The function $\Pi_{\mathrm{s}}(\mathrm{x})$

by

Vasile Seleacu and Stefan Zanfir

In this paper are studied some properties of the numerical function $\Pi_{\mathrm{s}}: \mathrm{N}^{*} \rightarrow \mathrm{~N}$, $\Pi_{\mathrm{S}}(\mathrm{x})=\{\mathrm{m} \in(0, \mathrm{x}] / \mathrm{S}(\mathrm{m})=$ prime number $\}$, where $\mathrm{S}(\mathrm{m})$ is the Smarandache function, defined in [1].

Numerical example :
$\Pi_{\mathrm{s}}(1)=0, \Pi_{\mathrm{s}}(2)=1, \Pi_{\mathrm{s}}(3)=2, \Pi_{\mathrm{s}}(4)=2, \Pi_{\mathrm{s}}(5)=3, \Pi_{\mathrm{s}}(6)=4$,
$\Pi_{\mathrm{S}}(7)=5, \quad \Pi_{\mathrm{s}}(8)=5, \quad \Pi_{\mathrm{S}}(9)=5, \quad \Pi_{\mathrm{S}}(10)=6, \quad \Pi_{\mathrm{S}}(11)=7, \Pi_{\mathrm{S}}(12)=7$,
$\Pi_{\mathrm{s}}(13)=8, \Pi_{\mathrm{s}}(14)=9, \Pi_{\mathrm{s}}(15)=10, \Pi_{\mathrm{s}}(16)=10, \Pi_{\mathrm{s}}(17)=11, \Pi_{\mathrm{s}}(18)=11$, $\Pi_{\mathrm{s}}(19)=12, \Pi_{\mathrm{s}}(20)=13$.

Proposion 1.

According to the definition we have
a) $\Pi_{\mathrm{S}}(\mathrm{x}) \leq \Pi_{\mathrm{s}}(\mathrm{x}+1)$,
b) $\Pi_{s}(x)=\Pi_{s}(x-1)+1, \quad$ if x is a prime,
c) $\Pi_{S}(x) \leq \varphi(x), \quad$ if x is a prime,
where $\varphi(x)$ is the Euler's totient function.

Proposition 2.

The equation $\Pi_{s}(x)=\left[\frac{x}{2}\right]$, in the hypothesis $x \neq 1$ and $\Pi_{s}(x+1)=\Pi_{s}(x)$ has no solution in the following situation :
a) x is a prime,
b) x is a composite number, odd
c) $x+1$ is the square of a positiv integer and x is odd.

Proof.

Using the reduction ad absurdum method we suppose that the equation $\Pi_{s}(x)=\left[\frac{x}{2}\right]$ has solution. Then $\Pi_{s}(x-1)=\left[\frac{x+1}{2}\right]$. Using the hypothesis we have : $\left[\frac{x}{2}\right]=\left[\frac{x+1}{2}\right]$, false
Because $\mathrm{x}+1$ is a perfect square we deduce that x is a composite number and because x is an uneven we obtain (b).

Proposition 3.

$\forall \mathrm{a} \geq 2$ and $\mathrm{k} \geq 2 \mathrm{~S}\left(\mathrm{a}^{\mathrm{A}}\right)$ is not a prime.

Proof.

If we suppose that $S\left(a^{k}\right)=p$ is a prime, then $p!=a^{k} p_{1}{ }^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots . p_{n}^{\alpha_{n}} p$ and $\left(a^{k}, p\right)=1$. We deduce that $a^{k} /(p-1)!\Rightarrow$
$S\left(a^{k}\right) \leq p-1<p$, false .

Proposition 4.

$\forall \mathrm{x} \in \mathrm{N}^{*}$, we have :

$$
\left[\frac{x}{2} \leq \Pi_{s}(x) \leq x-[\sqrt{x}]\right.
$$

Proof.

We used the mathematical induction. In the particular case $x \in\{1,2,3,4\}$ our inequality is verified by direct calculus.

We suppose that the inequality is verified for $\mathrm{x} \in \mathrm{N}^{*}$ and we proved it for $\mathrm{x}+1$.
We have the following cases

1) $x+1$ the prime number, with the subcases
a) x is not a square of some integer. Then $\Pi_{s}(x+1)=\Pi_{s}(x)+1$.

