THE MONOTONY OF SMARANDACHE FUNCTIONS OF FIRST KIND

by Ion Bălăcenoiu Department of Mathematics, University of Craiova Craiova (1100), Romania

Smarandache functions of first kind are defined in [1] thus:

$$S_n: N^* \to N^*, S_1(k) = 1 \text{ and } S_n(k) = \max_{\substack{l \leq j \leq r}} \{S_{p_j}(i_j k)\},\$$

where $n = p_1^{i_1} \cdot p_2^{i_2} \cdots p_r^{i_r}$ and S_{p_i} are functions defined in [4].

They \sum_{1} -standardise $(N^{\bullet}, +)$ in $(N^{\bullet}, \leq, +)$ in the sense that

$$\sum_{1} : \max \{S_n(a), S_n(b)\} \le S_n(a+b) \le S_n(a) + S_n(b)$$

for every $a, b \in N^*$ and \sum_2 -standardise $(N^*, +)$ in (N^*, \leq, \cdot) by

$$\sum_{2} : \max \{S_n(a), S_n(b)\} \le S_n(a+b) \le S_n(a) \cdot S_n(b), \text{ for every } a, b \in N^*$$

In [2] it is prooved that the functions S_n are increasing and the sequence $\{S_{p^i}\}_{i \in N}^{\bullet}$ is also increasing. It is also proved that if p, q are prime numbers, then

$$p \cdot i < q \Rightarrow S_{p^i} < S_q$$
 and $i < q \Rightarrow S_i < S_q$,

where $i \in N^*$.

It would be used in this paper the formula

$$S_p(k) = p(k - i_k)$$
, for same i_k satisfying $0 \le i_k \le \left[\frac{k - 1}{p}\right]$, (see [3]) (1)

1. Proposition. Let p be a prime number and $k_1, k_2 \in N^{\bullet}$. If $k_1 < k_2$ then $i_{k_1} \leq i_{k_2}$, where i_{k_1}, i_{k_2} are defined by (1).

Proof. It is known that $S_p: \mathbb{N}^* \to \mathbb{N}^*$ and $S_p(k) = pk$ for $k \le p$. If $S_p(k) = mp^{\alpha}$ with $m, \alpha \in \mathbb{N}^*, (m, p) = 1$, there exist α consecutive numbers:

$$n, n+1, \dots, n+\alpha-1 \quad \text{so that} \\ k \in \{n, n+1, \dots, n+\alpha-1\} \quad \text{and} \\ S_p(n) = S_p(n+1) = \dots = S(n+\alpha-1),$$

this means that S_p is stationed the $\alpha - 1$ steps $(k \rightarrow k + 1)$.

If $k_1 < k_2$ and $S_p(k_1) = S_p(k_2)$, because $S_p(k_1) = p(k_1 - ik_1)$, $S_p(k_2) = p(k_2 - ik_2)$ it results $i_{k_1} < i_{k_2}$.

If $k_1 < k_2$ and $S_p(k_1) < S_p(k_2)$, it is easy to see that we can write:

$$i_{k_1} = \beta_1 + \sum_{\alpha} (\alpha - 1)$$

$$mp^{\alpha} < S_p(k_1),$$
 where $\beta_1 = 0$ for $S_p(k_1) \neq mp^{\alpha}$, if $S_p(k_1) = mp^{\alpha}$
then $\beta_1 \in \{0, 1, 2, ..., \alpha - 1\}$
and

and

 $i_{k_2} = \beta_2 + \sum_{\alpha} (\alpha - 1)$ $mp^{\alpha} < S_p(k_2)$, where $\beta_2 = 0$ for $S_p(k_2) \neq mp^{\alpha}$, if $S_p(k_2) = mp^{\alpha}$ then

 $\beta_2 \in \{0, 1, 2, ..., \alpha - 1\}.$

Now is obviously that $k_1 < k_2$ and $S_p(k_1) < S_p(k_2) \implies i_{k_1} \le i_{k_2}$. We note that, for $k_1 < k_2$, $i_{k_1} = i_{k_2}$ iff $S_p(k_1) < S_p(k_2)$ and $\{mp^{\alpha} | \alpha > 1 \text{ and } mp^{\alpha} \le S_p(k_1)\} =$ $\{mp^{\alpha} | \alpha > 1 \text{ and } mp^{\alpha} < S_{p}(k_{2})\}$

