THE THIRD AND FOURTH CONSTANTS OF SMARANDACHE

by
\section*{Ion Cojocaru and Sorin Cojocaru}

In the present note we prove the divergence of some series involving the Smarandache function, using an unitary method, and then we prove that the series

$$
\sum_{n=2}^{\infty} \frac{1}{S(2) S(3) \ldots . S(n)}
$$

is convergent to a number $s \in(71 / 100,101 / 100)$ and we study some applications of this series in the Number Theory (third constant of Smarandache).

The Smarandache Function $S: N^{*} \rightarrow \mathbf{N}$ is defined [1] such that $S(n)$ is the smallest integer k with the property that k ! is divisible by n.

Proposition 1. If $\left(x_{n}\right)_{n z 1}$ is a strict increasing sequence of natural numbers, then the series :

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x_{n+1}-x_{n}}{S\left(x_{n}\right)}, \tag{1}
\end{equation*}
$$

where S is the Smarandache function, is divergent.
Proof. We consider the function $f:\left[x_{n}, x_{n-1}\right] \rightarrow R$, defined by $f(x)=\ln \ln x$. It fulfils the conditions of the Lagrange's theorem of finite increases. Therefore there is $c_{n} \in\left(x_{n}, x_{n-1}\right)$ such that :

$$
\begin{equation*}
\ln \ln x_{n+1}-\ln \ln x_{n}=\frac{1}{c_{n} \ln c_{n}}\left(x_{n+1}-x_{n}\right) \tag{2}
\end{equation*}
$$

Because $x_{n}<c_{n}<x_{n+1}$, we have :

$$
\begin{equation*}
\frac{x_{n+1}-x_{n}}{x_{n+1} \ln x_{n+1}}<\ln \ln x_{n+1}-\ln \ln x_{n}<\frac{x_{n+1}-x_{n}}{x_{n} \ln x_{n}}, \quad(\forall) n \in N . \tag{3}
\end{equation*}
$$

if $x_{n}=1$.

We know that for each $n \in N^{*} \backslash\{1\}, \frac{S(n)}{n} \leq 1$, i.e.

$$
\begin{equation*}
0<\frac{S(n)}{n \ln n} \leq \frac{1}{\ln n} \tag{4}
\end{equation*}
$$

from where it results that $\lim _{n \rightarrow \infty} \frac{S(n)}{n i n n}=0$. Hence there exists $k>0$ such that $\frac{S(n)}{n \ln n}<k$, i.e., $n \ln n>\frac{S(n)}{k}$ for any $n \in N^{*}$, so

$$
\begin{equation*}
\frac{1}{x_{n} \ln x_{n}}<\frac{k}{S\left(x_{n}\right)} . \tag{5}
\end{equation*}
$$

Introducing (5) in (3) we obtain:

$$
\begin{equation*}
\ln \ln x_{n+1}-\ln \ln x_{n}<k \frac{x_{n+1}-x_{n}}{S\left(x_{n}\right)},(\forall) n \in N^{*} \backslash\{1\} . \tag{6}
\end{equation*}
$$

Summing up after n it results :
$\sum_{n=1}^{m} \frac{x_{n+1}-x_{n}}{S\left(x_{n}\right)}>\frac{1}{k}\left(\ln \ln x_{m+1}-\ln \ln x_{1}\right)$.

Because $\lim _{m \rightarrow \infty} x_{m}=\infty$ we have $\lim _{m \rightarrow \infty} \ln \ln x_{m}=\infty$, i.e., the series:
$\sum_{n=1}^{\infty} \frac{x_{n+1}-x_{n}}{S\left(x_{n}\right)}$
is divergent. The Proposition 1 is proved.
Proposition 2. Series $\sum_{n=2}^{\infty} \frac{1}{S(n)}$, where S is the Smarandache function. is divergent.
Proof. We use Proposition 1 for $x_{n}=n$.
Remarks. 1) If x_{n} is the $n-$ th prime number, then the series $\sum_{n=1}^{\infty} \frac{x_{n+1}-x_{n}}{S\left(x_{n}\right)}$ is divergent.
2) If the sequence $\left(x_{n}\right)_{n 21}$ forms an arithmetical progression of narural numbers, then the series $\sum_{n=1}^{\infty} \frac{1}{S\left(x_{n}\right)}$ is divergent.
3) The series $\sum_{n=1}^{\infty} \frac{1}{S(2 n+1)}, \sum_{n=1}^{\infty} \frac{1}{S(4 n+1)}$ etc., are all divergent.

