THE FUNCTIONS $\theta_{s}(x)$ AND $\bar{\theta}_{s}(x)$

by V. Seleacu and Şt. Zanfir

Department of Mathematics, University of Craiova,
Craiova (1100), Romania
In this paper we define the function $\theta_{s}: N \backslash\{0,1\} \rightarrow \mathrm{N}$ and $\bar{\theta}_{\mathrm{s}}: \mathbf{N} \backslash\{0,1,2\} \rightarrow \mathrm{N}$ as follows

$$
\theta_{s}(x)=\sum_{\substack{p / x \\ 0<p \leq x}} S\left(p^{x}\right) ; \quad \bar{\theta}_{s}(x)=\sum_{\substack{p \times x \\ 0<p r i m e}} S\left(p^{x}\right),
$$

where $S\left(p^{x}\right)$ is the Smarandache function defined in [3] $(S(n)$ is the smollest integer m such that m ! is divisible by n).

For the begining we give some properties of the θ function. Let us observe that, from the definition of θ_{s} it results:

$$
\begin{array}{ll}
\theta_{\mathrm{s}}(2)=\mathrm{S}\left(2^{2}\right)=4, & \theta_{\mathrm{s}}(8)=\mathrm{S}\left(2^{8}\right)=10, \\
\theta_{\mathrm{s}}(3)=\mathrm{S}\left(3^{3}\right)=6, & \theta_{\mathrm{s}}(9)=\mathrm{S}\left(3^{9}\right)=21, \\
\theta_{\mathrm{s}}(4)=\mathrm{S}\left(2^{4}\right)=6, & \theta_{\mathrm{s}}(10)=\mathrm{S}\left(2^{10}\right)+\mathrm{S}\left(5^{10}\right)=12+45=57, \\
\theta_{\mathrm{s}}(5)=\mathrm{S}\left(5^{5}\right)=25, & \theta_{\mathrm{s}}(11)=\mathrm{S}\left(11^{11}\right)=121, \\
\theta_{\mathrm{s}}(6)=\mathrm{S}\left(2^{6}\right)+\mathrm{S}\left(3^{6}\right)=7+15=22, & \theta_{\mathrm{s}}(12)=\mathrm{S}\left(2^{17}\right)+\mathrm{S}\left(3^{12}\right)=43 . \\
\theta_{\mathrm{s}}(7)=\mathrm{S}\left(7^{7}\right)=49, &
\end{array}
$$

We note also that if p-prime than $\theta_{s}\left(p^{p}\right)=p^{2}$
Proposition 1. The series $\sum_{\mathrm{x} \geq 2}\left(\theta_{\mathrm{s}}(\mathrm{x})\right)^{-1}$ is comergent.
Proof. $\sum_{x \geq 2}\left(\theta_{s}(x)\right)^{-1}=\frac{1}{S\left(2^{2}\right)}+\frac{1}{S\left(3^{3}\right)}+\frac{1}{S\left(5^{5}\right)}+\frac{1}{S\left(2^{6}\right)+S\left(3^{6}\right)}+$
$+\frac{1}{S\left(7^{7}\right)}+\frac{1}{S\left(2^{8}\right)}+\frac{1}{S\left(3^{9}\right)}+\frac{1}{S\left(2^{10}\right)+S\left(5^{10}\right)}+\frac{1}{S\left(11^{11}\right)}+\cdots$
$\leq \sum_{i=2}^{\infty}\left(\frac{1}{p_{i}^{2}}+\frac{1}{\left(p_{V(x)}-1\right) V(x)}\right)=\sum_{i=2}^{\infty} \frac{1}{p_{i}^{2}}+\sum_{p_{v(x)} / x} \frac{1}{\left(p_{V(x)}-1\right) V(x)}$,
Pux
where $V(x)$ denote the number of the primes less or equal with x and divide by x.

Of course the series $\sum_{i=2}^{\infty} \frac{1}{p_{i}^{2}}$ and $\sum_{p_{V(x)} / x} \frac{1}{\left(p_{V(x)}-1\right) V(x)}$ are convergent, so the propositionis proved.

Proposition 2. Let the sequence $T(n)=1-\lg \theta_{3}(n)+\sum_{i=2}^{n} \frac{1}{\theta_{s}(i)}$. Then $\lim _{n \rightarrow \infty} T(n)=-\infty$.

The proof is imediate because the series $\sum_{n=2}^{\infty} \frac{1}{\theta_{s}(n)}$ is convergent according by the proposition 1.

Proposition 3. The equation $\theta_{s}(x)=\theta_{s}(x+1)$ (0) has no solution if x is a prime.

