THE REDUCED SMARANDACHE CUBE-PARTIALDIGITAL SUBSEQUENCE IS INFINITE

Maohua Le

Abstract . In this paper we prove that the reduced Smarandache cube-partial-digital subsequence is infinite.

Key words . reduced Smarandache cube-partial-digital subsequence, infinite.

From all cube integers $0,1,8,27,64,125, \ldots$, we choose only the terms can be partitioned into groups of digits which are also perfect cubes and disregarding the cube numbers of the form $N \cdot 10^{3 t}$, where N is also a cube number and t is a positive integer. Such sequence is called the reduced Smarandache cube-partial-digital subsequence . Bencze [1] and Smith [2] independently proposed the following question.

Question . How many terms in the reduced Smarandache cube-partial-digital subseuence?

In this paper we completely solve the mentioned question. We prove the following result.

Theorem . The reduced Smarandache cube-partial-digital subsequence has infinitely many terms.

Proof. For any positive integer n with $n>1$, let (1)

$$
B(n)=3.10^{n}+3 .
$$

Then we have

$$
\begin{align*}
B(n))^{3} & =27.10^{3 n}+81.10^{2 n}+8 \underbrace{81.10^{n}}_{(n-2) \mathrm{zreos}}+27 \\
& =270810 \underbrace{\cdots}_{(n-2) \text { zeros }} 0810 \underbrace{\cdots \quad 0}_{(n-2) \text { zeros }} 027 . \tag{2}
\end{align*}
$$

By (1) and (2), we see that $(B(n))^{3}$ belongs to the reduced Smarandache cube-partial-digital subsequence. Thus, this sequence in infinite. The theorem is proved.

References

[1] M. Bencze, Smarandache relationships and subsequence, Smarandache Notions J. 11(2000), 79-85.
[2] S. Simth, A set conjectures on Smarandache sequences, Smarandache Notions J. 11(2000),86-92.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA

