THE SMARANDACHE COMBINATORIAL SEQUENCES

Maohua Le
Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract

Let r be a positive integer with $r>1$, and let $S C S(r)$ denote the Smarandache combinatorial sequence of degree r. In this paper we prove that there has only the consecutive terms $1,2, \cdots, r$ of $S C S(r)$ are pairwise coprime.

Key words: Smarandache combinatorial sequences; consecutive terms; divisibility

Let r be a positive integer with $r>1$. Let $\operatorname{SCS}(r)=\left\{a(r, n)_{n=1}^{\infty}\right.$ denote the Smarandache combinatorial sequence of degree r. Then we have

$$
\begin{equation*}
a(r, n)=n, n=1,2, \cdots, r \tag{1}
\end{equation*}
$$

Supported by the National Natural Science Foundation of China (No.10271104), the Guangdong Provincial Natural Science Foundation (No.011781) and the Natural Science Foundation of the Education Department of Guangdong Province (No.0161).
and $a(r, n)(n>r)$ is the sum of all the products of the previous terms of the sequence taking r terms at a time. In [2], Murthy asked that how many of the consecutive terms of $S C S(r)$ are pairwise coprime. In this respect, Le [1] proved that $S C S(2)$ has only the consecutive terms 1,2 are pairwise coprime. In this paper we completely solve this problem as follows.

Theorem. For any positive integer r with $r>1, S C S(r)$ has only the consecutive terms $1,2, \cdots, r$ are pairwise coprime.

Proof. By the define of $\operatorname{SCS}(r)$, if $n \geq r$, then we have

$$
\begin{equation*}
a(r, n)=\sum a\left(r, n_{1}\right) a\left(r, n_{2}\right) \cdots a\left(r, n_{r}\right) \tag{2}
\end{equation*}
$$

where $\left(n_{1}, n_{2}, \cdots, n_{r}\right)$ through over all integers such that $1 \leq n_{1}<n_{2}<\cdots<$ $n_{r} \leq n$. Hence, by (2), we get the recurrence

$$
\begin{equation*}
a(r, n+1)=a(r, n) a(r-1, n-1)+a(r, n) \tag{3}
\end{equation*}
$$

Therefore, we find from (3) that if $n \geq r$, then

$$
\begin{equation*}
a(r, n+1) \equiv 0 .(\bmod a(r, n)) \tag{4}
\end{equation*}
$$

It implies that $S C S(r)$ has no consecutive terms after $a(r, r)$ are pairwise coprime. Thus, by (1), the theorem is proved.

References

[1] M. -H. Le, The divisibility of the Smarandache combinatorial sequence of degree two, to appear.
[2] A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions J. 11 (2000), 179-183.

