THE SEMILATTICE WITH CONSISTENT RETURN

by Ion Bălăcenoiu, Department of Mathematics, University of Craiova,

1100, Romania

Let p be a prime number. In [5] is defined the function S_p as $S_p: N^* \to N^*, S_p(a) = k$, where k is the smallest positive integer so that p^a is a divizor for k!.

A Smarandache function of first kind is defined for each $n \in N^*$ in [1], as numerical function $S_n: N^* \to N^*$, so that:

i) if $n = u^i$, where u = 1 or u = p, then $S_n(a) = k$, k being the smallest positive integer with the property that $k! = M \cdot u^{ia}$.

ii) if
$$n = p_1^{i_1} \cdot p_2^{i_2} \cdot \dots \cdot p_r^{i_r}$$
, then $S_n(a) = \max_{1 \le j \le r} \{S_{p_j}(i_j a)\}.$

It is proved that:

-

 $\sum_{1} \max\left\{S_n(a), S_n(b)\right\} \le S_n(a+b) \le S_n(a) + S_n(b)$

$$\sum_{n=1}^{\infty} S_n(a+b) \le S_n(a) \cdot S_n(b)$$

In [2] is proved that:

i) the function S_n is monotonously increasing,

ii) the sequence of functions $\{S_{p^i}\}_{i \in N^*}$ is monotonously increasing.

iii) for p, q - prime numbers such that: $p < q \Rightarrow S_p < S_q$ and $p \cdot i < q \Rightarrow S_{p^i} < S_q$, where $i \in N^*$ iv) if n < p, then $S_n < S_p$.

- In [3] it is proved:
- i) for $p \ge 5$, $S_p > \max\{S_{p-1}, S_{p+1}\}$
- ii) for p,q prime numbers, $i, j \in N^*$

$$p < q$$
 and $i \le j \implies S_{p^i} < S_{q^j}$

iii) the sequence of functions $\{S_n\}_{n\in\mathbb{N}^*}$ is generaly increasing boundled

iv) if $n = p_1^{i_1} \cdot p_2^{i_2} \cdot \cdots \cdot p_r^{i_r}$, there are $k_1, k_2, \dots, k_m \in \{1, 2, \dots, r\}$ so that for each $t \in \overline{1, m}$ there is $q_t \in N^*$ so that

$$S_n(q_t) = S_{p_{k_t}^{i_{k_t}}}(q_t)$$

and for each $l \in N^*$ we have:

$$S_n(l) = \max_{1 \le t \le m} \left\{ S_{\mathcal{P}_{k_t^{i_{k_t}}}}(l) \right\}.$$

We define the set $\left\{p_{k_t}^{i_{k_t}} | t \in \overline{1, m}\right\}$ as the set of active factors of *n* and the others factors as the pasive

factors.

Let
$$N_{p_1 \cdot p_2 \cdots p_r} = \{ n = p_1^{i_1} \cdot p_2^{i_2} \cdots p_r^{i_r} | i_1, i_2, \dots, i_r \in N^* \}, \text{ where } p_1 < p_2 < \dots < p_r \text{ are prime numbers.} \}$$

Then

$$N^{p_1 p_2 - p_r} = \left\{ n \in N_{p_1 p_2 - p_r} \middle| n \text{ has } p_1^{i_1}, p_2^{i_2}, \dots, p_r^{i_r} \text{ as active factors} \right\}$$

is the S-active cone.

A Smarandache function of second kind is defined for each $k \in N^*$ in [1], as the function $S^k: N^* \to N^*$ where $S^k(n) = S_n(k)$.

It is proved that:

$$\sum_{3} \max \left\{ S^{k}(a), S^{k}(b) \right\} \leq S^{k}(a \cdot b) \leq S^{k}(a) + S^{k}(b)$$
$$\sum_{4} S^{k}(a \cdot b) \leq S^{k}(a) \cdot S^{k}(b)$$

In [4] it is proved that:

i) for $k, n \in N^*$ the formula $S^k(n) \le n \cdot k$ is true

ii) all prime numbers $p \ge 5$ are maximal points for S^k and

$$S^{k}(p) = p[k - i_{p}(k)], \text{ where } 0 \le i_{p}(k) \le \left[\frac{k - 1}{p}\right]$$

iii) the function S^k has its relative minimum values for every n = p!, where p is a prime number and $p \ge \max\{3, k\}$

iv) the numbers kp for p prime number, $k \in N^*$ and p > k, are the fixed points of S^k

v) the function S^k have the following properties:

$$\forall n \in N^*, \exists m_0 \in N \text{ so that } \forall m \ge m_0 \Longrightarrow S^k(m) \ge S^k(n)$$

