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Abstract: In this paper we two reduction fonnulas for 
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For any t(t>l) positive integers XI,X2,"',X" let (XI,.,"'C2"··,Xt ) and 

[XI,X2, .•• ,.,"'C,] denote the greatest COlnn10n divisor and the least COlnmon 

lTIultiple of XI ,X2:" ,X, respectively. Let r be a positive integer with r 

F or any positi ve integer 17, let 

( ) 
[n,n+l,···,n+r-l] 

T r n = ~--------=. 
, [1,2,.·,r] 

1. 

(1) 

Then the sequence SLRS(r) = {T(r,n)};:=1 is called the Smarandache 

LCM ratio sequence of degree r. It is easy to see that 

1 
T(2,n) = ::n(n + 1) 

L 

Supported by the National Natural Science Foundation of China 

(No.1 0,2711 04), the Guangdong Provincial Natural Science Foundation 

(No.O 11781), and the Natural Science Foundation of the Education 

Departlnent of Guangdong Province (No.O 161). 

183 



for any positive integer n. In [2J, Murthy '-"'-W L'L'-' '-, that find reduction 

fonnulas for T(r,n). In this paper we solve this open problen1 for r=3 or 

4. We prove the following result. 

and 

TheorelTI. For any posItive' n, we have 

l n(n + l)(n + 2), if n is odd, 
T(3,n)= 6 

1 n(n + l)(n + 2), if n is even 
12 

T(4,n)= 

1 n (n + 1) (n + 2) (n + 3), if n 't 0 (111 0 d 3 ), 
24 

_1 n(n + l)(n + 2)(n + 3), if n == 0 (1110d 3). 
72 

(2) 

(3) 

The proof of our theoren1 depends on the following lemlnas. 
Lemma 1 ([ 1, Theoreln 1.6.4]). For any positive integers a and b, 

we have (a,b )[a,b ]=ab. 

Lemma 2 ([ 1, Theorem 1.6.5]). For any positive integers sand s 
t, we have 

( y x .. , V' ) - (( y, .,. V' ) (x . .. x \) ow l' 2, , .,,, t - Jw r , ,~\. x' s+ I' ,J!!, 

and 

[;'(1' ,···,x,]= [[xr,··,xs],[xs+1,···,x,]]. 
Proof of theorem. By Lernillas 1 and 2, we get 

[ n, n + 1, n + 2 ] = [n, [n + 1, n + 2 ]] = [n, (n + 1)( n + 2)] . ( 4 ) 
(n+l,n+2) 

S inee' (n+ 1, 1, we get frol11 (4) that 

[n,n+ 1 ,n+2]=[n,(n+ 1 )(n+2)]. (5) 
Further, since (n,n+ 1 )=1, we have 

{

I, if n is odd, 
, (n (n+.1)(n+2))=(n,n+2)= 2 'f~ . (6) , ,1 n 1S even. 

Hence, by Len11na 1, we obtain froln (5) and (6) that 

[n,n + 1,n +2] = [n, ~~:y~ ;~n 
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fn(n+l)(n+2), if n is odd, 

l~ n(n + l)(n + 2), if n is even. 

Since [1 ,2,3J=6, we get (2) by (7) itnlnediately. 

Silnilarly, we have 

[n, n + 1, n + n + 3 ] = [[ n, n + 1 ], [n + n + 3 JJ 

= [n(n + 1) , (n+_~_l(n + 3)J = [n(n + l),(n + 2)(n + 3)]. 
(n,n+l) (n+ n+3) 

Since [1,2,3,4]= 12 and 

( ( ) ( 
,.." )( )\ {2' if n =1= 0 (In 0 d 3 ), 

n n + 1 , n +. L n -:- 3 ) = 
6, if n == 0 (lnod 3), 

we obtain (3) by (8) ilnmediateiy. The theorelTI is proved. 
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