## THE SEMILATTICE WITH CONSISTENT RETURN by Ion Bălăcenoiu, Department of Mathematics, University of Craiova, 1100, Romania

Let $p$ be a prime number. In [5] is defined the function $S_{p}$ as $S_{p}: N^{*} \rightarrow N^{*}, S_{p}(a)=k$, where $k$ is the smallest positive integer so that $p^{a}$ is a divizor for $k!$.

A Smarandache function of first kind is defined for each $n \in N^{*}$ in [1], as numerical function $S_{n}: N^{*} \rightarrow N^{*}$, so that:
i) if $n=u^{i}$, where $u=1$ or $u=p$, then $S_{n}(a)=k, k$ being the smallest positive integer with the property that $k!=M \cdot u^{i a}$.
ii) if $n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots \cdots p_{r}^{i_{r}}$, then $\quad S_{n}(a)=\max _{1 \leq j \leq r}\left\{S_{p_{j}}\left(i_{j} a\right)\right\}$.

It is proved that:
$\sum_{1} \quad \max \left\{S_{n}(a), S_{n}(b)\right\} \leq S_{n}(a+b) \leq S_{n}(a)+S_{n}(b)$
$\sum_{2}$

$$
S_{n}(a+b) \leq S_{n}(a) \cdot S_{n}(b)
$$

In [2] is proved that:
i) the function $S_{n}$ is monotonously increasing,
ii) the sequence of functions $\left\{S_{p^{i}}\right\}_{i \in N^{*}}$ is monotonously increasing.
iii) for $p, q$-prime numbers such that: $p<q \Rightarrow S_{p}<S_{q}$ and $p \cdot i<q \Rightarrow S_{p^{i}}<S_{q}$, where $i \in N^{*}$
iv) if $n<p$, then $S_{n}<S_{p}$.

In [3] it is proved:
i) for $p \geq 5, S_{p}>\max \left\{S_{p-1}, S_{p+1}\right\}$
ii) for $p, q$ - prime numbers, $i, j \in N^{*}$

$$
p<q \text { and } i \leq j \Rightarrow S_{p^{i}}<S_{q^{\prime}}
$$

iii) the sequence of functions $\left\{S_{n}\right\}_{n \in \mathbb{N}^{*}}$ is generaly increasing boundled
iv) if $n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot \cdots \cdot p_{r}^{i_{r}}$, there are $k_{1}, k_{2}, \ldots, k_{m} \in\{1,2, \ldots, r\}$ so that for each $t \in \overline{1, m}$ there is $q_{t} \in N^{*}$ so that

$$
S_{n}\left(q_{t}\right)=S_{p_{k_{i}}^{k_{t}}}\left(q_{t}\right)
$$

and for each $l \in N^{*}$ we have:

$$
S_{n}(l)=\max _{1 \leq t \leq m}\left\{S_{p_{k_{t}^{k_{t}}}}(l)\right\} .
$$

We define the set $\left\{p_{k_{t}}^{i_{k_{t}}} \mid t \in \overline{1, m}\right\}$ as the set of active factors of $n$ and the others factors as the pasive factors.

Let $N_{p_{1} \cdot p_{2} \cdots \cdots p_{r}}=\left\{n=p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdots \cdots p_{r}^{i_{r}} \mid i_{1}, i_{2}, \cdots, i_{r} \in N^{*}\right\}$, where $p_{1}<p_{2}<\cdots<p_{r}$ are prime numbers. Then

$$
N^{p_{1} p_{2}-p_{r}}=\left\{n \in N_{p_{1} p_{2}-p_{r}} \mid n \text { has } p_{1}^{i_{1}}, p_{2}^{i_{2}}, \ldots, p_{r}^{i_{r}} \text { as active factors }\right\}
$$

is the $S$-active cone.
A Smarandache function of second kind is defined for each $k \in N^{*}$ in [1], as the function $S^{k}: N^{*} \rightarrow N^{*}$ where $S^{k}(n)=S_{n}(k)$.

