THE PRIMES IN THE SMARANDACHE POWER PRODUCT SEQUENCES OF THE SECOND KIND

Maohua Le

Abstract. In this paper we completely determine the primes in the Smarandache power product sequences of the second kind.

Key words . Smarandache power product sequencer , second kind, prime.

For any positive integers n, r with $r>1$, let $P(n, r)$ be the n-th power of degree r. Further, let

$$
\begin{equation*}
U(n, r)=\prod_{k=1}^{n} P(k, r)-1 . \tag{1}
\end{equation*}
$$

Then the sequence $U(r)=\{U(n, r)\}_{n=1}^{\infty}$ is called the Smarandache r-power product sequence of the second kind. In [2], Russo proposed the following question.

Question. How many terms in $U(2)$ and $U(3)$ are primes?

In this paper we completely solve the mentioned question. We prove a more strong result as follows.

Theorem. If r and $2^{r}-1$ are both primes, then $U(r)$ contains only one prime $U(2, r)=2^{r}-1$. Otherwise, $U(r)$ does not contain any prime.

Proof. Since $U(1, r)=0$, we may assume that $n>1, \mathrm{By}(1)$, we get

$$
\begin{equation*}
U(n, r)=(n!)^{r}-1=(n!-1)\left((n!)^{r-1}+(n!)^{r-2}+\cdots+1\right) . \tag{2}
\end{equation*}
$$

Since $n!>2$ if $n>2$, we see from (2) that $U(n, r)$ is not a prime if $n>2$. When $n=2$, we get from (2) that
$U(2, r)=2^{r}-1$.
Therefore, by [1,Theorem 18], we find from (3) that $U(r)$
contains a prime if and only if r and $2^{r}-1$ are both
primes. The theorem is proved.

References

[1] G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1937.[2] F.Russo, Some results about four Smarandache U-product sequences, Smarandache Notions J.11(2000),42-49.
Department of MathematicsZhanjiang Normal CollegeZhanjiang, GuangdongP.R.CHINA

