THE SECOND CONSTANT OF SMARANDACHE

by

Ion Cojocaru and Sorin Cojocaru

In the present note we prove that the sum of remarcable series $\sum_{a\geq 2} \frac{S(a)}{a!}$, which implies the Smarandache function is an irrational number (second constant of Smarandache).

Because $S(n) \le n$, it results $\sum_{n\ge 2} \frac{S(n)}{n!} \le \sum_{n\ge 2} \frac{1}{(n-1)!}$. Therefore the serie $\sum_{n\ge 2} \frac{S(n)}{n!}$ is convergent to a number f

number f.

Proposition. The sum f of the series $\sum_{n\geq 2} \frac{S(n)}{n!}$ is an irrational number.

Proof. From the precedent lines it results that $\lim_{n\to\infty}\sum_{i=2}^{n}\frac{S(n)}{n!} = f$. Against all reson we assume that $f \in Q$, f > 0. Therefore it exists $a, b \in N$, (a, b) = 1, so that $f = \frac{a}{b}$.

Let p be a fixed prime number, p > b, $p \ge 3$. Obviously, $\frac{a}{b} = \sum_{i=2}^{p-1} \frac{S(i)}{i!} + \sum_{i\ge p} \frac{S(i)}{i!}$ which leads to:

$$\frac{(p-1)!a}{b} = \sum_{j=2}^{p-1} \frac{(p-1)!S(j)}{i!} + \sum_{j\geq p} \frac{(p-1)!S(j)}{i!}$$

Because p > b it results that $\frac{(p-1)!a}{b} \in N$ and $\sum_{i=2}^{p-1} \frac{(p-1)!S(i)}{i!} \in N$. Consequently we have $\sum_{i\ge p} \frac{(p-1)!S(i)}{i!} \in N$ too. Be $\alpha = \sum_{i\ge p} \frac{(p-1)!S(i)}{i!} \in N$. So we have the relation

$$\alpha = \frac{(p-1)!S(p)}{p!} + \frac{(p-1)!S(p+1)}{(p+1)!} + \frac{(p-1)!S(p+2)}{(p+2)!} + \dots ,$$

Because p is a prime number it results S(p) = p.

So

$$\alpha = 1 + \frac{S(p+1)}{p(p+1)} + \frac{S(p+2)}{p(p+1)(p+2)} + \dots > 1$$
(1)

We know that $S(p+i) \le p+i$ $(\forall) i \ge 1$, with equality only if the number p + i is prime. Consequently, we have

$$\alpha < 1 + \frac{1}{p} + \frac{1}{p(p+1)} + \frac{1}{p(p+1)(p+2)} + \dots < 1 + \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} \dots = \frac{p}{p-1} < 2$$
⁽²⁾

From the inequalities (1) and (2) it results that $1 \le \alpha \le 2$, impossible, because $\alpha \in N$. The proposition is proved.

REFERENCES

[1] Smarandache Function Journal, Vol.1 (1990), Vol. 2-3 (1993), Vol. 4-5 (1994), Number Theory Publishing, Co., R. Emller Editor, Phoenix, New York, Lyon.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CRAIOVA, CRAIOVA 1100, ROMANIA