It is proved that:

$$
\begin{array}{lr}
\sum_{3} & \max \left\{S^{k}(a), S^{k}(b)\right\} \leq S^{k}(a \cdot b) \leq S^{k}(a)+S^{k}(b) \\
\sum_{4} & S^{k}(a \cdot b) \leq S^{k}(a) \cdot S^{k}(b)
\end{array}
$$

In [4] it is proved that:
i) for $k, n \in N^{*}$ the formula $S^{k}(n) \leq n \cdot k$ is true
ii) all prime numbers $p \geq 5$ are maximal points for $S^{k}$ and

$$
S^{k}(p)=p\left[k-i_{p}(k)\right], \text { where } 0 \leq i_{p}(k) \leq\left[\frac{k-1}{p}\right]
$$

iii) the function $S^{k}$ has its relative minimum values for every $n=p$ !, where $p$ is a prime number and $p \geq \max \{3, k\}$
iv) the numbers $k p$ for $p$ prime number, $k \in N^{*}$ and $p>k$, are the fixed points of $S^{k}$
v) the function $S^{k}$ have the following properties:
a) $S^{k}=0 \quad\left(n^{1+\varepsilon}\right)$, for $\varepsilon>0$
b) $\lim _{n \rightarrow \infty} \sup \frac{S^{k}(n)}{n}=k$
c) $S^{k}$ is, "generally speaking", incresing, thus:

$$
\forall n \in N^{*}, \exists m_{0} \in N \text { so that } \forall m \geq m_{0} \Rightarrow S^{k}(m) \geq S^{k}(n)
$$

1. DEFINITION. Let $\quad \mathscr{A}=\left\{S_{m}(n) \mid n, m \in N^{*}\right\}$, let $A, B \in \mathscr{P}\left(N^{*}\right) \backslash \varnothing$ and $a=\min A$, $b=\min B, a^{*}=\max A, b^{*}=\max B$. The set I is the set of the functions:

$$
I_{A}^{B}: N^{*} \rightarrow \propto \mathscr{M} \text {, with } I_{A}^{B}(n)=\left\{\begin{array}{c}
S_{a}(b), n<\max \{a, b\} \\
S_{a_{k}}\left(b_{k}\right), \max \{a, b\} \leq n \leq \max \left\{a^{k}, b^{k}\right\} \\
\text { where } \\
a_{k}=\max _{i}\left\{a_{i} \in A \mid a_{i} \leq n\right\} \\
b_{k}=\max _{j}\left\{b_{j} \in B \mid b_{j} \leq n\right\} \\
S_{a^{*}}\left(b^{*}\right), n>\max \left\{a^{*}, b^{*}\right\}
\end{array}\right.
$$

2. EXAMPLES.
a) $I_{\{3,8,10\}}^{\{6,10,12\}}: N^{*} \rightarrow \mathscr{A}$ and:

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | $n \geq 13$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\{3,8,10\}}^{\{6,10,12\}}$ | $S_{3}(6)$ | $S_{8}(6)$ | $S_{8}(6)$ | $S_{10}(10)$ | $S_{10}(10)$ | $S_{10}(12)$ | $S_{10}(12)$ |

b) Let $A=\{1,3,5, \ldots, 2 k+1, \ldots\}$

$$
B=\{2,4,6, \ldots, 2 k, \ldots\}
$$

$I_{A}^{B}: N^{*} \rightarrow \mathscr{M}$ and:

| n | 1 | 2 | 3 | 4 | 5 | 6 | $\ldots$ | 2 k | $2 \mathrm{k}+1$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{A}^{B}$ | $S_{2}(1)$ | $S_{2}(1)$ | $S_{2}(3)$ | $S_{4}(3)$ | $S_{4}(5)$ | $S_{6}(5)$ | $\ldots$ | $S_{2 k}(2 k-1)$ | $S_{2 k}(2 k+1)$ | $\ldots$ |

c) Let $A=\{5,9,10\}$ and $I_{A}^{A}, I_{N^{*}}^{N^{*}}: N^{*} \rightarrow \varrho \mathscr{A}$ with

