THE SMARANDACHE φ-SEQUENCE

Maohua Le
Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R.China

Abstract

In this paper we completely determine the Smarandache φ-sequence.

Key words: Smarandache φ-sequence; Euler totient function; diophantine equation

For any positive integer n, let $\varphi(n)$ be the Euler totient function of n. Further, let the set

$$
\begin{equation*}
A=\{n \mid n=k \varphi(n) \text {, where } k \text { is a positive integer }\} . \tag{1}
\end{equation*}
$$

Then, all elements n of A form the Smarandache φ-sequence (see [2]). In this paper we completely determine this sequence as follows.

Theorem. Let $\{a(x)\}_{x=1}^{\infty}$ be the Smarandache φ-sequence. Then we have

$$
a(x)= \begin{cases}1, & \text { if } x=1, \tag{2}\\ 2, & \text { if } x=2, \\ 2^{(x+1) / 2}, & \text { if } x>1 \text { and } x \text { is odd, } \\ 2^{x / 2+1}, 3, & \text { if } x>1 \text { and } x \text { is even. }\end{cases}
$$

Supported by the Nationa! Natural Science Foundation of China (No.10271104), the Guangdong Provincial Natural Science Foundation (No.011781) and the Natural Science Foundation of the Education Department of Guangdong Province (No.0161).

Proof. We first consider the elements of A. We see from (1) that these elements are solutions of the equation

$$
\begin{equation*}
n=k \varphi(n) . \tag{3}
\end{equation*}
$$

Clearly, $(n, k)=(1,1)$ is a positive integer of (3). If $n>1$, let

$$
\begin{equation*}
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} \tag{4}
\end{equation*}
$$

be the factorization of n. By [1, Theorem 62], we have

$$
\begin{equation*}
\varphi(n)=p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{s}^{\alpha_{s}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{s}-1\right) . \tag{5}
\end{equation*}
$$

Substitute (4) and (5) into (3), we get

$$
\begin{equation*}
p_{1} p_{2} \cdots p_{s}=k\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{2}-1\right) \tag{6}
\end{equation*}
$$

If n is even, then $p_{1}=2$ and p_{2}, \cdots, p_{s} are odd primes. Since $p_{i}-1$ ($i=2, \cdots, s$) are even integer, we find fron (6) that either $s=1$ and $k=2$ or $s=2, p_{2}=3$ and $k=3$. It follows that (3) has positive integer solutions $(n, k)=\left(2^{r}, 2\right)$ and $\left(2^{r} .3,3\right)$, where r is a positive integer.

If n is odd, then (6) is impossible, since $p_{j}(j=1,2, \cdots, s)$ are odd primes and $p_{f}-1(j=1,2, \cdots, s)$ are even integers.

Thus, by the above analysis, we obtain (2) immediately.

References

[1] G.H.Hardy and E.M.Wright, An introduction to the theory of numbers, Oxford University Press, Oxford, 1938.
[2] A.Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions J. 11(2000), 179-183.

