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PartiaDy Paradoxist Smarandache Geometries 

Howard Isen 
Department of Mathematics and Computer Infonnation Science 

Mansfield University 
Mansfield, PA 16933 
hiseri@mnstJd.edu 

Abstract: A paradoxist Smarandache geometry combines Euclidean, hyperbolic, and elliptic geometry into 
one space along with other non-Euclidean behaviors oflines that would seem to require a discrete space. A 
class of continuous spaces is presented here together with specific examples that emibit almost all of these 
phenomena and suggest the prospect of a continuous paradoxist geometry. 

Introduction 
Euclid's parallel postulate can be fonnulated to say that given a line 1 and a pointP not on I, there is exactly 
one line through P that is paral1e1 to I. An axiom is said to be Smarandacbely denied, if it, or one of its 
negations, holds in some instances and fails to hold in others within the same space. For example, Euclid's 
parallel postulate would be Smarandachely denied in a geometry that was both Euclidean and non­
Euclidean, or non-Euclidean in at least two different ways. A Smarandache geometry is one that has at 
least one Smarandachely denied axiom, and a paradoxist Smarandache geometry, to be described later, 
denies Euclid's parallel postulate in a somewhat exhaustive way. 

Euclid's parallel postulate does not hold in the standard non-Euclidean geometries, the hyperbolic 
geometry of Gauss, Lobachevski, and Bolyai and the eIliptic geometry of Riemann. These are special cases 
of the two-dimensional manifolds of Riemannian geometry. Here the three types of geometry are 
characterized by the Gauss curvature, negative curvature for hyperbolic, zero curvature for Euclidean, and 
positive curvature for elliptic. In general. the curvature may vmy within a particular Riemannian manifold, 
so it is possible that the geodesics, the straightest possible curves, will behave like the lines of Euclidean 
geometry in one region and like the lines of hyperbolic or elliptic geometry in another. We would expect, 
therefore, to find geometries among the Riemannian manifolds that Smarandachely deny Euclid's parallel 
postulate. The models presented here wil1 suggest specific examples, but explicit descriptions would be far 
from trivial. 

We wiII bypass the computational complexities of Riemannian manifolds by turning to a class of geometric 
spaces that we will call Smarandache manifolds or S-rnanifolds. S-manifolds are piecewise linear 
manifolds topologically, and they have geodesics that exhibit elliptic, hyperbolic. and Euclidean behavior 
similar to those in Riemannian geometry, but that are much easier to construct and describe. 

The idea of an S-manifold is based on the hyperbolic paper described in [2J and credited to W. Thurston. 
There, the negative curvature of the hyperbolic plane is visualized by taping together seven triangles made 
of paper (see Figures 28 and 2b).Squeezing seven equilateral triangles around a vertex, instead of the usual 
six seen in a tiling of the plane, forces the paper into a flat saddle shape with the negative curvature 
concentrated at the center vertex. By utilizing these "curvature singularities," our S-manifolds can be flat 
(i.e., Euclidean) everywhere else. 

Smaraudache maaifolds 
A Smaraudacbe manifold( or S-manifokt is a collection 0 f equilateral triangular disks (triangles) where 
every edge is shared by exactly two triangles, and every vertex is shared by five, six, or seven triangles. 
The points of the manifold are those of the triangular disks, including all the interior points, edge points, 
and vertices. Lines (geodesics) in the manifold are those piecewise linear curves with the following 
properties. They are straight in the Euclidean sense within each triangular disk and pair of adjacent 
triangular disks (since two triangles will lie flat in the plane). Across a vertex, a line will make two equal 
angles (two 150" angles for five triangles, two 180" angles for six triangles, and two 210" angles for seven). 

EUiptic Vertices - five triangles 
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There are five equilateral triangles around an elliptic vertex in an S-manifold. We can take a region around 
an elliptic vertex and lay it flay by making a cut as in Figure la. Note that the lines are straight within any 
pair of adjacent triangles, although the lines appear to bend at the vertex and across the cut This is only 
because we have made a cut and flattened the surface. In the paper model shown in Figure 1 b, the lines 
curve, but only in a direction perpendicular to the surface. In other words, the lines are as straight as 
possible and bend only as they follow the surface. The two lines that do not pass through the central vertex 
pass through three adjacent triangles, which would lie flat in the plane, and so are straight in the Euclidean 
sense. Note that the fact that the third triangle is shared by both lines forces them to intersect The middle 
line runs along an edge of a triangle and passes through an elliptic vertex, so it bisects the opposite triangle 
making two 150" angles (or two-and-a-halftriangles). In general, lines passing on either side of an elliptic 
vertex will turn towards each other. 

FigureS I a and 1 b. Lines near an elliptic vertex. 

Hyperbolic Vertices - seven triangles 
There are seven triangles around a hyperbolic vertex. We can lay a region around a hyperbolic vertex flat 
after making cuts as shown in Figure 2a. The middle line runs along an edge, so it bisects the opposite 
triangle (and has 210", or three-and-a-halftriangles, on either side of it). The two lines on either side pass 
through three adjacent triangles, and are straight as in the elliptic case. Note that the third triangles here are 
separated by another triangle, so lines passing on either side of a hyperbolic vertex tum away from each 
other. 

Figures 2a and 2b. Lines near a hyperbolic vertex. 
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Paradoxist geometries 
We will say that a pointP not on a line 1 is Euclidean with respect to I, if there is exactly one line through 
P that is paralJel to I. P is elliptic with respect to I, ifthere are no parallels throughP. If there are at least 
two paralJels throughP, then it is hyperbolic. Furthennore, if P is hyperbolic with respect to I, then it is 
finitely hyperbolic, ifthere are only finitely many parallels, and it is regularly hyperbolic, if there are 
infinitely many parallels and infinitely many non-parallels. Finally, if there are infinitely many paralJels 
and only finitely many non-parallels, then P is extremely hyperbolic, and if all the lines through P are 
parallel, then P is completely hyperbolic. 

Smarandache called a geometry ptradoxist if there are points that are elliptic, Euclidean, finitely 
hyperbolic, regularly hyperbolic, and completely hyperbolic (I). We will add extremely hyperbolic to the 
definition of a paradoxist geometry. We will also say that a geometry is semi-paradoxist, if it has 
Euclidean, elliptic, and regularly hyperbolic points, and if it lacks only finitely hyperbolic points we will 
call it almost paradoxist 

A Semi-Paradom Model 
This model is constructed by taking a hyperbolic and an elliptic vertex adjacent to each other and 
surrounding them with Euclidean vertices to form a space that is topologicalJy equivalent to the plane. A 
part of it is shown in Figures 3a and 3b. Let I be the line through O. With respect to I, we see that the point 
P is Euclidean. The line through P shown is parallel to I, and any other line through P clearly intersects I, 
since the region to the right and left is essentially Euclidean. 

The point Q is elliptic with respect to I. The line shown intersects I, as would any other line through Q. 

The point R is regularly hyperbolic. The lines shown are parallel to I, and these separate the other infinitely 
many parallels from the infmitely many non-parallels. 

This S-manifold can be turned into a Riemannian manifold by smoothing the two curvature singularities. 
The lines shown in Figures 3a and 3b would stay the same, and only those geodesics passing near the 
singularities would be affected by the change. 
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Figure 3a. Lines in the semi-paradoxist model. 

Figure 3b. Lines in the sem-paradoxist model. 

An Almost Paradoxist Model 
A greater variety in the types of hyperbolic points can be found in an S-manifold with more hyperbolic 
vertices. This model has at its center an elliptic vertex surrounded by five more elliptic vertices. Five 
Euclidean vertices then surround these el1iptic vertices (see Figures 4a and 4b) to form a cylinder with a 
cone on top ofit. We will caU this the silo. 

The line I runs around the cylinder (it is a circle). With respect to the line I, the pointP is Euclidean, and 
the point R is elliptic. 

8 



A 

x 

z 
Figure 4a Lines in the silo of the almost paradoxist model. 

Figures 4b and 4c. Lines in the silo of the almost paradoxist model, and the hyperbolic region around silo. 
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The entire model is topologically equivalent to the plane, and is completed by extending the bottom of the 
silo with hyperbolic vertices. A model made ofZAKS bloclcs in Figure 4c shows some of the hyperbolic 
region extending from the bottom of the silo. 

Examples of various types of hyperbolic points are shown in Figures Sa and Sb, which shows some of the 
hyperbolic region and the bottom of the silo. The line l mentioned previously is at the top. With respect to l, 
the point Q is regularly hyperbolic. The two lines shown are parallel to l, and they separate the parallels 
from the non-parallels. Out further into the hyperbolic region is the point Q . The line shown passing 
through Q and the vertex I intersects I. Any line through Q that misses the vertex I will lie outside of the 
two dotted lines, and these will miss the silo entirely. Since only one line through Q intersects l, it is an 
extremely hyperbolic point. The nearby point Q is completely hyperbolic. We can see this by noticing that 
the line through Q and I will follow the dotted line to the left and miss the silo. All the lines through Q to 
the left of this will also miss the silo. Any line to the right will miss the vertex I, and will run just to the 
right of the line through Q and I until it misses the vertex F and turns to the right. These lines will also 
miss the silo. 

10 



Figure Sa. Lines in the hyperbolic region near the silo in the almost paradoxist model. 
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Figure 5b. Lines in the hyperbolic region near the silo in the almost paradoxist model. 

Since this model has elliptic, Euclidean, regularly"hyperbolic, extremely hyperbolic, and completely 
hyperbolic points, it is almost paradoxist. Note that it follows from the existence of extremely and 

" completely hyperbolic points that there are pairs of points that do not lie on a single line. This model is 
connected, however, and there is always a finite sequence ofline segments that connect any particular pair 
of points. 

F1ual Remarks 
It is relatively easy to construct an S-manifold that is almost paradoxist. The most interesting prospect, 
however, is the possibility of an S-manifold with a finitely hyperbolic point. Intuition strongly suggests that 
a finitely hyperbolic point could only exist in a discrete space and not in a continuous space like an S­
manifold. A peculiar property of lines in an S-manifold, however, is that a line that passes through a 
hyperbolic vertex is isolated from lines that are nearby (see Figure 2a). This ability to isolate lines suggests 
that it may be possible to construct an S-manifold with a finitely hyperbolic point. 
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Clifford Singer 
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Abstract: Of the branches of mathematics, geometry has, from the earliest Hellenic period, been given 
a curiOZlS position that straddles empirical and exact scien;e. Its standing Os an empirical and 
approximate science stems from the practical ]1U1'SJlits of artistic drafting. land surveying and measuring 
in general. From the prominence of vi.sua/ applicatiom, such as figures and constructions in the 
twentieth century Einstein'.s General 1beory of RelotMty holds that the geometry of space-time is 
dependent upon physical quantities. On the other hanJ. earlier on in history, the.symmetry and perfect 
regularity of certain geometric figures were taken as representative of a higher order knowledge than 
that afforded by .sense experience. Concerns wi/hfigures and constructions, instead of with number.s and 
computaIions, rendered geometry amenable 10 ariomatic formulation and syllogistic deduction, 
establi.shing a paradigm of demonstrative visual and intuitive knowledge that has spanned tiro millennia. 

Ia geo:netry and as followed in geometrical art there remains a coonectioo that distinguishes 
between the Wlboundedness of spaces as a property of its extent, and special cases ofinfinite measure over 
whicb distanc:e would be taken is dependent upoo particular curvature of lines and spaces. The curwture 
of a surface could be defined in terms ooly of properties dependent solely OIl the sur&ce itself as being 
intrinsic. On the empirical side, Euclidean and non-Euclidean gec:metries particularly Riemann's 
approach efti:cted the IDlderstanding of the relatimsbip ~ geometry and space, in that it stated the 
questim wether space is curved or not. Gauss never published his revolutiooary ideas OIl noo-Euclidean 
geometry, and Bolyai and Lobacbevsky are usually aedited fer their independent discoveryofhypezbolic 
geometry. II)perboIic geometry is often called Lobachewkian geometry, perhaps because Lobu:bevsky's 
work went deeper than BoIyai's. However, in the decades that followed these discoveries Lobacbevsky's 
work met with rather vicious attacks. The decisive figure in the aCCqAalice of nClll-Eudidean geometry 
was Beltrami. In 1868, he discovered that ~ic geometry could be given a cmaete interpretation, 
via differential geometry. For most purposes, differential geometry is the study of curved surfaces by way 
of ideas from calculus. Geometries had thus pia)'ed a part in the emergence and articulation of relativity 
tbemy, espedaJIy differential geometry. WIthin the range of mathematical pl"q)erties these principles 
could be exp cssed. Philosophically, geometries stress the hypothetical nature ofaxiomatizing, 
cmtrasting a usual view of mathematical theories as true in some unclear sense. Steadily «m:r the last 
htmdred years the honor of visual reasming in mathematics has been dishonored. Although the great 
mathematicians have been oblivious to these fushions the geaneter in art has picked up the gauntlet m 
behalf of geometry. So, metageometry is intended to be in line with the hypothetical character of 
metaphysics. 

Geonletric axioms are neither synthetic a priori nor empirical They are more properly 
tmdcrstood as definitions. Thus when one set of axioms is preferred over another the se1ection is a matter 
of conventim. Poincare's philosophy of science Was fmned by his approach to mathematics which was 
broadly geometric. It is governed by the criteria of simplicity of expressim rather than by which geometry 
is ultimately corred.. A sIcetch of Kant's theory of knowledge that defined the existence ofmatbematical 
truths a central pillar to his philosophy. In particular, he rests support on the truths of Euclidean 



geometry. His inability to realize at that time the existence of any other geometry convinced him that it 
was the only one. Thereby, the truths demonstrated by Euclidean systems and the existence of a priori 
synthetic propositions were a guarantee. The dismvery of nOll-Euclidean geometry opened other variables 
for Kant's argwnents. That Euclidean geanetry is used to descnee the motion of bodies in space, it 
makes no sense to ask if physical space is really Euclidean. Discovery in mathematics is similar to the 
discovery in the physical sciences whereas the former is a coostruction of the human mind The latter 
must be considered as an order of nature that is independent of mind Newton became disenchanted with 
his original version of calculus and that of Leimiz and arOlDld 1680 had proceeded to develop a third 
version of calrulus based on geometry. This geometric calculus is the mathematical engine behind 
Newton's Principia. 

Conventionalism as geometrical and mathematical truths are created by our choices, not dictated 
by or imposed 011 us by scientific theory. The idea that geometrical truth is truth we aeate by the 
understanding of certain conventions in the discovery of nm-Euclidean geometries. Subsequent to this 
discovery, Euclidean geometries bad been considered as a paradigm of a prim knowledge. The further 
discovery of alternative systems of geometry arc consistent with making Euclidean geonetry seem 
dismissed without interfering with rationality. Whether we ublize the Eud.idean system or non-Euclidean 
system seems to be a matter of choice founded 00 pragmati~ oonsideratioos such as simplicity and 
cmvenience. 

The Euclidean, Lobachevsky-BoIyai-Gauss, and Reimannian geometries are united in the same 
space, by the SmoraniJache Geometries, 1969. These geanetries are, therefore partiaIJy Euclidean and 
partiaIJy Non-Euclidean. The geometries in their importauc.e unite and gcueralize all together and 
separate them as well. Hilbert's relations of incidence, betweenness, and CDlgruence are made clearer 
through the negations of Smarandache's Anti-Oeometry. Florentin Smarandache's geometries fall under 
the foIlowing categories: Paradoxist Geametry, Nm-Geondry, Counter-Projective Geometry, and Anti­
Geanetry. 

Science provides a ftuitful way of expi essing the rdatioosbips between types or setS of sensatioos, 
enabling reliable predic:tims to be offered. These sensations of sets of data ret1ect the world that causes 
them or causal determination; as a limited objectivity of science that deriws from thw filet, but science 
daes not suppose to determine the nature of that 1Blderlying WU'ld It is the underlying structure foond 
through geometry that has driven the world of geometa"s to artistic expressions. Geometrical art can 
through CDlventioos and choices which are determinable by rule may appear to be empirical, but are in 
met postulates that geometers ha~ chasen to select as implicit definitims. The choice to select a 
particular auve to represent a finite set ofpoints requires a judgment as to that which is simpler. There 
are theories which can be drawn that lead to postulate underlying entities 01" structures. These abstract 
entities 01" models may seem explanatory, but sIrictIy speaking arc no more than visual devices useful for 
caJodatioo. 

Abstract entities, are SCDletimes collected mder universal categmies, that include mathematical 
objects, such as numbers, sets, and geometrical figures, propositions, and relations. Abstracta, are stated 
to be abstracted frmn particulars. The abstract square or triangle have oo1y the properties commm to all 
squares or triangles, and none peculiar to any particular scptte 01" triangle; that they have not particular 
color, size, or specific type whereby they may be used for an artistic purpose. Abstracta are admitted to an 
ontology by Quine's criterion if they must exist in order to make the mechanics of the structure to be real 
and true. Properties and relations may be needed to account tor resemblance among particulars, such as 
the blueness shared amongst all blue things. 

Conaete intuition and Wlderstanding is a major role in the appreciation of geometry as 
intersections both in art and science. This bares great value not only to the participating geometer artists 
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but to the scholars for their research. In the presentation of geometry, we can bridge visual intuitive 
aspects with visual imaginatioo. In this statement, I have outlined for geanetry and art without strict 
definitims of concepts or with any actual computations. Thus, the presentatioo of geanetry as a 
brushstroke to approach visual intuition should give a much broader range of appreciation to mathematics. 

Clifford Singer, 200 I @) 

References 

David Papineau (editor), (1999), 17re Philosophy of Science, Oxford Readings in Philosophy. 

Morris Kline, (1953), Mathematics In Western Culture, Oxford University Press. 

D. Hilbert and S. Cohn-Vossen, (1952), Geometry And 1he Imagination, AMS Chelsea Publishing. 

F. Smarandache, Collected Papers, Vol. II, Kisbinev University Press, IGshinev, 1997. 

15 



On Smarandache's Podaire Theorem 

J. Sandor 

Babe§-Bolyai University, 3400 Cluj, Romania 

Let A', B', C' be the feet of the altitudes of an acute-angled triangle ABC 

(A' E BC, B' E AC, C' E AB). Let a',b',b' denote the sides of the podaire triangle 

A' B' C'. Smaranda.che's Podaire theorem [2] (see [1]) sta.tes tha.t 

La'b' < ~ L a2 (1) 

where a, b, c are the sides of the triangle ABC. Our aim is to improve (1) in the following 

form: 

(2) 

First we need the following a.uxiliary proposition. 

Lemma. Let p and p' denote the semi-perimeters of triangles ABC and A' B'C', re­

spectively. Then 

(3) 

Proof. Since AC' = beosA, AB' = ccosA, we get 

C' B' = ABIZ + ACIZ - 2AB' . AC' . cos A = a2 cos2 A, 

so C' B' = a cos A. Similarly on~ obtains 

A'C' = beosB, A'B' = ceosC. 

Therefore 

pi = ~ LA' B' = ~ L a cos A = ~ L sin 2.4 = 2R sin A sin B sin C 
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(where R is the radius of the circumcircle). By a = 2R sin A, etc. one has 

, II a S 
p =2R 2R = R' 

where S = area(ABG). By p = S (r = radius of the incircle) we obtain 
r 

, r 
p = R!' 

Now, Euler's inequality 2r :5 R gives relation (3). 

For the proof of (2) we shall apply the standard algebraic inequalities 

Now, the proof of (2) runs as follows: 

(4) 

Remark. Other propertieS of the podaire triangle are included in a recent paper of 

the author ([4]), as well as in his monograph [3]. 

References 

[1] F. Smarandache, ProbU::mes avec et sans problemes, Ed. Sompress, Fes, Marocco, 

1983. 

[2] www.ga1lup.unm.edu/..-.SIIlarandacbe 

[3] J. Sandor, Geometric inequalities (Hungarian), Ed. Dacia, Cluj, 1988. 

[4] J. Sandor, Relations between the elements of a triangle and its podaire triangle, Mat. 

Lapok 9/2000, pp.321-323. 

17 



On a dual of the Pseudo-Smarandache function 

Jozsef Sandor 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

1 Introduction 

In paper [3] we have defined certain generalizations and extensions of the Smaran­

dache function. Let f : N* -+ N* be an arithmetic function with the following property: 

for each n E N* there exists at least a k E N* such that nlf(k). Let 

FJ : N* -+ N* defined by FJ(n) = min{k E N*: nlf(k)}. (1) 

This function generalizes many particular functions. For f( k) = k! one gets the 

Smarandache function, while for f(k) = k(k: 1) one has the Pseudo-Smarandache func­

tion Z (see [1], [4-5]). In the above paper [3] we have defined also dual arithmetic functions 

as follows: Let 9 : N* -+ N* be a function having the property that for each n 2:: 1 there 

exists at least a k 2:: 1 such that g(k)ln. 

Let 

Gin) = max{k E N*: g(k)ln}. (2) 

For g(k) = k! we obtain a dual of the Smarandache function. This particular function, 

denoted by us as S* has been studied in the above paper. By putting g(k) = k(k: 1) 

one obtains a dual of the Pseudo-Smarandache function. Let us denote this function, 

by analogy by Z •. Our aim is to study certain elementary properties of this arithmetic 

function. 
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2 The dual of yhe Pseudo-Smarandache function 

Let 

Recall that 

First remark that 

. { k(k + I)} Z( n) = mm k E N*: nl 2 . 

{ 

2, p = 3 
Z.(I) = 1 and Z.(p) = 

1, Pi: 3 

(3) 

(4) 

(5) 

h . b· . Id __ .J 2 . 3 13b m(m+l)l£ ....t. were P IS an ar Itrary prIme. n =-u, 2 = 3 ut 2 P or P T 3 is possible 

only for m = L More generally, let s ~ 1 be an integer, and p a prime. Then: 

Proposition 1. 

Z.(p3) = { 2, P = 3 
1, P# 3 

(6) 

Proof. Let me"; + 1) lp3. If m = 2M then k!(2At[ + 1)lp3 is i~possible for M > 1 

since M and 2k! + 1 are relatively prime. For M = 1. one has m = 2 and 31p3 only if 

p = 3. For m = 2M -1 we get (2.M -1)Mjpk, where for At! > 1 we have (M, 2kf -1) = 1 

as ahove, while for k! = 1 we have m = l. 
The function Z. can take large values too, since remark that for e.g. n = O(mod6) we 

have 3 ~ 4 
= 61n, so Z.( n) ~ 3. More generally, let a be a given positive integer and n 

selected such that n == O(moda(2a + 1». Then 

Z.(n) ~ 2a. 

