THE SMARANDACHE EUNCTION AND THE DIOPHANTINE EQUATION

$$
x:+a=y^{2}
$$

Maohua Le
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China

Abstract. Eor any positive integer n, let $S(n)$ denote the Smarandache function of n. In this paper we prove that if a is a nonsquare positive integer, then all positive integer solutions (x, y) of the equation $x!+a=y^{2}$ satisfy $x<2 S(a)$.

Let N be the set of all positive integers. For any positive integer n, let $S(n)$ denote the Smarandache function of n. Iet a be a fixed positive integer. Recently, Dabrowschi[1] proved that if a is not a square, then the equation

$$
\begin{equation*}
x!+a=y^{2}, x, y \in N \tag{1}
\end{equation*}
$$

has only finitely many solutions (x, y). In this paper we give an upper bound for the solutions of (1) as follows.

Theorem. If a not a square, then all solutions (x, y) of (1) satisfy $x<2 S(a)$.

Proof. Since a is not a square, a has a prime factor o such that

$$
\begin{equation*}
p=-1 a, \tag{2}
\end{equation*}
$$

were r is a nonnegative integer. We now suppose that (X, y) is a solution of (1) with $x \geq 2 S(a)$. By the result of [2], we have $S(m n) \leq S(m)+S(n)$ for any positive integers m, n. It imolies that $2 S(a) \geq S\left(a^{2}\right)$. So have

$$
\begin{equation*}
a^{2} \mid x!. \tag{3}
\end{equation*}
$$

Therefore, we see from (I) and (3) that

$$
\begin{equation*}
a \mid y^{2} \tag{4}
\end{equation*}
$$

Eurtier, by (2) and (4), we get

$$
\begin{equation*}
a p y y^{2} \tag{5}
\end{equation*}
$$

Since p is a prime factor of a, we see from (3) that

Thus, by (1), (5) and (6), we obtain pl1, a contradiction. So we have $x<2 S(a)$. The theorem is proved.

References
1.A. Dabrowski, On the diophantine equation $x!+A=y^{2}$, Niouw Arch. Wisc. (4) 14 (1996), No.3, 321-324.
2.M.-H.Le, An inequality concerning the Smarandache Eunction, Smarandache Notions J.

