THE PRIMES IN SMARANDACHE POWER PRODUCT SEQUENCES

Maohua Le and Kejian Wu
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract

For any positive integer k, let A_{k} be the Smarandache k-power product sequence. In this paper we prove that if k is an odd integer, with $k>1$, then A_{k} contains only one prime 2 .

In [1], Iacobescu defined the sequence $\left\{1+c_{1} c_{2} \ldots c_{n}\right\}_{n=1}^{x}$; is the Smarandache cubic product sequence, where c_{n} is the n-th cubic number. Simultaneous, he posed the following question:

Question: Hou many primes are in the sequence $\left\{1+c_{1} c_{2} \ldots c_{n}\right)_{n=1}^{\infty}$?
We nou give a general definition as follows:
For any positive integers k, n let

$$
\begin{equation*}
\mathrm{a}_{\mathrm{k}}(\mathrm{n})=1+1^{\mathrm{k}} 2^{\mathrm{k}} \ldots \mathrm{n}^{\mathrm{k}} \tag{1}
\end{equation*}
$$

and let $A_{k}=\left\{a_{k}(n)\right\}_{n=1}$. Then A_{k} is called the Smarandache k -power product sequence. In this paper we prove the following result:

Theorem. If k is an odd integer, with $k>1$, then A_{k} contains only one prime 2 .

Clearly, the above result completely solves Iacobescu's question.

Proof of Theorem. We see from (1) that

$$
\begin{equation*}
a_{k}(n)=1+(n!)^{k} . \tag{2}
\end{equation*}
$$

If k is an odd integer, with $k>1$, then from (2) we get

$$
\begin{align*}
& a_{k}(n)=1^{k}-(n!)^{k} \tag{3}\\
& \quad=(1+n!)\left(1-n!+(n!)^{2}-\ldots-(n!)^{k-2}-(n!)^{k-1}\right) .
\end{align*}
$$

When $n=1, a_{k}(1)=2$ is a prime.
When $\mathrm{n}>1$, since
$1-n!>1$ and $1-n!-(n!)^{2}-\ldots-(n!)^{k-2}-(n!)^{k-1}=$

$$
\left((\mathrm{n}!)^{k-1}-(\mathrm{n}!)^{k-2}\right)+\ldots+\left((n!)^{2}-n!\right)-1>1
$$

we find from (3) that $a_{k}(n)$ is not a prime. Thus, the sequence A_{k} contains only one prime 2 . The theorem is proved.

Reference:

1. F. Iacobescu, "Smarandache partition type and other sequences", Bulletin of Pure and applied Sciences, 16E(1997), No.2, 237-240.