Indeed, 2a(2~ + 1) = a(2a + 1)ln implies Z.(n) ~ 2a.' 

A similar situation is in 

Proposition 2. Let q be a prime such that p = 2q - 1 is a prime, too. Then 

Z.(pq) = p. 
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PCP + 1) Proof. 2 = pq so dearly Z.(pq) = p. 

Remark. Examples are Z.(5·3) = 5, Z.(13· 7) = 13, etc. It is a difficult open problem 
that for infinitely many q, the number p is prime, too (see e.g. [2]). 

Proposition 3. For all n ~ lone has 

1 ~ Z.(n) ~ Zen). (9) , 
. . m(m+1) k(k+1) Proof.By(3)and(4)w~canwrlte 2 Inl 2 ,thereforem(m+1)lk(k+1). 

If m > k then dearly m(m + 1) > k(k + 1), a. contradiction. 

Corollary. One has the following limits: 

lim Z.(n) = 0, lim Z.(n).= 1 
n~ Zen) n-+<lO Zen) . (10) 

Proof. Put n = p (prime) in the first relation. The first result follows by (6) for s = 1 

( ) a(a+1) - Z.(n) and the well-known fact that Z p = p. Then put n = 2 ,wh~n Zen) = 1 and let 
a --t 00. 

As we have seen, 

Z ( a( a; 1») = Z. (a( a: 1») = a. 

a (4 + 1) I k( k + 1) . . Indeed, 2 2 IS true for k = a and IS not true for any k < 4. In the same 
manner, me"; + 1) I a(a; 1) is valied for m = a but not for any m > a. The following 
problem arises: Wha.t are the solutions of the equation Zen) = Z.(n)? 

Proposition 4. All solutions of equation Zen) = Z.(n) can be written in the form 
n = r( r + 1) (r E N*). . 

2 
t(t+l) t(t+1) .. Proof. Let Z.(n) = Zen) = t. Then n/ 2 In so 2 = n. ThIS gIVes t 2 + t -

2n = 0 or (2t + 1)2 = 8n + 1, implying t = v8n ~ 1 -1, where 8n + 1 = m 2 • Here m 
(m -l)(m + 1) m-1 must be odd, let m = 2r + 1, so n = 8 and t = -2-' Then m - 1 = 2r, 

r(r + 1) m + 1 = 2( r + 1) and n = 2 . 

Proposition 5. One has the following limits: 

lim y'Z.(n) = lim y'Z(n) = 1. n-+oo n-+oo (ll) 
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Proof. It is known that Zen) :5 2n - 1 with equality only for n = 2k (see e.g. [.5]). 

Therefore, from (9) we have 

1 :5 y'Z*(n) :5 y'Z(n) :5 V'2n -1", 

and by taking n -7 00 since V'2n - 1 -7 1, the above simple result follows. 

As we have seen in (9), upper bounds for Zen) give also upper bounds for Z.(n). E.g. 

for n = odd, since Zen) :5 n -1, we get also Z.(n) :5 n -1. However, this upper bound 

is too large. The optimal one is given by: 

Proposition 6. 
. yfSn + 1-1 

Z*(n) :5 2 for all n. (12) 

Proof. The definition (3) implies with Z .. ( n) = m that m( n; + 1) In, so m( n; + 1) :5 n, 

i.e. m 2 + m - 2n :5 O. Resolving this inequality in the unknown m, easily follows (12). 

Inequality (12) cannot be improved since for n = P(P: 1) (thus for infinitely many n) 

we have t>quality. Indeed, 

(VS(P; l)p + 1-1) /2 = (y'4p{p +1)+ 1-1) /2 = [(2p+ 1) -lJ/2 = p. 

Corollary. 

lim Z.(n) = 0, 
n~ Vn 

(13) 

Proof. While the first Iimit is trivial (e.g. for n = prime), the second one is a 

consequence of (12). Indeed, (12) implies Z.(n)/.,fii :S ../'i (VI + 8~ -If), i.e. 

-Ii Z.(n) In B h' Ii . . r p(p+ 1) ( ) m r.:::5 v 2. ut t IS upper mIt IS exact lor n = 2 p -+ 00 . 
n~ yn 

Similar and other relations on the functions Sand Z can be found in [4-5}. 

An inequality connecting S .. (ab) with S .. (a) and S .. (b) appears in [3]. A similar result 

holds for the functions Z and Z •. 

Proposition 7. For all a, b 2:: lone has 

Z.(ab) 2:: max{Z .. (a) , Z.(b)}, (14) 
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Z(ab) ~ ma.x{Z(a), Z(b)} ~ max{Z.(a), Z.(b)}. (15) 
m(m+ 1). . m(m + 1) Proof. If m = Z.(a), then 2 lao Smce alab for all b ~ 1, clearly 2 lab, 

implying Z.(ab) ~ m = Z.(a). In the same manner, Z.(ab) ~. Z.(b), giving (14). 
Let now k = Z(ab). Then, by (4) we can write ab,k(k: 1). By alab it results 

a/k(k: 1), implying Z(a) :5 k = Z(ab). Analogously, Z(b):5 Z(ab), which via. (9) gives 
(15). ' 

Corollary. Z.(3S 
• p) ~ 2 for any integer s ~ 1 and any prime p. (16) 

Indeed, by (14), Z.(3S 
• p) ~ niax{Z.(3S

), Z(p)} = max{2, I} = 2, by (6). 
We now consider two irrational series. 

P . . Th . ~ Z.(n) d ~ (_I)n:-1Z.(n) . . at ropositlOn 8. e senes L.J -,- an L.J , are lrratJOn . 
n=1 n. =1 n. 

Proof. For the first series we apply the following irrationality criterion ([6]). Let (un) 
be a. sequence of nonnegative integers such that 

(i) Vn < n for all large nj 

(ii) Vn < n - 1 for infinitely many n; 

(iii) Un > 0 for infinitely many n. 
00 

Th ~ Un.. t' al en L.J ,. IS lrra Ion • n. 
==1 

.-' J8n + 1-1 Let Un = Z.(n). Then, by (12) Z.(n) < n - 1 follows from 2 < n - 1, 
i.e. (after some elementary fact, which we omit here) n > 3. Since Z.(n) ~ 1, conditions 
(i)- (iii) are tri vi ally satisfied. 

For the SE'Cond series we will apply a criterion from [7]: 

Let (ak), (bk ) be sequences of positive integers such that 

(i) k/ala2'" ak; 

(ii) bk
+! < bk < ak (k 2: ko). Then f( _1)k-l bk is irrational. ak+! k=1 al a2 ••• ak 

Let ak = k, bk = Z.(k). Then (i) is trivial, while (ii) is Z.~k + 1) < Z .. (k) < k. . +1 
Here Z.(k) < k for k 2: 2. Further Z.(k + 1) < (k + l)Z.(k) follows by 1 :s; Z .. (k) and 
Z. (k + 1) < k + 1. 
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A NEW EQUATION FOR THE LOAD BALANCE SCHEDULING 

BASED ON THE SMARANDACHE F-INFERIOR PART FUNCTION 

Tatiana Tabirca* Sabin Tabirca** 
• University of Manchester, Department of Computer Science 
•• Universiry College Cod:, Department of Computer Science 

Abstract. This article represerts an extension of [rabirca, 2000aJ. A new 

equation for upper bOlDlds is obtained based on the Smarandache f-inferior part 

function. An example involving tpper diagonal matrices is given in order to 

illustrate that the new equation provide a better computation. 

1.INTRODUcrION 

Loop imbalance is the most important overhead in many parallel applications. Because loop 

structures represents the main source of parallelism, the scheduling of parallel loop iterations 

to processors can detennine its decreasing. Among the many method for loop scheduling, the 

load balance scheduling is a recent one and was proposed by Bull [1998] and developed by 

Freeman et.al. [1999,2000]. Tabirca [2000] studied this method and proposed an equation 

for the case when the work is distrIbuted to all the processors. 

Consider that there are p processors denoted in the following by Ph P2, ••• , Pp and a single 

parallel loop (see Figure 1.). 

do parallel i= l,n 
call1oop_body(i); 

end do 

Figure 1. Single Parallel Loop 

We also assume that the work of the routine loop_body(i) can be evaluated and is given by 

the function w: N -7 R, where w(i)= Wi represents the nwnber of routine's operations or 

its running time (asswne that w(O)=O). The total amount of work for the parallel loop is 

" L w(i). The efficient loop-scheduling algorithm distributes equally this total amount of 
;=1 
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work on processors sueh that a processor receives a quantity of work equal to ~. t w(i). 
P i=1 

Let I j and h j be the lower and upper bounds, j = 1,2, ... , P , such that processor j executes all 

the iterations between Ijand hj . These bounds are found distributing equally the work on 

processors by using 

hj 1" L w(i) =_. Lw(i) ('Vj= 1,2, ... ,p). 
;=IJ P ;=1 

(1) 

Moreover, they satisfy the following equations 

11 =1. (2.a) 

if we know I j , then hJ is given by tw(i) =~. I,w(i)= w .. (2.b) 
. i..Jj P i=1 

I j +1 =hj + 1. (2.e) 

Suppose that Equation (2b) is computed by a less approximation. This means that if we have 

the value I j' then we find h j as follows: 

II _ '+1 

h j =h <=> Lw(i)~W < Lw(i) . (3) 
/=IJ i=lj 

The Smarandache f-inferior part fimetion represents a generalisation of the inferior part 

function [,]: R --7 Z , [x] = k ~ k ~ x < k + 1. If [: Z --7 R is a strict increasing function 

that satisfies lim [(n)=~ and lim[(n)=oo, then the SmarandacheJ-inferior part 
_--t- II-+-

function denoted by fr.1 : R --7 Z is defined by [see www.gallup.unm.edu/-smarandaehe] 

[n(x)=k ~ [(k)~x<f(k+ 1). (4) 

Tabirca [2000a] presented some Smarandaehe f-inferior part functions for whieh 

l 

f(k) = LiD. They are presented in the follo~ng: 
;=1 

l 

[(k) = Li2 ~ iii (x) = [r(x)]'Vx ~O. 
i=1 

1 3·x where r(X)= __ +3_-
2 2 
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(
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Tabirca [2000] also proposed an equation for the upper bounds of the load balance scheduling 

method based on the Smarandache f-inferior part function. If the work w satisfies certain 

conditions [fabirca. 2000], then the upper bounds are given by 

h(l) -j, (, .W) '-1" j - uV J- ......... p. (7) 

Moreover, Tabirca [2000a] applied this method to the product between an upper diagonal 

matrix and a vector. It was proved that the load balance scheduling method offers the lowest 

running time in comparison with other static scheduling methods n:abirca, 2000b]. 

2. A NEW EQUATION FOR THE UPPER BOUNDS 

In this section, a new equation for the upper bounds is introduced. Some theoretical 

considerations about the new equation and Equation (7) are also made. Consider that 

Ir 

I; N ~ R is defined by I(k) = L, Wi' 1(0) = O. For the work w. we asswne the 

following [Tabirca, 2000]: 

. 1· 
AI: Wj ~-. L,wp j=I,2, ... ,n. 

p i=1 

i=1 

A2: There are equations for the fimctions I, In . 

Theorem I. The upper bounds of the load balance scheduling methcd are given by 

hy) =In(r(hj~)+W)j=I,2, ... ,p. (8) 

Proof. For easiness we denote in the following h.i = h;2) • Equation (3) gives the upper 

bounds of the load balance scheduling method. We start 

~ 
and add I( h j_l) = L Wi to all the sides 

;=1 

II II +1 f w(i) ~/(hj_1)+W < fw(i) . 
i=1 i=1 

Based on the definition of In' we find that h j = In V(h j_l) + w). 

The following theorem illustrates how these bounds are. 

Theorem 2. hy) ~ h;ll,j = 1,2, ... ,p. 

Proof. Recall that these two upper bounds satisfy 
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(9.a) 



(9.b) 

All the sums from Equation (9.b.) are added finding 

• ~ it.':.l i .L w. ~ j. W ~ 1: Wi ~ j. w . 
i=1 It=!}" i=1 

Because h;ll is the last index satisfying Equation (9.a) we find that hyl ~ h;ll holds. • 

C • f(h(2l) <f(h(1l)< ··W '-12 onsequence. j _. j -J ,j - , , ... ,p. 

This consequence obviously comes from the monotony off and the definition of the bounds. 

Now, we have two equations for the upper bounds of the load balance scheduling method. 

Equation (8) was obtained naturally by starting from the definition of the load balance. It 

reflects that case when several load balances are performed consecutively. Equation (7) was 

found by considering the last partial sum that is under j. W . This option does not consider 

any load balance such that we expect it to be not quit efficient Moreover, it is difficuh to 

predict which equation is the best or is better to use it of a given compu1ation. The best 

practical advice is to apply both of them and to choose the one, which gives the lowest times. 

3. COMPUTATIONAL RESULTS 

In this section we present an example for the load balance scheduling method. This example 

deals with the product between an upper diagonal matrix and a vector [Jaja, 1992]. All the 

computations have been perfonned on SGI Power Challenge 2000 parallel machine with 16 

processors. The dimension of the matrix was n=300. 

00 PARALLEL i=l,n 

Yi =ai.1 ,xI 

OOj=2,i 

Yi = Yi +a;.i ,xi 
END DO 

END DO 

Figure 2. Parallel Computation for the Upper Matrix - Vector Product. 

Recall that a = (a;,i\i=!;. E M ,,(R) is upper diagonal if ai,j = O,i < j. The product 

Y = a . x between an upper diagonal matrix a = (a i J-) _ ---I EM. (R) and a vector 
~ J,J-" 

XE R" is given by 

Yi = ±a;.j . Xj Vi =1,2, ... n. 
j=1 

(10) 
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The parallel computation of Equation (lO) is shown in Figure 2. 

The work: of iteration i is given by w(i) =i,i = 1,2, ... ,n. We have that the total work is 

f(n) = Ii = n· (n + 1) and W n· (n + 1). The Smarandache f-inferior function is 
;=1 2 2·p 

f(](X)=[ -1+.J~+8.x ]'v'X~O. Therefore, the upper bounds of the load balance 

scheduling method are given by 

[ 

1 ~1 4 . n.(n+I)] - + +. }" -'-----'-
(1)_ p._ 

h) - 2 ,J -l,2, ... ,p or (11) 

[

_L+ 1+4·h(2) . (h(2) +1)+4· n.(n+l)j 
)-4 )-1 

h(2) - p '-1,2 
J

o - ,J - •... ,p. 2 ° 

(12) 

The running times for these two types of upper bounds are presented in Table 1. Figure 3 

proves that these two types of bounds for the load balance scheduling are comparable the 

same. 

p=! P=2 P=3 P=6 P=8 

h~l) 1.847 1.347 0.987 0.750 0.482 
J 

h~2) 1.842 1.258 0.832 0.639 0.412 
J 

Table 1. Times of the computation. 

4. FINAL CONCLUSSION 

An important remark that can be outlined is the Smarandache inferior part function was 

applied successfully to solve an important scheduling problem. Based on it. two equations for 

the upper bounds of the load balance scheduling methods have been found. These equations 

have been used to solve the product between an upper diagonal matrix and vector and the 

computational times were quite similar. The upper bounds given by the new equation have 

provided a better computation for this problem. 
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Figure 3. Graphics of the Running Times. 
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SOME NEW RESULTS CONCERNING THE SMARANDACHE CEIL 

FUNCTION 

Sabin Tabirca* Tatiana Tabirca** 
·University College Cork, Computer Science Depar1ment 
·Univ=ity of Manchester, Computer Science Department 

Abstract: In this article we present two new results concerning the Smarandache Ceil 

function. The first result proposes an equation for the romber of fixed-point romber of 

the Smarandache ceil function. Based on this result we prove that the average of the 

Smarandache ceil function is 0( n ) . 

I. INTRODUCTION 

In this section we review briefly the main results that are used in this article. These concern the 

Smarandache ceil and functions. The Smarandache ceil fimction of order k [see 

www.gallup.unm.edul-smarandache] is denoted by Sk: N*~ N and has the following 

definition 

(1) 

This was introduced by Smarandache [1993] who proposed many open problems concerning it. 

Ibstedt [1997, 1999] studied this function both theoretically and computationally. The main 

properties proposed in [Ibstedt, 1997] are presented in the following 

(Va,b E N*)(a,b) = l=>Sk(a ·b) =S/c(a) ·SIc(b), (2.a) 

·Sk(p~l · ... ·p;,)=S(p~I)· ... ·S(p;,)} and (2.b) 

(2.b) 

Therefore, if n = p71 
••••• p;' is the prime nmnber decomposition of n, then the equation of this 

fimction is given by 

(3) 

Based on these properties, lbstedt proposed the following results 
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n=PI ·····Ps ~S2(n)=n. 

Table 1 shows the values of the Smarandache ceil function of order 2 for n<25. 

n S2(n) N S2(n) N S2(n) 

1 1 6 6 11 11 

2 2 7 7 12 6 

3 3 8 4 13 13 

4 2 9 3 14 14 

5 5 10 10 15 15 

Table 1. The Smarandache ceil function. 

The Mobius function p: N ---+ Z is defined as follows 

p(l) = 1 

pen) = (-1)" if n= PI ..... Ps 

p( n) = 0 otherwise. 

N S2(n) 

16 4 

17 17 

18 6 

19 19 

20 10 

n 

21 

22 

23 

24 

25 

(4) 

(5) 

S2(n) 

21 

22 

23 

12 

5 

(6.a) 

(6.b) 

(6.c) 

This is an important function both in Number Theory and Combinatorics because gives two 

inversion equations. The first Mobius inversion formula [Chandrasekharan, 1970] is 

g(n)= I.f(d)~ f(n) = LP(d). g(~) 
dill djn d 

(7. a) 

while the second Mobius formula is 

(7.b) 

There are several equations concerning series involving the Mobius function [Apostol, 1976]. 

Among them an important series is 

"" p(n) =~ 
L... 2 2 
n>O n 1l 

(8.a) 

that has the following asymptotic form 

L p(~) =-;+O(l). 
0<11:>:< n 1l x 

(S.b) 

2. THE ASYMPTOTIC DENSITY OF FIXED POINTS 
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In this section we present an equation for the asymptotic density of the fimction Sk'S fixed 

points. The main result presented can also be found in [Keng, 1981] but we give it a detailed 

proof We start by remarking that the fimction S2 has quit many points. For example, there are 

16 fixed points for the first 25 numbers. 

Let q(x) be the number of the fixed points less than x: q(x) =# {n ~ x: S k(n) = n} . We say that 

the ftxed points have the asymptotic density eq~ to a if lim q( x) = a . 
x""'" x 

Ibstedt [1997] found that if n is a square free number then it is a fixed point for S2. Actually, the 

result holds for any Smarandache ceil fimction. 

Propositionl. n=Pl ·····Ps ~Sk(n)=n. 

Proof Let n = p~1 ..... P:' be the prime number decomPosition of n. The following equivalence 

gives the proof: 

Therefore, n is a square free number. 

Proposition 2. (\7' n E NX3! d In)-';-issquare free. 
d 

• 

(9) 

Proof. Firstly, we prove that there is such as divisor. If n = p~1 ..... p;' the prime number 

decomposition, then d = ) ~ J ..... p~ '; J satisfies -;- is square free. Actually. -; is the 
d d 

product of all prime numbers that have odd power in the prime number decomposition of n. Now, 

n n 
we prove that d is unique. Assume that there are distinct divisors such that -2 ' 2 are square 

d J d2 

free. We can write this as follows n = d]2 • p] ..... P s = di . q] ..... q r. Let P be a prime number 

that does not appear in the both sites Pl' ... 'Ps and q\, ... ,q, (choose that it is in the first). p 
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should also appear in the prime number decomposition of d; . Therefore, we find that the power 

of p is even for the right hand side and odd for the left hand side. • 

. . ' lJX j 2 . X " 
Proposition 3. {O < n ~ x} = U d . {I ~ -2 : lIS square free}. 

d=l d 
(10) 

Proof. It is enough to prove this equation just for natural nwnber. Consider n> I a natural nmnber. 

Equation (10) becomes 

_l$.j 2 •. < n ." 
{I,2, ... , n} - U d {I - -2 . lIS square free} . 

d=l d 
(11) 

lrnj n 
The inclusion {I,2, ... , n}~ U d 2 

• {i ~ -2 : i is square free} is obviously true. A number i ~ n 
d=l d 

can be written uniquely as i = d 2 
• d1 where d:::; l.Ji J:::; L rn J and d1 is square free. We find 

that it belongs to d 2 
• {i ~ -;-: i is square free}, thus Equation (10) holds. 

d 

Consequence: Taking the number of elements in Equation (lO) we find 

LxJ~ ~Jq(~ }I nO. 
Based on this result and on Equations (7-8) the following theorem is found. 

. 6 r 
Theorem 4. [Keng] q( x) = -2 . X + O( "V x ) 

1! 

• 

(12) 

(13) 

Proot For x~ y', Equation (12) gives [y' J~ ~{(n') . Tho second Mob;us mv"';on 

formula gives 

[yJ ly2J q(y2) = ~ p(i). j2 . (14) 

Equation (14) is transformed based on Equation (8.b) as follows 

2 ILyJ p(i) 6 2 2 1 . 6 2 =y. -+O(Y)=-'y +y ·O(-)+O(y)=-·y +O(y). 
·2 2 2 

i=1 1 1! Y 1! 

Equation (13) is obtained from the last one by substituting x = y2 . • 
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. q(x) 6 
Consequence: hm--=-2. 

.:r-+«> X K 
(15) 

Equation (15) gives that the asymptotic density for the fixed points of the Smarandache ceil 

function is -;-. Because 6
2 

=O.60792i .. , we find that more than 60% of points are fixed 
1l K 

points. Equation (IS) also produces an algorithm for approximating J! that is described in the 

following. 

Step 1. Find the number offixed points for the Smarandache ceil function S2. 