In conclusion, Proposition 1 offers us an unitary method to prove that the series having one of the precedent aspects are divergent.

Proposition 3. The series :

$$
\sum_{n=2}^{\infty} \frac{1}{S(2) \cdot S(3) \cdots S(n)}
$$

where S is the Smarandache function, is convergent to a number $s \in(71 / 100,101 / 100)$.

Proof. From the definition of the Smarandache function it results $S(n) \leq n$!, $(\forall) \mathrm{n} \in \mathrm{N}^{*} \backslash\{1\}$, so $\frac{1}{\mathrm{~S}(\mathrm{n})} \geq \frac{1}{\mathrm{n}!}$.

Summing up, begining with $n=2$ we obtain :

$$
\sum_{n=2}^{\infty} \frac{1}{S(2) \cdot S(3) \cdots S(n)} \geq \sum_{n=2}^{\infty} \frac{1}{n!}=e-2
$$

The product $S(2) \cdot S(3) \ldots S(n)$ is greater than the product of prime numbers from the set $\{1,2, \ldots, n\}$, because $S(p)=p$, for $p=$ prime number. Therefore :

$$
\begin{equation*}
\frac{1}{\prod_{i=2}^{n} S(i)}<\frac{1}{\prod_{i=1}^{k} p_{i}} \tag{7}
\end{equation*}
$$

where p_{t} is the biggest prime number smaller or equal to n.

There are the inequalities :

$$
\begin{align*}
S & =\sum_{n=2}^{\infty} \frac{1}{S(2) S(3) \cdots S(n)}=\frac{1}{S(2)}+\frac{1}{S(2) S(3)}+\frac{1}{S(2) S(3) S(4)}+\cdots+ \\
& +\frac{1}{S(2) S(3) \cdots S(k)}+\cdots<\frac{1}{2}+\frac{2}{2 \cdot 3}+\frac{2}{2 \cdot 3 \cdot 5}+\frac{4}{2 \cdot 3 \cdot 5 \cdot 7}+ \\
& +\frac{2}{2 \cdot 3 \cdot 5 \cdot 7 \cdot 11}+\cdots+\frac{p_{k+1}-p_{k}}{p_{1} p_{2} \cdots p_{k}}+\cdots \tag{8}
\end{align*}
$$

Using the inequality $p_{1} p_{2} \cdots p_{k}>p_{k+1}^{3}$, ($\left.\forall\right) k \geq 5[2]$, we obtain:

$$
\begin{equation*}
S<\frac{1}{2}+\frac{1}{3}-\frac{1}{15}-\frac{2}{105}+\frac{1}{p_{6}^{2}}-\frac{1}{p_{3}^{2}}+\cdots+\frac{1}{p_{k+1}^{2}}+\cdots . \tag{9}
\end{equation*}
$$

We note $P=\frac{1}{P_{6}^{2}}+\frac{1}{p_{7}^{2}}+\cdots \quad$ and observe that $P<\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\cdots$.

It results :

$$
P<\frac{\pi^{2}}{6}-\left(1 \div \frac{1}{2^{2}} \div \frac{1}{3^{2}}+\cdots \div \frac{1}{12^{2}}\right)
$$

where

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \text { (ELLER). }
$$

Introducing in (9) we obtain :

$$
S<\frac{1}{2}+\frac{1}{3}+\frac{1}{15}+\frac{2}{105}+\frac{\pi^{2}}{6}-1-\frac{1}{2^{2}}-\frac{1}{3^{2}}-\cdots-\frac{1}{12^{2}} .
$$

Estimating with an approximation of an order not more than $\frac{1}{10^{2}}$, we find :
$0,71<\sum_{n=2}^{\infty} \frac{1}{S(2) S(3) \cdots S(n)}<1,01$.

The Proposition 3 is proved.
Remark. Giving up at the right increase from the first terms in the inequality (8) we can obtain a better right framing :

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{S(2) S(3) \cdots S(n)}<0,97 \tag{11}
\end{equation*}
$$

Proposition 4. Let α be a fixed real number, $\alpha \geq 1$. Then the series
$\sum_{n=2}^{\infty} \frac{n^{\alpha}}{S(2) S(3) \cdots S(n)}$ is convergent (fourth constant of Smarandache).

