The Integral Values of $\log _{{ }_{k}} S\left(n^{k}\right)$
Maohua Le
Abstract: Let k, n be distinct positive integers. In this paper, we prove that $\log _{\mathbf{k}} \mathrm{S}\left(\mathrm{n}^{k}\right)$ is never a positive integer.

Key words: Smarandache function, logarithm, integral value.
For any positive integer a, let $S(a)$ denote the Smarandache function of a. In [2, Problem 22], Muller posed the following problem:

Problem: Is it possible to find two distinct positive integers k and n such that $\log _{\mathrm{k}} \mathrm{S}\left(\mathrm{n}^{k}\right)$ is a positive integer?

In this paper, we completely solve the above problem as follows:
Theorem: For any distinct positive integers k and $n, \log _{k} S\left(n^{k}\right)$ is never a positive integer.
Proof: If $\log _{\mathbf{k}} \mathrm{S}\left(\mathrm{n}^{\mathrm{k}}\right)$ is a positive integer, then we have $\mathrm{k}>1, \mathrm{n}>1$ and
(1) $\log _{\mathrm{a}} \mathrm{S}\left(\mathrm{n}^{\mathrm{k}}\right)=\mathrm{m}$,
where m is a positive integer. By (1), we get
(2) $S\left(n^{k}\right)=k^{n m}$.

By (1), we have
(3) $S\left(n^{k}\right)=S\left(n^{k-1 *} n\right) \leq S\left(n^{k-1}\right)+S(n) \leq \ldots k S(n)$.

Therefore, by (2) and (3), we get

$$
\begin{equation*}
k^{\mathrm{nm}} \leq \mathrm{kS}(\mathrm{n}) \leq \mathrm{kn} . \tag{4}
\end{equation*}
$$

If $k>n>1$, then from (4) we obtain
(5)

$$
k^{2} \leq k^{n} \leq k^{n m} \leq k n \leq k(k-1)<k^{2}
$$

a contradiction. If $\mathrm{n}>\mathrm{k}>1$, then we have

$$
\begin{equation*}
2^{n} \leq k^{n} \leq k^{n m} \leq k n \leq(n-1) n \tag{6}
\end{equation*}
$$

It is impossible, since $n \geq 3$. Thus, the theorem is proved.

References

[1] M. H. Le, "An Inequality Concerning the Smarandache Function", Smarandache Notions Journal, 9(1998), 124-125.
[2] R. Muller, Unsolved Problems Related to Smarandache Function, Number Theory Publishing Company, 1997.

Maohua Le
Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. China

