The function $\Pi_{s}(\mathbf{x})$

by

Vasile Seleacu and Stefan Zanfir

In this paper are studied some properties of the numerical function $\Pi_s : N^* \to N$, $\Pi_s(x) = \{ m \in (0, x] / S(m) = \text{prime number} \}$, where S(m) is the Smarandache function, defined in [1].

Numerical example :

 $\Pi_{s}(1) = 0, \ \Pi_{s}(2) = 1, \ \Pi_{s}(3) = 2, \ \Pi_{s}(4) = 2, \ \Pi_{s}(5) = 3, \ \Pi_{s}(6) = 4,$ $\Pi_{s}(7) = 5, \ \Pi_{s}(8) = 5, \ \Pi_{s}(9) = 5, \ \Pi_{s}(10) = 6, \ \Pi_{s}(11) = 7, \ \Pi_{s}(12) = 7,$ $\Pi_{s}(13) = 8, \ \Pi_{s}(14) = 9, \ \Pi_{s}(15) = 10, \ \Pi_{s}(16) = 10, \ \Pi_{s}(17) = 11, \ \Pi_{s}(18) = 11,$ $\Pi_{s}(19) = 12, \ \Pi_{s}(20) = 13.$

Proposion 1.

According to the definition we have :

a) $\Pi_{s}(x) \le \Pi_{s}(x+1)$, b) $\Pi_{s}(x) = \Pi_{s}(x-1)+1$, if x is a prime, c) $\Pi_{s}(x) \le \phi(x)$, if x is a prime,

where ϕ (x) is the Euler's totient function.

Proposition 2.

The equation $\Pi_s(x) = \left[\frac{x}{2}\right]$, in the hypothesis $x \neq 1$ and $\Pi_s(x+1) = \Pi_s(x)$ has no solution in the following situation:

a) x is a prime.

- b) x is a composite number, odd
- c) x + 1 is the square of a positiv integer and x is odd.

Proof.

Using the reduction ad absurdum method we suppose that the equation $\Pi_s(x) = \left[\frac{x}{2}\right]$ has solution. Then $\Pi_s(x+1) = \left[\frac{x+1}{2}\right]$. Using the hypothesis we have: $\left[\frac{x}{2}\right] = \left[\frac{x+1}{2}\right]$, false.

Because x + 1 is a perfect square we deduce that x is a composite number and because x is an uneven we obtain (b).

Proposition 3.

 $\forall a \ge 2 \text{ and } k \ge 2$ S (a^k) is not a prime.

Proof.

If we suppose that S $(a^k) = p$ is a prime, then $p! = a^k p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n} p$ and $(a^k, p) = 1$. We deduce that $a^k / (p-1)! \Longrightarrow$

S (a^{k}) $\leq p - 1 < p$, false.

Proposition 4.

$$\forall x \in N^*$$
, we have :
 $\left[\frac{x}{2}\right] \le \prod_{s} (x) \le x - \left[\sqrt{x}\right]$

Proof.

We used the mathematical induction. In the particular case $x \in \{1, 2, 3, 4\}$ our inequality is verified by direct calculus.

We suppose that the inequality is verified for $x \in N^*$ and we proved it for x + 1.

We have the following cases :

1) x + 1 the prime number, with the subcases :

a) x is not a square of some integer. Then $\Pi_s(x+1) = \Pi_s(x) + 1$.

We suppose that $\Pi_s(x) \le x - [\sqrt{x}]$

Let prove that $\Pi_s(x+1) \le x+1 - \left[\sqrt{x+1}\right].$

It results that $\Pi_s(x+1) \le x+1 - [\sqrt{x+1}] \Leftrightarrow \Pi_s(x) \le x - [\sqrt{x+1}]$. It's enough to prove that $x - [\sqrt{x}] \le x - [\sqrt{x+1}]$. This relation is true because from our hypothesis it results that $[\sqrt{x}] = [\sqrt{x+1}]$.

