THE EIRST CONSTANT OF SMARANDACHE

by

Ion Cojocaru and Sorin Cojocaru

In this note we prove that the series $\sum_{n=2}^{\infty} \frac{1}{S(n)!}$ is convergent to a real number $s \in(0.717$, 1.253) that we call the first constant constant of Smarandache.

It appears as an open problem, in [1], the study of the nature of the series $\sum_{n=2}^{\infty} \frac{1}{S(n)!}$. We can write it as it follows :

$$
\begin{aligned}
& \frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{3!}+\cdots=\frac{1}{2!}+\frac{2}{3!}+\frac{4}{4!}+\frac{8}{5!}+\frac{14}{6!}+\cdots= \\
& =\sum_{n=2}^{\infty} \frac{a(n)}{n!}, \text { where } a(n) \text { is the number of the equation } S(x)=n, n \in N, n \geq 2 \text { solutions. }
\end{aligned}
$$

It results from the equality $S(x)=n$ that x is a divisor of $n!$, so $a(n)$ is smaller than $d(n!)$.

So, $\quad a(n)<d(n!)$.

Lemma 1. We have the inequality:
$d(n) \leq n-2$, for each $n \in N, n \geq 7$.

Proof. Be $n=p_{1}^{2_{1}} p_{2}^{2_{2}} \cdots p_{k}^{2_{k}}$ with $p_{1}, p_{2}, \ldots, p_{k}$ prime numbers, and $a_{1} \geq 1$ for each $i \in$ $\in\{1,2, \ldots, k\}$. We consider the function $f:[1, \infty) \rightarrow R, f(x)=a^{x}-x-2, a \geq 2$, fixed. It is derivable on $[1, \infty)$ and $f(x)=a^{x} \ln a-1$. Because $a \geq 2$, and $x \geq 1$ it results that $a^{x} \geq 2$, so $a^{x} \ln a \geq 2 \ln a=\ln a^{2} \geq \ln 4>\ln e=1$, i.e., $f(x)>0$ for each $x \in[1, \infty)$ and $a \geq 2$, fixed. But $f(1)=a-3$. It results that for $a \geq 3$ we have $f(x) \geq 0$, that means $a^{x} \geq x+2$.

Particularly, for $a=p_{i}, i \in\{1,2, \ldots, k\}$, we obtain $p_{i}^{z_{i}} \geq a_{i}+2$ for each $p_{i} \geq 3$.
If $n=2^{2}, s \in N^{*}$, then $d(n)=s+1<2^{2}-2=n-2$ for $s \geq 3$.
So we can assume $k \geq 2$, i.e. $p_{2} \geq 3$. It results the inequalities :

$$
\begin{aligned}
& p_{1}^{2_{1}} \geq a_{1}+1 \\
& p_{2}^{a_{2}} \geq a_{2}+2
\end{aligned}
$$

$$
p_{k}^{a_{k}} \geq a_{k}+2
$$

equivalent with

$$
\begin{equation*}
p_{1}^{2_{1}} \geq a_{1}+1, p_{2}^{2_{2}}-1 \geq a_{2}+1, \ldots, p_{k}^{2_{k}}-1 \geq a_{k}+1 \tag{3}
\end{equation*}
$$

Multiplying, member with member, the inequalities (3) we obtain :

$$
\begin{equation*}
p_{1}^{2_{1}}\left(p_{2}^{2_{2}}-1\right) \cdots\left(p_{k}^{a_{k}}-1\right) \geq\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{k}+1\right)=d(n) . \tag{4}
\end{equation*}
$$

Considering the obvious inequality :
$n-2 \geq p_{1}^{2_{1}}\left(p_{2}^{2_{2}}-1\right) \cdots\left(p_{k}^{2_{k}}-1\right)$
and using (4) it results that :
$n-2 \geq d(n)$ for each $n \geq 7$.

Lemma 2. $d(n!)<(n-2)$! for each $n \in N, n \geq 7$.

Proof. We ration trough induction after n. So, for $n=7$,

$$
d(7!)=d\left(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\right)=60<120=5!
$$

We assume that $d(n!)<(n-2)!$.
$d((n+1)!)=d(n!(n+1)) \leq d(n!) \cdot d(n+1)<(n-2)!d(n+1)<(n-2)!(n-1)=(n-1)!$,
because in accordance with Lemma $\mathrm{l}, \mathrm{d}(\mathrm{n}+1)<\mathrm{n}-1$.

Proposition. The series $\sum_{n=2}^{x} \frac{1}{S(n)!}$ is convergent to a number $s \in(0.717,1.253)$, that we call the first constant constant of Smarandache.

Proof. From Lemma 2 it results that $a(n)<(n-2)!$, so $\frac{a(n)}{n!}<\frac{1}{n(n-1)}$ for every $n \in N$, $n \geq 7$ and $\sum_{n=2}^{\infty} \frac{1}{S(n)!}=\sum_{n=2}^{6} \frac{a(n)}{n!}+\sum_{n=7}^{\infty} \frac{1}{(n-1)}$.

Therefore $\sum_{n=2}^{\infty} \frac{1}{S(n)!}<\frac{1}{2!}+\frac{2}{3!}+\frac{4}{4!}+\frac{8}{5!}+\frac{14}{6!}+\sum_{n=7}^{\infty} \frac{1}{n^{2}-n}$

Because $\sum_{n=2}^{\infty} \frac{1}{n^{2}-n}=1$ we have : it exists the number $s>0$, that we call the Smarandache constant, $s=\sum_{n=2}^{\infty} \frac{1}{S(n)!}$.

From (7) we obtain :

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{1}{S(n)!} & <\frac{391}{360}+1-\frac{1}{2^{2}-2}-\frac{1}{3^{2}-3}-\frac{1}{4^{2}-4}+ \\
& +\frac{1}{5^{2}-5}+\frac{1}{6^{2}-6}=\frac{751}{360}-\frac{5}{6}=\frac{451}{360}<1,253 .
\end{aligned}
$$

But, because $S(n) \leq n$ for every $n \in \mathbf{N}^{*}$, it results :

$$
\sum_{n=2}^{\infty} \frac{1}{S(n)!} \geq \sum_{n=2}^{\infty} \frac{1}{n!}=e-2 .
$$

Consequently, for this first constant we obtain the framing e-2<s<1,253, i.e., $0,717<s<1,253$.

REFERENCES

[1] I. Cojocaru, S. Cojocaru : On some series involving the Smarandache Function (to appear).
[2] F. Smarandache : A Function in the Number Theory (An. Univ. Timisoara, Ser. St. Mat., vol. XVIII, fasc. 1 (1980), $79-88$.

