THE SMARANDACHE-RIEMANN ZETA SEQUENCE

Maohua Le Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P. R. CHINA

Abstract. In this paper we prove that the Smarandach-Riemann sequence is not a sequence of integers. Moreover, no two integer terms of this sequence are relatively prime.

Key words: Riemann zeta function, Smarandache-Riemann zeta sequence

For any complex number *s*, let

(1)
$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s}$$

be the Riemann zeta function. For any positive integer n, let T_n be a number such that

(2)
$$\zeta(2n) = \frac{\pi^{2n}}{T_n},$$

where π is ratio of the circumference of a circle to its diameter. Then the sequence $T = \{T_n\}_{n=1}^{\infty}$ is called the Smarandache-Riemann zeta sequence. In [2], Murthy believed that T is a sequence of integers. Simultaneous, he proposed the following conjecture:

Conjecture No two terms of *T* are relatively prime.

In this paper we prove the following results.

Theorem 1 If ord $(2, (2n)!) \le 2n-2$, where ord (2, (2n)!) is the order of prime 2 in (2n)!, then T_n is not an integer.

Theorem 2 No two integer terms of T are relatively prime.

Since ord (2, 14!)=11 < 12=2.7-2, by Theorem 1, we find that *T* is not a sequence of integers. However, by Theorem 2, the above-mentioned conjecture holds for all integer terms of *T*.

Proof of Theorem 1 It is a well known fact that

(3)
$$\zeta(2n) = (-1)^{n-1} \frac{2^{2n-1} \pi^{2n}}{(2n)!} B_n, n \ge 1,$$

where B_n is a Bernoulli number (see [1]). Notice that

(4)
$$B_n = (-1)^n \frac{a_n}{b_n}, n \ge 1,$$

where a_n and b_n are coprime positive integers satisfying

(5)
$$2 || b_n, 3 | b_n, n \ge 1.$$

By (2), (3) and (4), we get

(6)
$$T_n = \frac{(2n)!b_n}{2^{2n-1}a_n}, n \ge 1$$

Since gcd $(a_n, b_n)=1$ and b_n is even, we see that a_n is odd. Therefore, by (5) and (6), if ord $(2, (2n)!)+1 \le 2n-1$, then T_n is not an integer. The theorem is proved.

Proof of Theorem 2 Let T_m and T_n be two integer terms of T with $m \neq n$. By (6), we get

(7)
$$T_m = \frac{(2m)!b_m}{2^{2m-1}a_m}.$$

Since gcd (2, 3)=gcd (a_m , b_m)=gcd (a_m , b_n)=1, 3| b_m and 3| b_n by (5), we get from (6) and (7) that 3| T_n and 3| T_m respectively. It implies that gcd (T_m , T_n) \geq 3>1. The theorem is proved.

References

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1937.
- [2] A. Murthy, Some more conjectures on primes and divisors, Smarandache Notions J. 12(2001), 311-312.