THE LOWER BOUND FOR THE SMARANDACHE COUNTER C($0, \mathrm{n}$!

Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract

In this paper we prove that if n is an integer with $n \geq 5$, then the Smarandache counter $C(0, n!)$ satisfies $C(0, n!)>\left(1-5^{-k}\right)(n+1) / 4-k$, where $k=\lfloor\log n / \log 5\rfloor$.

Let a be an integer with $0 \leq \mathrm{a} \leq 9$. For any positive decimal integer m, the number of a in digits of m is called the Smarandache counter of m with a. It is denoted by $\mathrm{C}(\mathrm{a}, \mathrm{m})$ (see [1,Notion 132]). Let n be a positive integer. In this paper we give a lower bound for $\mathrm{C}(0, \mathrm{n}!)$ as follows:

Theorem. If $\mathrm{n} \geq 5$, then we have
(1) $C(0, n!)>1 / 4\left(1-5^{-k}\right)(n+1)-k$,
where $k=\lfloor\log n / \log 5\rfloor$
Proof. Let

$$
\begin{equation*}
n!=\overline{a_{s} a_{s-1} \ldots a_{1} a_{0}} \tag{2}
\end{equation*}
$$

If $n \geq 5$, then we have $10 \mid n!$ and $a_{0}=0$. Further, let $2^{\mathrm{u}} \| \mathrm{n}$! and $5^{\mathrm{v}} \| \mathrm{n}!$. By [2, Theorem $\left.1^{*} 11^{*} 1\right]$, we get
(3) $u=\sum_{r=1}^{\infty}\left[n / 2^{r}\right], \quad v=\sum_{r=1}^{\infty}\left[n / 5^{r}\right]$

We see from (3) that $u \geq v$. It implies that there exist continuous v zeros $a_{0}=a_{1}=\ldots=a_{w_{1}}=0$ in (2). So we have
(4) $C(0, n!) \geq v$.

Let $k=[\operatorname{logn} / \log 5]$. Since $\left[n / 5^{r}\right]=0$ if $r>k$, we see from (3) that
(5) $\mathrm{v}=\sum^{\infty}\left[\mathrm{n} / 5^{\mathrm{r}}\right]$

$$
\Gamma=1
$$

Since $\left[\mathrm{n} / 5^{\mathrm{r}}\right] \geq \mathrm{n} / 5^{\mathrm{r}}-\left(5^{\mathrm{r}}-1\right) / 5^{\mathrm{r}}$, we get from (5)that
(6) $\quad v \geq \sum_{\Gamma=1}\left(n / 5^{r}-\left(5^{r}-1\right) / 5^{r}\right)=1 / 4\left(1-5^{-k}\right)(n+1)-k$

Substitute (6) into (4) yelds (1) . The theorem is proved.

Reference

1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994.
2. L.-K.Hua, Introduction to Number Theory, Springer, Berlin, 1982.
