THE PRIMES p WITH $\lg (p)=1$

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract

In this paper we prove that if $p=\overline{a_{k} \ldots a_{1} a_{0}}$ is a prime satisfying $p>10$ and $\lg (p)=1$, then $a_{k}=\ldots=a_{1}=a_{0}=1$ and $k+1$ is a prime.

Let $n=\overline{a_{k} \ldots a_{1} a_{0}}$ be a decimal integer. Then the number of distinct digits of n is called the length of Smarandache generalized period of n and denoted by $\lg (n)$ (see [1, Notion 114]). In this paper we prove the following result.

Theorem. If $\mathrm{p}=\overline{\mathrm{a}_{\mathrm{k}} \ldots \mathrm{a}_{1} \mathrm{a}_{0}}$ is a prime satisfying $\mathrm{p}>10$ and $\lg (p)=1$, then we have $a_{k}=\ldots=a_{1}=a_{0}=1$ and $k+1$ is a prime.

Proof. Since $\lg (p)=1$, we have $a_{k}=\ldots=a_{1}=a_{0}$. Let $a_{0}=a$, where a is an integer with $0<a \leq 9$. Then we have $a \mid p$. Since p is a prime and $p>10$, we get $a=1$ and $10^{k+1}-1$

$$
\begin{equation*}
\mathrm{p}=\overline{1 \ldots 11}=10^{k}+\ldots+10+1=-\ldots-\cdots, \tag{1}
\end{equation*}
$$

where k is a positive integer. Since $k+1>1$, if $k+1$ is not a prime, then $k+1$ has a prime factor q such that $(k+1) / q>1$.

Hence, we see from (1) that

It implies that p is not a prime, a contradiction. Thus, if p is a prime, then $k+1$ must be a prime. The theorem is proved.

Reference

1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994