Proof. If x is a prime number the equation become

$$
\begin{aligned}
& x^{2}=\theta_{s}(x+1), \text { where } \\
& \theta_{s}(x+1)=S\left(p_{i_{1}}^{x+1}\right)+S\left(p_{i_{2}}^{x+1}\right)+\cdots+S\left(p_{i_{v_{(x+1}}}^{x+1}\right)
\end{aligned}
$$

Using the inequality

$$
\begin{equation*}
(\mathrm{p}-1) \alpha<\mathrm{S}\left(\mathrm{p}^{\alpha}\right) \leq \mathrm{p} \alpha \tag{1}
\end{equation*}
$$

given in [4], we have

$$
\theta_{s}(x+1) \leq(x+1)\left(p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{v(x+1)}}\right)
$$

Let us presume that the equation (0) has solution. We have the following relation:

$$
\begin{equation*}
x^{2} \leq(x+1)\left(p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{v(x \cdot 1)}}\right) \tag{2}
\end{equation*}
$$

and we prove that

$$
\begin{equation*}
p_{i_{1}}+p_{i_{2}}+\cdots+p_{i_{v_{(x+1)}}} \leq x-1 \tag{3}
\end{equation*}
$$

for $x \geq 9$.
Let $\eta=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots \cdots p_{r}^{\alpha_{r}}, \quad p_{i} \neq p_{j}, i \neq j$, the decomposition of n into primes. We define the function $f(n)=1+\alpha_{1} p_{1}+\cdots+\alpha_{r} p_{r}$ and we show that $f(n) \leq n-2$ for $n \geq 9$. If $1 \leq n<9$ the precedent inequality is verified by calculus). For $n \geq 9$, we prove the inequality by induction:

$$
r(9)=7, f(10)=8, f(12)=8<10, \text { true }
$$

Now let us suppose that $f(n) \leq n-2, \forall n \geq 12$, and we show that $f(n+1) \leq n-1$.
In this case we have three different situations:
I) $n+1=h=k_{1} \cdot k_{2}$, where k_{1}, k_{2} are composed members. Using the true relation, $f(h)=f\left(k_{1} \cdot k_{2}\right)=f\left(k_{1}\right)+f\left(k_{2}\right)-1$, we have
$\mathrm{f}(\mathrm{h})=\mathrm{f}(\mathrm{n}+\mathrm{l})=\mathrm{f}\left(\mathrm{k}_{1}\right)+\mathrm{f}\left(\mathrm{k}_{2}\right)-1 \leq \mathrm{k}_{1}-2+\mathrm{k}_{2}-2-1=\mathrm{k}_{1} \cdot \mathrm{k}_{2}-8-5 \leq$ $\leq h-2=n+1-2=n-1 \Rightarrow f(n+1) \leq n-1$.
II) $n+1=h=k_{1} \cdot k_{2}$, where, $k_{1}-$ prime, k_{2}-compounded,
$\mathrm{f}(\mathrm{h})=\mathrm{f}\left(\mathrm{k}_{1}\right)+\mathrm{f}\left(\mathrm{k}_{2}\right)-\mathrm{l} \leq \mathrm{k}_{1}+1+\mathrm{k}_{2}-2-\mathrm{l} \leq \mathrm{k}_{1} \cdot \mathrm{k}_{2}-2=\mathrm{n}-1$.
III) $n+1=h=k_{1} \cdot k_{2}$, where k_{1}, k_{2} - prime.
$f(h)=1+k_{1}+k_{2}=k_{1} k_{2}+2-\left(k_{1}-1\right)\left(k_{2}-1\right) \leq h+2-4=h-2=n-1$.
Conclusion: $\mathrm{f}(\mathrm{n}) \leq \mathrm{n}-2, \forall \mathrm{n} \geq 9$.
Then $\mathrm{f}(\mathrm{n}) \leq \mathrm{n}+2 \Rightarrow 1+\alpha_{1} \mathrm{p}_{1}+\alpha_{2} \mathrm{p}_{2}+\cdots+\alpha_{\mathrm{r}} \mathrm{p}_{\mathrm{r}} \leq \mathrm{n}-2 \Rightarrow$

$$
\alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{r} p_{\mathrm{r}} \leq n-3
$$

We obtain

$$
p_{1}+p_{2}+\cdots+p_{r} \leq \alpha_{1} p_{1}+\alpha_{2} p_{2}+\cdots+\alpha_{r} p_{r} \leq n-3 \leq n-2
$$

Using (3) in (2) we have

$$
x^{2} \leq(x+1)(x-1) \Rightarrow x^{2}<x^{2}-1, \text { imposible. }
$$

Proposition 4. The equation $\theta_{s}(x)=\theta_{s}(x+1)$ has no solution for $(x+1)$-prime.
Proof. We have $\theta_{\mathrm{s}}(\mathrm{x}+1)=(\mathrm{x}+1)^{2}$.
We suppose that the equation has solution and with the inequalityes (1) is must that

$$
(x+1)^{2} \leq x\left(p_{i_{1}}^{x}+p_{i_{2}}^{x}+\cdots+p_{i_{v x}}^{x}\right) \leq x^{2} \text {, imposible. }
$$

