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In the present note wesolve two diophantine eqations concerning the Smarandache 

function. 

First, we try to solve the diophantine eqation : 

Sex>') = y' (1) 

It is porposed as an open problem by F. Smarandadie in the work [I], pp. 38 (the 

problem 2087). 

Because SCI) = 0, the couple (1,0) is a solution of eqation (1). If x = 1 and y ~ 1, the 
eqation there are no (IS) solutions. So, we can assume that x ~ 2. It is obvious that the couple 

(2,2) is a solution for the eqation (I). 

If we fix y = 2 we obtain the equation Sex:) = 2" . It is easy to verify that this eqation 

has no solution for x e {3,4}, and for x ~5 we have 2" > x= ~S(X=), so 2" > Sex:). Consequently 
for every x eN- \{2}, the couple (x,2) isn't a solution for the eqation (1). 

We obtein the equation S(2)') = i, y ~3, fixing x = 2. It is know that for p = prime 

number we have the ineqality: 

S(PJ ~p.r (2) 

Using the inequality (2) we obtein the inequality S(2') ~2.y. Because y ~3 implies i>2y, 
it results i>S(2y) and we can assume that x ~3 and y ~3. 

We consider the function f: [3,CX)]- R: defined by f(x) =.::, where y ~ 3 is fixed. 

This function is derivable on the considered interval, and f(x) = V·'''"'f~I.Y-VI. In the point .. , 
x =.L it is equal to zero and f(x \ = f(~) = y;;(Iny)Y. 

OlDY 'oJ IDY 

Because y ~ 3 it results that lny> 1 and y~' > 1, so f(xJ > 1. For x> xo ' the function fis 
strict incresing, so f(x) > f(xJ > 1, that leads to i' > xy ~ Sex'), respectively i' > Sex'). For 

x < x.,. the function fis strict decreasing, so f(x) > f(xJ> 1 that lands to y'< > Sex'). There fore, 

the only solution of the eqaution (I) are the couples (1,0) and (2,2). 
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SOL VING THE DIOPHANTINE EQUATION 

x~-y = S(x) (3) 

It is obvious that the couples (l,I) is a solution of the eqaution (3). 

Because xY_y' = Sex) it results x ;c y (otherwise we have S(x)=O, i.e., x = 1 = y). We 

prove that the equation (3) has an unique solution. 

Case I: x> y. Therefore it exists a eN" so x = y + a, (y + aY - r = S(y+a) or 

(l + })Y - )'" = Si;~al . But (l +} Y < ea. It results e" - )'" > Si;~al , false inequality for y > e (e" - y"< 0 

for y > e). So we have y = I or y = 2. If y = 1 we have x-I = Sex). In this situation it is 

obvious that x is a compound number. If x = P ~' p;' ... p:" is the factorization of x into prims 

wich Pi ;c P
J 

' a, ~ 0 , ij = l,"ii, then we have Sex) = = s(p~) = S(p!").l S eSt. But, because 

S(x) = s(p!") < pe:le < x-I it results that Sex) < x-I, that is fals. 

Ify = 2, we have x? - 2" = Sex). For x ~ 4 we obtein x? -.'1' < 0, and for x e {2,3} there is 

no solution. 

Case II: x < y. Therefore it exists b > 0 such that y = x + b. Then we have 

x-'--o -(x+b )x=S(x), so xb 
- (1 + ~ y = ~:l S ;. S 1. 

But, because (1 +~ )" < eb we obtain xb 
- eb < 1, which is a false inequality for x ~ 4. If 

x = 2. then 21 -i = 2, an equation which fas no solution because 21 - i ~ 7 for y ~ 5. 
Ifx = 3. then 3:"-! = 3, an equation which has no solutions for y e {1.2,3}, because, if 

y ~4 it results 3Y - -I ~ 17. 

Therefore the equation (3) admits an unique solution (1,1). 
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