THE LOWER BOUND FOR THE SMARANDACHE COUNTER C(0,n!)

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. In this paper we prove that if n is an integer with $n \ge 5$, then the Smarandache counter C(0,n!) satisfies $C(0,n!) > (1-5^{-k})(n+1)/4-k$, where $k=\lfloor \log n / \log 5 \rfloor$.

Let a be an integer with $0 \le a \le 9$. For any positive decimal integer m, the number of a in digits of m is called the Smarandache counter of m with a. It is denoted by C(a,m) (see [1,Notion 132]). Let n be a positive integer. In this paper we give a lower bound for C(0,n!) as follows:

Theorem. If $n \ge 5$, then we have

- (1) $C(0,n!)>1/4(1-5^{-k})(n+1)-k$,
- where k=[log n / log 5] Proof. Let
- (2) $n! = \overline{a_{s}a_{s-1} \dots a_{1}a_{0}}$

If $n \ge 5$, then we have 10 | n! and $a_0 = 0$. Further, let $2^u || n!$ and $5^v ||n|$. By [2, Theorem 1*11*1], we get

(3)
$$u = \sum_{r=1}^{\infty} [n/2^r], \quad v = \sum_{r=1}^{\infty} [n/5^r].$$

We see from (3) that $u \ge v$. It implies that there exist continuous v zeros $a_0 = a_1 = \dots = a_{w1} = 0$ in (2). So we have

(4)
$$C(0,n!) \ge v$$
.

Let k=[logn/log5]. Since $[n/5^{r}]=0$ if r>k, we see from (3) that

(5)
$$v = \sum_{r=1}^{\infty} [n/5^r]$$

Since $[n/5^{r}] \ge n/5^{r} - (5^{r} - 1)/5^{r}$, we get from (5) that

(6)
$$v \ge \sum_{r=1}^{k} (n/5^{r} - (5^{r} - 1)/5^{r}) = 1/4(1-5^{-k})(n+1)-k$$

Substitute (6) into (4) yelds (1). The theorem is proved.

Reference

- 1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994.
- 2. L.-K.Hua, Introduction to Number Theory, Springer, Berlin, 1982.