,fPxi. x 
Step 2. Find the approximation of J! by using 7r ~ ( • 

q x) 

. 3. THE AVERAGE OF TIlE SMARANDACHE CEIL FUNCTION 

In this section we study the 0 complexity of the average of the Smarandache ceil function. Let 

" 
ISk(i) 

S k (n ) = I~I be the average of the Smarandache ceil function. Recall that 
n 

Theorem 5. The 0 -complexity of the average S k (n) is given by 

S,,(n)=EXn). (16) 

Proof. This result is obtained from Equation (15). One inequality is obviously obtained as 

n n 

IS" (i) Ii 
.t".ll "Q() H i-I n+l 10 ows .)" n = - <---=--. 

n n 2 

. q(x) 6 1 x 
Because hm--= -2 > -, we find that q( x) > -. \;;Ix > xo. Therefore, there are at least 50% 

.:r-+«>x 1l 2 2 

fixed points. Consider that iI = 1, i2 = 2 •...• iq(n) are the fixed points less than n for the 

Smarandache ceil function. These obviously satisfy i) ?:. j, j = 1,2, ... , q( n) . 

Now, we keep in the average only the fixed points 
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n q(1/) 

:LSk(i) :LSk(i) 
Sk(n)= ;=1 ~ ..::..j=_I __ 

n n 

q(n) q(n) 

2: i
j :L1 

j=[ j=[ q(n)· (q(n) + 1) -- > --. = ...!.....:..-"-....:..!....:.-.;.-.-:.... 

n - n 2'n 

n n 
n - 2'(2+ 1) n 1 

Because q(n) >-, we find that Sk(n) ~ =-+- for each n > xO' 
2 2'n 8 4 

Therefore, the average function satisfies 

n 1 - n 1 
8+4:::;; Seen):::;; 2 +2Vn >xo (16) 

that gives the E> -complexity is Sk (n) = EX n) . • 

This E>-complexity complexity gives that the average of the Smarandache ceil function is linear. 

Unfortunately, we have not been able to find more details about the average function behavior. 

What is ideally to fmd is C E ( -i ' i) such that 

Sk(n)= c· n + O(nl-I:). (17) 

n 

- :LSk(i) 
From Equation (17) we find the constant C is C = lim Sk(n) = lim ;=1 2 • 

n->«> n Jf->OO n 

Example. For the Smarandache ceil function S2 we have found by using a simple 

t S
2(i) [I S

2(i) 1 
computation that ;=1 n

2 
~ 0.3654 ... and ..In. ;=[ n

2 
- 0.3654 ::::: 0.038 ... , which 

give the S2(n) ~ 0.3654· n +0.038·..Jn 

This example makes us to believe that the following conjecture holds. 

, (1 1) - l-.!. 
Conjecture: There is a constant C E "8'"2 such that S k (n) = C . n + O(n k). (18) 
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4. CONCLUSSIONS 

This article has presented two important results concerning the Smarandache ceil 

function. We firstly have established that the asymptotic density of fixed points is -;.. 
7r 

Based on this we have found the average function of the Smarandache ceil function 

behaves linearly. Based on a simple computation the following Equation (18) has been 

conjectured. 
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BOUNDING THE SMARANDACHE FUNCTION 

MARK FARRIS AND PATRICK MITCHELL 

Midwestern State University 
Department of Mathematics 

Let S (n), for n E N+ denote the Smarandache function, then S (n) is defined as the 

smallest m E N+, with nlm!. From the definition one can easily deduce that if n = 

prlp~2 .. . p~k is the canonical prime factorization of n, then Sen) = max{S(pfi)}, where 

the maximum is taken over the i's from 1 to k. This observation illustrates the importance 

of being able to calculate the Smarandache function for prime powers. This paper will be 

considering that process. We will give an upper and lower bound for S(pQ) in Theorem 

1.4. A recursive procedure of calculating S(pQ) is then given in Proposition 1.8. Before 

preceeding we offer these trivial observations: 

Observation 1. Jfp is prime, then S(P) = p. 

Observation 2. Ifp is prime, then S(Pk) ~ kp. 

Observation 3. p divides S(pk) 

Observation 4. If p is prime and k < p, then S(;f) = kp. 

To see that observation 4 holds, one need only consider the sequence 

2,3,4 ... ,p -1,p,p+ 1, ... , 2p,2p+ 1, ... ,3p, ... , kp 

and count the elements which have a factor of p. 

Define Tp(n) = L~l[~J, where [.J represents the greatest integer function. The func­

tion Tp counts the number of powers of pin n!. To relate Tp(n) and Sen) note that SCpO<) 

is the smallest n such that Tp(n) 2:: a. In other words SCpO<) is characterized by 

(*) Tp(S(pO<» 2:: a and Tp(S(PIl:) - 1) ~ a - 1. 
1 
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Lemma 1.0. Forn ~ 1, Tp(n) < ~l 

Corollary 1.1. (p - l)a < Scpo:) ::; pa 

Recall this basic fact about the p-adic representation of a number n. Given n, p E Z and 

p ~ 2, n ~ 0, we can uniquely represent n = Lfr"O aj(n)pi, where each aj E {O, 1, 2, ... ,p-

I}. 

Lemma 1.2. Tp(n) = P~l (n - L;:o aj(n» 

Proof· 

Tp(n) = f[;] = f[L~Oaj(n)piJ 
k=l k=l pk 

= f Lfr"k aj(n)pi = f f aj(n)pi-k 
k=l pk k=1 j=k 

00 j 00 j 

= E L aj(n)pi-k = L aj(n) Epi-k 
j=lk=l j=l k=l 

00 k . 1 CXl 

= E ak(n) Lpk-1 = -=1 L ak(n)(pk - 1) 
k=l j=l P k=l 

1 00 

= -=1 L(ak(n)pk - ak(n» 
p k=l 

1 00 

= p_1 (n- Lak(n» 0 
k=O 

Lemma 1.3. If n ~ 1 then 

00 

1::; L aj(n) ::; (p - 1)[[logp(n)] + I]. 
j=O 

Proof. For each aj we have aj ::; p - 1. Note that in the p-adic expansion of n, aj(n) = 0 

for all j > [logp(n)}. Thus we have 1 ::; L;:o aj(n) ~ (p - l)([logp(n)] + 1). 
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Now using the characterization * and Lemma 1.2, we get the following 
00 

ScpO<) - L aAS(pct)) ~ (p - l)a and 
j=O 

00 

(**) ScpO<) - 1 - L aj(S(pct) - 1) ::; (a - 1)(P - 1). 
j=O 

Applying Lemma 1.3 to the first inequality for S(pct), yields a lower bound of 

This lower bound cannot be improved since we obtain equality when a = p + 1, in fact 

we achieve equality whenever a = pt + pt-l + ... + p + 1 for t ~ 1. Now S(pct) is clearly 

integer valued, so one may choose to write the lower bound as S(pct) > (p - l)a. 

From the latter inequality (**), we get the following. 
00 

ScpO<) ::; (p -l)(a -1) + 1 + :L aj(S(pO<) - 1) 
j=O 

::; (p - l)(a - 1) + 1 + (p - l)([logp(S(pct) - 1)] + 1) 

= (p - l)(a -1) + 1 + (p - l)[lo~(S(pO<) -1)] + (p - 1) 

= a(p -1) + (p - I)Vogp (S(pa) -1)] + 1 

::; a(p -1) + (p - 1)[lo~(pa - 1)] + 1 

::; a(p - 1) + (p - l)~ogp(pa)l + 1 

= a(p - 1) + (p - l)[lo~(a) + 1] + 1 

= a(p -1) + (p - l)[lo~(a)] + (p - 1) + 1 

= (p -l)[a + 1 + logp(a)] + 1 

Theorem 1.4. For any prime p and any integer a, we have 

(p - l)a + 1::; ScpO<) ::; (p - l)[a + 1 + logp(a)] + 1. 

We now consider the sharpness of this upper bound. Note that when a = pk - k the 

upper bound yields the value (p - l)pk + 1. As it turns out S(pPk-k) is one less than this 

yield. 
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Proof. Consider 
(Xl k+1 k 

Tp(pk+l - pk) = L:[p pl- p ] 
l=1 

= (pk _ pk-l) + (pk-l _ pk-2) + ... + (p2 _ p) + (p _ 1) = pk _ 1 

and 

(Xl k+1 pk 1 
Tp(pk+1 - pk -1) = L:[p -, - ] 

1=1 P 

= [pk _ pk-l _~] + [pk-1 _ pk-2 _~] + ... + [1- ~ __ 1_] 
p r p pk+l 

= (pk _ pk-l _ 1) + (pk-1 _ pk-2 _ 1) + ... + (p -1- 1) + 0 

= pk _ (k + 1). 

Thus we have produced infinitely many values that are within one of the upper bound. 

If we recall Observation 3, the upper bound should be congruent to 0 mod p. So one could 

subtract the remainder of the upper bound when dividing by p from the upper bound and 

make it sharp. We shall omit that task in this paper. 

We now turn our attention to answering the question when is S(pOl) = pfl. Consider the 

following calculations, verification is left for the reader. 

Tp(pP+l) = pP + pP-l + _. -+ p+ 1 

Tp(pP+1 - 1) = pP + pP-l + ... + p - {3 

Tp(rf3) = pP-l + [13-2 + ... + p + 1 

Tp(rf3 - 1) = pP-l + [13-2 +". + p + 1 - f3 

Thus we have S(pQ) = pf3+l if pfl +pfl-1 +". +p+ 1- f3 ~ a ~ pi' + pfl-l + -" +p+ 1. If 

pfl-l+pfl-2+ __ '+p+1 ~ a < pf3+pfl-1+" ,+p+1-{3, then we havepi' ~ S(pOl) < pP+l, 

We now offer a recursive procedure for calculating S(pQ), The following is a technical 

lemma that will be used in proving the recursion formula, 
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Lemma 1.6. Suppose we have pf3 ~ r < pf3+1, for some [3 2: 0, then 

Proof· 

Lemma 1.7. Ifpf3-1 + pP-2 + ... + p + 1 ~ a < pP + pP-l + ... + p + 1, then S(pC<) = 

pf3 + S(pc<-(pJ3-1+~-2+ .. +p+1)). 

Proof. Case 1: Assume that pP-1 + pf3-2 + ... + p + 1 ~ a < pP + pf3-1 + ... + p + 1- [3. 

S(pC<) = min{rITp(r) 2: a} 

= min{rITp(r) 2: a and rI ~ r < rI+1} 

= min{rITpr,pl3) + Tp(r - rI) 2: a and rf3 ~ r < ~+1} 

=;1 + min{r - rllTp(r - rI) 2: a - Tp(pf3) and 0 ~ r - rf3 < rf3+1 - rI} 

=;1 + min{rITp(r) 2: a - Tp(pP) and 0 ~ r < ;1+1 - rf3 = pf3(p - 1)} 

=;1 + S(pa-T,,(pD) 

=;1 + S(pQ-(pi'-1+~-2+ .. +p-tl) 

Case 2: Assume that pf3 + pf3-1 + ... + p + 1 - [3 ~ a < pf3 + pf3-1 + ... + p + 1. From the 

prior calculations of Tp(p/3+1) and Tp(]f'+1 -1) we have the S(pQ) = pf3+1 for any a in this 

range. Now consider the right hand side of the equation, pf3 + S(pc<-(~-1+pJ3-2+ .. +P+l». 

We can restate this expression as rf3 + sept), where pf3 - {3 ~ t < rf3. From the proof of 

Lemma 1.4 we see that Tp(pf3+1 - pf3) = pf3 - 1 and Tp(p/3+1 - pP - 1) = pf3 - {3 - 1, thus 

it must be that sept) = pf3+1 - pf3. Therefore the right hand side is rf3+1. 0 
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Clearly this lemma can he repeated as long as a - (pI3-I + ... 1) ~ pf3-1 + ... 1, so we 

can strengthen Lemma 1.6. 

Proposition 1.8. If d = V-I +pf3-2 + ... + p + 1 :::; a < pf3 + pi3-1 + ... + p + 1, write 

a = qd + r with 0 $ r < d, then S(pCL) = q']13 + S(pr). 

Now pf3 + pP-l + ... + P + 1 = ']13(1 + ~ + ... + ~) $ V;':ll. Therefore we get logp a < 

logp(PP + ... + 1) =.B + 1 -logp(P - 1) < .B + 1, and similarly {3 - 1 < (3 -logp(p - 1) < 

logp(a) < (3 + 1, or logp a - 1 < .B < logp a + 1. Hence the exact value of S(pCL) can be 

obtained by applying the proposition on the order of logp a times. 
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ABSTRACT 
In our present short paper we introduce a rather promising modeling paradigm for the 
design of artificial learning systems, incorporating critical trigger mechanism (CTM). We 
contend that at various stages of the learning process, such trigger mechanism may be 
activated when certain 'critical' points in the learning curve are attained. Such points are 
marked by fuzzification of the leamer's decision set. At all other 'non-critical' points 
where the decision set is crisp, this trigger mechanism lies dormant. We proceed to show 
that identification and subsequent incorporation of such trigger mechanisms will be of 
substantial help in modeling learning systems that closely emulate cognitive learning 
pattern of the human mind. This is not a complete work in any sense but just an 
indication of what is to come - a mere map of the long and challenging road ahead. 

KeyWords 

Artificial Learning Systems, Fuzzy Logic, Cognitive Science, Directed and Non­
directed Interventions 

Introduction 

The conditioned-reflex experiments of the Russian phYSiologist Ivan Pavlov and the 
American psychologist Edward Thorndike were central to the development of behaviorist 
model of learning. However, modem cognitive science favors a logical-computational 
model of learning over the rather mechanistic stimulus-response model of traditional 
behaviorism. But there need not exist as big a chasm between the approach of traditional 
behaviorism and that of modem cognitive psychology as is often made out to be. Gagne 
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and Briggs (1974) have already attempted to combine behaviorist principles of learnmg 
with a cognitive theory of learning named Information-Processing. They believe that the 
design of intervention must be undertaken with suitable attention to the conditions under 
which learning occurs. 

Infonnation-Processing theory regards human learning as being analogous to a 
computer and its ability to store memory. Significant efforts have already been made to 
design artificial systems that emulate human learning and memory. In this regard, the 
Memory Extender (ME) personal filing system design is an illustrative example that 
immediately springs to mind. As humans we process information initially with our 
senses. This information is either processed into short-term memory or is lost. If this 
information is continually re-used it is processed into long-term memory. However, for 
this information processing there has to be some initial directed interventions (luzrd 
programming) followed by subsequent non-directed interventions (soft programming). 
At times, these two forms of intervention may become mutually inconsistent. It is 
especially to deal with such situations that we suggest the incorporation of critical trigger 
mechanism (CTM), in order to make the system decide upon a definite course ofaction. 

The Proposed Modeling Paradigm 

Let us consider a case where an artificial learning system is being trained to emulate 
investor behavior. The fundamental operational rule which the system needs to learn is a 
simple IF statement - "Buy IF price is rising AND SeU IF price is falling". But simply 
learning this fundamental rule may not enable the system to realistically emulate the 
actual behavior of a human investor. The fundamental rule is nevertheless important - it 
is the initial hard programming bit consisting of a directed intervention. This is the easy 
part. But for a realistic simulation, the system must also learn to do some internal 
cognitive processing in accordance with one or more subsequent non-directed 
interventions - the soft programming bit. 

If we are trying to design a system to emulate an individual investor's fund allocation 
behavior then we have to prima facie consider the subtle cognitive factors underlying 
such behavior over and above those dictated by hard economic reasoning. The boundary 
between the preference sets of an individual investor, for funds allocation between a risk­
free asset and the risky market portfolio, tends to be rather fuzzy as the investor 
continually evaluates and shifts his or her position; unless it is a passive buy-and-hold 
kind of portfolio. 

Thus, if the universe of discourse is U = {C, N, A} where C, N and A are three risk 
classes "conservative", "neutral" and "aggressive" respectively, then the fuzzy subset 
ofU given by P = {xl/e, x-z/N, x~A} is the true preference set for our purposes. Here we 
have 0 ~ (xt, X2, X3) ~ 1, all the symbols having their usual meanings. Although 
theoretically any of the P (X!) values could be equal to unity, in reality it is far more likely 
that P (Xi) < 1 for i = 1, 2, 3 ie. the fuzzy subset P is most likely to be subnormal. Also, 
similarly, in most real-life cases it is expected that P (x.) > 0 for i = 1, 2, 3 ie. all the 
elements ofP will be included in its support: supp (P) = {c, N, A,} = U. 
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The critical point of analysis is definitely the individual investor's preference ordering 
ie. whether an investor is primarily conservative or primarily aggressive. It is 
Wlderstandable that a primarily conservative investor could behave aggressively at times 
and vice versa but in general, their behavior will be in line with their classification. So the 
classification often depends on the height of the fuzzy subset P: height (P) = MaxxP (x). 
So one would think that the risk-neutral class becomes largely superfluous, as investors in 
general will tend to get classified as either primarily conservative or primarily aggressive. 
However, as already said, in reality, the element N will also generally have a non-zero 
degree of membership in the fuzzy subset and hence cannot be dropped. 

The fuzziness surrounding investor classification stems from the fuzziness in the 
preference relations regarding the allocation of funds between the risk-free and the risky 
assets in the optimal portfolio. It may be mathematically descnbed as follows: 

Let M be the set of allocation options open to the investor. Then, the fuzzy preference 
relation is a fuzzy subset of the M x M space identifiable by the following membership 
function: 

~R (m., mj} = 1; mi is definitely preferred to mj 
ce (0.5, 1); mi is somewhat preferred to mj 

0.5; point of perfect neutrality 
de (0, 0.5); mj is somewhat preferred to mi; and 

0; mJ is definitely preferred to mi 

The fuzzy preference relation is assumed to meet the necessary conditions of reciprocity 
and transitivity. Then a CfM would be a built-in function in conjunction with the above 
membership function, such that, when activated, it would instantaneously convert the 
fuzzy preference relation into a crisp preference relation. 

As long as a subsequent soft programming is consistent with the initial hard 
programming, the decision set will be crisp: the universe of discourse and the crisp 
decision subsets being of the f0110wing form: 

D = {db dl ••• di ••• d..}; 
d = {dh d1 ••• ~ ••• db (dl e D) (\ (dl e: d~}, 
de = {dk+-b dk+2 ••• dk+l ... d.., (dk+1 e D) (\ (dkt-l e: d)}, such that d (\ dC = <II 

However, at a point of conflict between the initial hard programming and a subsequent 
soft programming, the decision set will be fuzzified with an unchanged universe of 
discourse but fuzzy decision subsets of the following form: 

D = {dh dz ... dl ... d.}; 
d = {Pl/d., pz/d2 ... p"~". paid.., (d! e D), (0 ~ PI ~ I)}, 
dC = {q./d., q:z/dz ... q;ldi ... q,Jd.., (di e D), (0 ~ qi S I)}, 
such that d (\ de *" <II 

Therefore, any function having the potential to be a CTM must be having the following 
fundamental characteristics: 
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• It should be activated if and only if the decision set is f1lZ7ified at any stage in 
the learning process 

• It should, when activated, convert a fuzzy decision set into a crisp decision set 
• It should mark a critical point on the system learning curve by either advancing 

or setting back the learning process 

Suppose a novice investor goes on putting more and more of his or her funds in a 
particular asset just because it has been steadily outperforming the market index over the 
recent past. Then, suddenly one fine day the bubble bursts and our investor is left in the 
red with the greater part of his or her equity wiped out. How far will that investor be 
inclined to invest in a similar asset in the distant future when such type of assets are 
doing great once again? Economic reasoning (hard programming) will encourage the 
investor to go with the trend and once again start putting his or her funds on that asset. 
But the investor's cognitive process (soft programming) may not be in tune with the 
directed intervention of market economics. This would fuzzify the decision set for the 
investor. This is where a potential CfM could be activated which uhimately decides 
which way the investor would go by de-fuzzifying the decision set. 

In case of our investor, if the CfM activation actually hinders learning then he or she 
will be inclined to leave that offending asset alone no matter how lucrative an investment 
opportunity seems. If on the other hand the CfM activation actually facilitates learning 
then the investor will go for that asset once again but adopt a more circumspect approach 
- having positively learned from his or her previous misadventure. However, in either 
case, the CfM has the effect of de-fuzzifying the investor's decision set. 

The extent of potential impact of the CTM could also be effectively modeled as a fuzzy 
function characterized by the universe of discourse {Cg, CM, Cw} corresponding to 
"strong", "moderate" or "weak" impact respectively, with the governing fuzzy subset 
{91/Cs, 9~CM' ayCw}; (0 ~ a., 92, 9;¢; 1). An artificial learning system would have an 
advantage in this regard as such a system could incorporate the different possible forms 
(at varying strengths of impact) of the CTM and perform a what-if analysis to see exactly 
how different the individual outcomes are in each case. 

The Road Ahead 

What we have here is some kind of a hypothesis regarding modeling of artificialleaming 
systems that emulate the human learning process. As our next step we plan to identify a 
potential CfM in human learning behavior specifically in relation to investing. One 
prime candidate we feel could be the post-investment cognitive dissonance factor due to 
inconsistency in perceived and true worth of an investment, which can and often do 
critically affect an investor's learning behavior. Subsequently, we propose to incorporate 
this mechanism in a hybrid neuro-fuzzy system and emulate investor behavior under 
different market settings. If results are satisfactory then the approach could be extended 
to models covering other facets of human learning behavior. Finally we would need an 
effective integration strategy to bring the various models together in a unified whole. 
Once this integration is achieved over a fairly large area of human learning, we shall have 
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moved one significant step forward in creating the ultimate of all artificial learning 
systems - a working model of the human mind. 
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THERE ARE INFINITELY MANY SMARANDACHE 
DERIVATIONS, INTEGRATIONS AND LUCKY 

NUMBERS 

Pantelimon Stanica and Gabriela Stanica 
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Abstract 

A number is said to be a Smarandache Lucky Number (see [3, 1, 2]) if an incorrect 

calculation leads to a correct result. In general, a Smarandache Lucky Method or Algo-

rithm is said to be any incorrect method or algorithm, which leads to a correct result. In 

this note we find an infinite sequence of distinct lucky fractions. We also define a lucky 

product differentiation and a lucky product integration. For a given function f, we find 

all other functions g, which renders the product lucky for differentiation/integration. 