2. Proposition. If p is a prime number and $p \ge 5$, then $S_p > S_{p-1}$ and $S_p > S_{p+1}$.

Proof. Because p-1 < p it results that $S_{p-1} < S_p$. Of course p+1 is even and so: (i) if $p+1=2^i$, then i>2 and because $2i<2^i-1=p$ we have $S_{p+1}< S_p$. (ii) if $p+1 \neq 2^i$, let $p+1 = p_1^{i_1} \cdot p_2^{i_2} \cdots p_r^{i_r}$, then $S_{p+1}(k) = \max_{1 \leq j \leq r} \{S_{p_j^{i_j}}(k)\} = S_{p_m^{i_m}}(k) = S_{p_m^{i_m}}(k)$ $= S_{p_{-}}(i_{m} \cdot k).$

Because $p_m \cdot i_m \le p_m^{i_m} \le \frac{p+1}{2} < p$ it results that $S_{p_m^{i_m}}(k) < S_p(k)$ for $k \in N^*$, so that $S_{p+1} < S_p$.

3. Proposition. Let p,q be prime numbers and the sequences of functions

$$\{S_{p^{j}}\}_{i\in\mathbb{N}^{*}}, \{S_{q^{j}}\}_{j\in\mathbb{N}^{*}}$$

If p < q and $i \leq j$, then $S_{j} < S_{j}$.

so,

Proof. Evidently, if p < q and $i \le j$, then for every $k \in N^*$

$$S_{p^{i}}(k) \leq S_{p^{i}}(k) < S_{q^{i}}(k)$$
$$S_{p^{i}} < S_{q^{j}}$$

4. Definition. Let p,q be prime numbers. We consider a function $S_{a,l}$, a sequence of functions $\{S_{n^i}\}_{i\in\mathbb{N}^*}$, and we note:

$$i_{(j)} = \max_{i} \left\{ i \left| S_{p^{i}} < S_{q^{i}} \right\} \right\}$$

$$i^{(j)} = \min_{i} \left\{ i \left| S_{q^{j}} < S_{p^{j}} \right| \right\},$$

then $\{k \in N | i_{(j)} < k < i^{(j)}\} = \Delta_{p'(q')} = \Delta_{i(j)}$ defines the interference zone of the function $S_{q'}$ with the sequence $\{S_{p'}\}_{i \in N^*}$.

5. Remarque.

- a) If $S_{q^{j}} < S_{p^{j}}$ for $i \in \mathbb{N}^{\bullet}$, then now exists i^{j} and $i^{jj} = 1$, and we say that $S_{q^{j}}$ is separately of the sequence of functions $\left\{S_{p^{j}}\right\}_{q^{j}}$.
- b) If there exist $k \in \mathbb{N}^{\bullet}$ so that $S_{p^{k}} < S_{q^{j}} < S_{p^{k+1}}$, then $\Delta_{p^{j}(q^{j})} = \emptyset$ and say that the function $S_{q^{j}}$ does not interfere with the sequence of functions $\left\{S_{p^{j}}\right\}_{q \in \mathbb{N}^{\bullet}}$.

6. Definition. The sequence $\{x_n\}_{n\in\mathbb{N}}$, is generally increasing if

$$\forall n \in N^* \exists m_0 \in N^* \text{ so that } x_m \geq x_n \text{ for } m \geq m_0.$$

7. Remarque. If the sequence $\{x_n\}_{n \in N}$, with $x_n \ge 0$ is generally increasing and boundled, then every subsequence is generally increasing and boundled.

8. Proposition. The sequence $\{S_n(k)\}_{n \in \mathbb{N}^*}$, where $k \in \mathbb{N}^*$, is in generally increasing and boundled.

Proof. Because $S_n(k) = S_{n^k}(1)$, it results that $\{S_n(k)\}_{n \in \mathbb{N}^*}$ is a subsequence of $\{S_m(1)\}_{m \in \mathbb{N}^*}$.

The sequence $\{S_m(1)\}_{m\in\mathbb{N}}$ is generally increasing and boundled because:

 $\forall m \in N^* \ \exists t_0 = m!$ so that $\forall t \ge t_0 \ S_t(1) \ge S_{t_0}(1) = m \ge S_m(1)$.

From the remarque 7 it results that the sequence $\{S_n(k)\}_{n\in\mathbb{N}^*}$ is generally increasing boundled.

9. Proposition. The sequence of functions $\{S_n\}_{n \in \mathbb{N}}$ is generally increasing boundled.

Proof. Obviously, the zone of interference of the function S_m with $\{S_n\}_{n=1}^{\infty}$ is the set

$$\Delta_{n(m)} = \{k \in N^* | n_{(m)} < k < n^{(m)}\} \text{ where}$$
$$n_{(m)} = \max\{n \in N^* | S_n < S_m\}$$
$$n^{(m)} = \min\{n \in N^* | S_m < S_n\}.$$

The interference zone $\Delta_{n(m)}$ is nonemty because $S_m \in \Delta_{n(m)}$ and finite for $S_1 \leq S_m \leq S_p$, where p is one prime number greater than m.

