TWO SMARANDACHE SERIES

Maohua Le
Abstract. In this paper we consider the convergence for two Smarandache series.

Key words. Smarandache reciprocal series, convergence.
Let $A=\{a(n)\}^{\infty}{ }_{n-1}$ and $B=\{b(n)\}^{\infty}{ }_{n-1}$ be two Smarandache sequences. Then the series

$$
S(A, B)=\sum_{n=1}^{\infty} \frac{a(n)}{b(n)}
$$

is called the Smarandache series of A and B. Recently, Castillo [1] proposed the following two open problems.

Problem 1. Is the series

$$
\begin{equation*}
S_{1}=\frac{1}{1}+\frac{1}{12}+\frac{1}{123}+\frac{1}{1234}+\cdots \tag{1}
\end{equation*}
$$

convergent?
Problem 2. Is the series

$$
\begin{equation*}
S_{2}=\frac{1}{1}+\frac{12}{21}+\frac{123}{321}+\frac{1234}{4321}+\cdots \tag{2}
\end{equation*}
$$

Convergent?
In this paper we completely solve the mentioned problems as follows.

Theorem. The series S_{1} is convergent and the series S_{2} is divergent.

Proof. Let $r(n)=1 / 12 \cdots n$ for any positive integer n. Since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{r(n+1)}{r(n)}=\frac{12 \cdots n}{12 \cdots n(n+1)}<1 \tag{3}
\end{equation*}
$$

by D'Alembert's criterion, we see from (3) that S_{1} is convergent.

Let $s(n)=12 \cdots(n-1) n / n(n-1) \cdots 21$ for any positive integer n. If $n=10^{t}+1$, where t is a positive integer, then we hare

$$
\begin{equation*}
S(n)=\frac{12 \cdots(10 \cdots 01)}{(10 \cdots 01) \cdots 21}>1 \tag{4}
\end{equation*}
$$

Therefore, by (4), we get from (2) that

$$
\begin{equation*}
S_{2}=\sum_{n=1}^{\infty} s(n)>\sum_{t=1}^{\infty} s\left(10^{t}+1\right)>\sum_{t=1}^{\infty} 1=\infty . \tag{5}
\end{equation*}
$$

Thus, the series S_{2} is divergent. The theorem is proved.

Reference

[1] J. Castillo, Smarandache series, Smarandache Notions J., http://www.gallup.unm.edu/~smarandache/SERIES.TXT.

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA

