THE SMARANDACHE-RIEMANN ZETA SEQUENCE

Maohua Le

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong

P.R.CHINA

Abstract. [n this paper we prove that the Smarandach-Riemann
sequence Is not a sequence of integers. Moreover, no tWo mnteger
terms of this sequence are relatively prime.
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For any complex number s, let
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be the Ricmann zeta function. For any positive integer 7, let 7, be a

number such that
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where 7 is ratio of the circumference of a circle to its diameter. Then

the sequence 7 ={7.}" is called the Smarandache-Riemann zeta

sequence. In [2] Murthy helieved that T

Stmultaneous, he proposed the following conjecture:
C‘oxxjectur'e No two terms of T are relatively prime.
In this p\aper we prove the following results.
Theorem 1 If ord (2, @2mH<2n-2, where ord (2, (2n)!) is the

order of prime 2 in (2r)!, then 7', is not an integer.



Theorem 2 No two integer terms of T are relatively prime.

Since ord (2, 141)=11<012=2.7-2, by Theorem 1, we find that 7"is -
not a sequence of integers. However, by Theorem 2, the above-
mentioned conjecture holds for all integer terms ol 7"

Proof of Theorem 1 It is a well known fact that
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where B, is a Bernoulli number (see [1]). Notice that
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where a, and b, are coprime positive integers satistying

(5) 206 31b,,n=t.
By (2), (3) and (4), we get
(27m)h
= —*—-ﬁ——i,f’l >1.
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Since ged (a,, b,)=1 and b, is even, we see that a, is odd. Theretfore,
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Proof of Theorem 2 Let 7, and 7, be two integer terms ot / with

m+n. By (6), we get
(2m)b,
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Since ng (2* 3):g0d (Cl:,“, bm):ng (Cl”, bn)r:l’ 3\/7”1 and Blb” by (5)7 we
get from (6) and (7) that 3|7, and 3|7, respectively. It implies that ged
(7,, T,)=3>1. The theorem is proved.
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