Because $\{S_n(1)\}$ is generally increasing it results:

$$\forall m \in N^* \; \exists t_0 \in N^* \text{ so that } S_t(1) \geq S_m(1) \text{ for } \forall t \geq t_0.$$

For $r_0 = t_0 + n^{(m)}$ we have

 $S_r \ge S_m \ge S_m(1)$ for $\forall r \ge r_0$,

so that $\{S_n\}_{n=N^*}$ is generally increasing boundled.

10. Remarque. a) For $n = p_1^{i_1} \cdot p_2^{i_2} \cdots p_r^{i_r}$ are possible the following cases:

1) $\exists k \in \{1, 2, ..., r\}$ so that

$$S_{p_j^{ij}} \leq S_{p_k^{ik}}$$
 for $j \in \{1, 2, ..., r\}$,

then $S_n = S_{p_k^{i_k}}$ and $p_k^{i_k}$ is named the dominant factor for *n*.

2)
$$\exists k_1, k_2, ..., k_m \in \{1, 2, ..., r\}$$
 so that :
 $\forall t \in \overline{1, m} \quad \exists q_t \in N^* \text{ so that } S_n(q_t) = S_{p_{k_t}^{i_{k_t}}}(q_t) \text{ and}$
 $\forall l \in N^* \quad S_n(l) = \max_{1 \le t \le m} \left\{ S_{p_{k_t}^{i_{k_t}}}(l) \right\}.$

We shall name $\{p_{k_t}^{i_{k_t}} | t \in \overline{1, m}\}$ the active factors, the others wold be name passive factors for n.

b) We consider

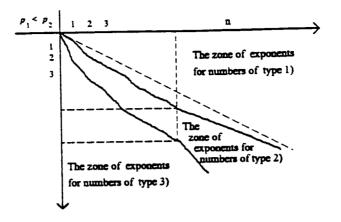
$$N_{p_1p_2} = \{n = p_1^{i_1} \cdot p_2^{i_2} | i_1, i_2 \in N^*\}, \text{ where } p_1 < p_2 \text{ are prime numbers.}$$

For $n \in N_{p_1p_2}$ appear the following situations:

1) $i_1 \in (0, i_1^{(i_2)}]$, this means that $p_1^{i_1}$ is a pasive factor and $p_2^{i_2}$ is an active factor.

- 2) $i_1 \in (i_{1(i_2)}, i_1^{(i_2)})$ this means that $p_1^{i_1}$ and $p_2^{i_2}$ are active factors.
- 3) $i_1 \in [i_1^{(i_2)}, \infty)$ this means that $p_1^{i_1}$ is a active factor and $p_2^{i_2}$ is a pasive factor.

For $p_1 < p_2$ the repartion of exponents is represently in following scheme:



For numbers of type 2) $i_1 \in (i_{1(i_2)}, i_1^{(i_2)})$ and $i_2 \in (i_{2(i_1)}, i_2^{(i_1)})$

c) I consider that

$$N_{p_1 p_2 p_3} = \{n = p_1^{i_1} \cdot p_2^{i_2} \cdot p_3^{i_3} | i_1, i_2, i_3 \in N^*\}$$

where $p_1 < p_2 < p_3$ are prime numbers.

Exist the following situations:

1) $n \in N^{p_j}$, j = 1, 2, 3 this means that $p_j^{i_j}$ is active factor.

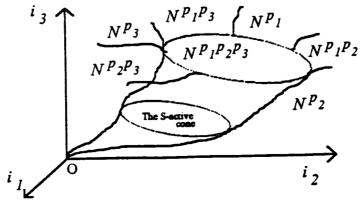
2) $n \in N^{p_j p_k}$, $j \neq k$; $j, k \in \{1, 2, 3\}$, this means that $p_j^{i_j}, p_k^{i_k}$ are active factors.

3) $n \in N^{p_1 p_2 p_3}$, this means that $p_1^{i_1}, p_2^{i_2}, p_3^{i_3}$ are active factors. $N^{p_1 p_2 p_3}$ is named the S-active cone for $N_{p_1 p_2 p_3}$.

