THE POWERS IN THE SMARANDACHE SQUARE PRODUCT SEQUENCES

Maohua Le

Abstract . In this paper we prove that the Smarandache square product sequences of the first kind and the second kind do not contain powers.

Key words . Smarandache square product sequence, power.

For any positive integer n, let $A(n)$ be the n-th square. Further, let

$$
\begin{equation*}
P(n)=\prod_{k=1}^{n} A(k)+1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(n)=\prod_{k=1}^{n} A(k)-1 . \tag{2}
\end{equation*}
$$

Then the sequences $P=\{P(n)\}_{n=1}^{\infty}$ and $Q=\{Q(n)\}_{n=1}^{\infty}$ are called the Smarandache square product sequences of t he first kind and the second kind respectively (see [3]). In this paper we consider the powers in P and Q. We prove the following result.

Theorem . The sequences P and Q do not contain powers.

Proof. If $P(n)$ is a power, then from (1) we get (3) $(n!)^{2}+1=a^{r}$,
where a and r are positive integers satisfying $a>1$ and $r>1$. It implies that the equation.

$$
\begin{equation*}
\mathrm{X}^{2}+1=\mathrm{Y}^{m}, m>1 \tag{4}
\end{equation*}
$$

has a positive integer solution $(X, Y, m)=(n!, a, r)$. However, by the result of [2], the equation (4) has no positive integre solution (X, Y, m). Thus, the sequence P does not contain powers.

Similarly, by(2), if $Q(n)$ is a power, the we have (5) $(n!)^{2}-1=a^{\prime}$,
where a and r are positive integres satisfying $a>1$ and $r>1$, It implies that the equation

$$
\begin{equation*}
X^{2}-1=Y^{m}, X>1, m>1, \tag{6}
\end{equation*}
$$

has a positive integer solution $(X, Y, m)=(n!, a, r)$. By the result of $[1]$, (5) has only the solution $(X, Y, m)=(3,2,3)$. Notice that $1!=1,2!=2$ and $n!\geqslant 6$ for $n \geqslant 3$. Therefore, (4) is impossible. The theoerm is proved.

References

[1] C. Ko, On the diophantine equation $x^{2}=y^{n}+1, x y \neq$ o,Sci .Sinica, 14(1964),457-460.
[2] V.A.lebesgue,Sur I'impossibilite', en nombres entiers, de I'équation $x^{m}=y^{2}+1$,Nouv, Ann Math. (1), 9(1850),178-181.
[3] F. Russo, Some results about four Smarandache Uproduct sequences, Smarandache Notions J. 11(2000), 42-49.

Deqartment of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R.CHINA