Keywords. Smarandache Lucky Numbers, Fractions, Lucky Derivatives, Lucky Integrals 

1 Introduction 

A number is said to be a Smarandache Lucky Number (see [2]) if an incorrect calculation 

leads to a correct result. For example, in the fraction 64/16 if the 6's are incorrectly 

cancelled the result 4/1 = 4 is correct. (We exclude trivial examples of the form 400/200 

where non-aligned zeros are cancelled.) 

In general: The Smarandache Lucky Method/ Algorithm/Operation/etc. is said to be 

any incorrect method or algorithm or operation, which leads to a correct result. The wrong 

calculation is funny, and somehow similarly to the students' common mistakes, or to produce 
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confusions or paradoxes. In [1] (see also [2], [3]), the authors ask the questions: Is the set of 

all fractions, where an incorrect calculation leads to a correct result, finite or infinite? Can 

someone give an example of a Smarandache Lucky Derivation, or Integration, or Solution 

to a Differential Equation? 

In this note we give an infinite class of examples of each type. In fact, given a real-

valued function J, we find all examples for which an incorect differentiation/integration, in 

a product with J, leads to a correct answer. 

2 Main Results 

Let J, 9 be real-valued functions. Define the incorect differentiation as follows: 

do (J(x) . g(x)) dJ(x) dg(x) 
dx =d;-'~' 

We prove 

. . . do(J(x) . g(x)) 
Theorem 1. Let J : R -T R. The junctzons 9 : R -T R, satzsJymg d x 

dJ(x) . g(x) 
--=-....:........:.---=--'--.:.. are given by 

dx 

where c is a real constant. 

J J'(x) dx 
g(x) = c· e f'(x) - J(x) , 

Proof. Since do(J(x)· g(x)) = J'(x)g'(x), we need to find all functions such that 
dx 

J'(x)g'(x) = J'(x)g(x) + J(x)g'(x), 

by the product rule for differentiation. Thus, we need 

g'(x)(J'(x) - J(x)) = g(x)J'(x) ¢=> ~(~; = f'(~'~j(X)' 

from which we derive 

J f'(x) dx 
g(x) = c· e fl(x) fix) • 
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o 

Examples. 

/ 

1 
--dx 1 

1. Take f (x) = x, then g( x) = c . e 1 - x = c . eln (1/ (1 - x» = c . --. 
I-x 

2. Take f(x) = x 2 , then 

/ 

2x x 1 
--~2dx In--+ln c 

g( x) = c . e 2x - x = c . e x - 2 x 2 - 2x = . 
(x - 2)2 

From the previous theorem we derive an equivalent result on lucky integration. The 

incorect integration is defined by: the integral of a product is the product of integrals. 

Theorem 2. Given a real-valued function f, the functions g such that the integral of the 

product of f and 9 is the product of the integral of f and integral of 9 are given by 

I f(x) d 
g(x) = cf(x) . e f(x) - J f(x)dx x 

f{x) - f f(x)dx 

Proof. Similar to the proof of Theorem 1. o 

Obviously, the previous theorem is an example of a lucky differential equation, as well. 

3 There Are an Infinity Number of ... Lucky Numbers 

To avoid triviality, we exclude among the lucky numbers, those which are constructed by 

padding at the end the same number of zeros in the denominator and numerator of a fixed 

fr . ( 3000) W Is I d ' h . ab ... x actIOn e.g., 11000· e a 0 exc u e 1 s, t at IS ab ... x· 

The fact that there are an infinity of lucky fractions is not a difficult question (even if 

they are not constructed by padding zeros or they come from 1). Our next result proves 

that 
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99···96 
Theorem 3. Let the fraction 24 ... 99 (same number of digits). By cancelling as many 9 's 

as we wish (and from any place, for that matter), we still get 4. 

Proof. Let n + 1 be the number of digits in the numerator (or denominator) of the given 

fraction. We write it as 

9·1On + 9· lOn-l + ... + 9·10 + 6 
24 . lOn-l + 9 . lOn-2 + ... + 9 

3. IOn -4 IOn _ 4 
9 = ______ ~----~~_ 

- 8 . lOn-2 + 3 . 10" 2-1 24· lOn-2 + lOn-2 - 1 
10-1 

lOn-4 
= =4. i lOn - 1 

We see that by cancelling any number of digits of 9, we get a fraction of the same form. 0 

In the same manner we can show (we omit the proof) 

33···32 
Theorem 4. Define the fractions 8 ... 33 (the numerator has one digit more that the 

6···64 9···95 
denominator), respectively, (same number of digits), 9 9 (same number of dig-

16 .. ·6 1 ... 
6· .. 65 9 ... 98 77 ... 75 13··· 34 

its), 26 ... 6 (same number of digits), 49 ... 9 (same number of digits), 217 ... 7' -3-.-.-.3-4-

(same number of 3'5). By cancelling as many 3's, respectively, 6's,9'8,6's,9's,7's,3's, as 

5 25 
we wish, we get the same number, namely 4, respectively, 5, 2,2, 7,4. 

Other examples of lucky numbers are given by taking the above fractions and inserting 

zeros appropriately. We give 

Theorem 5. The following fractions are also lucky numbers 

bO··· Dxy 

aO··· Dwz 

(same number of zeros), where 1 S; a, b, w, x, y, z S; 9 are integers, xy are the fractions from 
wz 

b 
the previous theorem equal to {2, 5/2, 4, 5} and - is equal to that same reduced fraction. 

a 
xy 25 . . . b 25 

When - = -, then a, b are not dzgzts, rather they are mtegers such that - = -. 
wz 7 a 7 
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You might think that these are the only lucky numbers. That is not so. Our last 

theorem will present an infinite number of distinct lucky numbers. 

b 
Theorem 6. Take any reduced fraction -. Then, the following sequence of fractions is a 

a 
bO·· ·Ob 

sequence of lucky numbers aO ... Oa' Assuming the denominator (numerator) has k more 

digits than the numerator (denominator), then the numerator (denominator) has k more 

b 
zeros in it. Since - was arbitrary, we have an infinite number of lucky fractions. 

a 

Example. Let ~ = ~1. Then we build the following sequence of lucky numbers 

11 11011 110011 
7"' 7007 ' 70007 ,etc. 
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PROGRAM FOR FINDING OUT NUMBER OF SMARANDACHE DISTINCT 
RECIPROCAL PARTITION OF UNITY OF A GIVEN LENGTH 

(Amamath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas 
Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.) 

e-mail: amamath_murthy@yahoo.com 

ABSTRACT: Smarandache Distinct Reciprocal partition of unity for a given length 
'0' is defined as the number of ways in which unity can be expressed as the sum of 
the reciprocals of '0' distinct numbers. In this note a program in 'C' is given. 

~ 

1/ This is a program for finding number of distinct reciprocal partitions of unity of a 
given length written by K Suresh, Software expert, IKOS , NOIDA , INDIA. 

#include<stdio.h> 
#include<math.h> 
unsigned long TOTAL; 

FILE* f: , 
long double array[100]; 
unsigned long count = 0; 

void try(long double prod, long double sum, unsigned long pos) 
{ 

if( pos = TOTAL -1) 
{ 

II last element.. 
long double diff= prod - sum; 
if( diff = 0 ) return; 

array[pos] = floor1(prod I diff); 
if( array[pos] > array[pos-l] && array[pos] * diff = prod) 

{ -

fprintf(t: "(%ld) %ld", ++count,(unsigned long)array[O]); 
int i; 
for(i = 1; i < TOTAL; itt) fprintf(f,", %ld", (unsigned long)array[i]); 
fprintf(f, "\nil); 
fflush(f); 
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} 

} 
return; 

} 
long double i; 
if{ pos = 0) 
i = I' , 

else 
i = array(pos-I]; 

while(l) { 
itt' , 
long double new -prod = prod * pow(i, __ !<?TAL-pos); 
long.double new_sum = (TOTAL-pos) * (new-"'prod / i); 
unsigned longj; 
forO = O;j < pos;j++) new_sum += new-"'prod I array(j]; 
if{ new _swn < new -prod ) 

break; . 

new-...prod = prod * i; 
array[pos] = i; 
new_sum = prod + sum * i; 
if{ new _ swn >= new -prod) continue; 

try(new-"'prod, new_sum, pos+l); 
} 
rettnn; 

mainO 
{ 

printf{"Enter no of elements ?"); 
sCanf{"%ld", &TOTAL); 
char fuame[256]; 
sprintf{fuame, "rec%Id.out", TOTAL); 
f = fopen( fuame, "w"); 
fprintf{f, ''No of elements = %ld.\n", TOTAL); 

try(1, 0, 0); 
fllush(f); 
fclose(t); 
printf{"Total %ld solutions found.\n", count); 
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return 0; 
} 

Based on the above program the following table is formed. 

Length Number of Distinct Reciprocal Partitions 
1 1 
2 0 
3 1 
4 6 

6 2320 
7 ~5765 

Reference: 
[1] " Amamath Murthy" , ' Smarandache Reciprocal Partition of Unity sets and 
sequences' , SNJ, Vol. 11, No. 1-2-3 ,2000. 
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On a problem concerning the Smarandache friendly prime pairs 

Felice Russo 
Via A. Infante 7 

67051 Avezzano (Aq) Italy 
!elice.rosso@katamail.com 

Abstract 

In this paper a question posed in [1 J and concerning the Smarandache 
friendly prime pairs is analysed. 

Introduction 

In [1] the Smarandache friendly prime pairs are defmed as those prime pairs (p,q) such that: 

(1) 

X=P 

where x denote the primes between p and q. In other words the Smarandache friendly prime pairs 
are the pairs (p,q) such that the sum of the primes between p and q is equal to the product of p 
andq. 
As example let's consider the pair (2,5). In this case 2 + 3 + 5 = 2 ·5 and then 2 and 5 are 
friendly primes. The other three pairs given in the mentioned paper are: (3,13), (5,31) and (7,53). 
Then the following open questions have been posed: 

Are there infinitely many friendly prime pairs 1 

Is there for every prime p a prime q such that (p,q) is a Smarandoche friendly prime poir? 

In this paper we analyse the last question and a shortcut to explore the first conjecture is 
reported. 
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Results 

First of all let' s analyse the case p= 11. Let's indicate: 

q 

j(1l,q) = LX and g(1l,q) = lloq 

=11 

where x denotes always the primes between 11 and q. 
A computer program with Ubasic software package has been written to calculate the difference 
between g(ll,q) and f(11,q) for the 164 primes q subsequent to 11. Here below the trend of that 
difference. 
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As we can see the difference starts to increase, arrives to a maximum and then starts to decrease 
and once pass the x axis decrease in average linearly. The same thing is true for all the other 
primes p. 
So for every prime p the search ofits friend q can be performed up to: 

g(p,q) - j(P,q) =:;-M 

where M is a positive constant. 

F or ~e first 1000 primes M has been choosen equal to 105 
• 

No further friendly prime pair besides those reported in [1] has been found. According to those 
experimental results we are enough confident to pose the following conjecture: 

Not all the primes have a friend, that is there are prime p such that there isn't a prime q such 
that the (1) is (roe . 

Moreover a furter check of friendly prime pairs for all primes larger than 1000 and 
smaller than 10000 has been performed choosing M=1000000. 
No further friendly prime pair has been found. Those results seem to point out that the 
number of friendly prime pairs is finite. 

Question: 

Are (2,5), (3,13), (5,31) and (7, 53} the only Smarandache friendly prime pairs? 
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S~ACHESEQUENCEOFBAPPYNUMBERS 

Abstract: 

Shyam Sunder Gupta 
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In this article, we present the resuhs of investigation of Smarandache Concatenate Sequence 
formed from the sequence of Happy Numbers and report some primes and other results fOlmd 
from the sequence 

Keywords: 

Happy numbers, Consecutive happy numbers, H-sequence, Smarandache H-sequence, Reversed 
Smarandache H-sequence, Prime, Happy prime, Reversed 8marandache Happy Prime, 
Smarandache Happy Prime 

1. Introduction: 

If you iterate the process ofsnrnming the squares of the decimal digits ofa number and if 
the process terminates in 1, then the original number is called a Happy number [1]. 

For example: 

7 -> 49 -> 97 -> 130 -> 10 -> 1, so the number 7 is a happy number. 

Let us denote the sequence of Happy numbers as H-sequence. The sequence of Happy 
numbers [3], say H = { 1, 7, 10, 13, 19,23,28,31,32,44,49,68, 70, 79,82,86,91,97 
,100 .......... }. 

2. Smarandache Sequence: 

Let 8 1 ,82 ,83 •••• , Su, ... be an infinite integer sequence (termed as S- sequence), then 
the Smarandache sequence [4] or Smarandache Concatenated sequence [2] or 
Smarandache 8-sequence is given by 
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Also Smarandache Back Concatenated sequence or Reversed Smarandache S-sequence is 

3. Smarandache B-Seqnence: 

Smarandache sequence of Happy numbers or Smarandache H-sequence is the sequence 
formed from concatenation of numbers in H-sequence (Note that H-sequence is the 
sequence of Happy numbers). So, Smarandache H-sequence is 

1,17,1710,171013,17101319, 1710131923, 171013192328, ..•........• 

Let us denote the nth tenn of the Smarandache H-sequence by SH(n). So, 

SH(l)=1 

SH(2)=I7 

SH(3)=I710 

SH(4)=I71013 and so on. 

3.1 Observations on Smarandaehe H-sequence: 

We have investigated Smarandache H-sequence for the following two prob1eIm. 

i How many terms ofSmarandache H-sequence are primes? 

lL How many terms ofSmarandache H-sequence belongs to the initiaI H-sequence? 

In search of answer to these problems, we find that 

a There are only 3 primes in the first 1000 terms ofSmarandache H-sequence. These are 
SH(2) = 17, SHeS) = 171013 19 and SH(43), which is 108 digit prime. It may be noted 
that SH(I000) consists of3837 digits. 

Open Problem: 

Can you find more primes in Smarandache H-sequence and are there infinitely many 
such primes? 
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b. There are 1429 Happy numbers in first 10000 terms ofSmarandache H-sequence and 
hence belongs to the initial H-sequence. The first few Happy numbers in the 
Smarandache H-sequence are SH(l), SHe 11), SHe 14), SH(30), SH(31), SH(35), SHe 48), 
SH(52), SH(62), SH(67), SH(69), SH(71), SH(76), ... , etc. 

It may be noted that SH(lOOOO) consists of 48396 digits. 

Based on the investigations we state the following: 

Conjecture: 

About one-seventh of numbers in the Smarandache H-sequence belong to the initial H­
sequence. 

In this connection, it is interesting to note that about one-seventh of all numbers are 
happy numbers [l}. 

3.2 Consecutive SH Numbers: 

It is known that smallest pair of consecutive happy numbers is 31, 32. The smallest 
triple is 1880, 1881, 1882 The smallest example offour and 5 consecutive happy numbers are 
7839, 7840, 7841, 7842 and 44488, 44489, 44490, 44491, 44492 respectively. Example of 7 
consecutive happy numbers is also known [3]. The question arises as to how many consecutive 
terms ofSmarandache H-sequence are happynmnbers. 

Let us define consecutive SH numbers as the consecutive terms ofSmarandache H-sequence 
which are happy numbers. During investigation offust 10000 terms ofSmarandache H­
sequence, we found the following smallest values of consecutive SH numbers: 

Smallest pair: SH(30) , SH(31) 

. Smallest triple: SH(76), SH(77), SH(78) 

Smallest example offour and five consecutive SH nmnbers are SH(153), SH(l54). SH(155), 
SH(l56) and SH(3821). SH(3822). SH(3823), SH(3824), SH(3825) respectively. 

OpeD Problem: 

Can you find the examples of six and seven consecutive SH numbers? 

How many consecutive SH numbers can you have? 

4..0 Reversed Smarandache H-Sequeoce: 

It is defined as the sequence formed :from the concatenation of happy numbers (II-sequence) 
written backward ie. in reverse order. So, Reversed Snmandache H-sequence is 

1, 71, 1071, 131071, 19131071,2319131071,282319131071, .... 
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Let us denote the nth term of the Reversed Smarandache H-sequence by RSH(n). So, 

RSH(I)=l 

RSH(2)=71 

RSH(3)=1071 

RSH(4)=131071 and so on. 

4.1 Observations on Revened Smarandache B-sequence: 

Since the digits in each term of Reversed Smarandache H-sequence are same as in Smarandache 
H-sequence, hence the observations regarding problem (ii) including conjecture mentioned in 
para 3.1 above remains valid in the present case also. So, only observations regarding problem (i) 
mentioned in para 3.1 above ate given below: 

As against only 3 primes in Smarandache H-sequence, we found 8 primes in first 1000 terms of 
Reversed Smarandache H-sequence. These primes are: 

RSH(2) = 71 

RSH(4) = 131071 

RSH(5) = 19131071 

RSH(6) = 2319131071 

RSH(lO) = 443231282319131071 

Other three primes are RSH(31), RSH(255) and RSH(368) which consists ofn, 857 and 1309 
digits respectively. . 

SmaraDda~he Curios: 

It is interesting to note that there are three consecutive terms -in Reversed Smarandache H­
sequence, which are primes, namely RSH(4), RSH(5) and RSH(6), which is rare in any 
Smarandache sequence. 

We also note that RSH(31) is prime as well as happy number , so, this can be termed as Reversed 
Smarandache Happy Prime. No other happy prime is noted in Reversed Smarandache H­
sequence and Smarandache H-sequence. 

Open Problem: 

Can you find more primes in Reversed Smarandache H-sequence and are there infinitely many 
such primes? 
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On a Smarandache problem concerning the prime gaps 

Felice Russo 
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Abstract 
In this paper, a problem posed in [1] by Smarandache concerning the prime 
gaps is analysed. 

Let's p" be the n-th prime number and d" the following ratio: 

d = PMI - Po where n ~ 1 
D 2 

Ifwe indicate with gIl = Pn+I- p" the gap between two consecutive primes, the previous equation 
becomes: 

d =g" 
" 2 

In [1], Smarandache posed the following questions: 

1. Does the sequence dllcontain infinite primes? 
2. Analyse the distribution of dn 

First of all let's observe that d" is a rational number only for IF 1, being PI = 2. P2;::; 3. For n> 1 , 

instead, the ratio is always a natural number since the gap of prime nwnbers g" is an even number 
~ 2 [2]. 
Moreover let's observe that the gap gn can be as large as we want. In f3ct let's n be any integer 
greater than one and let's consider the following sequence of consecutive integers: 

n!+2, n!+3. n!-t4._ ...... n!+n 

Notice that 2 divides the first, 3 divides the second, ... , n divides the n-lst, showing an of these 
numbers are composite. So ifp is the largest prime smaller than n!+2 we have gIl >n. This proves 
our assertion. 
Now Jet's check the first tenns of sequence dn : 

n 1 2 3 4 5 6 7 8 9 10 
d 0.5 1 1 2 1 2 1 2 3 1 

P. 2 3 5 7 11 13 17 19 23 29 
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Here PII is the smallest prime relative to the gap dll • As we can see, for the first 10 terms of 

sequence dll we have 4 primes regardless if those are repeated or not. On the contrary, if we 

consider only how many distinct primes we have then this number is 2. So, the Smarandache 
question can be split in two sub-questions: 

1. How many times the sequence dn takes a prime value? 

2. How many distinct primes the sequence dn contains? 

Proving both the questions is a very difficult task. Anyway, we can try to understand the behaviour 
of sequencedn by using a computer search and then get a heuristic argmnent on the number of 

primes within it. 
Thanks to an Ubasic code, the counting functions Pl (N) and P2 (N) have been calculated for N up 
to }O9. 

Pl (N) denotes how many times dn takes a prime value for n ~ N while P2 (N) denotes the number of 

distinct primes in dn , always for n ~ N • In table 1, the results of the computer search can be found. 

In the third column, the number of distinct primes are reported whereas in the second one the 
number ofall primes regardless of the repetitions are shown. 

N # primes # distinct primes 
10 0 0 

100 14 2 
1000 10{ 4 

10000 695 7 
100000 4927 11 

1000000 37484 14 
10000000 241286 19 

100000000 2413153 24 
1000000000 66593597 33 

Table 1. Number of primes in dn fur different N values 

Let's analyse the data of column 2. It is vet)' easy to verifY that those data grow linearly with N, 
that is: 

An estimation of c(N) can be obtained using the following asymptotic relationship given in [3]: 

where hN(dn )! N is the frequency of dn for n ~N and p any prime number. 

TIle constant C2 is the twin prime constant defined in the fonowing way: 

C 2 == 2 . II (1 - 1 2) = 1.320032 ..... 
p>2 (p -I) 
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By definition of PI (N) function we have: 

(2) 

where the above summation is extended on all prime values of d" up to dmax • But the largest gap 

d_ for a given N can be approximated by [2].[3]: 

and then (2) can be rewritten as: 

where the function: 

2·N 
Pl(N)~ 1n2(N) (3) 

has small values of order 1 and then has been replaced by its mean value ~ [3]. 

Since, as N goes to infinity, the smnmation: 

.!.1a2 (N) 2 _ 2-d. 

L e 1a(N) 

d.=2 

is the number of primes in the range 1 to .!..Jn2(N), we can write: 
2 

.!.lo2(N) 2-d. 

2.L e- In(N) ~K(~.1n2(N» 
d.=2 

C2 

where K(N) is the counting function of prime numbers [2]. Using the Gauss approximation [2] for 
it, we have: 
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and then: 

by using (1) and (3), that implies: 

According to those experimental data the following conjecture can be posed: 

Conjecture A: 1be sequence dn takes infinite times a prime value. 

Let's now analyse the data reported in table 1, column 3. By using the least square method, we can 
clearly see that the best fit is obtained using a 10garit1unic function like: 

where c(N) can be estimated using the fonowing approximation: 

P2 (N) ... n{O.5 ·ln2 (N» 

being P2(N) the number of primes in the range 1 to dmwx.. 

Therefore: 

c(N)... In(N) 
2·ln(O.S·ln2 (N» 

In table 2, the comparison of (4) with calculated values P2(N) shown in table 1 (column 3) is 
reported. Notice the good agreement betweenp2(N) and its estimation as N increase. 

