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In the present note wesolve two diophantine eqations concerning the Smarandache
function.

First, we try to solve the diophantine eqation :
S =y (1

It is porposed as an open probiem by F. Smarandache in the work [1], pp. 38 (the

problem 2087).

Because S(1) = 0, the couple (1,0) is a solution of eqation (1). If x =1 and y 21, the
eqation there are no (1.y) solutions. So, we can assume that x > 2. It is obvious that the couple

(2,2) is a solution for the egation (1).

If we fix y = 2 we obtain the equation S(x°) = 2* . It is easy to verify that this eqation

has no solution for x € {3,4}, and for x 25 we have 2* > x* 25(x%), so 2* > S(x°). Consequently
for every x e N"\{2}, the couple (x,2) isn't a solution for the egation (1).
We obtein the equation S(2") = y°, y 23, fixing x = 2. It is know that for p = prime

number we have the ineqality:
S(p) sper 2

Using the inequality (2) we obtein the inequality S(2”) <2ey. Because y 23 implies y*>2y,
it results y">S(2") and we can assume that x 23 and y 23.
We consider the function f: [3,o]— RZ defined by f{x) =},— where y 2 5 is fixed.

This function is derivable on the considered interval, and fi(x) = LTy In the point
X, = % it is equal to zero, and f{x ) = f(l—:-y-) =y~ (iny)’.
Because y 2 3 it results that Iny > 1 and y* > I, so f{x) > 1. For x > x_, the function {'is

strict incresing, so f{x) > f{x ) > 1, that leads to y* > x” 2 S(x"), respectively y* > S(x*). For
x < x, the function fis strict decreasing, so f{x) > f{x_) > 1 that lands to y* > S(x"). There fore,

the only solution of the eqaution (1) aré the couples (1,0) and (2,2).
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SOLVING THE DIOPHANTINE EQUATION
x'-y* = 5(x) (3)

It is obvious that the couples (1,1) is a solution of the egaution (3).

Because x’-y* = S(x) it results x = y (otherwise we have S(x)=0, i.e, x =1 = y). We
prove that the equation (3) has an unique solution.

Case]: x>y. Therefore it exists aeN" so x=y+a, (y+a)-y™ = S(y+a) or

Stv=2)

(I1+3y-y= = But (1+})" <e' Itresults e* - y* > S‘—:,"-’ false inequality fory > e (e* - y*< 0
fory >e). Sowehavey=1o0ry=2 Ify =1 we have x-1 = S(x). In this situation it is
obvious that x is a compound number. If x = p}'py’...pa" is the factorization of x into prims
wich p, = p , a = 0, ij = Ln, then we have S(x) = max S(p;') = S(pt"), 1< e< r But, because
S(x) = S(pe") < peae < x -1 it results that S(x) < x - 1, that is fals.

Ify =2, we have x°* - 2* = S(x). For x 2 4 we obtein x* -.2* < 0, and for x € {2,3} there is
no solution.

Case II: x < y. Therefore it exists b > O such that y = x + b. Then we have
X (x+b)x=5(x), sox" - (1 + ) =< L <.

But, because (1 + )* < e” we obtain x” - €* < |, which is a false inequality for x>4. If
x =2, then 2 -y° = 2, an equation which fas no solution because 2’ - y* 2 7 fory 2 5.

If x = 3, then 3"-y’ = 3, an equation which has no solutions fory e {1.2,3}, because, if
y 24 itresults 37 -y’ 217.

Therefore the equation (3) admits an unique solution (1,1).
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