# THE SMARANDACHE-RIEMANN ZETA SEQUENCE 

Maohua Le<br>Department of Mathematics<br>Zhanjiang Normai College<br>Zhanjiang, Guangdong<br>P. R. CHINA


#### Abstract

In this paper we prove that the Smarandach-Riemann sequence is not a sequence of integers. Moreover, no two integer terms of this sequence are relatively prime.

Key words: Riemann zeta function, Smarandache-Riemann zeta sequence


For any complex number $s$, let

$$
\begin{equation*}
\zeta(s)=\sum_{k=1}^{\infty} k^{-s} \tag{1}
\end{equation*}
$$

be the Riemann zeta function. For any positive integer $n$, let $T_{n}$ be a number such that

$$
\begin{equation*}
\zeta(2 n)=\frac{\pi^{2 n}}{T_{n}} \tag{2}
\end{equation*}
$$

where $\pi$ is ratio of the circumference of a circle to its diameter. Then the sequence $T=\left\{T_{n}\right\}_{n=1}^{\infty}$ is called the Smarandache-Riemann zeta sequence. In [2], Muthy believed that $T$ is a sequence of integers. Simultaneous, he proposed the following conjecture:

Conjecture No two terms of $T$ are relatively prime.
In this paper we prove the following results.
Theorem 1 If ord $(2,(2 n)!)<2 n-2$, where ord $(2,(2 n)$ !) is the order of prime 2 in $(2 n)!$, then $T_{n}$ is not an integer.

Theorem 2 No two integer terms of $T$ are relatively prime.
Since ord $(2,14!)=11<12=2.7-2$, by Theorem 1 , we find that $T$ is not a sequence of integers. However, by Theorem 2, the abovementioned conjecture holds for all integer terms of $T$.

Proof of Theorem 1 It is a well known fact that

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n-1} \frac{2^{2 n-1} \pi^{2 n}}{(2 n)!} B_{n}, n \geq 1 \tag{3}
\end{equation*}
$$

where $B_{n}$ is a Bernoulli number (see [1]). Notice that

$$
\begin{equation*}
B_{n}=(-1)^{n} \frac{a_{n}}{b_{n}}, n \geq 1 \tag{4}
\end{equation*}
$$

where $a_{n}$ and $b_{n}$ are coprime positive integers satisfying

$$
\begin{equation*}
2 \| b_{n}, 3 \mid b_{n}, n \geq 1 \tag{5}
\end{equation*}
$$

By (2), (3) and (4), we get

$$
\begin{equation*}
T_{n}=\frac{(2 n)!b_{n}}{2^{2 n-1} a_{n}}, n \geq 1 \tag{6}
\end{equation*}
$$

Since $\operatorname{gcd}\left(a_{i n}, b_{n}\right)=1$ and $b_{n}$ is even, we see that $a_{i:}$ is odd. Therefore, by (5) and $(6)$, if ord $(2,(2 n)!)+1<2 n-1$, then $T_{n}$ is not an integer. The theorem is proved.

Proof of Theorem 2 Let $T_{m}$ and $T_{n}$ be two integer terms of $T$ with $m \neq n$. By (6), we get

$$
\begin{equation*}
T_{m}=\frac{(2 m)!b_{m}}{2^{2 m-1} a_{m}} \tag{7}
\end{equation*}
$$

Since $\operatorname{gcd}(2,3)=\operatorname{gcd}\left(a_{m,}, b_{m}\right)=\operatorname{gcd}\left(a_{n}, b_{n}\right)=1,3 \mid b_{m}$ and $3 \mid b_{n}$ by (5), we get from (6) and (7) that $3 \mid T_{n}$ and $3 \mid T_{m}$ respectively. It implies that gcd $\left(T_{m}, T_{n}\right) \geqslant 3>1$. The theorem is proved.

## References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1937.
[2] A. Murthy, Some more conjectures on primes and divisors, Smarandache Notions J. 12(2001), 311-312.