According to those data, also P2(N) like PI(N) goes to the infinity as N increase, although P2(N) 

more slowly then PI (N) . Then this second conjecture can be posed: 

Conjecture B: The sequence dn contains an infinite number of distinct primes 
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1n
2 

(N) ,.. c(N).ln(N) 
2 ·In(O.S ·In 2 (N» 

c(N),.. In(N) 
2 . In(O.S· In 2 (N» 

In table 2, the comparison of (4) with calculated values P2(N) shown in table 1 (column 3) is 
reported. Notice the good agreement between P2 (N) and its estimation as N increase. 
According to those data, also P2 (N) like PI (N) goes to the infinity as N increase, although P2 (N) 
more slowly then PI (N) . Then this second conjecture can be posed: 

Conjecture B: The sequence d" contains an infinite number of distinct primes 

N P1(n) c(N)·In(N) ratio 
10 0 2.719152 0 
100 2 4.490828 0.445352 
1000 4 7.521271 0.531825 
10000 7 11.31824 0.618471 
100000 11 15.80281 0.696079 
1000000 14 20.93572 0.668713 
10000000 19 26.69067 0.711859 
100000000 24 33.04778 0.726221 
1000000000 33 39.9911 0.825184 

Table2. Comparison of P2 (N) with the approximated 

fonnula c(N) .In(N). In the third column the ratio 
P2 (N) I c(N) ·1n(N) 

Let's analyse now the distribution of d" , as always requested by Srnarandache. 
Thanks to a Ubasic code the frequency of prime gaps up to N=3601806621 have been calculated. 
The plot of those frequencies versus dn for n > I is reported in Figl. It shows a clear jigsaw pattern superimposed onto an exponential decay. The jigsaw pattern is due to a double population that is clearly visible in the two plots of fig 2. 
The frequency of dn for n being a multiple of 3 ( or equivalently for n multiple of 6 for gn) is always larger than adjacentes differences. 
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Fig 1. Prime gap distribution. The second plot uses a logarithmic 
scale for the Y-axiS. 

According to the conjecture 1 reported in [3] and aJready mentioned above , tre number of pairs 

Pn. P"+1 < N with do = Pn+l
2
- Po is given by: 

2-d. 

h (d) c2 • N n P -I - 1n(N} 
N n ~-2--' --2-·e 

In (N) P;u •• p>2 P-

Let's !(P) = p-I where p is any prime number greater than 2. As it can be seen in fig 3. this 
p-2 

function approaches 1 quickly, with the maximum value at p=3. 
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2.2 1 

f(p) versus p 
for p>2 
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Fig.3: Plot offunction f{p) versus p 

Being f{p) maximwn for p=3 means that hN(dll ) has a relative maximwn every time 2dll has 3 as 

prime factor, that is when 2 dll is a multiple of 3. 
This explains the double population seen in the Fig 2 and then the jigsaw pattern of the fig 1. 
In fig. 4, the distribution of d"obtainOO by computer search and the one estimated with the use of 
11 N(d,.) formula is reported. Notice the very good agreement between them. 

( Prime gap distribution 
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Ftg4: Prime gap distribution comparison. The good agreement between the experimental 
and the estimated data has to be noticed. 
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JAVACONCURENTPROGRAMFORTHESAMARANDACBE 

FUNCTION 

David Power* Sabin Tabirca* Tatiana Tabirca** 
·University College Corle, COIllpUter Science Departmeut 

*University ofMancbesta-, computer Science Department 

Abstract: The aim of this article is to propose a Java concurrent program for the 
Smarandache fimction based on the equation sept' ..... p:.) = max{s(p~' ), ... ,S(p:·)}. 
Some results concerning the theoretical complexity of this program are proposed. Fmally, 
the experimental results of the sequential and Java programs are given in order to 
demonstrate the efficiency of the conament implementation. 

1. INTRODUcnON 

In this section the results used in this article are presented briefly. These concern the 

Smarandache and the main methods of its computation. The Smarandache function 

[Smarandache, 1980] is S: N* ~ N defined by 

Sen) = min{k E Nlk!: n}(Vn EN *). (1) 

The main properties of this function are presented in the following 

(Va,bEN*)(a,b)= l=>S(a ·b) = max {S(a),s(b)} (2) 

that gives us 

S(p;1 ..... p:.) = max{S(p~1 ), ... ,S(P:· )}. (3) 

An important inequality satisfied by the function S is 

(Va E N *) S( a) ~ a, the equality occurring iff a is prime. (4) 

When the number a is not prime this inequality can be improved by 

(VaEN*:a notprime)S(a)~ a. 
2 

During the last few years, several implementation of The Smarandache function have been 

proposed. Ibstedt [1997, 1999] developed an algorithm based on Equation (3). The 
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implementation in U Basic provided a efficient and useful program for computing the values of S 

for large numbers. Based on it Ibstedt [1997, 1999] studied several conjectures on the 

Smarandache function. No study of the theoretical complexity bas provided for this algorithm so 

fur. 

The second attempt to develop a program for the Smarandache function was made by Tabirca 

[1997]. Tabirca started from Equation (I) and considered the sequence xt =k! mod n. The first 

term equal to 0 provides the value S(n). Unfortunately, the C+!- implementation of this 

algorithm has been proved not to be useful because it cannot be applied for large value of n. 

Furthermore, this is not an efficient computation because the value Sen) is computed in 

O(S(n»). A study of the average complexity [Tabirca, 1997a, 1998], [Luca, 1999] gave that the 

average complexity of this algorithm is O(~) . 
_ logn 

2. AN EFFICIENT ALGORITHM FOR THE SMARANDACHE FUNCflON 

In this section we develop an efficient version of the algorithm proposed by lbsedt. A theoretical 

study of this algorithm is also presented. Equation (3) reduces the computation of Sen) to the 

computation of the values S(P:' ),i = l, ... ,s. The equation [Smarandache, 1980] that gives the 

value S(pt) is given by 

(5) 

This means that if (d"d,_I, ... ,dl ) is the representation of k in the generalized base 

p2 -I pi -I . . k. . 
1,--, ... ,--. then (dz,d/_I, ... ,dl ) IS the representation of S(p ) k m the generalized 

p-l p-I 

base p,p2 , ... ,pl. Denote bl[i] = pi -1 and b2[i] = pi the general tenus of these two bases. 
- p-l 

We remark that the terms of the above generalized bases satisfied: 

bl[l] = l,bl[i + 1] = 1 + p. bl[i] 

b2[IJ = p, b2[i + 1] = p. b2[i]. 
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public static long Value (final long p, final long k) { 

long 1, j, value=O; 

} 

long bID == new long [1000]; long b2D == new long [1000]; 

b 1[0]== I;b2[O]==p; 

for(int 1==O;bl [l]<==k;l++){b 1[1+ 1]==1+p*b 1 [1]; b2[l+ 1]==p*b2[I];} 

for(l-j==Ij>==Oj-){d==plblfj];p=p%bl[j];value+==d*b2[j]; } 

return value; 

Figure 1. Java function for S(pt). 

Equation (5) provides an algorithm that is presented in Figure 1. At the first stage this algorithm 

finds the largest 1 such that hI[l] ~k < hl[/ + 1] and computes the generalized bases hI and h2. 

At the second stage the algorithm determines the representation of k in the base b I and the Value 

of this representation in the base b2. 

Theorem 1. The complerity of the computation S(pl:) is O(logp p. k). 

Proof. Let us remark that the operation number of the function Value is 5·/, where 1 is the 

largest value such that b I[ l] :s; k < hI[/ + I]. This gives the following equivalences 

I 1 1+1 1 
~:s; k < P - <;:::> pi -I:s;k .(p -1) <pl+1 -1 <;:::> 
p-l p-l 

<;:::> p' :s; k· (p - I) + 1 < pl+1 <;:::> / :s; log p [k· (p -1) + 1] < 1 + I <;:::> 

<;:::> / = llogp (k· (p -1) + 1)j. 

Therefore, the number of operations is 5· ~ogp(k. (p -1)+ l)J=O(logp(k. p). • 

The computation of Sen) is obtained in two steps. Firstly, the prime number decomposition 

n = p:l ..... P:' is detennined and all the values S(p:' ),i = 1, ... ,s are found by using a 

calling of the function Value. Secondly, the maximum computation is used to find 

max.{S(p:l ), ... ,S(p:·)}. A complete description of this algorithm is presented in Figure 2. 
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public static long S (final long n) { 

long d, valueMax=O, s=-l; 

if(n= =1) return 0; 

} 

long pO = new long [1000]; long kO = new long [1000]; long valueD = new long [1000]; 

for(d=2;d<n;d++) if(n % d = O){ 

s++;p[ s ]=d;for(k[ s ]=O;no/od==O;k[ s]++ ,nI=d); 

value[s]=Value(p[s],k[sJ); 

} 

for(j=O;j<=s;j++) if (valueMax<va1ue[jJ)valueMax=value[j]; 

return valueMax; 

Figure 2. Java function for S(n). 

n 
Theorem 2. The complexity of the function Sis 0(--). 

. logn 

Proof. In order to find the prime number decomposition, all the prime numbers less than n should 

n 
be checked. Thus, at most ;r( n) = 0(--) checking operations are performed [Bach & Shallit, 

logn -. 

1996] to:find the prime divisors PI ' ... 'Ps ofn. The exponents k1, ... ,ks of these prime numbers 

are found by kl + ... + ks divisions. An upper bound for this sum is obtained as follows 

k k Ilk k 1 kIt n= PI 1 
••••• P/ => ogn= ogPl l 

••••• P/ = ogPl l + ... + ogP/ = 

=k(logpl + ... +ks·logps ~l+ ... +ks' 

because each logarithm is greatertban 1. Thus, we have kl + '.' +ks ~logn =O(logn). 

The computation of all the values S(p~' ), i = 1, .. . ,s gives a complexity equal to 

if 

2)og PI Pi . k j • An upper bound for this sum is provided by the following inequality 
i=1 
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log P.·k.<kthat is true because of p .. k.:::;p.Ci. Taking the sum we find 
Pi I I - I I I I 

s S 

"log p .. k. <"k. =O(logn) therefore the complexity of this computation is O(logn). £.,.. pj J I-£.,.. , ' 
;=1 ;=1 

Finally, observe that the maximum max {S(p~1 ), ... ,S(p;,)} is determined in s :::; log n 

operations. 

n 
In conclusion, the complexity of the Smarandache function computation is 0(-1 -). 

ogn 

n=10000 n=20ooo n=30000 0==40000 n=50000 n=60oo0 

Ai 2804 10075 21411 36803 56271 79304 

A2 2925 10755 23284 39967 61188 86555 

Table 1. Running times for the efficient and Tabirca's algorithms. 

350000 
300000 
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o 

Figure 3. Graphics of the Running Times. 

I ~ A21 -+-A1 

n=7oo00 

105922 

115837 

• 

n=80000 

136567 

149666 

Several remarks can be made after this theorem. Firstly, we have found that finding the prime 

divisors of n represents the most expensive operation and this gives the complexity of the 

function computation. Secondly, we have obtained an algorithm with the complexity o(~J. 
logn 

Therefore, this is better than the algorithm proposed by Tabirca [1988] that has the average 

complexity o(~J . Table 1 shows that this algorithm also offers better running times than the 
logn 
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algorithm proposed in [Tabirca. 1997]. These two algorithms were implemented in Java and 

executed on PENTIUM II machine. The times [milliseconds] of the computation for all the values 

S(i) , i=I, ... ,n were found, where n=10000, .... ,80000. Row A 1 gives the times for this efficient 

algorithm and row A 2 gives the times for the algorithm proposed in [Tabirca, 1999]. Another 

important remark drawn from Table I is that the difference between the times of each column 

does not increase faster [see Figure 3]. This is happen because the complexity of the algorithm 

proposed by Tabirca (1997] is o(_n_J. 
logn 

3. JAVA CONCURRENT ALGORITHM FOR THE SMARANDACHE FUNCTION 

In this section we present a Java concurrent program for the computation descnoed in Section 2. 

Firstly, remark that many operations of this algorithm can be performed in parallel. Consider that 

we know all the prime numbers less than n. Usually, this can be done by using special libraries. 

Let PI , .. . ,p /I be these numbers. Therefore, we can concurrently execute the computation of the 

exponent of Pi and the computation of the value S(p~ ) . 

A Java program may contain sections of code that are executed simultaneously. An independent 

section of code is known as a thread or lightweight process [Smith, 1999]. The implementation 

presented here is based on equation (3): S(pf'· .... p!' ) = max{S(pt, ), ... ,S(P:· )}. Each 

S(P:') is calculated concurrently in a thread. On single processor systems, the use of threads 

simulates the concurrent execution of some piece of sequential code. The worst case execution 

time can be taken as the longest execution time for a single thread. On a multi processor system, 

given enough processors, each thread should ideally be allocated to a processor. If there are not 

enough processors available, threads will be allocated to processors in groups. Unlike pure 

concurrent processes, threads are used to simulate concurrency within a single program. Most 

current everyday programs use threads to handle different tasks. When we click a save icon on a 

word processing document typically a thread is created to handle the actual saving action. This 

allows the user to continue working on the document while another process (thread in this case) is 

writing the file to disk. 

For the concurrent algorithm consider the Java function for S(n) in Figure 2. Typical areas that 

can be executed concurrently can be found in many loops, where successive iterations of the loop 
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do not depend on results of previous iterations. In Figure 4, we adapt the for loop (Figure 2) to 

execute the Value function (Figure 1), responsible for calculating S(P"), concurrently by 

creating and executing a ValueTbread object. When all the required threads have begun 

execution, the value of max will not be known until they have completed. To detect this, a simple 

counter mechanism is employed. As threads are created the counter is incremented and as threads 

complete their tasks the counter is decremented. All threads are completed when this counter 

reaches O. 

public long S(long n) 
{ 

if(n 1) return (long); 

Prime decom = new Prime(n); 
noPrimes=decom.noPrime(); 
if (noPrimes = 0) 

value = null; 
value = new 10ng[noPrimes]; 

for (int k=O;k<noPrimes;k++) 
{ 

started++. , 
new ValueThread(decom.getPrime(k), decom.getPow(k), this, k); 

} 

} 

while (started> 0) 
{ 

} 

try 
{ 

Thread.yieldO; 
}catch (Exception e) 
{ 
} 

return max; 

Figure 4. Modified Java function for S(n) , used to concurrently execute the Value function 

As each thread completes its task it executes a callback method, addValue (Figure 5). This 

method is declared as synchronized to prevent multiple threads calling the addValue method at 

the same time. Should this be allowed to occur, an incorrect value of the number of threads 

executing would be created. Execution of this method causes the value anay declared in method 
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S (Figure 3) to be filled. This value array will only be completely filled after the last thread makes 
a call to the addVaIue method. At this point, the value of max can be determined. 

public synchronized void addVaIue(int k, long val) 
{ 

} 

value[k] = val; 
max = value[O]; 
started-; 
if (started = 0) 

for (int i= 1; i<=k; i++) 
if (value[i] > max) 

max = value[i]; 

Figure 5. The addValue method called by a Thread when its task is completed. 

This algorithm illustrates how concurrency can be employed to improve execution time. It is also 
possible to parallelise the algorithm at a higher level, by executing the function responsible for 
calculating each Sen) in an independent thread also. Tests of this mechanism however show that 

it is more efficient to only paraIIeIise the execution of S(pt) . 

The concurrent Java program has been run on a SGI Origin 2000 parnllel machine with 16 
processors. The execution was done with 1, 2,4 processors only and the execution times are 
shown in Table 1. The first line of Table I shows the running times for AJgorithm Al on this 
machine. The next three lines present the running times for the concurrent Java program when 
p=l, p=3 and p=4 processors are used. 

n=20000 n=30oo0 n=40000 0=50000 n=60000 0=70000 n=80000 
Ai 9832 19703 31237 49774 68414 96242 115679 
CA (p=I) 9721 19474 30195 49412 68072 95727 115161 
CA (p=2) 5786 11238 22872 31928 42825 60326 75659 
CA (p=4) 3863 7881 14017 19150 30731 42508 53817 

Table 2. Running Times for the Concurrent Program. 

79 



4. CONCLUSSIONS 

Several remarks can be drawn after this study. Firstly, Equation (3) represents the source of any 

efficient implementation of the Smarandache function. In Section 2 we have proposed a 

sequential algorithm with the complexity O(~). We have also proved both theoretically and 
logn 

practically that this algorithm is better that the algorithm developed in [fabirca, 1997]. 

Secondly, we have developed a Java concurrent program in order to decrease the computation 

time. Based on the thread technique we have performed concurrently the computation of the 

values S(p:'). This concurrent implem~tation has proved to be better than the sequential one. 

Even running with one single processor the times of the concurrent Java program were found 

better than the times of the sequential program. 
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Appendix A 

The full code for the concurrent implementation presented in Section 3. 

II Smarandache.java 

import java.io. *; 
import java. uti!. *; 

public class Smarandache 
{ 

} 

public SmarandacheO 
{ 

} 

long n=O, i, j; 
long val; 
BufferedReader br = new BufferedReader(new InputStreamReader(System.in»); 
try 
{ 

System.outprint ("n = "); 
n = Integer.parseInt(br.readLine(); 

}catch (IOException e) 
{ 

} 

System.out.println ("IOException : "+e.getMessageO); 
System.exit(l ); 

Smar sm = new SmarO; 

Date begin = new DateO; 
for (i=l; i<=n; i++) 
{ 

val = sm.s(i); 
} 
Date end = new Date(); 
System.out.println (''Time good is "+ (end.getTimeO - begin.getTime()); 

public static void main (String args[]) 
{ 

new SmarandacheO; 
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/I Smar.java 

public class Smar 
{ 

} 

private long valueD; 
private long max = Long.MIN_ VALUE; 
private int noPrirnes=O; 
private int started = 0; 

public Smar() 
{ 
} 

public long S(long n) 
{ 

if (n-l) 
return (long) 0; 

Prime decom = new Prime(n); 
noPrimes=decom.n.oPrime(); 
if (noPrimes = 0) 

value = null; 
value = new long[noPrimes]; 

for (int k=O;k<noPrimes;k++) 
{ 

started++. , 

} 
new ValueThread(decom.getPrime(k), decom.getPow(k), this, k); 

while (started > 0) 
{ 

} 

try 
{ 

Thread.yieldO; 
}catch (Exception e) 
{ 
} 

return max; 
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} 

public synchronized void addValue(int Ie, long val) 
{ 

} 

value[k] = val; 
started-; 
if (started = 0) 
{ 

max = value[O]; 
for (int i=l; i<=k; i++) 

if(value[i] > max) 
max = value[i]; 

} 

!/Prime.java 

public class Prime 
{ 

private int s; 
private long p[]=new long [1000]; 
private int ord[]=new int [1000]; 

public Prime() 
{ 

s=O. , 
} 

public Prime(long n) 
{ 

long d; 
for( d=2,s=O;d<=n;d++) 
if(n%d=O) 
{ 

p[s]=d; 
for(ord[s]=O;;ord[s]++,n=nld) {if(no/od!=O)break;}; 
s++; 

} 
} 

public int noPrimeQ 
{ 

return s; 
} 

public long getPrime(int i) 
{ 

return p[i]; 
} 
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} 

} 

public int getPow(int i) 
{ 

return ord[i]; 
} 

1/ ValueThread.java 

public class ValueThread 
{ 

private long p=O, a=O; 
private Smar owner; 
private int index = 0; 

public ValueThread (long p, long a, Smar owner, int index) 
{ 

} 

this.p = p; 
this.a= a; 
this.owner = owner; 
this.index = index; 
runO; 

public long pseuPow(long p, long a) 
{ 

} 

if (a = I) 
return (long) I; 

return 1+p*pseuPow(p,a-I); 

public long Pow(long p, long a) 
{ 

} 

if(a = I) 
return (long) p; 

return p*Pow(p,a-I); 

public void runO 
{ 

long rest=a, val=O; 
int Ie, i; 
for(k=l;pseuPow(P,k)<=a;k++);k-; 
for(i=k;i>O;i-) 

} 

{ 

} 

val += Pow(p,i)* (long)(rest / pseuPow(p,i»; 
rest %= pseuPow(p,i); 

owner.addValue(index, val); 
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AN INTRODUCTION TO THE SMARANDACHE GEOMETRIES 

by L. Kuciuk l and M. AntholY 

Abstract: 
In this paper we make a presentation of these exciting geometries and present a model for 
a particular one. 

Introduction: 
An axiom is said Smarandachely denied if the axiom behaves in at least two different 
ways within the same space (i.e., validated and invalided, or only invalidated but in 
mUltiple distinct ways). 

A Smarandache Geometry is a geometry which has at least one Smarandachely denied 
axiom (1969). 

Notations: 
Let's note any point, line, plane, space, triangle, etc. in a smarandacheian geometry by s­
point, s-line, 
s-plane, s-space, s-triangle respectively in order to distinguish them from other 
geometries. 

Applications: 
Why these hybrid geometries? Because in reality there does not exist isolated 
homogeneous spaces, but a mixture of them, interconnected, and each having a different 
structure. 

In the Euclidean geometry, also called parabolic geometry, the fifth Euclidean postulate 
that there is only one parallel to a given line passing through an exterior point, is kept or 
validated. 
In the Lobachevsky-Bolyai-Gauss geometry, called hyperbolic geometry, this fifth 
Euclidean postulate is invalidated in the following way: there are infinitely many lines 
parallels to a given line passing through an exterior point. 
While in the Riemannian geometry, called elliptic geometry, the fifth Euclidean postulate 
is also invalidated as follows: there is no parallel to a given line passing through an 
exterior point. 

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian 
geometries may be united altogether, in the same space, by some Smarandache 
geometries. These last geometries can be partially Euclidean and partially Non­
Euclidean. Howard lseri [3] constructed a model for this particular Smarandache 
geometry, where the Euclidean fifth postulate is replaced by different statements within 

I University of New Mexico, Gallup, NM 87301, E-mail: research@gaIlup.unm.edu. 
2 University of Toronto, Toronto, Canada, E-mail: mikeantholy@yahoo.ca. 
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the same space, i.e. one parallel, no parallel, infinitely many parallels but all lines passing 
through the given point, all lines passing through the given point are parallel. 