We give some particular value for $\bar{\theta}_{\mathrm{s}}(x)=\sum_{p^{\mathrm{rs}}} S\left(p^{\mathrm{x}}\right)$;

$$
\begin{aligned}
& \bar{\theta}_{\mathrm{s}}(3)=S\left(2^{3}\right)=4 \\
& \bar{\theta}_{\mathrm{s}}(8)=\mathrm{S}\left(3^{8}\right)+\mathrm{S}\left(5^{8}\right)+\mathrm{S}\left(7^{8}\right)=18+35+49=102 \\
& \bar{\theta}_{s}(4)=S\left(3^{4}\right)=9 \\
& \bar{\theta}_{\mathrm{s}}(9)=\mathrm{S}\left(2^{9}\right)+\mathrm{S}\left(5^{9}\right)+\mathrm{S}\left(7^{9}\right)=12+40+56=108 \\
& \bar{\theta}_{s}(5)=S\left(2^{5}\right)+S\left(3^{5}\right)=20 \\
& \bar{\theta}_{\mathrm{S}}(6)=\mathrm{S}\left(5^{6}\right)=30 \\
& \tilde{\theta}_{9}(10)=S\left(3^{10}\right)+S\left(7^{10}\right)=24+63=87 \\
& \bar{\theta}_{s}(11)=S\left(2^{11}\right)+S\left(3^{11}\right)+S\left(5^{11}\right)+S\left(7^{11}\right)=16+27+ \\
& +50+73=163 \\
& \tilde{\theta}_{\mathrm{s}}(7)=\mathrm{S}\left(2^{7}\right)+\mathrm{S}\left(3^{7}\right)+\mathrm{S}\left(5^{7}\right)= \\
& \bar{\theta}_{\mathrm{S}}(12)=\mathrm{S}\left(2^{12}\right)+\mathrm{S}\left(7^{12}\right)+\mathrm{S}\left(11^{12}\right)=50+77+ \\
& =8+18+36=62 \\
& +121=248 \\
& \bar{\theta}_{\mathrm{s}}(13)=\mathrm{S}\left(2^{13}\right)+\mathrm{S}\left(3^{13}\right)+\mathrm{S}\left(5^{13}\right)+\mathrm{S}\left(7^{13}\right)+\mathrm{S}\left(11^{13}\right)= \\
& =16+27+60+84+132=319 \text {. }
\end{aligned}
$$

Proposition 5. The series $\sum_{x \geq 3}\left(\bar{\theta}_{s}(x)\right)^{-1}$ is convergent.

$$
\begin{aligned}
& \text { Proof. } \\
& \sum_{x \geq 3}\left(\bar{O}_{s}(x)\right)^{-1}=\frac{1}{S\left(2^{3}\right)}+\frac{1}{S\left(3^{4}\right)}+\frac{1}{S\left(2^{5}\right)+S\left(3^{5}\right)}+\frac{1}{S\left(2^{8}\right)+S\left(5^{8}\right)+S\left(7^{8}\right)}+\frac{1}{S\left(2^{9}\right)+S\left(5^{9}\right)+S\left(7^{9}\right)} \\
& +\cdots \leq \frac{1}{S\left(2^{3}\right)}+\frac{1}{S\left(3^{4}\right)}+\frac{1}{S\left(5^{6}\right)}+\frac{1}{S\left(2^{7}\right)}+\cdots \leq \sum_{\substack{x \geq 3 \\
p_{i} x_{x} \\
p_{i}-\text { prime }}} \frac{1}{S\left(p_{i}^{x}\right)} \leq \sum_{\substack{x \geq 3 \\
p_{i} \gamma_{x} \\
p_{i}-\text { prime }}} \frac{1}{p_{i}^{2}} \leq \sum_{x \geq 3} \frac{1}{x^{2}} .
\end{aligned}
$$

Because the series $\sum_{\mathrm{x} 23} \frac{1}{\mathrm{x}^{2}}$ is convergent, we have that our series is convergent.
Proposition 6. If $\mathrm{T}(\mathrm{n})=1-\lg \tilde{\theta}_{s}(\mathrm{n})+\sum_{\mathrm{i}=3}^{\mathrm{n}} \frac{1}{\bar{\theta}_{\mathrm{s}}(\mathrm{i})}$ then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{T}(\mathrm{n})=-\infty$.
Proposition 7. The equation $\bar{\theta}_{\mathbf{s}}(\mathrm{x})=\bar{\theta}_{\mathrm{s}}(\mathrm{x}+1)$ has no solution if $\mathrm{x}+\mathrm{l}=\mathrm{p}-\mathrm{prime}$.
Proof. If $\mathrm{x}+1$ is prime be wouldn't divide with any of prime numbers then him

$$
\bar{\theta}_{s}(x+1)=\sum_{\substack{p x x+1 \\ 0<p s x+1}} S\left(p^{x+1}\right)=S\left(p_{i_{1}}^{x+1}\right)+S\left(p_{i_{2}}^{x+1}\right)+\cdots+S\left(p_{i_{r(x)}^{x+1}}^{x}\right)
$$