1. **DEFINITION.** Let $\mathscr{M} = \{S_m(n) | n, m \in N^*\}$, let $A, B \in \mathscr{P}(N^*) \setminus \varnothing$ and $a = \min A$, $b = \min B, a^* = \max A, b^* = \max B$. The set I is the set of the functions:

$$I_{A}^{B}: N^{*} \to \mathcal{M}, \text{ with } I_{A}^{B}(n) = \begin{cases} S_{a}(b), n < \max\{a, b\} \\ S_{a_{k}}(b_{k}), \max\{a, b\} \le n \le \max\{a^{k}, b^{k}\} \\ \text{where} \\ a_{k} = \max\{a_{i} \in A | a_{i} \le n\} \\ b_{k} = \max_{i} \{b_{j} \in B | b_{j} \le n\} \\ S_{a}^{*}(b^{*}), n > \max\{a^{*}, b^{*}\} \end{cases}$$

3. REMARK.

The functions whitch belongs to the set I have the following properties :

1) if $A_1 \subset A_2$ and $n \in A_1$, then $I_{A_1}^B(n) = I_{A_2}^B(n)$ 1') if $B_1 \subset B_2$ and $n \in B_1$, then $I_A^{B_1}(n) = I_A^{B_2}(n)$ 2) $I_{N^*}^{N^*}(n) = S_n(n) = S^n(n)$, the function $I_{N^*}^{N^*}$ is called the *I* - diagonal function and $I_{N^*}^{N^*}(N^*)$ is

called the diagonal of \mathcal{M} .

- 3) for each $m \in N^* I_{\{m\}}^{N^*} = S_m$ for $I_{\{m\}}^{N^*}(n) = S_m(n), \forall n \in N^*$.
 - 3') for each $m \in N^* I_{N^*}^{\{m\}} = S^m$ for $I_{N^*}^{\{m\}}(n) = S_n(m) = S^m(n), \forall n \in N^*$, 4) if $n \in A \cap B$, then $I_A^B(n) = I_{I_B}^{\{n\}}(n) = S_n(n)$.

4. DEFINITION. For each pair $m, n \in N^*$, $S_m(n)$ and $S^m(n)$ are called the simetrical numbers relative to the diagonal of \mathcal{M} .

 S_m and S''' are called the simmetrical functions relative to the I-diagonal function $I_{N^*}^{N^*}$. As a rule, I_A^B and I_B^A are called the simmetrical functions relative to the I-diagonal function $I_{N^*}^{N^*}$.

5. **DEFINITION**. Let us consider the following rule $T: I \times I \to I$, $I_A^B \top I_C^D = I_{A \cup C}^{B \cup D}$. It is easy to see that T is idempotent, commutative and associative, so that: i) $I_A^B \top I_A^B = I_A^B$

i) $I_A^B \top I_A^B = I_A^B$ ii) $I_A^B \top I_C^D = I_C^D \top I_A^B$ iii) $\begin{pmatrix} I_A^B \top I_C^D \end{pmatrix} \top I_E^F = I_A^B \top \begin{pmatrix} I_C^D \top I_E^F \end{pmatrix}$, where $A, B, C, D, E, F \in \mathcal{P}(N^*) \setminus \emptyset$

6. **DEFINITION**. Let us consider the following relative partial order relation ρ , where:

$$\rho \subset I \times I,$$

$$I_{A}^{B} \rho I_{C}^{D} \Leftrightarrow A \subset C \text{ and } B \subset D.$$

It is easy to see that (I, T, ρ) is a semilattice.

7. **DEFINITION**. The elements $u, v \in I$ are ρ - preceded if there is $w \in I$ so that:

8. **DEFINITION**. The elements $u, v \in I$, are ρ - strictly preceded by w if:

i) $w \rho u$ and $w \rho v$.

ii) $\forall x \in I \setminus \{w\}$ so that $x \rho u$ and $x \rho v \Rightarrow x \rho w$.

9. **DEFINITION**. Let us defined:

$$I^* = \{(u, v) \in I \times I | u, v \text{ are } \rho - \text{preceded} \}$$
$$I^{\#} = \{(u, v) \in I \times I | u, v \text{ are } \rho - \text{strictly preceded} \}.$$

It is evidently that $(u, v) \in I^* \Leftrightarrow (v, u) \in I^*$ and $(u, v) \in I^\# \Leftrightarrow (v, u) \in I^\#$.