For the left side of the inequality we have $\Pi_s(x) \ge \left[\frac{x}{2}\right]$, true, and let prove [x+1]

that
$$\Pi_{s}(x+1) > \left\lfloor \frac{x+1}{2} \right\rfloor$$

Because $\Pi_s(x+1) = \Pi_s(x) + 1$ we have to prove that $\Pi_s(x) + 1 \ge \lfloor \frac{x+1}{2} \rfloor$ Therefore $\Pi_s(x) \ge \lfloor \frac{x+1}{2} \rfloor - 1$, that is a true relation.

b) x perfect square.

We suppose that $\Pi_s(x) \le x - \sqrt{x}$ is true. Then :

 $\Pi_{s}(x) \le x + 1 + [\sqrt{x+1}] \Longrightarrow \Pi_{s}(x) + 1 \le x + 1 - [\sqrt{x+1}] \Leftrightarrow \Pi_{s}(x) \le x - [\sqrt{x+1}].$ That is a true relation because $[\sqrt{x}] = [\sqrt{x+1}]$. For the left inequality the demonstration is analogous with (a)

2) x prime

a) x = 1 is not a perfect square.

We suppose that $\Pi_s(x) \le x - [\sqrt{x}]$ is true. Let prove that $\Pi_s(x+1) \le x+1 - [\sqrt{x+1}]$.

In this case we have the following two situations :

(i) If $\Pi_s(x+1) = \Pi_s(x) + 1$, then we must prove that :

 $\begin{aligned} \Pi_{s}(x) + 1 &\leq x + 1 - \left[\sqrt{x+1}\right]. \\ \text{Supposing that} \quad \Pi_{s}(x) &\geq \left[\frac{x}{2}\right] \text{ is true. let show that} \quad \Pi_{s}(x+1) \geq \left[\frac{x+1}{2}\right] \text{ or } \\ \Pi_{s}(x) + 1 &\geq \left[\frac{x+1}{2}\right], \text{ therefore} \quad \Pi_{s}(x) \geq \left[\frac{x+1}{2}\right] - 1 \text{ and that results from the hypothesis.} \\ \text{(ii) If } \Pi_{s}(x+1) = \Pi_{s}(x). \text{ We have to prove that } \Pi_{s}(x) \leq x+1 - \left[\sqrt{x+1}\right]. \end{aligned}$

Of course this inequality is true. For the left side of the inequality we have to prove that $\Pi_s(x) \ge \left[\frac{x+1}{2}\right]$. If we admit $\left[\frac{x}{2}\right] \le \Pi_s(x) < \left[\frac{x+1}{2}\right]$ we obtain that $\Pi_s(x) = \left[\frac{x}{2}\right], x \ne 1$.

According to the Proposition 2. this inequality can't be true.

Therefore we have $\Pi_s(x) \ge \left[\frac{x+1}{2}\right]$.

Let observe that x + 1 is not a perfect square, if x > 3 is a prime number. For x = 3 the inequality is verified by calculus.

3) x is an even composed number. Then :

a) If x + 1 is a prime.

We know that $\Pi_s (x + 1) = \Pi_s (x) + 1$. Then supposing $\Pi_s (x) \le x - [\sqrt{x}]$. We have to prove that $\Pi_s (x + 1) \le x + 1 - [\sqrt{x+1}]$ or $\Pi_s (x) = x - [\sqrt{x+1}]$. This is true, because $[\sqrt{x}] = [\sqrt{x+1}]$.

For the left inequality we have to show $\Pi_s(x+1) \ge \lfloor \frac{x+1}{2} \rfloor$,

or $\Pi_{s}(x) + 1 \ge \left[\frac{x+1}{2}\right]$. But $\Pi_{s}(x) \ge \left[\frac{x+1}{2}\right] - 1$, is true. b) If x + 1 is an odd composite number, then

> (i) If $\Pi_s(x + 1) = \Pi_s(x) + 1$, the demonstration is the same as at (a). (ii) If $\Pi_s(x + 1) = \Pi_s(x)$, we have to prove that $\Pi_s(x) \le x + 1 - \left[\sqrt{x+1}\right]$

Obvious.

The left inequality is obvious.

c) x + 1 perfect square.

Using *Proposition* 3 we have only the case $\Pi_s(x + 1) = \Pi_s(x)$. Then if we consider to be true the relation $\Pi_s(x) \le x - [\sqrt{x}]$.