The number x is divisible with at least two prime numbers then him. In the case $\bar{\theta}_{\mathrm{s}}(\mathrm{x})=\sum_{\substack{\mathrm{p} \times \mathrm{x} \\ 0<\mathrm{pSx}}} \mathrm{S}\left(\mathrm{p}^{\mathrm{x}}\right)$ will have at least two terms $\mathrm{S}\left(\mathrm{p}_{\mathrm{i}_{\mathrm{z}}}^{\mathrm{x}}\right)$ less then they are in $\bar{\theta}_{\mathrm{s}}(\mathrm{x}+1)$.

Moreover $\mathrm{S}\left(\mathrm{p}_{\mathrm{i}}^{\mathrm{x}}\right) \leq \mathrm{S}\left(\mathrm{p}_{\mathrm{i}}^{\mathrm{x}+1}\right)$ and it results that $\bar{\theta}_{\mathrm{s}}(\mathrm{x})<\bar{\theta}_{\mathrm{s}}(\mathrm{x}+1)$.
Proposition 8. The equation $\bar{\theta}_{s}(x)=\bar{\theta}_{s}(x+1)$ has no solution if $x=p$-prime, $x \geq 9$.
Proof. using the function $\mathrm{F}_{\mathrm{s}}(\mathrm{x})=\underset{\substack{0<p \mathrm{Px} \\ \mathrm{p}-\text { prime }}}{ } \mathrm{S}\left(\mathrm{p}^{\mathrm{x}}\right)$ defined in [2] we have
$\mathrm{F}_{\mathrm{s}}(\mathrm{x})=\theta_{\mathrm{s}}(\mathrm{x})+\bar{\theta}_{\mathrm{s}}(\mathrm{x})$
$\mathrm{F}_{\mathrm{s}}(\mathrm{x}+1)=\theta_{\mathrm{s}}(\mathrm{x}+1)+\tilde{\theta}_{\mathrm{s}}(\mathrm{x}+1)$.
If our equation have solution $\bar{o}_{s}(x)=\bar{o}_{s}(x+1)$ then

$$
F_{s}(x)-F_{3}(x+1)=\theta_{s}(x)-\theta_{3}(x+1)
$$

or

$$
F_{s}(x)-F_{s}(x+1)=x^{2}-\theta_{s}(x+1)
$$

Is known [2] that $\mathrm{F}_{\mathrm{s}}(\mathrm{x})-\mathrm{F}_{\mathrm{s}}(\mathrm{x}+1)<0$. We have $\mathrm{x}^{2}-\theta_{\mathrm{s}}(\mathrm{x}+1)<0 \Rightarrow \mathrm{x}^{2}<\theta_{\mathrm{s}}(\mathrm{x}+1)$. Using (3) we have $\theta_{s}(x+1) \leq(x+1)(x-1)=x^{2}-1$, therefore $\mathrm{x}^{2}<\mathrm{x}^{2}-1$, imposible.

For $x<9$ is verified by calculus that the equation $\bar{\theta}_{5}(x)=\bar{\theta}_{s}(x+1)$ has not solution.

Proposed problem

1. $\theta_{s}(x)=\theta_{s}(x+1), x, x+1$ are composed numbers.
2. $\tilde{\theta}_{s}(x)=\tilde{\theta}_{s}(x+1), x, x+1$, are composed numbers.

Calculate

3. $\lim _{n \rightarrow \infty} \frac{\theta_{s}(n)}{n^{\alpha}}, \alpha \in \mathbf{R}$.
4. $\lim _{n \rightarrow \infty} \frac{\bar{o}_{s}(n)}{n^{\alpha}}, \alpha \in R$.

References

1. M.Andrci, C. Dumitrescu, V.Scicacu, L. Tutcscu, Şt. Zanfir, Some remarks on the Smarandache Function, Smarandache Function Jurnal, vol 4-5, No 1 (1994).
2. I.Bălăccnoiu, V.Sclcacu, N.Vislan Properties of the numerical Function F_{s}, Smarandache Function Jurnal, vol 6 Nol (1995)
3. F. Smarandache A Function in the Number Theory, Smarandache Function Jurnal, vol. 1, No 1 (1990), 1-17
4. Pal Gronas A proof the non existenc of "Samma", Smarandache Function Jurnal, vol. 4-5, No $1 \operatorname{Sept}(1994)$
