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product sequence, 

For any positive integer n, let A(n) be the n-th 
square. Further, let 

(1) 

and 

n 
P(n)= IT A(k)+ 1 

k=1 

n 
(2) Q(n)= I1A(k)-1. 

k=1 
Then the sequences P= {P(n) } «In=l and Q= {Q(n) } ~l are 
called the Smarandache square product sequences of t he 
first kind and the second kind respectively (see [3]). In 

this paper we consider the powers m P and Q. We 
prove the following result. 

Theorem. The sequences P and Q do not contain 
powers. 

Proof. If P (n) 
(3) 

is a power, then from (1) we get 
(n!)2+1=d, 

where a and 
r> 1. It implies 

r are positive integers satisfying a> 1 and 
that the equation. 
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(4) ~+l=ym,m>l, 
has a posltIve mteger solution (X,Y,m)=(nf,a,r). However, by 
the result of [2], the equation (4) has ,no posItIve integre 
solution (X,Y.m). Thus, the sequence P does not contain 
powers. 

Similarly, by(2), if Q(n) is a power, the we have 
(5) (nr/-l=d, 
where a and r are positive integres satisfying a> 1 and 
r> 1, It implies that the equation 
(6) ~-I=r X>I,m>I, 
has a poSltIve integer solution (X, Y.m)=(nl, a, r). By the 
result of [1], (5) has only the solution (X,Y,m)=(3,2,3). 

Notice that 1!=1,2!=2 and n! ~6 for n~3. Therefore, (4) 
is impossible. The theoerm is proved. 
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