Proof. Be $\left(p_{k}\right)_{k 21}$ the sequence of prime numbers. We can write :

$$
\begin{aligned}
& \frac{2^{a}}{S(2)}=\frac{2^{a}}{2}=2^{a-1} \\
& \frac{3^{a}}{S(2) S(3)}=\frac{3^{a}}{p_{1} p_{2}} \\
& \frac{4^{\alpha}}{S(2) S(3) S(4)}<\frac{4^{\alpha}}{p_{1} p_{2}}<\frac{p_{3}^{\alpha}}{p_{1} p_{2}} \\
& \frac{5^{a}}{S(2) S(3) S(4) S(5)}<\frac{5^{a}}{p_{1} p_{2} p_{3}}<\frac{p_{4}^{a}}{p_{1} p_{2} p_{3}} \\
& \frac{6^{\alpha}}{S(2) S(3) S(4) S(5) S(6)}<\frac{6^{\alpha}}{p_{1} p_{2} p_{3}}<\frac{p_{4}^{\alpha}}{p_{1} p_{2} p_{3}} \\
& \frac{n^{\alpha}}{S(2) S(3) \cdots S(n)}<\frac{n^{\alpha}}{p_{1} p_{2} \cdots p_{k}}<\frac{p_{k+1}^{a}}{p_{1} p_{2} \cdots p_{k}},
\end{aligned}
$$

where $p_{1} \leq n, i \in\{l, \ldots, k\}, p_{k+1}>n$.

Therefore

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{n^{\alpha}}{S(2) S(3) \cdots S(n)}<2^{\alpha-1}+\sum_{k=1}^{\infty} \frac{\left(p_{k+1}-p_{k}\right) \cdot p_{k+1}^{\alpha}}{p_{1} p_{2} \cdots p_{k}}< \\
& <2^{\alpha-1}+\sum_{k=1}^{\infty} \frac{p_{k+1}^{\alpha+1}}{p_{1} p_{2} \cdots p_{k}}
\end{aligned}
$$

Then it exists $k_{0} \in N$ such that for any $k \geq k_{0}$ we have :

$$
p_{1} p_{2} \cdots p_{k}>p_{k+1}^{\alpha+3} .
$$

Therefore

$$
\sum_{n=2}^{\infty} \frac{n^{a}}{S(2) S(3) \cdots S(n)}<2^{a-1}+\sum_{k=1}^{k_{n}-1} \frac{p_{k+1}^{a+1}}{p_{1} p_{2} \cdots p_{k}}+\sum_{k \geq k_{0}} \frac{1}{p_{k+1}^{2}}
$$

Because the series $\sum_{k \geq k_{0}} \frac{1}{p_{k+1}^{2}}$ is convergent it results that the given series is convergent 100

Consequence 1. It exists $n_{0} \in N$ so that for each $n \geq n_{0}$ we have $S(2) S(3) \ldots S(n)>n^{a}$.

Proof. Because $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{S(2) S(3) \cdots S(n)}=0$, there is $n_{0} \in N$ so that
$\frac{n^{\alpha}}{S(2) S(3) \cdots S(n)}<1$ for each $n \geq n_{0}$

Consequence 2. It exists $n_{0} \in \mathbf{N}$ so that :
$S(2)+S(3)+\cdots+S(n)>(n-1) \cdot n^{\frac{\alpha}{\pi-1}}$ for each $n \geq n_{0}$.

Proof. We apply the inequality of averages to the numbers $S(2), S(3), \ldots, S(n)$:
$S(2)+S(3)+\cdots+S(n)>(n-1) \sqrt[n-1]{S(2) S(3) \cdots S(n)}>(n-1) n^{\frac{a}{n-1}}, \quad \forall n \geq n_{0}$.

REFERENCES

[1] E. Burton : On some series involving the Smarandache Function, Smarandache Function Journal, vol. 6, N 1 (1995), 13-15.
[2] L. Panaitopol : Asupra unor inegalitati ale lui Bonse, Gazeta Matematica, seria A, vol. LXXVI, nr. 3, 1971, 100-102.
[3] F. Smarandache : A Function in the Number Theory (An. Univ. Timisoara, Ser. St. Mat., vol. XVIII, fasc. 1 (1980), 79-88).