Let's consider Hilbert's 21 axioms of Euclidean geometry. Ifwe Smarandachely deny 
one, two, three, and so on, up to 21 axioms respectively, then one gets: 

21CI + 21C2 + 21C3 + ... + 21 C21 = 221_1 = 2,097,151 
Smarandache geometries, however the number is much higher because one axiom can be 
Smarandachely denied in multiple ways. 
Similarly, if one Smarandachely denies the axioms of Projective Geometry, etc. 

It seems that Smarandache Geometries are connected with the Theory of Relativity 
(because they include the Riemannian geometry in a subspace) and with the Parallel 
Universes (because they combine separate spaces into one space only) too. 

A Smarandache manifold is an n-D manifold that supports a smarandacheian geometry. 

Examples: 
As a particular case one mentions Howard's Models [3] where a Smarandache manifold 
is a 2-D manifold formed by equilateral triangles such that around a vertex there are 5 
(for elliptic), 6 (for Euclidean), and 7 (for hyperbolic) triangles, two by two having in 
common a side. Or, more general, an n-D manifold constructed from n-D submanifolds 
(which have in common two by two at most one m-D frontier, where m<n) that supports 
a Smarandache geometry. 

A Mode for a particular Smarandache Geometry: 
Let's consider an Euclidean plane (0') and three non-collinear given points A, B, and C 
in it. We define as s-points all usual Euclidean points and s-lines any Euclidean line that 
passes through one and only one of the points A, B, or C. Thus the geometry formed is 
smarandacheian because two axioms are Smarandachely denied: 

a) The axiom that through a point exterior to a given line there is only one parallel 
passing through it is now replaced by two statements: one parallel, and no parallel. 
Examples: 
Let's take the Euclidean line AB (which is not an s-line according to the definition 
because passes through two among the three given points A, B, C), and an s-line noted 
(c) that passes through s-point C and is parallel in the Euclidean sense to AB: 
- through any s-point not lying on AB there is one s-parallel to (c). 
- through any other s-point lying on the Euclidean line AB, there is no s-parallel to (c). 

b) And the axiom that through any two distinct points there exist one line 
passing through them is now replaced by: one s-line, and no s-line. 
Examples: 
Using the same notations: 
- through any two distinct s-points not lying on Euclidean lines AB, BC, CA, there is one 
s-line passing through them; 
- through any two distinct s-points lying on AB there is no s-line passing through them. 

Miscellanea: 
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First International Conference on Smarandache Geometries will be held, between May 3-
5,2003, at the Griffith University, Queensland, Australia, organized by Dr. Jack Allen. 
Conference's page is at: htinJ~aUDL~l!C:I_\:~i:biD/;!JI!Cft: 
l';IIL'IIJ~1I /rlli I ,I it:!d i.~pl:i-,,!(:cnjr(r'':'-l,ct,:jl U(lji:lllzj:i. 
And it is announced at )llln!/\/\Y\\Li;il::;(iJ:/!lialLic;diil}r\!!2iJO~ ___ !l]~!>,3-:5_~~,,,ldc()a~,UilulJ as 
well. 

There is a club too on "Smarandache Geometries" at 
II! t 1):/ lei! lI!s),,,! I(H) ('\.n lid! Ih~/;ollFlI<![ld(l(;li~':::\;:(Jl!l~L[i~;:i and everybody is welcome. 

For more information see: 1~twj!\.v\'w,gal111p.ull(ILedli/::::'llliIL111i.l~icJJC:~:;:~IilH;L~iG:"b~m 
or 1111 p /:, ~:i :;e~H 'i t j~s corn/mil, '-~ii!)tll()ly/ ::;t"lIi llj !-i<:5jl( 111. 
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SMARANDACHE SEMIRINGS AND SEMIFIELDS 

Abstract 

W. B. Vasantha Kandasamy 
Department of Mathematics 

Indian Institute of Technology, Madras 
Chenna; - 600 036, India. 
vasantak@md3.vsnl.net.in 

In this paper we study the notions of Smarandache 
semirings and semifields and obtain some interesting results 
about them. We show that not every semiring is a Smarandache 
semiring. We similarly prove that not every semifield is a 
Smarandache semifield. We give several examples to make the 
concept lucid. Further, we propose an open problem about the 
existence of Smarandache semiring S of finite order. 

Keywords: semrrmg, semifield, semi-algebra, distnbutive lattice, 
Smarandache semirings. 

Definition [1] : 

A non-empty set S is said to be a semiring if on S is defined two binary closed 
operations + and x such that (S, +) is an abelian semigroup with 0 and (S, x) is a 
semigroup and multiplication distributes over addition from the left and from the right. 

A semiring is a strict semiring if x + Y = 0 implies x = y = O. Semiring is 
commutative if (S, x) is a commutative semigroup. A commutative semiring is a 
semifield if (S, x) has a unit element and x x y = 0 in S if and only if x = y = O. For more 
properties ofsemirings please refer [1] , [3] , [4] and [5]. 

Definition 1: 

The Smarandache semiring is defined [4] to be a semiring S such that a proper 
subset A of S is a sernifield (with respect to the same induced operation). That is 4> "" A c 
S. 

Example 1: Let MoXD = {(Rij)/aij E Z+ u {O}}. Here, Z+ denotes the set of positive 
integers. Clearly Moxn is a semiring with the matrix addition and matrix multiplication. 
For consider A = {(aij) I aij = 0, i "" j and Rij E z+ U {O}}, that is all diagonal matrices with 
entries from Z+ u {O}. Clearly, A is a semifield. Hence MnxD is a Smarandache semiring. 

88 



Example 2: Let S be the lattice given by the following figure. Clearly S is a semiring 
under min-max operation. S is a Smarandache semiring for A = {I, b, g, ~ O} is a 
semi:field. 

a b 

Theorem 2: 

Every Wstn"butive lattice with 0 and 1 is a Smarandache Semiring. 

Proo/" Any chain connecting 0 and 1 is a lattice which is a sernifield for every chain 
lattice is a semiring which satisfies all the postulates of a semifield. Hence the claim. 

Definition 3: 

The Smarandache sub-semiring [4] is defined to be a Smarandache semiring B 
which is a proper subset of the Smarandache semiring S. 

Examvle 3: Let Mnx D be the semiring as in Example 1. Clearly Mnx D is a Srnarandache 
semiring. Now, 

all 0 0 0 

0 0 0 0 

B= all and am E Z+ V {OJ 

0 0 0 

0 0 0 arm 
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is a Smarandache sub-semiring. 

Example 4: Let M2<2 ~ {(: :) f, b, c, d E Z· U {o}}. Clearly M"" under the matrix 

addition and multiplication is a semiring which is not a semifield. But M2x2 is a 

Snmandache semrng for N ~ {(: ~)/~ b E Z· } u {( ~ m ~ a semifiel~ 

Theorem 4: 

Not all sernirings are Smarandache semirings. 

Proof: Let S = z+ U {OJ. (S, +, x) is a semiring which has no proper semifield contained 
in it. Hence the claim. 

Defmition 5: 

The Smarandache semifield [4] is defined to be a semifield (S, +, x) such that a 
proper subset of S is a K - semi algebra (with respect with the same induced operations 
and an external operation). 

Example 5: Let S = r u {OJ. Now, (S, +, x) is a semifield. Consider pES, P any prime. 
A = to, p, 2p, ... } is a k-semi algebra. So (S, +, x) is a Smarandache semifield. 

Consequence 1: 

There also exist semifields whlch are not Smarandache semifields. The following 
example illustrates the case. 

Example 6: Let S = Q+ U {OJ. (S, +, x) is a semifield but it is not a Smarandache 
semifield. 

Example 7: Let S = Z+ U {OJ. Now (S, +, x) is a semifield. Let S[x] be polynomial 
semiring in the variable x. Clearly S[x] is a Smarandache semiring for S is a proper 
subset ofS[x] is a semifield. 

Theorem 5: 

Let S be any semifield. Every polynomial semiring is a Smarandache semiring. 

Proof Obvious from the fact S is a semifield contained in S[x]. 

We now pose an open problem about the very existence of finite semirings and 
Srnarandache semirings that are not distributive lattices. 
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Problem 1: Does there exist a Smarandache semiring S offinite order? (S is 
not a finite distnbutive lattice)? 

Note: 

We do not have finite seroirings other than finite distributive lattices. Thus the 
existence of finite semirings other than finite distributive lattices is an open problem even 
in semirings. 
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The sequence of prime numbers 

Sebastian Mm-tln Ruiz 

9 October 2000 

This article lets out a law of recurrence in order to obtain the sequence of 
prime numbers {Pk h2: I expressing PHI us a function of PI, 1'2, - - . ,Pi-

Suppose we can find a function Gk(n) with t.he following property: 

{

I if 
Gk(n) = ~ if 

something if 

n < Pk+1 

n = Pk+l 
n > Pk+I 

This is a. variation of the Smarandache Prime Function [2]. 
Then we can write down a recurrence formula for Pk as follows. 
Consider the product: 

TTl 

II Gk(s) 
'=Pk+l 

If Flo < m < PHI one has 

since Gk(p"+l) = 0 
Hence 

fn 1n 

II Gk(S) = II (-1) = (_1)m-Pk 

_=p,,+l '=Pk+l 

m 

IT Gk(s) = 0 
'=Pk+l 

21Jk rn 

L (_l)m-Pk IT O,,(s) = 

Pk+,-l m ~p, m 

L (_l)m-Pk IT Gds ) + L (_l)m-Pk II Gk(s) 
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(The second addition is zero since all the products we have the factor G J; (1'):+1) = 
0) 

Pk+,-l 

= L (_l)m-l'k(_l)m-Pk 
m=Pk+l 

= 1'1;+1 - 1 - (pI; + 1) + 1 = PHI - Pk - 1 

so 
21)k 

1'1:+1=1'1:+ 1 + L (_1)m-Pk 

which is a recurrence relation for PI;. 
We now show how to fmel sHch a function GJ; (n) whose definition depends 

only on the first k primes a.ntI not on an ex.plicit. knowledge ofp.I:+1' 
And to do so we defille1: 

logpl n logp2 11 

TJ;(n) = L L 
i,=IJ i,=() 

Let's see the V1~lue which Tk(n) t.akes for all n 2:: 2 integer. We distinguish 
two cases: 

Case 1: n < PI:+1 

The expression pi'p~2 ... p~k with il = 0,1,2·· .lo~, n i2 = 0,1,2· .. logp, n 
i!.; = 0,1,2· .. log"k n all the values occur 1,2,3, ... , n each one of them only 

once and moreover some more values, st.rictly greater than n. 
We can look at is. If 1 ~ m ~ none obt.ains t.hat m < 1'.1:+1 for which 

1 ~ m = pf' p~' ... P~~ ~ n. From where one deduces that 1 ~ p~. ~ n and for 
it 0 ~ ex, ~ logp. 11 for all s = 1,· .. ,k 

Therefore, for i, = ex, s = 1,2" .. , k we have the value m. This value only 
appears once, the prime number descomposit,ion of m is unique. 

III fact the sums of T!.;(n) can be achieved up to the highest power of 1'.1: 

contained in n instead of log!), rI. 

Therefore one has that 

log'l n log,,:: n 

TJ:(n)= L L 
i,=O iJ=1l 

IGiven that i. • = 1,2, .. " k only takes integel' v;,! UteS one appreciates that the sums of T.(n) 
are until E(lagp • n) where E(x) is the b.,..,atest integer ies.. than or equal to x. 
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since, in the case P~' p~l ... p~ would be greater tha.n n one has that: 

Case 2: n = Pk+! 

The expression IJ~'l}~2 . '.]J~ with it = 0,1,2·· . log", n i2 = 0, 1,2· .. logp2 n 
ik = 0,1,2·· .logp. 1L the values occur 1,2,3"" ,Pic+! - 1 each one of 

them only once and moreover some more values, strictly greater than PHl.0ne 
demonst.rates in a form simila.r to case 1. It doesn't take the value P"+! since it 
is coprime with Pl,1'2,···,1'1:. 

Therefore, 

n 
n-l 

In case 3: n > Pk+! it is not necessary to consider it. 
Therefore, one has: 

T,(n) ~ { 

and a'l a result: 

2" -1 
2" - 2 
somethin!l 

if 
if 
if 

n < Pic+! 

n = PIc+1 
n> ]1.,+1 

This is the summa.rized rebt.ion of recurrenr.e: 
Let's take Pl = 2 and for k ~ 1 we define: 

log .. " log., " 
''''', "( n Tk(n) = L L L Ic i, 

i,=1l i 2 =O i.=O QP3 
Gk (,,) = 2" - 2 - n(n) 

2Pk m 

) 
Pk+l = PI: + 1 + L (_l)m- p • II Gk(s) 

m=I,,+l '=p.+l 
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Hearylbstedt 

Abstract: This article has been iDspin:d by questions asb:d by C11ar1es Ashbacbcr 
in the Journal of R«reatiOMI Mathemdics, vol. 29.2 It a:JDCCI'J1S the 
Smarandachc Decmstructivc Scqucna:. This sc:qucna: is a special case of a more 
general wncateoatiOll and sequencing procedure which is the su!!jcct of this 
study • .Answers are given to the above questions. The properties of this kind of 
sc:qucnccs arc sh.ldicd with particular emphasis at the divisibility of their terms by 
primes. 

1. Iatrodamo. 

In this article the concatenation of a and b is expressed by a_b or simply ab when 
there can be no misunderstanding. Multiple concatenations like abcabcabc will be 
expressed by 3(abc). 
We consider n diffen:nt elements (or n objects) arranged (concatenated) one after the 
other in the following way to form: 

A=at&7 •• .a.. 
Infinitely many objects A, which will be referred to as cycles, are concatenated to 
form the chain: 

B= alll2 •• .a. al82 ••• 8a al82.·.a. ••• 
B contains identical elements which arc at equidistant positions in the chain. Let's 
writeBas 

B=bJbzbJ ... bt ... where bt=bj whenj=k (mod n), l:!O:jSn. 
An infintc sequence Ct, C2, C3, ••• Ck, ••• is formed by sequentially selecting 1,2,3, 
•. .k, '" elements from the chain B: 

Cl=bl=al 
C2=~b:J=a2a3 
C3=b4bsb(;=&J8S86 (JfD:!06, ifn=5 we would have C3=&Ja,al) 

The number of elements from the chain B used to form the first k-I tenns of the 
sequence C is 1+2+3+ .,. +k-l=(k-l}k/2. Hence 

Ck = b(k_l)k b(k-I)k ._bk(k+l) 
~I l-'--+l -2-

However, what is interesting to see is how Ck is expressed in terms of a., .•. 8n. For 
sufficiently large values ofk Ct will be composed of three parts: 

The first part: 
The middle part: 
The last part: 

Hence 

F(kFauav+l.' .lIe 
M(k)=AA ••• A. The number ofconcateDated A's depends on k. 
L(k)=al a.z ••• s. 

Ct=F(k)M(k)L(1c) (1) 

The number of elements used to form CltCz •... Ct is (k-l)kI2. Since the number of 
elements in A is finite there wm be infinitely many tenos C .. which have the same first 

element au. u can be determined from (k - l)k + 1 • u(mod n). There can be at most nZ 

2 
different combinations to fonn F(k) and L(k). Let Cj and Cj be two diffeJelJt terms for 
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which F(i)=F(j) and L(i}=L(j). They will then be separated by a number m of 
complete cycles of length II, i.e. 

(j-l)j (i -l)i 
-----=mn 

2 2 
Let's write j=i+p and see if p exists so that there is a solution for p which is 
independent ofi. 

(i+P-l )(i+p }(i-l )i=2mn 
r+2ip:t-p2 _i_p_i2+i=2mn 
2ip+p2 -p=2mn 
p2+P(2i-l )=2mn 

If n is odd we will put p=n to otain n+ 2i-l. or m=(n+2i-l)12. Ifn is even we put p=2n 
to obtain m=2n+2i-1. From this we see that the terms Ck have a peculiar periodic 
behaviour. The periodicity is p=n for odd n and p=2n for even n. Let's illustrate this 
for n=4 and n=5 for which the periodicity will be p=8 and p=5 respectively. 

Table 1. n=4. A9lbcd. B=abcd abed abed abed ...• 

1 Q Period # F{Q M{i~ L(Q 
1 a a 
2 be be 
3 dab 1 d ab 
4 cdab 1 cd ab 
5 cdabc 1 cd abc 
6 dabcda 1 d abed a 
7 bcdabcd 1 bed abed 
8 abcdabcd 1 2(abcd) 
9 abcdabcda 1 2(abed) a 
10 bcdabcdabc 1 bed abed abc 
11 dabcdabcdab 2 d 2(abcd) ab 
12 cdabcdabcdab 2 cd 2(abcd) ab 
13 cdabcdabedabc 2 cd 2(abed) abc 
14 dabcdabcdabcda 2 d 3(abcd) a 
15 bcdabcdabcdabcd 2 bed 3(abcd) 
16 abcdabcdabcdabcd 2 4(abcd) 
17 abcdabcdabcdabcda 2 4(abcd) a 
18 bcdabcdabcdabcdabc 2 bed 3(abcd) abc 
19 dabcdabcdabcdabcdab 3 d 4(abcd) ab 
20- cdabcdabcdabcdabcdab 3 cdcd 4(abccQ ab 
Note that the periodicity starts for i=3. 

Numerals are chosen as elements to illustrate the case 0=5. Let·s write i=s+k+pj, 
where s is the index of the tenn preceding the first periodical tenn, k=I.2. ... , p is the 
index of members of the period andj is the number oftbe period (for convenience the 
first period is numbered 0). The first part of Cj is denoted B(k) and the last part E(k). 
Ci is now given by the expression below where q is the number of cycles concatenated 
between the first part B(k) and the last part E(k). 

Cj=B(kLqA_E(k). where k is determined from i-s=k (mod p) 

Table 2. n=5. A=12345. B=123451234512345 .•.... 
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Q k q F(iP~ M(i) L(~E(k) 

1 1 1 
s=2 23 2 

j=O 
3 451 1 0 45 1 
4 2345 2 0 2345 
5 12345 3 I 12345 
6 123451 4 1 12345 I 
7 2345123 5 0 2345 123 

j=1 
3+5j 45123451 1 j 45 12345 I 
4+5j 234512345 2 j 2345 12345 
5+5j 1234512345 3 j+l 2(12345) 
6+5j 12345123451 4 j+l 2(12345) 1 
7+5j 234512345123 5 j 2345 12345 123 

';=2 
3+5j 4512345123451 1 j 45 2(12345) 1 
4+Sj 23451234512345 2 j 2345 2(12345) 

2. The Smant.dache DecoDStruc:tive SeqaeHe 

The Smarandacbe Deconstructive Sequence of integers [1] is constructed by 
sequentially repeating the digits 1 to 9 in the following way 

1,23,456,7891,23456,789123,4567891,23456789,123456789,1234567891, •.• 

The sequence was studied in a booklet by Kashihara [2] and a number of questions 00 

this sequence were posed· by Ashbacher [3]. In thinking about these questions two 
observations lead to this study. 
1. Why did Smarandache exclude 0 from the integers used to create the sequence? 

After all 0 is indispensib1e in all aritbmetics most of which can be done using 0 
and 1 only. 

2. The process used to create the Deconstructive Sequence is a process which applies 
to any set of objects as has been shown in the introduction. 

The periodicity and the general expression for terms in the "generalized 
deconstructive sequence" shown in the introduction may be the most important results 
of this study. These results will now be used to examine the questions raised by 
Ashbacher. It is worth noting that these divisibility questions are dealt with in baselO 
although only nine digits 1,2,3,4,5,6,7,8,9 are used to express terms in the sequence. 
In the last part of this article questions on divisibility will be posed for a 
dcconstructive sequence generated form A="'0123456789". 

For i>5 (s=5) any term Q in the sequence is composed by concatenating a first part 
B(k), a number q of cycles A "123456789" and a last part E(k), where i=5+k+9j, 
k==1,2, ••• ,9,j~, as expressed in (2) and q=j or j+l as shown in table 3. 
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Members of the Smarandache Deconstructive Sequence are now interpreted as 
decimal integers. The factorization ofB(k) and E(k) is shown in table 3. The last two 
columns of this table will be useful later in this article. 

6+9j-

7+9j 
8+9j 
9+9j 
l0+9j 
ll+9j 
12+9j 
13+9j 
14+9j 

Table 3. Factorization ofSmarandache Deconstructive Sequence 
i=5+k+9j 

k B(k) q E(k) Digit sum 

I 789=3·263 j 123=3·41 30+j·45 
2 456789=3·43·3541 j 1 40+j-45 
3 23456789 j 44+j-45 
4 j+l (j+l)45 
5 j+1 1 l+(j+l)45 
6 23456789 j 123=341 SO+j45 
7 456789=3·43·3541 j 123456=26.3.643 6O+j-4S 
8 789=3·263 j+1 1 25+(j+l}4S 
9 23456789 j 123456=26.3.643 6S+j-45 

*) where z depends on j. 

3~ 
? 

3 
No 
No 
9-3z * 
No 
No 
3 
No 
No 

Together with the factoization of the cycle A=1223456789=32·3607.3803 it is now 
possible to study some divisibility properties of the sequence. We will first find a 
general expression for q in tenns ofj and Ie. For this purpose we introduce: 

q(k)=O for k=1,2,3,6,7,9 and q(k)=l for k=4,S,8 
u(k)=l+[lOglO(E(k)] ifE(k) exists otherwise u(k)=O, Le. u(3)=u(4)=O 
8G,k)=O ifj=O and q(k)=O otherwise a(j.k)=1 

With the help of these functions we can now use table 3 to formulate the general 
expression 

j-J<-q(k) 

~k+9j. E(k)+o(j,k).A.lo-<t). ~)o'h + B(k).I09(j+q(t»H(k) (3) 
r~O 

Before dealing with the questions posed by Ashbacher we recall the familiar rules: An 
even number is divisible by 2; a number whose last two digits form a number which is 
divisible by 4 is divisible by 4. In general we have the following: 

Theorem. Let N be an n-digit integer such that N>2cz then N is divisible by 2(1 if and 
only if the number formed by the a. last digits ofN is divisible by 2'3.. 
Proof. To begin wwitb we note that 

If x divides a and x divides b then x divides (a+b). 
lfx divides one but not the other of a and b the x does not divide (a+b). 
If neither a nor b is divisIble by x then x may or may not divide (a+b). 