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $n \geq 11$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{A}^{A}$ | $S_{5}(5)$ | $S_{9}(9)$ | $S_{10}(10)$ | $S_{10}(10)$ |
| $I_{N^{*}}^{*}$ | $S_{1}(1)$ | $S_{2}(2)$ | $S_{3}(3)$ | $S_{4}(4)$ | $S_{5}(5)$ | $S_{6}(6)$ | $S_{7}(7)$ | $S_{8}(8)$ | $S_{9}(9)$ | $S_{10}(10)$ | $S_{n}(n)$ |

It is easy to see that $I_{A}^{A}$ is not the reduction of $I_{N^{*}}^{N^{*}}$ and $I_{A}^{A}\left(N^{*}\right) \subset I_{N^{*}}^{N^{*}}\left(N^{*}\right)$.

## 3. REMARK.

The functions whitch belongs to the set $I$ have the folowing properties:

1) if $A_{1} \subset A_{2}$ and $n \in A_{1}$, then $I_{A_{1}}^{B}(n)=I_{A_{2}}^{B}(n)$
$1^{\prime}$ ) if $B_{1} \subset B_{2}$ and $n \in B_{1}$, then $I_{A}^{B_{1}}(n)=I_{A}^{B_{2}}(n)$
2) $I_{N^{*}}^{N^{*}}(n)=S_{n}(n)=S^{n}(n)$, the function $I_{N^{*}}^{N^{*}}$ is called the $I$ - diagonal function and $I_{N^{*}}^{N^{*}}\left(N^{*}\right)$ is called the diagonal of $\propto \mathscr{H}$.
3) for each $m \in N^{*} I_{\{m\}}^{N^{*}}=S_{m}$ for $I_{\{m\}}^{N^{*}}(n)=S_{m}(n), \forall n \in N^{*}$.
$3^{\prime}$ ) for each $m \in N^{*} I_{N^{*}}^{\{m\}}=S^{m}$ for $I_{N^{*}}^{\{m\}}(n)=S_{n}(m)=S^{m}(n), \forall n \in N^{*}$,
4) if $n \in A \cap B$, then $I_{A}^{B}(n)=I_{\{n\}}^{\{n\}}(n)=S_{n}(n)$.
4. DEFINITION. For each pair $m, n \in N^{*}, S_{m}(n)$ and $S^{m l}(n)$ are called the simetrical numbers relative to the diagonal of onl.
$S_{m}$ and $S^{m}$ are called the simmetrical functions relative to the I-diagonal function $I_{N^{*}}^{N^{*}}$. As a rule, $I_{A}^{B}$ and $I_{B}^{A}$ are called the simmetrical functions relative to the I-diagonal function $I_{N^{*}}^{N^{*}}$.
5. DEFINITION. Let us consider the following rule $T: I \times I \rightarrow I, I_{A}^{B} T I_{C}^{D}=I_{A \cup C}^{B \cup D}$. It is easy to see that $T$ is idempotent, commutative and associative, so that:
i) $I_{A}^{B} T I_{A}^{B}=I_{A}^{B}$
ii) $I_{A}^{B} T I_{C}^{D}=I_{C}^{D} T I_{A}^{B}$
iii) $\left(I_{A}^{B} \top I_{C}^{D}\right) \top I_{E}^{F}=I_{A}^{B} \top\left(I_{C}^{D} \top I_{E}^{F}\right)$, where $A, B, C, D, E, F \in \mathscr{P}\left(N^{*}\right) \backslash \varnothing$
6. DEFINITION. Let us consider the following relative partial order relation $\rho$, where:

$$
\begin{gathered}
\rho \subset I \times I, \\
I_{A}^{B} \rho I_{C}^{D} \Leftrightarrow A \subset C \text { and } B \subset D .
\end{gathered}
$$

