THE SOLUTION OF SOME DIOPHANTINE EQUATIONS RELATED TO SMARANDACHE FUNCTION

by

Ion Cojocaru and Sorin Cojocaru

In the present note wesolve two diophantine eqations conceming the Smarandache function.

First, we try to solve the diophantine eqation :

$$
\begin{equation*}
S\left(x^{\prime}\right)=y^{x} \tag{1}
\end{equation*}
$$

It is porposed as an open problem by F. Smarandache in the work [1], pp. 38 (the problem 2087).

Because $S(1)=0$, the couple (1,0) is a solution of eqation (1). If $x=1$ and $y \geq 1$, the eqation there are no ($1, y$) solutions. So, we can assume that $x \geq 2$. It is obvious that the couple $(2,2)$ is a solution for the eqation (1).

If we fix $y=2$ we obtain the equation $S\left(x^{2}\right)=2^{x}$. It is easy to verify that this eqation has no solution for $x \in\{3,4\}$, and for $x \geq 5$ we have $2^{x}>x^{2} \geq S\left(x^{2}\right)$, so $2^{x}>S\left(x^{2}\right)$. Consequently for every $x \in N^{*} \backslash\{2\}$, the couple ($x, 2$) isn't a solution for the eqation (1).

We obtein the equation $S\left(2^{\prime}\right)=y^{2}, y \geq 3$, fixing $x=2$. It is know that for $p=$ prime number we have the ineqaiity:

$$
\begin{equation*}
S(p) \leq p \cdot r \tag{2}
\end{equation*}
$$

Using the inequality (2) we obtein the inequality $S\left(2^{\prime}\right) \leq 2 \bullet y$. Because $y \geq 3$ implies $y^{\prime}>2 y$, it results $y^{\circ}>S\left(2^{\eta}\right)$ and we can assume that $x \geq 3$ and $y \geq 3$.

We consider the function $f:[3, \infty] \rightarrow R^{:}$defined by $f(x)=\frac{v^{2}}{x^{j}}$, where $y \geq 3$ is fixed.
This function is derivable on the considered interval, and $f(x)=\frac{\left.v^{2} x^{-1 / 4} \ln n-y\right)}{x^{i} y}$. In the point $x_{0}=\frac{y}{\operatorname{lan} y}$ it is equal to zero, and $f\left(x_{0}\right)=f\left(\frac{x}{\ln y}\right)=y^{\frac{1}{i n}}(\ln y)^{y}$.

Because $y \geq 3$ it resuits that $\ln y>1$ and $y^{\frac{1}{4}}>1$, so $f\left(x_{0}\right)>1$. For $x>x_{0}$, the function f is strict incresing, so $f(x)>f\left(x_{0}\right)>1$, that leads to $y^{x}>x^{y} \geq S\left(x^{y}\right)$, respectively $y^{x}>S\left(x^{y}\right)$. For $x<x_{0}$, the function f is strict decreasing, so $f(x)>f\left(x_{0}\right)>1$ that lands to $y^{x}>S\left(x^{y}\right)$. There fore, the only solution of the eqaution (1) are the couples $(1,0)$ and $(2,2)$.

SOLVING THE DIOPHANTINE EQUATION

$$
\begin{equation*}
x^{x}-y^{x}=S(x) \tag{3}
\end{equation*}
$$

It is obvious that the couples (1,1) is a solution of the eqaution (3).
Because $x^{y}-y^{y}=S(x)$ it results $x \neq y$ (otherwise we have $S(x)=0$, i.e., $x=1=y$). We prove that the equation (3) has an unique solution.

Case I: $x>y$. Therefore it exists $a \in N^{*}$ so $x=y+a,(y+a)^{-}-y^{-0}=S(y+a)$ or $\left(1+\frac{1}{y}\right)^{2}-y^{2}=\frac{\sin +21}{y^{2}}$. But $\left(1+\frac{1}{y}\right)^{y^{2}}<e^{4}$. It results $e^{2}-y^{2}>\frac{\sin (-2)}{y^{2}}$, false inequality for $y>e\left(e^{2}-y^{2}<0\right.$ for $\mathrm{y}>e$). So we have $\mathrm{y}=1$ or $\mathrm{y}=2$. If $\mathrm{y}=1$ we have $\mathrm{x}-1=\mathrm{S}(\mathrm{x})$. In this situation it is obvious that x is a compound number. If $x=p_{1}^{\prime \prime} p_{2}^{\prime \prime} \ldots p_{i}^{* *}$ is the factorization of x into prims wich $p_{i} \neq p_{1}, a_{1} \neq 0, i, j=\overline{1, n}$, then we have $S(x)=\max _{1 \leq 50} S\left(p_{i}^{4}\right)=S\left(p_{e}^{*}\right), 1 \leq e \leq x$ But, because $S(x)=S\left(p_{e}^{2}\right)<p_{e} a_{e}<x-1$ it results that $S(x)<x-1$, that is fals.

If $y=2$, we have $x^{2}-2^{x}=S(x)$. For $x \geq 4$ we obtein $x^{2}-.2^{x}<0$, and for $x \in\{2,3\}$ there is no solution.

Case II: $x<y$. Therefore it exists $b>0$ such that $y=x+b$. Then we have $x^{r i b}-(x+b) x=S(x)$, so $x^{b}-\left(1+\frac{b}{x}\right)^{x}=\frac{5(x)}{x^{i}} \leq \frac{x}{x^{2}} \leq 1$.

But, because $\left(1+\frac{b}{2}\right)^{x}<e^{b}$ we obtain $x^{b}-e^{b}<1$, which is a false inequality for $x \geq 4$. If $x=2$, then $2^{y}-y^{2}=2$, an equation which fas no solution because $2^{y}-y^{2} \geq 7$ for $y \geq 5$.

If $x=3$, then $3^{y}-y^{3}=3$, an equation which has no solutions for $y \in\{1,2,3\}$, because, if $y \geq 4$ it results $3^{y}-y^{3} \geq 17$.

Therefore the equation (\mathbf{j}) admits an unique solution (1,1).

REFERENCES

[1] F. Smarandache : An infinity of unsolved problems concenning a Function in the Number Theory (Presented at the 14th American Romanian Academy Anual cOnvention, hold in Los Angeles, California, hosted by the University of Southern California, from April 20 to April 22, 1989).

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CRAIOVA, CRAIOVA 1100, ROMANLA

