{gathered}
$$

So, ($m=3^{13} \cdot 11, n=3^{15}$) is solution for equation (1).
Equation (2) which has the form:

$$
a S(n)=b S(d)
$$

has no solutions because from $a>b \Rightarrow S(d)>S(n)$ - false.

References:

1. C.Dumitrescu, V.Seleacu The Smarandache Function Erhus University Press 1996
2. Department of Mathematics, University of Craiova Smarandache Notions Joumal vol. 7, no. I-2-3, august 1996