We suppose that $\Pi_{s}(x) \leq x-[\sqrt{x}]$
Let prove that $\Pi_{S}(x+1) \leq x-1-[\sqrt{x+1}]$.
It results that $\Pi_{s}(x+1) \leq x+1-[\sqrt{x+1}] \Leftrightarrow \Pi_{s}(x) \leq x-[\sqrt{x+1}]$.
It's enough to prove that $x-[\sqrt{x}] \leq x-[\sqrt{x+1}]$. This relation is true because from our hypothesis it results that $[\sqrt{x}]=[\sqrt{x+1}]$.

For the left side of the inequality we have $\Pi_{s}(x) \geq\left[\frac{x}{2}\right]$, true, and let prove that $\Pi_{s}(x+1)>\left[\frac{x+1}{2}\right]$.

Because $\Pi_{s}(x+1)=\Pi_{s}(x)+1$ we have to prove that $\Pi_{S}(x)+1 \geq\left[\frac{x+1}{2}\right]$ Therefore $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]-1$, that is a true relation.
b) x perfect square.

We suppose that $\Pi_{s}(x) \leq x-[\sqrt{x}]$ is true. Then :

$$
\Pi_{s}(x) \leq x-1-[\sqrt{x+1}] \Rightarrow \Pi_{s}(x)+1 \leq x+1-[\sqrt{x+1}] \Leftrightarrow \Pi_{s}(x) \leq x-[\sqrt{x+1}]
$$

That is a true relation because $[\sqrt{x}]=[\sqrt{x-1}]$. For the left inequality the demonstration is analogous with (a)
2) \times prime
a) $\mathrm{x}-1$ is not a perfect square.

We suppose that $\Pi_{5}(x) \leq x-[\sqrt{x}]$ is true.
Let prove that $\Pi_{s}(x+1) \leq x-1-[\sqrt{x+1}]$.
In this case we have the following two situations
(i) If $\Pi_{s}(x-1)=\Pi_{s}(x)+1$, then we must prove that $\Pi_{s}(x)-1 \leq x+1-[\sqrt{x+1}]$.

Supposing that $\Pi_{s}(x) \geq\left[\frac{x}{2}\right]$ is true. let show that $\Pi_{s}(x+1) \geq\left[\frac{x+1}{2}\right]$ or $\Pi_{s}(x)+1 \geq\left[\frac{x-1}{2}\right]$, therefore $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]-1$ and that results from the hypothesis.
(ii) If $\Pi_{s}(x+1)=\Pi_{s}(x)$. We have to prove that $\Pi_{s}(x) \leq x+1-[\sqrt{x-1}]$ Of course this inequality is true. For the left side of the inequality we have to prove that $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]$. If we admit $\left[\frac{x}{2}\right] \leq \Pi_{s}(x)<\left[\frac{x+1}{2}\right]$ we obtain that $\Pi_{s}(x)=\left[\frac{x}{2}\right], x \neq 1$.

According to the Proposition 2. this inequality can't be true.
Therefore we have $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]$.
Let observe that $\mathrm{x}+1$ is not a perfect square, if $\mathrm{x}>3$ is a prime number. For $x=3$ the inequality is verified by calculus.
3) x is an even composed number. Then :
a) If $x+1$ is a prime.

We know that $\Pi_{s}(x-1)=\Pi_{5}(x)+1$. Then supposing $\Pi_{s}(x) \leq x-[\sqrt{x}]$. We have to prove that $\quad \Pi_{5}(x+1) \leq x+1-[\sqrt{x+1}]$ or $\quad \Pi_{s}(x)=x-[\sqrt{x+1}]$.

This is true, because $[\sqrt{x}]=[\sqrt{x+1}]$.
For the left inequality we have to show $\Pi_{s}(x+1) \geq\left[\frac{x+1}{2}\right]$,
or $\Pi_{s}(x)+1 \geq\left[\frac{x+1}{2}\right]$. But $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]-1$, is true.
b) If $x+1$ is an odd composite number, then
(i) If $\Pi_{5}(x+1)=\Pi_{5}(x)+1$, the demonstration is the same as at (a).
(ii) If $\Pi_{s}(x+1)=\Pi_{s}(x)$, we have to prove that $\Pi_{s}(x) \leq x+1-[\sqrt{x+1}]$

Obvious
The left inequality is obvious.
c) $x+1$ perfect square.

Using Proposition 3 we have only the case $\Pi_{5}(x+1)=\Pi_{5}(x)$. Then if we consider to be true the relation $\Pi_{s}(x) \leq x-[\sqrt{x}]$.