Let's write the n-digit number in the fonn a·IOIl+b. We then see from the following 
that a·l 011 is divisible by 2a.. 

10=0 (mod 2) 
lOO=rO (mod 4) 
1000=23.S3d) (mod 23

) 
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10~(mod2~ 
and then 

a·I O~ (mod 2~ independent of a. 
Now let b be the number fonned by the a last digits of N, we then see from the 
introductory remark. that N is divisible by 2a if and only if the number formed by the 
a last digits is divisible by 2a

• 

Question 1. Does every even element of the Smarandache Deconstructive Sequence 
contain at least three instances of the prime 2 as a factor? 

Question 2. If we form a sequence from the elements of the Smarandache 
Deconstructive Sequence that end in a 6, do the powers of2 that divide them form a 
monotonically increasing sequence? 

These two quetions are reelated and are dealt with together. From the previous 
analysis we know that all even elements of the Smarandache Deconstructive end in a 
6. For i!;5 they are: 

Cr456=57.~ 
Cs=23456=733.2s 

For i>5 they are of the tOrms: 
C12+9j and C14+9j which both end in ... 789123456. 

Examining the numbers formed by the 6, 7 and 8 last digits for divisibility by 26
, 27 

and 28 respectively we have: 
123456=~ ·3·643 
9123456=27.149.4673 
89123456 is not divisible by 28 

From this we conclude that all even Smarandache Deconstructive Sequence elements 
for ~12 are divisible by 27 and that no elements in the sequence are divisible by 
higher powers of2 than 7. 

Answer to Qu 1. Yes 
Answer to Qu 2. 'I1le sequence is mODotoDicaIIy increas~ for )sU. For ~U tile 
powers of 2 that divide evea elemeats reaaiD coustant = 2 • 

QuestiOQ 3. Let x be the largest integer such that 3x I i and y the largest integer such 
that 3Y I q. It is true that x is always equal to y? 

From table 3 we see that the only elements Ci of the Smarandache Deconstructive 
Sequence which are divisible by powers of 3 correspond to i=6+9j, 9+9j or 12+9j. 
Furthermore, we see that i=6+9j and C6+9j are divisible by 3, no more no less. The 
same is true for i=12+9j and CI2-+9j. So the statement holds in these cases. From the 
congruences 

9+9j=O (mod 3X
) for the index of tile element 

and 
45(1 +j)sO (mod 3Y) for the corresponding element 

we conclude that x=y. 
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Answer: The statemeot is true. It is interesting to note that, for example, the 729 
digit number C729 is divisible by 729. 

Question 4. Are there other patterns of divisibility in this sequence? 

A search for patterns would continue by examining divisibility by the next lower 
primes 5, 7, 11, ... It is obvious from table 3 and the periodicity of the sequence that 
there arc no elements divisible by S. Algorithm (3) will prove useful For each value 
of k the value of Cj depends on j only. The divisibility by a prime p is therefore 
detennined by finding out for which values ofj and k the congruence Q=O (mod p) 

j-l+q(k) lO9(j+q(t» -1 
holds. We evaluate LI09r = 09 and introduce G=109-1. We note that 

r-O 1-1 

G=34.37·333667. From (3) we now obtain: 

G·e
l

::: G.E(k)+(6(j.k)'A.+G.B(k»I~j+tj{k»+lI(k} -o(j.k)·A.lOlI(k} (3') 

The divisibility ofCj by a prime p other than 3, 37 and 333667 is therefore determined 
by solutions for j to the congruences G·Qi1OiO (mod p) which are of the fonn 

a.(I~)j+b.O(modp) (4) 

Table 4 shows the results from computer implementation of the congruences G·~O 
(mod p) for k= 1,2, .•. 9 and p<100. The appearance of elements divisible by a prime p 
is periodic, the periodicity is given by j=j.+m·d, m=1,2,3 ..... The flI'St element 
divisible by p appears for it corresponding to jt. In general the tenns Cj divisible by p 
are ~k+9(J.+md) where d is specific to the prime p and m=I,2,3, ..•• We note from 

table 4 that d is either equal to p-l or a divisor ofp-l except for the case p=37 which 
as we have noted is a factor of A Indeed this periodieity foUows from Euler's 
extension of Fermat's little theorem because we can write (mod p): 

Finally we note that the periodicity for p=37 is d=37, which is found by examining 
(3') modulus 372

• 
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Table 4. Smarandache Deoonstroctive elements divisible by p. 

p " h jl d P " h jl d 
7 4 18 1 2 47 1 150 16 46 
11 4 18 1 2 47 2 250 27 46 
13 4 18 1 2 47 3 368 40 46 
13 8 22 1 2 47 4 414 45 46 
13 9 14 0 2 47 S 46 4 46 
17 1 6 0 16 47 6 164 17 46 
17 2 43 4 16 47 7 264 28 46 
17 3 « 4 16 47 8 400 43 46 
17 4 144 15 16 47 9 14 0 46 
17 S 100 10 16 53 1 24 2 13 
17 6 101 10 16 53 4 117 12 13 
17 7 138 14 16 53 7 93 9 13 
17 8 49 4 16 59 1 21J7 29 58 
17 9 95 9 16 59 2 511 56 58 
19 1 15 1 2 59 3 413 45 58 
19 4 18 1 2 59 4 522 57 58 
19 7 21 1 2 59 5 109 J1 58 
23 1 186 20 22 59 6 11 0 58 
23 2 196 21 22 59 7 255 27 58 
23 3 80 8 22 59 8 256 27 58 
23 4 198 21 22 59 9 266 28 58 
23 5 118 12 22 61 2 79 8 20 
23 6 200 21 22 61 4 180 19 20 
23 7 12 0 22 61 6 101 10 20 
23 8 184 19 22 67 4 99 10 11 
23 9 14 0 22 67 8 67 6 11 
29 1 24 2 28 67 9 32 2 11 
29 2 115 12 28 71 1 114 12 35 
29 3 197 21 28 71 3 53 5 35 
29 4 252 27 28 71 4 315 34 35 
29 5 55 5 28 71 5 262 28 35 
29 6 137 14 28 71 7 201 21 35 
29 7 228 2. 28 73 4 72 7 8 
29 8 139 I. 28 79 4 117 12 13 
29 9 113 11 28 83 1 348 38 41 
31 3 26 2 5 83 2 133 14 41 
31 4 45 4 5 83 .. 369 40 41 
31 5 19 1 5 83 6 236 25 41 
37 1 222 2. 37 83 7 21 1 41 
37 2 124 13 37 83 8 112 11 41 
37 3 98 10 37 83 9 257 27 41 
37 4 333 36 37 89 2 97 10 44 
37 5 235 2S 37 89 .. 396 43 44 
37 6 209 22 37 89 6 299 32 44 
37 7 111 11 37 97 1 87 9 32 
37 8 13 0 37 97 2 115 12 32 
37 9 320 34 37 97 3 107 11 32 
41 4 45 4 5 97 4 288 31 32 
43 1 33 3 7 97 5 181 19 32 
43 4 63 6 7 97 6 173 18 32 
43 7 30 2 7 97 7 201 21 32 

97 8 202 21 32 
97 9 86 8 32 
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QuestioD: Table 4 indicates some interesting patterns. For instance, the primes 19,43 
and 53 only divides elements corresponding to k=1, 4 and 7 for j<250 which was set 
as an upper limit for this study. Simiarly, the primes 7, II, 41, 73 and 79 only divides 
elements corresponding to k=4. Is 5 the only prime that cannot divide an element of 
the Smarandache Deconstructive Sequence? 

3. A Dec:onstructive Sequeoce geoerated by the cycle A=Ol23456789 

Instead of sequentially repeating the digits 1-9 as in the case of the Smarandache 
Deconstructive Sequence we will use the digits 0-9 to fonn the corresponding 
sequence: 

0,12,345,6789,01234,567890,1234567,890 12345,67890 1234,567890 1234, 
56789012345,678901234567, •.• 

In this case the cycle bas n= 10 elements. As we have seen in the introduction the 
sequence then has a period 2n=20. The periodicity starts for i=8. Table 5 shows how, 
for i>7, any term q in the sequence is composed by concatenating a first part B(k), a 
nwnber q of cycles A="0123456789" and a last part E(k), where i=7+k+20j, k=1,2, 
.•. 20, j~, as expressed in (2) and q=2j. 2jH or 2j+2. In the analysis of the sequence 
it is important to distinguish between the cases where E(k)=O, k=6,11,14,19 and ~ 
where E(k) does not exist, i.e. k=8,12,13,14. In order to cope with this problem we 
introduce a function u(k) which will at the same time replace the functions o(j,k) and 
u=l+[logloE(k)] used previously. u(k) is defined as shown in table S. It is now 
possible to express C in a single fonnula. 

q(k)+2j-1 

Ci = C,+lt+20j = E(k)+(A· L (1()'0). + B(k).(1010)q(k)+2j )loa<lt) (5) 
'30 

The fonnula for q was implemented modulus prime numbers less than 100. The 
result is shown in table 6. Again we note that the divisibility by a prime p is periodic 
with a period d which is equal to p-l or a divisor ofp-I, except for p=ll and p=41 
which are t8ctors of 1010_1. The cases p=3 and 5 have very simple answers and are 
not included in table 6. 
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Table 5.0=10, A=0123456789 

i k B(k) q E(k) u(k) 
8+20j I 89 2j 012345=3·5·823 6 
9+20j 2 6789=3·31·73 2j 01234=2·617 S 
10+20j 3 56789=109·521 2j 01234=2·617 5 
1l+20j 4 56789=109·521 2j 012345=3·5·823 6 
12+20j 5 6789=3·31·73 2j 01234567=127·9721 8 
13+20j 6 89 2j+l 0 1 
14+20j 7 123456789=32.3607.3803 2j 01234=2·617 5 
15+20j 8 56789=109·521 2j+l 0 
16+20j 9 2j+1 012345=3·5·823 6 
17+20j 10 6789=3·31·73 2j+l 012=22.3 3 
18+20j 11 3456789=3· 7·97·1697 2j+l 0 1 
19+20j 12 123456789=32.3607. 3803 2j+l 0 
20+20j 13 2j+2 0 
2l+20j 14 2j+2 0 1 
22+20j 15 123456789=32.3607.3803 2j+l 012=z2·3 3 
23+20j 16 3456789=3·7·97·1697 2j+1 012345=3·5·823 6 
24+2Oj 17 6789=3·31·73 2j+2 0 
25+20j 18 2j+2 01234=2·617 5 
26+20j 19 56789=109·521 2j+2 0 1 
27+20j 20 123456789=32.3607.3803 2j+1 01234567=127·9721 8 

Table 6. Divisibility of the 10-cycle deconstructive sequence by primes p597 

P k i, h d p k h j1 d 
7 3 30 1 3 11 11 18 0 11 
7 6 13 0 3 11 12 219 10 11 
7 7 14 0 3 11 13 220 10 11 
7 8 15 0 3 11 14 221 10 11 
7 11 38 1 3 11 15 202 9 11 
7 12 59 2 3 11 16 83 3 11 
7 13 60 2 3 11 17 .oW 1 11 
7 14 61 2 3 11 18 185 8 11 
7 15 22 0 3 11 19 146 6 11 
7 18 45 1 3 11 20 87 3 11 
7 19 46 1 3 13 2 49 2 3 
7 20 47 1 3 13 3 30 1 3 
11 1 88 .. 11 13 4 11 0 3 
11 2 9 0 11 13 12 59 2 3 
11 3 110 5 11 13 13 60 2 3 
11 4 211 10 11 13 14 61 2 3 
11 5 132 6 11 17 1 48 2 4 
11 6 133 6 11 17 5 32 1 4 
11 7 74 3 11 17 10 37 1 4 
11 8 35 1 11 17 12 79 3 4 
11 9 176 8 11 17 13 80 3 4 
11 10 137 6 11 17 14 81 3 4 
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Table 6, cont. Divisibility of the IO-cycle deconstructive sequence by primes p~97 

P k i, j1 d P k i, j1 d 
17 16 43 1 4 41 11 678 33 41 
19 1 128 6 9 41 12 819 40 41 
19 2 149 7 9 41 13 820 40 41 
19 3 90 4 9 41 14 821 40 41 
19 4 31 1 9 41 15 142 6 41 
19 5 52 2 9 41 16 703 34 41 
19 10 117 5 9 41 17 384 18 41 
19 12 179 8 9 41 18 205 9 41 
19 13 180 8 9 41 19 206 9 41 
19 14 181 8 9 41 20 467 22 41 
19 16 63 2 9 43 2 109 5 21 
23 1 168 8 11 43 3 210 10 21 
23 2 149 7 11 43 4 311 15 21 
23 3 110 5 11 43 6 173 8 21 
23 4 71 3 11 43 10 217 10 21 
23 5 52 2 11 43 12 419 20 21 
23 10 217 10 11 43 13 420 20 21 
23 12 219 10 11 43 14 421 20 21 
23 13 220 10 11 43 16 203 9 21 
23 14 221 10 11 43 20 247 11 21 
23 16 223 10 11 47 1 28 1 23 
29 2 129 6 7 47 2 69 3 23 
29 4 11 0 7 47 3 230 11 23 
29 10 97 4 7 47 4 391 19 23 
29 12 139 6 7 47 5 432 21 23 
29 13 140 6 7 47 6 113 5 23 
29 14 141 6 7 47 7 214 10 23 
29 16 43 1 7 47 8 15 0 23 
31 3 30 1 3 47 9 376 18 23 
31 9 56 2 3 47 12 459 22 23 
31 12 59 2 3 47 13 460 22 23 
31 13 60 2 3 47 14 461 22 23 
31 14 61 2 3 47 17 84 3 23 
31 17 64 2 3 47 18 445 21 23 
37 2 9 0 3 47 19 246 11 23 
37 3 30 1 3 47 20 347 16 23 
37 4 51 2 3 53 3 130 6 13 
37 12 59 2 3 53 12 259 12 13 
37 13 60 2 3 53 13 260 12 13 
37 14 61 2 3 53 14 261 12 13 
41 1 788 39 41 59 2 269 13 29 
41 2 589 29 41 59 3 290 14 29 
41 3 410 20 41 59 4 311 15 29 
41 4 231 11 41 59 7 474 23 29 
41 5 32 1 41 59 8 395 19 29 
41 6 353 17 41 59 9 496 24 29 
41 7 614 30 41 59 10 297 14 29 
41 8 615 30 41 59 11 78 3 29 
41 9 436 21 41 59 12 579 28 29 
41 10 117 5 41 59 13 580 28 29 
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Table 6, cont. Divisibility of the 10-cycle deconstructive sequence by primes ~97 

P k i1 h d P k i1 j1 d 
59 14 581 28 29 71 8 95 4 7 
59 15 502 24 29 71 12 139 6 7 
59 16 283 13 29 71 13 140 6 7 
59 17 84 3 29 71 14 141 6 7 
59 18 185 8 29 71 18 45 1 7 
59 19 106 4 29 71 19 26 0 7 
61 12 59 2 3 73 7 14 0 2 
61 13 60 2 3 73 9 36 1 2 
61 14 61 2 3 73 12 39 1 2 
67 1 328 16 33 73 13 40 1 2 
67 2 509 25 33 73 14 41 1 2 

"67 3 330 16 33 73 17 44 1 2 
67 4 151 7 33 73 19 26 0 2 
67 5 332 16 33 79 1 228 11 13 
67 6 273 13 33 79 3 130 6 13 
67 7 234 11 33 79 5 32 1 13 
67 8 95 4 33 79 12 259 12 13 
67 9 56 2 33 79 13 280 12 13 
67 10 557 27 33 79 14 261 12 13 
67 11 378 18 33 83 3 410 20 41 
67 12 659 32 33 83 9 476 23 41 
67 13 660 32 33 83 12 819 40 41 
67 14 661 32 33 83 13 820 40 41 
67 15 282 13 33 83 14 821 40 41 
67 16 103 4 33 83 17 344 16 41 
67 17 604 29 33 89 12 219 10 11 
67 18 565 27 33 89 13 220 10 11 
67 19 "'26 20 33 89 14 221 10 11 
67 20 387 18 33 97 8 455 22 24 
71 1 8 0 7 97 12 479 23 24 
71 3 70 3 7 97 13 480 23 24 
71 5 132 6 7 97 14 481 23 24 
71 7 114 5 7 97 18 25 0 24 

1. F. Smarandad1c. Only Problems. Not Solutions, Xiquan Publishing Hoose, Phoenix, Arizona, 
1993. 

2 K. Kashihara, Cmnments and Topics on SmarantJache lJeconsJructiw Sequence. Emus University 
Press, Vail. Arizcoa, 1996. 

3. C. Ashbacbcr, Some Problems Concerning the Smarandoche Deconstructive Sequence, Journal of 
Recreatiooal Mathematics. Vol 29, Number 2 -1998, Baywood Publishing Company. Inc. 
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On a Deconcatenation Problem 

Henry Ibstedt 

Abstract: In a recent study of the PrimaIity oj the Smarandache Symmetric 
Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of the 
prime factor 333667 in the factorization of the terms of the second order 
sequence. The question if this prime factor occurs peridically was raised. The odd 
behaviour of this and a few other primefadors of this sequence will be explained 
and details of the periodic occurence of this and of several other prime factors 
will be given. 

Definition: The nth term of the Smarandache symmetric sequence of the second order 
is defined by S(n)=123 ... n_n ... 321 which is to be understood as a concatenation I of 
the first n natural numbers concatenated with a concatenation in reverse order of the n 
f~tnahrralnumbers. 

Factorization and Patterns of DivisIoility 

The first five terms of the sequence are: 11, 1221, 123321, 12344321, 1234554321. 
The number of digits D(n) of Sen) is growing rapidly. It can be found from the 
formula: 

D(n) = 2k(n +1)- 2(lO
t 

-I) for n in the intervall0k-I~<Hf-1 (1) 
9 

In order to study the repeated occurrance of certain prime factors the table of Sen) for 
XC:;100 produced in [1] has been extended to~. Tabirca's aim was to factorize the 
terms S(n) as far as possible which is more ambitious then the aim of the present 
calculation which is to find prime factors which are less than 108

• The result is shown 
in table 1. 

The computer file containing table 1 is analysed in various ways. Of the 664579 
primes which are smaller than 107 only 192 occur in the prime factoriztions of Sen) 
for 1~. Of these 192 primes 37 ocCur more than once. The record holder is 
333667. the 28693th prime, which occurs 45 times for l~OO while its neighbours 
333647 and 333673 do not even occur once. Obviously there is something to be 
explained here. The frequency of the most frequently occurring primes is shown 
below .. 

Table 2. Most frequently occurring primes . 

1 In this article the concatenation of a and b is written a_b. Multiplication ab is often made explicit by 
writing a.b. When there is no reason for misunderstanding the signs "_" and "." are omitted. Several 
tables contain prime factorizations. Prime factors are given in ascending order, multiplication is 
expressed by"." and the last factor is followed by .... " if the factorization is incomplete or by Fxxx 
indicating the number of digits of the last factor. To avoid typing errors all tables are electronically 
transferred from the calculation program, which is DOS-based, to the wordprocessor. All editing has 
been done either with a spreadsheet program or directly with the text editor. Full page tables have been 
placed at the end of the article. A non-proportional font has been used to illustrate the placement of 
digits when this has been found useful. 
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The distribution of the primes 11,37,41,43,271,9091 and 333667 is shown in table 
3. It is seen that the occurance patterns are different in the intervals 1~, 1O~99 
and lOO~Qoo. Indeed the last interval is part of the intervalloo~~99. It would 
have been very interesting to include part of the interval 1000<0<9999 but as we can 
see from (1) already S(looo) has 5786 digits. Partition lines are drawn in the table to 
highlight the different intervals. The less frequent primes are listed in table 4 where 
primes occurring more than once are partitioned. 

From the patterns in table 3 we can formulate the occurance of these primes in the 
intervals 1~9, 1~9 and l00<-IlQoo, where the formulas for the last interval are 
indicative. We note, for example, that 11 is not a factor of any term in the interval 
l00<~999. This indicates that the divisibility patterns for the interva11~9999 
and further intervals is a completely open question. 

Table 5 shows an analysis of the patterns of occurance of the primes in table 1 by 
interval. Note that we only have observations up to n=2oo. Nevertheless the interval 
l00<~99 is used. This will be justified in the further analysis. 

Table 5. Divisibility patterns 

Interval p n Range for j 

1~ 3 2+3j j=O.l._ 

1~ 3j j .. l.2._ 

~9 11 A1.1 values of n 
10~99 12+11j j=O,l. - .7 

20+11j j=O.l. - .7 
100~999 None 

1~9 37 2+3j j .. 0.l,2 
3+3j j=0.1.2 

10~99 12+3j j .. O,l._.28.29 

100~999 n2+37j j=0.1._.23 
l.36+37j j=O,l._.23 

1~9 41 4+Sj j=O.l 
5 

10~999 14+5j j=O,l._.197 

~ 43 None 
l.0~99 1l+2l.j j=O.1.3.4 

24+2l.j j=0.1.2.3 
100~999 100 

107+7j j=O,l.._,127 
~9 271 4+Sj j=O.l. 

5 
10~999 14+5j j=O,l.._.197 

l.~999 909l. 9+Sj j=0.1._,98 

l.~9 333667 8,9 

10~99 18+9j j=O.1._.9 

100~999 102+3j j=O,l._.299 

We note that no terms are divisible by 11 for n>100 in the intervall~QOO and 
that no term is divisible by 43 in the intervall~9. Another remarkable observation 
is that the sequence shows exactly the same behaviour for the primes 41 and 271 in 
the intervals included in the study. Will they show the same behaviour when ~1000? 
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Consider 
S(n)=12 ... n_n ... 21. 

Let P be a divisor of Sen). We will construct a number 
N=12 ... n_O .. O_n ... 21 (2) 

so that p also divides N. What will be the number of zeros? Before discussing this 
let's consider the case p=3. 

Case 1. p=3. 