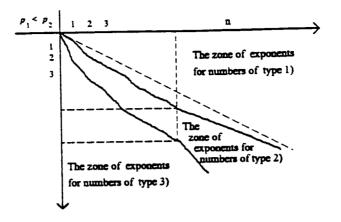
Obviously

$$N^{p_1p_2p_3} = \{n = p_1^{i_1} p_2^{i_2} p_3^{i_3} | i_1, i_2, i_3 \in \mathbb{N}^* \text{ and } i_k \in (i_{k(i_j)}, i_k^{(i_j)}) \text{ where } j \neq k; j, k \in \{1, 2, 3\}\}.$$

The repartision of exponents is represented in the following scheme:



For $p_1 < p_2$ the repartion of exponents is represently in following scheme:



For numbers of type 2) $i_1 \in (i_{1(i_2)}, i_1^{(i_2)})$ and $i_2 \in (i_{2(i_1)}, i_2^{(i_1)})$

c) I consider that

$$N_{p_1 p_2 p_3} = \{n = p_1^{i_1} \cdot p_2^{i_2} \cdot p_3^{i_3} | i_1, i_2, i_3 \in N^*\}$$

where $p_1 < p_2 < p_3$ are prime numbers.

Exist the following situations:

1) $n \in N^{p_j}$, j = 1, 2, 3 this means that $p_j^{i_j}$ is active factor.

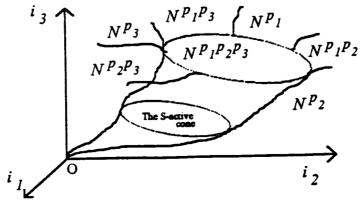
2) $n \in N^{p_j p_k}$, $j \neq k$; $j, k \in \{1, 2, 3\}$, this means that $p_j^{i_j}, p_k^{i_k}$ are active factors.

3) $n \in N^{p_1 p_2 p_3}$, this means that $p_1^{i_1}, p_2^{i_2}, p_3^{i_3}$ are active factors. $N^{p_1 p_2 p_3}$ is named the S-active cone for $N_{p_1 p_2 p_3}$.

Obviously

$$N^{p_1p_2p_3} = \{n = p_1^{i_1} p_2^{i_2} p_3^{i_3} | i_1, i_2, i_3 \in \mathbb{N}^* \text{ and } i_k \in (i_{k(i_j)}, i_k^{(i_j)}) \text{ where } j \neq k; j, k \in \{1, 2, 3\}\}.$$

The repartision of exponents is represented in the following scheme:



d) Generaly, I consider $N_{p_1 p_2 \dots p_r} = \{n = p_1^{i_1} \cdot p_2^{i_2} \cdot \dots \cdot p_r^{i_r} | i_1, i_2, \dots, i_r \in N^*\}$, where

 $p_1 < p_2 < \cdots < p_r$ are prime numbers.

On $N_{p_1 p_2 \dots p_r}$ exist the following relation of equivalence:

 $n \rho m \Leftrightarrow n$ and m have the same active factors.

This have the following clases:

- $N^{p_{j_1}}$, where $j_1 \in \{1, 2, ..., r\}$. $n \in N^{p_{j_1}} \Leftrightarrow n$ has only $p_{j_1}^{i_{j_1}}$ active factor - $N^{p_{j_1}p_{j_2}}$, where $j_1 \neq j_2$ and $j_1, j_2 \in \{1, 2, ..., r\}$. $n \in N^{p_{j_1}p_{j_2}} \Leftrightarrow n$ has only $p_{j_1}^{i_{j_1}}$, $p_{j_2}^{i_{j_2}}$ active factors.

 $N^{P_1P_2\cdots P_r}$ wich is named S-active cone.

 $N^{p_1 p_2 \dots p_r} = \{ n \in N_{p_1 p_2 \dots p_r} | n \text{ has } p_1^{i_1}, p_2^{i_2}, \dots, p_r^{i_r} \text{ active factors} \}.$ Obviously, if $n \in N^{p_1 p_2 - p_r}$, then $i_k \in (i_{k(i_j)}, i_k^{(i_j)})$ with $k \neq j$ and $k, j \in \{1, 2, \dots, r\}$.

REFERENCES

[1] I. Bălăcenoiu,	Smarandache Numerical Functions, Smarandache Function Journal, Vol. 4-5, No.1, (1994), p.6-13.
[2] I. Bălăcenoiu, V. Seleacu	Some proprieties of Smarandache functions of the type I Smarandache Function Journal, Vol. 6, (1995).
[3] P. Gronas	A proof of the non-existence of "Samma". Smarandache Function Journal, Vol. 4-5, No.1, (1994), p.22-23.
[4] F. Smarandache	A function in the Number Theory. An.Univ.Timișoara, seria st.mat. Vol.XVIII, fasc. 1, p.79-88, 1980.