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Abstract: In this paper we cOlnpletely detennine the Smarandache 
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For any positive integer n, let rp(n) be the Euler totient function of 
n. Further, let the set 

A={nln=krp (n), vvhere k is a positive integer}. (1) 
Then, all elelnerits n of A fonn the SlTlarandache rp -sequence (see [2]). 
In this paper we completely deten11ine this sequence as follows. 

Theorem. Let {a (x )};=I be the Sluarandache rp -sequence. Then 
we have 

1, 

2, 
a(x) == 2(x+ 1)12 

...... x / 2.,.. i ." 

, 

L. . .J, 

ifx==l, 

if x = 2, 

if x>l and x is odd, 

if x 1 and x is even. 
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Proof. We first consider the elelnents of A. We see frorn (1) that 

these elelTIents are solutions of the equation 

n=kcp (n). (3) 

Clearly, (n,k)=( 1,1) is a positive integer of (3). If n 1, let 

n pFI (4) 

be the factorization of n. By [1, TheorelTI 62J, we have 

cp(n) = pFI -I p~2 -I ... P.~\ -I (PI - 1)(P2 - 1)··· (Ps 

S ubsti tute (4) and (5) into (3), we 

P[P2 ... Ps = k(pI -1)(P2 1)··· (P2 -1). 

1). (5) 

(6) 

If n is even, then PI and P2,'" ,Ps are odd prilTIes. Since Pi- 1 

(i=2~"',s) are even integer, we find fi·on (6) that eithers=l and or 

, P2=3 and k=3. It follo'vvs that (3) has positive integer solutions 

(n,k)=(2r,2) and (2".3,3), where r is a positive integer. 

If n is odd, then (6) is ilnpossible, since p/j= 1,2;" ,s) are odd 

prin1es and Pr 1 (j= 1,2, ... ,s) are even integers. 

Thus, by the above analysis, we obtain (2) inllnediately. 
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