10. **DEFINITION**. Let us consider $\top^{\#} = U \times U$, $U \subset I$ and let us consider the following rule: $\bot: I^{\#} \to W$, $W \subset I$, $I_{A}^{B} \perp I_{C}^{D} = I_{A \wedge C}^{B \wedge D}$ and the ordering partial relation $r \subset U \times U$ so that $I_{A}^{B} r I_{C}^{D} \Leftrightarrow I_{C}^{D} \rho I_{A}^{B}$.

The structure $(I^{\#}, \perp, r)$ is called the return of semilattice (I, \top, ρ) . 11. **DEFINITION**. The following set

$$\mathcal{B} = \left\{ I_A^B \in I \middle| A \cap B \neq \emptyset \right\}$$

is called the base of return $(I^{\#}, \perp, r)$.

12. REMARK. The base of return has the following properties:

- i) if $I_A^B \in \mathscr{B} \Longrightarrow I_B^A \in \mathscr{B}$
- ii) for $\emptyset \neq X \subset N^*, I_X^X \in \mathcal{B}$

iii) for $I_A^B \in \mathscr{B}$ is true the following equivalence $\mathscr{O} \neq X \subset C_{N^*}(A \land B) \Leftrightarrow$ non existence of $I_X^X \perp I_A^B$.

13. **PROPOSITION.** For
$$I_A^B \in \mathcal{B}$$
 there exists $n \in N^*$ so that $I_A^B(n) = I_{N^*}^{N^*}(n)$.

Proof. Because $A \cap B \neq \emptyset$ it results that there exists $n \in A \land B$ so that:

$$I_{A}^{B}(n) = S_{n}(n) = I_{N^{*}}^{N^{*}}(n).$$

It results that for $I_A^B \in \mathscr{B}$ then I_A^B has at least a point of contact with I-diagonal function.

14. REMARK. From the 1. it results:

$$I_{\{n\}}^{B}(n) = S_{n}(b_{n}), \text{ where } b_{n} = \begin{cases} b, \ n < b = \min B \\ b_{k}, \ b \le n \le b^{*} = \max B \\ \text{where} \\ b_{k} = \max\{x \in B | x \le n\} \\ b^{*}, n > b^{*} \end{cases}$$

and

$$I_A^{\{m\}}(m) = S^m(a_m), \text{ where } a_m = \begin{cases} a, \ m < a = \min A \\ a_k, \ a \le m \le a^* = \max A \\ \text{ where } \\ a_k = \max\{x \in A | x \le m\} \\ a^*, m > a^* \end{cases}$$

15. PROPOSITION. There are true the following equivalences:

 $(I_A^B, I_C^D) \in I^{\#} \Leftrightarrow I_A^C, I_B^D \in \mathcal{B} \Leftrightarrow \exists n, m \in N^* \text{ so that:}$

$$\begin{split} I_A^B(n) &= I_{\{n\}}^B(n) = S_n(b_n), \ I_C^D(n) = I_{\{n\}}^D(n) = S_n(d_n), \ I_A^B(m) = I_A^{\{m\}}(m) = S^m(a_m), \ and \\ I_C^D(m) &= I_C^{\{m\}}(m) = S^m(c_m) \ where \ a_m, b_n, c_m, d_n \ are \ defined \ in \ the \ sense \ of \ 14. \\ If \ n &\leq m, \ then \ n &\leq a_m, \ c_m &\leq m. \\ Proof. \ Evidently, \\ \left(I_A^B, I_C^D\right) &\in I^\# \Leftrightarrow A \cap C \neq \emptyset \ \text{and} \ B \cap D \neq \emptyset \Leftrightarrow I_A^C, I_B^D \in \mathcal{B}. \\ \text{Because} \ A \cap C \neq \emptyset \ \text{and} \ B \cap D \neq \emptyset \ \text{it exists} \ n \in A \cap C \ \text{and} \ m \in B \cap D. \ \text{Then:} \\ I_A^B(n) &= I_{\{n\}}^B(n) = S_n(b_n), \ I_C^D(n) = I_{\{n\}}^D(n) = S_n(d_n) \\ I_A^B(m) &= I_{\{n\}}^{\{m\}}(m) = S^m(a_m), \ I_C^D(m) = I_C^{\{m\}}(m) = S^m(c_m). \\ \text{Conversely, if there exist} \ n \in N^* \ \text{so that} \ I_A^B(n) = S_n(b_n) \ \text{and} \ I_C^D(n) = S_n(d_n), \ \text{then because} \ D = I_A^{\{m\}}(n) = S_n(d_n), \ H_A^{\{m\}}(n) = S_n(d_n$$

Conversely, if there exist $n \in N$ so that $I_A^D(n) = S_n(b_n)$ and $I_C^D(n) = S_n(d_n)$, then because $I_A^B(n) = S_n(b_n)$ it results $n = a_k = \max_i \{a_i \in A | a_i \le n\}$, so that $n \in A$. Because $I_C^D(n) = S_n(d_n)$ it results $n \in C$.