Let prove that $\Pi_s (x+1) \le x+1 - \sqrt{x+1}$. But $\Pi_s(x) \le x+1 - \sqrt{x+1}$ is true.

For the left inequality we suppose that $\prod_{s} (x) \ge \left| \frac{x}{2} \right|$ is true. We have to prove that $\Pi_{s}\left(x+1\right) \geq \left|\frac{x+1}{2}\right|.$

Because $\Pi_{s}(x+1) = \Pi_{s}(x)$ it results $\Pi_{s}(x) \ge \left|\frac{x+1}{2}\right|$.

So, we must have $\left\lceil \frac{x}{2} \right\rceil \ge \left\lceil \frac{x+1}{2} \right\rceil$. This is true, because x + 1 is an odd number.

4) x is an odd composed number.

a) If x + 1 is even composed number the proof is the same as in (2a).

For the right inequality we have :

(i) If $\Pi_s(x+1) = \Pi_s(x) + 1$ and we suppose that $\Pi_s(x) \le x - [\sqrt{x}]$, let to prove that $\Pi_s(x+1) \le x+1 - \sqrt{x+1}$. This relation lead us to $\Pi_s(x) \le x - \left[\sqrt[7]{x+1}\right]$. This is true because $\left[\sqrt{x}\right] = \left[\sqrt{x+1}\right]$.

(ii) If $\Pi_s(x + 1) = \Pi_s(x)$ the proof is obvious.

b) If x + 1 is a perfect square.

In this case according to the Proposition 3 we have only the situation $\Pi_s(x+1) = \Pi_s(x)$. The right sided inequality is obvious and the left side inequality has the same proof as for (2a).

5) If x is a perfect square.

a) If x is a prime and the only situation is that $\Pi_s(x+1) = \Pi_s(x) + 1$. The demonstration is obvious.

b) If x + 1 is a composite number.

For the right inequality we have :

(i) If $\Pi_{c}(x+1) = \Pi_{c}(x+1)$, the proof is analogous as in the

preceding case.

(ii) If $\Pi_s(x+1) = \Pi_s(x)$ the proof is obvious.

For the left inequality :

If x + 1 is an odd composite number the relation is obvious.

If x + 1 is an even composite number then :

if $\Pi_s(x+1) = \Pi_s(x) + 1$, the proof is analogous with (a).

if $\Pi_s(x+1) = \Pi_s(x)$ then x can be just an odd perfect square.

We suppose that $\Pi_s(x) \ge \left\lfloor \frac{x}{2} \right\rfloor$ is true. To show that $\Pi_{s}(x) \ge \left[\frac{x+1}{2}\right]$, if we suppose, again, that $\Pi_{s}(x) < \left[\frac{x+1}{2}\right]$ it results

$$\left\lfloor \frac{x}{2} \right\rfloor \le \Pi_{S}(x) < \left\lfloor \frac{x+1}{2} \right\rfloor$$
, and we have $\Pi_{S} = \left\lfloor \frac{x}{2} \right\rfloor$.

Proposition 5.

 $\lim_{n \to i} [\Pi_{s} (2n) - \Pi_{s} (n)] = \infty.$

Proof.

According to the *Proposition* 4 we have : $\Pi_{s}(n) \leq n - \left[\sqrt{n+1}\right] \leq n \leq \Pi_{s}(2n) \Longrightarrow$ $\Pi_{s}(2n) - \Pi_{s}(n) \geq \left[\sqrt{n+1}\right] \text{ and } \lim_{n \to \infty} \left[\sqrt{n+1}\right] = \infty.$

Referencies

1) F. Smarandache. A function in the Number Theory, An. University of Timisoara, Ser. St. Mat. vol. XVII, fasc. 1 (1980)

2) M. Andrei, C. Dumitrescu, V. Seleacu, L. Tutescu, St. Zanfir, Some remarks on the Smarandache Function, Smarandache Function Journal, Vol. 4, No. 1, (1994), 1-5.

Permanent address : University of Craiova, Dept. of Math., Craiova (1100) ROMANIA