It is easy to see that $(I, T, \rho)$ is a semilattice.
7. DEFINITION. The elements $u, v \in I$ are $\rho$-preceded if there is $w \in I$ so that:
$w \rho u$ and $w \rho v$.
8. DEFINITION. The elements $u, v \in I$, are $\rho$-strictly preceded by $w$ if:
i) $w \rho u$ and $w \rho v$.
ii) $\forall x \in I \backslash\{w\}$ so that $x \rho u$ and $x \rho v \Rightarrow x \rho w$.
9. DEFINITION. Let us defined:

$$
\begin{gathered}
I^{*}=\{(u, v) \in I \times I \mid u, v \text { are } \rho-\text { preceded }\} \\
I^{\#}=\{(u, v) \in I \times I \mid u, v \text { are } \rho \text {-strictly preceded }\} .
\end{gathered}
$$

It is evidently that $(u, v) \in I^{*} \Leftrightarrow(v, u) \in I^{*}$ and $(u, v) \in I^{\#} \Leftrightarrow(v, u) \in I^{\#}$.
10. DEFINITION. Let us consider $T^{\#}=U \times U, U \subset I$ and let us consider the following rule: $\perp: I^{\#} \rightarrow W, W \subset I, I_{A}^{B} \perp I_{C}^{D}=I_{A \wedge C}^{B \wedge D}$ and the ordering partial relation $r \subset U \times U$ so that $I_{A}^{B} r I_{C}^{D} \Leftrightarrow I_{C}^{D} \rho I_{A}^{B}$.

The structure ( $I^{\#}, \perp, r$ ) is called the return of semilattice $(I, \mathrm{~T}, \rho)$.
11. DEFINITION. The following set

$$
\mathscr{B}=\left\{I_{A}^{B} \in I \mid A \cap B \neq \varnothing\right\}
$$

is called the base of return ( $I^{\#}, \perp, r$ ).
12. REMARK. The base of return has the following properties:
i) if $I_{A}^{B} \in \mathscr{B} \Rightarrow I_{B}^{A} \in \mathscr{B}$
ii) for $\varnothing \neq X \subset N^{*}, I_{X}^{X} \in \mathscr{O}$
iii) for $I_{A}^{B} \in \mathscr{B}$ is true the following equivalence $\varnothing \neq X \subset C_{N^{*}}(A \wedge B) \Leftrightarrow$ non existence of $I_{X}^{X} \perp I_{A}^{B}$.
13. PROPOSITION. For $I_{A}^{B} \in \mathscr{B}$ there exists $n \in N^{*}$ so that $I_{A}^{B}(n)=I_{N^{*}}^{N^{*}}(n)$.

Proof. Because $A \cap B \neq \varnothing$ it results that there exists $n \in A \wedge B$ so that:

$$
I_{A}^{B}(n)=S_{n}(n)=I_{N^{*}}^{N^{*}}(n)
$$

It results that for $I_{A}^{B} \in \mathscr{P}$ then $I_{A}^{B}$ has at least a point of contact with I-diagonal function.
14. REMARK. From the 1 . it results:
$I_{\{n\}}^{B}(n)=S_{n}\left(b_{n}\right)$, where $b_{n}=\left\{\begin{array}{c}b, n<b=\min B \\ b_{k}, b \leq n \leq b^{*}=\max B \\ \text { where } \\ b_{k}=\max \{x \in B \mid x \leq n\} \\ b^{*}, n>b^{*}\end{array}\right.$
and
$I_{A}^{\{m\}}(m)=S^{m}\left(a_{m}\right)$, where $a_{m}=\left\{\begin{array}{c}a, m<a=\min A \\ a_{k}, a \leq m \leq a^{*}=\max A \\ \text { where } \\ a_{k}=\max \{x \in A \mid x \leq m\} \\ a^{*}, m>a^{*}\end{array}\right.$
15. PROPOSITION. There are true the following equivalences:

$$
\left(I_{A}^{B}, I_{C}^{D}\right) \in I^{\#} \Leftrightarrow I_{A}^{C}, I_{B}^{D} \in \mathscr{O} \Leftrightarrow \exists n, m \in N^{*} \text { so that: }
$$