Let prove that $\Pi_{s}(x+1)<x+1-\lfloor\sqrt{x+1}]$.
But $\Pi_{\mathrm{s}}(\mathrm{x}) \leq \mathrm{x}-1-[\sqrt{\mathrm{x}+1}]$ is true.
For the left inequality we suppose that $\left.\Pi_{s}(x) \geq \frac{x}{2} \right\rvert\,$ is true. We have to prove that $\Pi_{5}(x-1) \geq \frac{x-1}{2}$.

Because $\Pi_{\mathrm{s}}(x+1)=\Pi_{\mathrm{s}}(x)$ it resuits $\Pi_{\mathrm{s}}(x) \geq\left[\frac{x+1}{2}\right]$.
So. we must have $\left[\frac{x}{2}\right] \geq\left[\frac{x+1}{2}\right]$. This is true because $x+1$ is an odd number
4) x is an odd composed number.
a) If $\mathrm{x}+1$ is even composed number the proof is the same as in (2 a).

For the right inequality we have
(i) If $\Pi_{s}(x+1)=\Pi_{S}(x)+1$ and we suppose that $\Pi_{s}(x) \leq x-[\sqrt{x}]$, let to prove that $\Pi_{s}(x+1) \leq x+1-[\sqrt{x+1}]$.
This relation lead us to $\Pi_{s}(x) \leq x-[\sqrt{x+1}]$. This is true because $[\sqrt{x}]=[\sqrt{x+1}]$.
(ii) If $\Pi_{s}(x+1)=\Pi_{s}(x)$ the proof is obvious.
b) If $x+1$ is a perfect square.

In this case according to the Proposition 3 we have only the situation $\Pi_{s}(x+1)=\Pi_{s}(x)$. The right sided inequality is obvious and the left side inequality has the same proof as for (2a).
5) If x is a perfect square.
a) If x is a prime and the only situation is that $\Pi_{s}(x+1)=\Pi_{s}(x)+1$. The demonstration is obvious.
b) If $x+1$ is a composite number.

For the right inequality we have
(i) If $\Pi_{s}(x+1)=\Pi_{s}(x+1)$, the proof is analogous as in the preceding case.
(ii) If $\Pi_{s}(x+1)=\Pi_{S}(x)$ the proof is obvious.

For the left inequality :
If $x+1$ is an odd composite number the relation is obvious.
If $x+1$ is an even composite number then :
if $\Pi_{s}(x+1)=\Pi_{s}(x)+1$, the proof is analogous with (a).
if $\Pi_{S}(x+1)=\Pi_{S}(x)$ then x can be just an odd perfect square.
We suppose that $\Pi_{s}(x) \geq\left[\frac{x}{2}\right]$ is true.
To show that $\Pi_{s}(x) \geq\left[\frac{x+1}{2}\right]$, if we suppose, again, that $\Pi_{s}(x)<\left[\frac{x+1}{2}\right]$
it results

$$
\frac{x}{2} \leq \Pi_{\mathrm{S}}(\mathrm{x})<\left\lfloor\frac{\mathrm{x}+1}{2}\right\rfloor \text {, and we have } \Pi_{\mathrm{s}}=\left[\frac{x}{2}\right] .
$$

Proposition 5.

$$
\lim _{n \rightarrow}\left[\Pi_{s}(2 n)-\Pi_{S}(n)\right]=x .
$$

Proof.

According to the Proposition + we have

$$
\begin{aligned}
& \Pi_{s}(n) \leq n-[\sqrt{n+1}]<n<\Pi_{s}(2 n) \Rightarrow \\
& \Pi_{s}(2 n)-\Pi_{s}(n)>[\sqrt{n+1}] \text { and } \lim _{n \rightarrow s}[\sqrt{n+1}]=x .
\end{aligned}
$$

Referencies

1) F. Smarandache. A function in the Number Theory, An. University of Timisoara, Ser. St. Mat. vol. XVII, fasc. 1 (1980)
2) M. Andrei, C. Dumitrescu, V. Seleacu, L. Tutescu, St. Zanfir, Some remarks on the Smarandache Function, Smarandache Function Journal, Vol. 4, No. 1, (1994), 1-5.

Permanent address :
University of Craiova, Dept. of Math.,
Craiova (1100)
ROMANIA