Therefore $A \cap C \neq \emptyset$, thus, finally, $I_A^C \in \mathcal{B}$. It is also proved $I_B^D \in \mathcal{B}$ in the some way.

If $n \le m$, because $n \in A \cap C$ it results that $n \in \{x \in A | x \le m\}$ and $n \in \{y \in C | y \le m\}$, therefore $n \le a_m \le m$ and $n \le c_m \le m$.

This is presented in the following scheme:

16. **DEFINITION**. The return (L^{\sharp}, \perp, r) of semillatice (L, \top, ρ) is:

$^{\#}=\{(u,u) u\in L\}=\Delta_{L}.$
$\operatorname{ard} L^{\#} < \operatorname{card}(L \times L \setminus L^{\#})$
$\operatorname{ard} L^{\#} = \operatorname{card} (L \times L - L^{\#})$
$\operatorname{ard} L^{\#} > \operatorname{card} (L \times L - L^{\#})$
$^{\sharp} = L \times L.$

17. **PROPOSITION**. The return $(I^{\#}, \bot, r)$ of the semilattice (I, \top, ρ) is consistent.

Proof. Evidently, card($\mathscr{P}(N^*) \setminus \emptyset$) = \aleph , card $I = \operatorname{card}\left[(\mathscr{P}(N^*) - \emptyset) \times (\mathscr{P}(N^*) - \emptyset)\right] = \aleph$ and

$$\operatorname{card}(I \times I) = \aleph$$
.

Let us consider $\mathscr{F} = \{(A,C) | A, C \in \mathscr{P}(N^*) - \emptyset, A \cap C = \emptyset\}$ and $\overline{\mathscr{F}} = \{(A,C) | A, C \in \mathscr{P}(N^*) - \emptyset, A \cap C \neq \emptyset\}.$

 $\operatorname{card} \mathscr{F} = \operatorname{card} \mathscr{F} = \mathbb{N}$. Indeed, if $A \cap C = \emptyset$ it results that $C_N \cdot A \cup C_N \cdot C = N^*$; because for every $X \in P(N^*) - \emptyset \exists Y = N^* \setminus X$ so that $X \cup Y = N^*$ then it results $\operatorname{card} \mathscr{F} = \operatorname{card} \mathscr{P}(N^*) = \mathbb{N}$. Because for each (A, C), $A, C \in \mathscr{P}(N^*) - \emptyset, A \cap C = \emptyset$, it exist at least two $(A_1, C_1), (A_2, C_2)$ with $A_1 \cap C_1 \neq \emptyset, A_2 \cap C_2 \neq \emptyset$ it results $\operatorname{card} \mathscr{F} \ge \operatorname{card} \mathscr{F} = \mathbb{N}$.

Since $\operatorname{card}\overline{\mathscr{F}} \leq \operatorname{card}\left[(\mathscr{P}(N^*) - \varnothing) \times (\mathscr{P}(N^*) - \varnothing)\right] = \Re$ finally $\operatorname{card}\overline{\mathscr{F}} = \Re$. Because $\operatorname{card}I^{\#} = \operatorname{card}(\overline{\mathscr{F}} \times \overline{\mathscr{F}}) = \Re$ and $\operatorname{card}(I \times I) - I^{\#} = \operatorname{card}(\overline{\mathscr{F}} \times \overline{\mathscr{F}}) = \Re$ it results that $(I^{\#}, \bot, r)$ is a return consistent.

18. REMARK. Generaly, it is interesting the folowing problems:

i) what relations, operations, structures can be defined on

$$M = \left\{ S_m(n) \middle| n, m \in N^* \right\}?$$

ii) what relations, operations, structures can be defined on

$$\mathscr{H} = \{ f \mid f: N^* \to \mathscr{M} \}?$$

REFERENCES

[1] I. Bălăcenoiu, Smarandache Numerical Functions, S.F.J. vol.4, 1994, p.6-13.

[2] I. Bălăcenoiu, V. Seleacu, Some properties od Smarandache Functions of the type I, S.F.J., vol.6, 1995, p.16-20.

[3] I. Bălăcenoiu, The Monotony of Smarandache Functions of First Kind, S.N.J, vol.7, 1996, p.39-44.

[4] I. Bălăcenoiu, C. Dumitrescu, Smarandache Functions of the second kind, S.F.J., vol.6, 1995, p.55-58.

[5] F. Smarandache, A function in the Numbers Theory, An.Univ.Timișoara, seria st.mat., vol. XVIII, fasc.1, p.79-88, 1980.