$I_{A}^{B}(n)=I_{\{n\}}^{B}(n)=S_{n}\left(b_{n}\right), I_{C}^{D}(n)=I_{\{n\}}^{D}(n)=S_{n}\left(d_{n}\right), I_{A}^{B}(m)=I_{A}^{\{m\}}(m)=S^{m}\left(a_{m}\right)$, and
$I_{C}^{D}(m)=I_{C}^{\{m\}}(m)=S^{m}\left(c_{m}\right)$ where $a_{m}, b_{n}, c_{m}, d_{n}$ are defined in the sense of 14 .
If $n \leq m$, then $n \leq a_{m}, c_{m} \leq m$.
Proof. Evidently,
$\left(I_{A}^{B}, I_{C}^{D}\right) \in I^{\#} \Leftrightarrow A \cap C \neq \varnothing$ and $B \cap D \neq \varnothing \Leftrightarrow I_{A}^{C}, I_{B}^{D} \in \Re$.
Because $A \cap C \neq \varnothing$ and $B \cap D \neq \varnothing$ it exists $n \in A \cap C$ and $m \in B \cap D$. Then:

$$
\begin{aligned}
& I_{A}^{B}(n)=I_{\{n\}}^{B}(n)=S_{n}\left(b_{n}\right), I_{C}^{D}(n)=I_{\{n\}}^{D}(n)=S_{n}\left(d_{n}\right) \\
& I_{A}^{B}(m)=I_{A}^{\{n\}}(m)=S^{m}\left(a_{m}\right), I_{C}^{D}(m)=I_{C}^{\{m\}}(m)=S^{m}\left(c_{m}\right)
\end{aligned}
$$

Conversely, if there exist $n \in N^{*}$ so that $I_{A}^{B}(n)=S_{n}\left(b_{n}\right)$ and $I_{C}^{D}(n)=S_{n}\left(d_{n}\right)$, then because $I_{A}^{B}(n)=S_{n}\left(b_{n}\right)$ it results $n=a_{k}=\max _{i}\left\{a_{i} \in A \mid a_{i} \leq n\right\}$, so that $n \in A$. Because $I_{C}^{D}(n)=S_{n}\left(d_{n}\right)$ it results $n \in C$.

Therefore $A \cap C \neq \varnothing$, thus, finally, $I_{A}^{C} \in \mathscr{B}$. It is also proved $I_{B}^{D} \in \mathscr{B}$ in the some way.
If $n \leq m$, because $n \in A \cap C$ it results that $n \in\{x \in A \mid x \leq m\}$ and $n \in\{y \in C \mid y \leq m\}$, therefore $n \leq a_{m} \leq m$ and $n \leq c_{m} \leq m$.

This is presented in the following scheme：


16．DEFINITION．The return $\left(L^{\#}, \perp, r\right)$ of semillatice $(L, T, \rho)$ is：
a）null，，if
$L^{\#}=\{(u, u) \mid u \in L\}=\Delta_{L}$.
b）weak，if
$\operatorname{card} L^{\#}<\operatorname{card}\left(L \times L \backslash I^{\#}\right)$
c）consistent，if
$\operatorname{card} L^{\#}=\operatorname{card}\left(L \times L-L^{\#}\right)$
d）vigour，if
$\operatorname{card} L^{\#}>\operatorname{card}\left(L \times L-L^{\#}\right)$
e）total，if
$L^{\#}=L \times L$ ．

17．PROPOSITION．The return $\left(I^{\#}, \perp, r\right)$ of the semilattice $(I, T, \rho)$ is consistent．
Proof．Evidently， $\operatorname{card}\left(\mathscr{P}\left(N^{*}\right) \backslash \varnothing\right)=ふ ゙, \operatorname{card} I=\operatorname{card}\left[\left(\mathscr{P}\left(N^{*}\right)-\varnothing\right) \times\left(\mathscr{P}\left(N^{*}\right)-\varnothing\right)\right]=ふ$ and $\operatorname{card}(I \times I)=\aleph$ ．

Let us consider $\mathscr{F}=\left\{(A, C) \mid A, C \in \mathscr{P}\left(N^{*}\right)-\varnothing, A \cap C=\varnothing\right\}$ and $\overline{\mathscr{F}}=\left\{(A, C) \mid A, C \in \mathscr{P}\left(N^{*}\right)-\varnothing\right.$ ， $A \cap C \neq \varnothing\}$ ．
card $\mathscr{F}=\operatorname{card} \overline{\mathscr{F}^{z}}=ふ$ ．Indeed，if $A \cap C=\varnothing$ it results that $C_{N^{\prime}} \cdot A \cup C_{N^{*}} C^{\prime}=N^{*}$ ；bceause for every $X \in P\left(N^{*}\right)-\varnothing \exists Y=N^{*} \backslash X$ so that $X \cup Y=N^{*}$ then it results card $\left.=\operatorname{card} \$ N^{*}\right)=N$ ．Because for each $(A, C), \quad A, C \in \mathscr{P}\left(N^{*}\right)-\varnothing, A \cap C=\varnothing, \quad$ it exist at least two $\left(A_{1}, C_{1}\right),\left(A_{2}, C_{2}\right)$ with $A_{1} \cap C_{1} \neq \varnothing, A_{2} \cap C_{2} \neq \varnothing$ it results card $\overline{\mathscr{F}} \geq$ card $\mathscr{\pi}=ふ$.

Since $\quad \operatorname{card} \overline{\mathscr{F}} \leq \operatorname{card}\left[\left(\mathscr{P}\left(N^{*}\right)-\varnothing\right) \times\left(\mathscr{P}\left(N^{*}\right)-\varnothing\right)\right]=ふ$ finally card $\overline{\mathscr{F}}=ふ$ ．Because $\operatorname{card} I^{\#}=\operatorname{card}\left(\overline{\mathscr{F}} \times \overline{\mathscr{F}^{3}}\right)=\aleph$ and $\operatorname{card}(I \times I)-I^{\#}=\operatorname{card}(\overline{5} \times \mathscr{\mathscr { F }})=ふ$ it results that $\left(I^{\#}, \perp, r\right)$ is a return consistent．

18．REMARK．Generaly，it is interesting the folowing problems：
i）what relations，operations，structures can be defined on

$$
M=\left\{S_{m}(n) \mid n, m \in N^{*}\right\} ?
$$

ii）what relations，operations，structures can be defined on

$$
\mathscr{C} \mathscr{H}=\left\{f \mid f: N^{*} \rightarrow \mathscr{A} H\right\}
$$

## REFERENCES

［1］I．Bălăcenoiu，Smarandache Numerical Functions，S．F．J．vol．4，1994，p．6－13．
［2］I．Bălăcenoiu，V．Seleacu，Some properties od Smarandache Functions of the type I，S．F．J．， vol．6，1995，p．16－20．
［3］I．Bălăcenoiu，The Monotony of Smarandache Functions of First Kind，S．N．J，vol．7，1996，p．39－ 44.
［4］I．Bălăcenoiu，C．Dumitrescu，Smarandache Functions of the second kind，S．F．J．，vol．6，1995， p．55－58．
［5］F．Smarandache，A function in the Numbers Theory，An．Univ．Timiṣoara，seria st．mat．，vol． XVIII，fasc．1，p．79－88， 1980.