In the case p=3 we use the familiar rule that a number is divisible by 3 if and only if 
its digit sum is divisible by 3. In this case we can insert as many zeros as we like in 
(2) since this does not change the sum of digits. We also note that any integer fonned 
by concatenation of three consecutive integers is divisible by 3, cf a_a+Ca+2, digit 
sum 3a+3. It follows that also a_a+ l_a+2_a+2_a+ Ca is divisible by 3. For a=n+ 1 we 
insert this instead of the appropriate number of zeros in (2). This means that if S(n)=O 
(mod 3) then S(n+3)=O (mod 3). We have seen that S(2)=O (mod 3) and S(3)=O (mod 
3). By induction it follows that S(2+3j)=O (mod 3) for j=1,2, ... and S(3jF-O (mod 3) 

. for j=1,2, .... 

We now return to the general case. Sen) is deconcatenated into two numbers l2 ... n 
and n ... 21 from which we form the numbers 

A=12 .. .n·l01+[log,o B] andB=n ... 21 
We note that this is a different way of writing Sen) since indeed A+B=S(n) and that 
A+B=O (mod p). We now form M=A·lOs+B where we want to determine s so that 
M=O (mod p). We write M in the fonn M=A(IO'-I)+A+B where A+B can be ignored 
mod p. We exclude the possibility A=O (mod p) which is not interesting. This leaves 
us with the congruence 

M=A(lO'-I)=O (mod p) 
or 

10'-1=0 (mod p) 
We are particularly interested in solutions for which 

pE {11,37,41,43,271,9091.333667} 
By the nature of the problem these solutions are periodic. Only the two fIrst values of 
s are given for each prime. 

Table 6. 10'-1~O (mod p) 

We note that the result is independent of n. This means that we can use n as a 
parameter when searching for a sequence C=n+l_n+2_ ... n+k_n+k_ ... n+2_n+1 such 
that this is also divisible by p and hence can be inserted in place of the zeros to form 
S(n+k) which then fIlls the condition S(n+kF-O (mod p). Here k is a multiple of s or 
sfl in case s is even. This explains the results which we have already obtained in a 
different way as part of the factorization of Sen) for ~OO, see tables 3 and 5. It 
remains to explain the periodicity which as we have seen is different in different 
intervals lOu~lOu_1. 
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This may be best done by using concrete examples. Let us use the sequences starting 
with n=12 for p=37, n=12 and n=20 for p=I1 and n=102 for p=333667. At the same 
time we will illustrate what we have done above. 

Case 2: n=12, p=37. Period=3. Interval: 1O~~99. 

S(n)= 123456789101112 .121110987654321 
N= 123456789101112000000000000121110987654321 
c= 131415151413 
S(n+k) =123456789101112131415151413121110987654321 

Let's look at C which carries the explanation to the periodicity. We write C in the 
form 

C=101010101010+30405050403 

We know that C=O (mod 37). What about 101O10101O1O? Let's write 
101010101010=10+103+105+_+10 11= (1012_1) /9=0 (mod 37) 

This congruence mod 37 has already been established io table 6. It follows that also 
30405050403=0 (mod 37) 

and that 
x·(101010101010)=0 (mod 37) for x = any integer 

Combining these observations we se that 
232425252423, 333435353433, _ 939495959493=0 (mod 37) 

Hence the periodicity is explained. 

Case 3a: n=12, p=Il. Period=Il. Interval: l~. 

S(12)=12_ .. _12 12_ .• _21 
S(23)=12_ .. _121314151617181920212223232221201918171615141312_ .. _21 
C= 13141516171819202122232322212019181716151413= 
C1= 10101010101010101010101010101010101010101010+ 
C2= 3040506070809101112131312111009080706050403 

From this we form 
2·C1+C2= 23242526272829303132333332313029282726252423 

which is NOT what we wanted, but CI=O (modi 1) and also CIIlO=O (mod 11). 
Hence we form 

2·C1+C1/10+C2=24252627282930313233343433323130292827262524 
which is exactly the C-term required to form the next term S(34) of the sequence. For 
the next term S(45) the C-term is formed by 3·C1+2·CIII0+C2 The process is 
repeated adding Cl+C11l0 to proceed from a C-term to the next until the last term 
<100, i.e. S(89) is reached. 

Case 3b: n=20, p=ll. Period=ll. Interval: 1~n$9. 

This case does not differ much from the case 0=12. We have 
S (20) =12_ .. _20 20_ .. _21 
S(31)=12_ .. _202122232425262728293031313029282726252423 222120_ .. _21 
C= 21222324252627282930313130292827262524232221= 
C1= 10101010101010101010101010101010101010101010+ 
C2= 1020304050607080910111110090807060504030201 
The C-term for S(42) is 
3·C1+C1/10+C2=32333435363738394041424241403938373635343332 

In general C=x·Cl+{x-l}CIIIO+C2 for x=3,4,5, .. ,8. For x=8 the last term S(97) of 
this sequence is reached. 

110 



Case 4: n=102, p=333667. period=3. Interval: 1oo:5;n$999. 

S(102)=12_ .. _101102 102101_ .. _21 
S(105)=12_ .. _101102103104105105104103102101_ .. _21 
C= 103104105105104103 
C1= 100100100100100100 

=0 (mod 333667) 
=0 (mod 333667) 

C2= 3004005005004003 =0 (mod 333667) 

Removing 1 or 2 zeros at the end of C1 does not affect the congruence modulus 
333667, we have: 
C1'= 10010010010010010 
C1"= 1001001001001001 
We now form the combinations: 

x·C1+y·C1' +z·C1' , +C2=0 (mod. 333667) 

=0 (mod 333667) 
=0 (mod 333667) 

'This, in my mind, is quite remarkable: All 18-digit integers formed by the 
concatenation of three consecutive 3-digit integers followed by a concatenation of the 
same integers in descending order are divisible by 333667, example 
376377378378377376=0 (mod 333667). As far as the C-terms are concerned all Sen) 
in the range 100:5;n<999 could be divisible by 333667, but they are not Why? It is 
because S(1OO) and S(101) are not divisible by 333667. Consequently n=I00+3k and 
101+3k can not be used for insertion of an appropriate C-value as we did in the case 
of S(102). 'This completes the explanation of the remarkable fact that every third term 
S(I02+3j) in the range l00<-I1$99 is divisible by 333667. 

1bese three cases have shown what causes the periodicity of the divisibility of the 
Smarandache symmetric sequence of the second order by primes. The mechanism is 
the same for the other periodic sequences. 

Beyond 1000 

We have seen that numbers of the type: 
10101010_10, 100100100-100, 10001000_1000, etc 

play an important role. Such numbers have been factorized and the occurrence of our 
favorite primes 11, 37, ... ,333667 have been listed in table 7. In this table a number 
like 100100100100 has been abbreviated 4(100) or q(E), where q and E are listed in 
separate columns. 

Question 1. Does the sequence of terms Sen) divisible by 333667 continue beyond 
WOO? 

Although Sen) was partially factorized only up n=2oo we have been able to draw 
conclusions on divisibility up n=1ooo. The last term that we have found divisible by 
333667 is S(999). Two conditions must be met for there to be a sequence of terms 
divisible by p=333667 in the interval1~999. 

Condition 1. There must exist a number 10001000 ... 1000 divisible by 333667 to 
ensure the periodicity as we have seen in our case studies. 
In table 7 we find q=9, E=looo. This means that the periodicity will be 9 - if it exists, 
i.e. condition 1 is met 
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Condition 2. There must exist a term S(n) with ~1000 divisible by 333667 which 
will constitute the first term of the sequence. 
The last term for n<1000 which is divisible by 333667 is S(999) from which we build 

S(108)=12_999_1000 ___ 1008_1008 __ 1000_999--21 

where we deconcatenate 100010011002 ... 10081008 ... 10011000 which is divisible by 
333667 and provides the C-term (as introduced in the case studies) needed to generate 
the sequence, i.e. condition 2 is met. 

We conclude that S(I008+9j)=O (mod 333667) for j=O,1,2, ... 999. The last term in 
this sequence is S(9999). From table 7 we see that there could be a sequence with the 
period 9 in the interval l0000<.-n=s;99999 and a sequence with period 3 in the interval 
l00000<~99999. It is not difficult to verify that the above conditions are fIlled also 
in these intervals. This means that we have: 

S(1oo8+9j)=O (mod 333667) 
S(IOOO8+9j)=O (mod 333667) 
S(I00002+3j)=O (mod 333667) 

forj=OI,2, ... ,999, i.e. 103~1O4_1 
for j=OI,2, .•. ,9999, i.e. 104:5n::;lOS-1 
forj=OI,2, ... ,99999, i.e. IOs~106_1 

It is one of the fascinations with large numbers to find such properties. This 
extraordinary property of the prime 333667 in relation to the Smarandache symmetric 
sequence probably holds for n>106. It easy to loose contact with reality when plying 
with numbers like this. We have S(999999)=O (mod 333667). What does this number 
S(999999) look like? Applying (1) we find that the number of digits D(999999) of 
S(999999) is 

D(999999)=2·6.106-2·(l06-)19=11777778 
Let's write this number with 80 digits per line, 60 lines per page, using both sides of 
the paper. We will need 1226 sheets of paper - more that 2 reams! 

Question 2. Why is there no sequence of S(n) divisible by II in the interval 
I ()()<-D:5999? 

Condition!' We must have a sequence of the form 100100.: divisible by 11 to ensure 
the periodicity. As we can see from table 7 the sequence 100100 fills the condition 
and we would have a periodicity equal to 2 if the next condition is met. 

Condition 2. There must exist a term S(n) with ~100 divisible by II which would 
constitute the first term of the sequence. This time let's use a nice property of the 
prime 11: 

Hf=(-lt (mod 11) 
Let's deconcatenate the number a_b corresponding to the concatenation of the 
numbers a and b: We have: 

( -a+b if l+[loglob] is odd 
a_b=a . 1 OI+[Iog'Db] + b=~ 

l a+b if 1+[Iog1ob] is even 

Let's first consider a deconcatenated middle part of S(n) where the concatenation is 
done with tbree-digit integers. For convienience I have chosen a concrete example -
the generalization should pose no problem 
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27327427527527427352-7+3-2+7-4+2-7+5-2+7-5+2-7+4-2+7-350 (mod 11) 
+-+-+-+-+-+-+-+-+-

It is easy to see that this property holds independent of the length of the sequence 
above and whether it start on + or -. It is also easy to understand that equivalent 
results are obtained for other primes although factors other than +1 and -1 will enter 
into the picture. 

We now return to the question of finding the first term of the sequence. We must start 
from n=97 since S(97) it the last term for which we know that S(nF-O (mod 11). We 
form: 

9899100101-n_D-101100999852 (mod III independent of nc1000. 
+-+-+-+-+-- --+-+-+-+-+-

This means that S(n)=:2 (mod 11) for 1~99 and explains why there is no 
sequence divisible by 11 in this interval. 

Question 3. Will there be a sequence divisible by 11 in the interval 1000<-11$9991 

Condition 1. A sequence 10001000 ... 1000 divisible by 11 exists and would provide a 
period of 11, se table 7. 

Condition 2. We need to find one value n ~1000 for which S(n)=O (mod 11). We 
have seen that S(999)=2 (mod 11). We now look at the sequences following S(999). 
Since S(999)=2 (mod 9) we need to insert a sequence l0001001..m_m ... l0011()()()=9 
(mod 11) so that S(m)=O (mod H).Unfortunately m does not exist as we will see 
below 

1000100052 (mod 11) 
+-+-+-+-
1 1 
100010011001100052. (mod 11) 
+-+-+-+-+-+-+-+-
111 1 

1 1 
100010011002100210011000=0 (mod l1l 
+-+-+-+-+-+-+-+-+-+-+-+-
1 1 1 1 1 1 

1 2 2 1 
100010011002100310031002100110005-457 (mod 11) 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
111 1 1 1 1 1 

12332 1 

Continuing this way we find that the residues form the period 2,2,0,7,1,4,5,4,1,7,0. 
We needed a residue to be 9 in order to build sequences divisible by 9. We conclude 
that Sen) is not divisible by 11 in the interval l000<-1lS9999. 

Trying to do the above analysis with the computer programs used in the early part of 
this study causes overflow because the large integers involved. However, changing 
the approach and performing calculations modulus 11 posed no problems. The above 
method was preferred for clarity of presentation. 
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Epilog 

There are many other questions that may be interesting to look into. This is left to the 
reader. The author's main interest in this has been to develop means by which it is 
possible to identify some properties of large numbers other than the so frequently 
asked question as to whether a big number is a prime or not. There are two important 
ways to generate large numbers that I found particularly interesting - iteration and 
concatenation. In this article the author has drawn on work' done previously, 
references below. In both these areas very large numbers may be generated for which 
it may be impossible to find any practical use - the methods are often more important 
than the results. 
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Table 1. Prime factors of Sen) which are less than 10· 

Prima factors of Sen) 

1 11 

2 3.11.37 

3 3.11.37.101 

4 11.41.101.271 

5 3.7.11.13.37.41.271 

6 3.7.11.13.37.239.4649 

7 11.73.101.137.239.4649 

B 3'.11.37.73.101.137.333667 

9 3'.11.37.41.271.9091.333667 

10 F22 

11 3.43.97.548687.F16 

12 3.11.31.37.61.928691B7.F1S 

13 109.3391.3631.F24 

14 3.41.271.9091.290971.F24 

15 3.37.661.F37 

16 F46 

17 3.F49 

Pr~a factors of Sen) 

51 3.37.1847.F180 

52 F190 

53 33 .11.43.26539.17341993.F178 

54 33 .37.41.151.271.347.463.9091.333667.F174 

55 67.F200 

56 3.11.F204 

57 3.31.37 .F206 

58 227.9007.20903089.F200 

59 3.41.97.271.9091.F207 

60 3.37.3368803.F213 

61 91719497.F218 

62 32 .1693.F225 

63 3'.37.305603.333667.9136499.F213 

64 11.41.271.9091.F229 

65 3.839.F238 

66 3.37.43 .F242 

67 11'.109.467.3023.4755497.F233 

18 3'.37.1301.333667.6038161.87958883. 683.97.5843.F247 
F28 

19 41.271.9091.FSO 

20 3.11.97.128819.F53 

21 3.37.983.F61 

22 67.773.F65 

23 3.11.7691.F68 

24 3.37.41.43.271.9091.165857.F61 

25 227.2287.33871.611999.F66 

26 33 .163.5711.68432503.F70 

27 33 .31.37.333667.481549.F74 

28 146273.608521.F83 

29 3.41.271.9091.F89 

30 3.37.5167.F96 

31 113 .4673.F99 

32 3.43.1021.FI04 

33 3.37.881.FI09 

34 11.41.271.9091.FI09 

35 3'.3209.F117 

36 3'.37.333667.68697367.F110 

37 F130 

69 3.37.41.271.787.9091.716549.19208653.F232 

70 F262 

71 3.F265 

72 32 .31.37.61.163.333667.77696693.F248 

73 379.323201.F266 

74 3.41'.43'.179.271.9091.8912921.F255 

75 3.11.37.443.F276 

76 1109.F283 

77 3.10034243.F282 

78 3.11.37.71.41549.F284 

79 41.271.9091.F290 

80 3.F300 

81 3s .37.333667.4274969.F289 

82 F310 

83 3.20399.5433473.F302 

84 3.37'.41.271.9091.F306 

85 1783.627041.F313 

86 3.11.F324 

87 3.31.37.43.F324 

38 3.1913.12007.58417.597269.63800419. 88 67.257.46229.F325 
F107 

39 3.37.41.271.347.9091.23473.F121 

40 F142 

41 3.156841.F140 

42 3.11.31.37.61.20070529.F136 

43 71. 5087. FH8 

44 32 .41.271.9091.1553479.F142 

45 32 .11.37.43.333667.F151 

46 F166 

47 3.F169 

48 3.37.173.60373.F165 

49 41.271.929.9091.34613.F162 

50 3.167.1789.9923.F172 

89 32 .11.41.271.9091.653659.76310887.F314 

90 32 .37.244861.333667.F328 

91 173.F343 

92 3.F349 

93 3.37.1637.F348 

94 41.271.9091.10671481.F343 

95 3.43.2B33.F356 

96 3.37.683.F361 

97 11.26974499.F361 

98 32 .1299169.F367 

99 32 .37.41.271.2767.9091.263273.333667.4814 
17.F347 

10043.47.53.83.683.3533.4919. F367 
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Table 1 continued 

Prime factors of SIn) 

1013.F389 

1023.149.21613.106949.333667.F378 

103 45823. F397 

1043.41.271.28813.F399 

105 3.47.333667.11046661. F399 

106 73.167. F416 

107 3'.43.1447.1741.28649.161039 .F406 

108 33 .569.333667 .F422 

10941.271.367.9091.F427 

1103.F443 

1113.313.333667.F441 

112 F456 

1133.53.71.2617.52081.F449 

1143.41.43.73.271.333667.F454 

1152309.F470 

1163.F479 

117 32 .333667.4975757. F472 

118167.11243.13457.414367.F476 

1193.41.271.9091.132059.182657.F479 

Prime factors of SIn) 
15147.5783.405869.F679 

1523'.53.F693 

1533' .359.39623.333667. 7l.92681.F681 

154 41. 73.271.487.14843. F695 

1553.14717.F709 

1563.43.601.1289.14153.333667.1479589.11337C 
23.F689 

157 F726 

158 3.49055933 .F723 

1593.37.41.271.347.9091.333667.F719 

160 97.179.1277.F736 

161 34 .3251.75193.496283. F734 

162 34 .73.26881. 28723.333667.3211357 .F731 

163 43.1663 .F757 

1643.41.271.136319.F758 

1653.53.B3.919.1B4859.333667.3014983.F749 

1661367.1454371.F770 

1673.F7B5 

16B 3.19913.333667.F781 

169 41.271.2273.9091. F786 

120 3.1511.7351.20431.167611.333667.572282170 3'.43.73.967.F796 
99.F473 

12143.501233.F502 171 32 .333667.F803 

1223.37.73.2659.F50B 

1233.112207.333667.F511 

12441.B3.271.367.37441.F514 

1253.F533 

126 32 .53.333667..395107.972347. F520 

127 F546 

1283.43.97.179.181.347.F540 

1293.41.271.9091.333667.F544 

130 73.313.275083 .F554 

1313.263.12511.210491.95558129.F549 

1323 .• 333667.F570 

133 F5B2 

1343' .41.173 .271.F580 

13533 .43.59.333667.F583 

13637.F59B 

1373.F605 

138 3.73.28817.333667. F599 

13941.53.271.9091.19433.F604 

1403.380623.F618 

1413.83.257.1091.333667.29618101.F609 

14243.F634 

1433'.89222B1.F634 

144 3' .41. 59.271 .1493.333667 .F632 

145 977.22811.5199703. F640 

1463.47.73.F656 

1473.1483.2341.333667.F653 

14871.142710B3.47655077.F655 

1493.41.43.271..9091.F667 

1503.333667.F678 

116 

172643.96293.325681.7607669.F795 

1733.37.F820 

1743.41.271.19423.333667.F813 

1753607.20131291.F823 

176 3.FB39 

177 3.43.173.333667.FB36 

17853.73.11527.461317.FB38 

17932 .41.271.1033.9091.F846 

lS0 32 .2861.26267.333667 .lS94601.F843 

181 FB70 

1823.83.2417.F870 

1833.71.1097.333667.F871 

18441.43.271.F882 

185 3.317371. F888 

186 3.73.333667. F892 

187 F906 

18833 .1B1.1129.5179.F901 

18933 .41.271.9091.13627.333667.FB9S 

190 1940B7. F918 

1913.43.53.401.F923 

1923.47.97.333667.14445391.F919 

193 59.F940 

1943.41.73.271.4B7.42643.F934 

1953.179533.333667.F942 

19637.661.F955 

197 3' . 47 .lB427 .6309143.32954969. F944 

19832 .43'.333667.F962 

199 41.271.9091.10151. 719779 .F960 

200 3.4409. F979 



Table 3. Smarandache Symmetric Sequence of Second Order: The most frequently 
occurring prime factors. 

# 11 cUff # 37 cliff # 41 cliff # 43 diU # 271 cliff # 9091 cliff # 333667 

1 11 2 37 4 41 11 43 4 271 9 9091 8 333667 

2 11 1 3 37 1 5 41 1 24 43 13 5 271 1 14 9091 5 9 333667 

3 11 1 5 37 2 9 41 4 32 43 8 9 271 4 19 9091 5 18 333667 
4 11 1 6 37 1 14 41 5 45 43 13 14 271 5 24 9091 5 27 333667 
5 11 1 8 37 2 19 41 5 53 43 8 19 271 5 29 9091 5 36 333667 
6 11 1 9 37 1 24 41 5 66 43 13 24 271 5 34 9091 5 45 333667 
7 11 1 12 37 3 29 41 5 74 43 8 29 271 5 39 9091 5 54 333667 
8 11 1 15 37 3 34 41 5 87 43 13 34 271 5 44 9091 5 63 333667 
9 11 1 18 37 3 39 41 5 95 43 8 39 271 5 49 9091 5 72 333667 

12 11 3 21 37 3 44 41 5 100 43 5 44 271 5 54 9091 5 81 333667 
20 11 8 24 37 3 49 41 5 107 43 7 49 271 5 59 9091 5 90 333667 
23 11 3 27 37 3 54 41 5 114 43 7 54 271 5 64 9091 5 99 333667 

31 11 8 30 37 3 59 41 5 121 43 7 59 271 5 69 9091 5 102 333667 
34 11 3 33 37 3 64 41 5 128 43 7 64 271 5 74 9091 5 105 333667 
42 11 8 36 37 3 69 41 5 135 43 7 69 271 5 79 9091 5 108 333667 
45 11 3 39 37 3 74 41 5 142 43 7 74 271 5 84 9091 5 111 333667 

'-
53 11 8 42 37 3 79 41 5 149 43 7 79 271 5 89 9091 5 114 333667 
56 11 3 45 37 3 84 41 5 156 43 7 84 271 5 94 9091 5 117 333667 
64 11 8 48 37 3 89 41 5 163 43 7 89 271 5 99 9091 5 120 333667 
67 11 3 51 37 3 94 41 5 170 43 7 94 271 5 109 9091 10 123 333667 
75 11 8 54 37 3 99 41 5 177 43 7 99 271 5 119 9091 10 126 333667 
78 11 3 57 37 3 104 41 5 184 43 7 104 271 5 129 9091 10 129 333667 
86 11 8 60 37 3 109 41 5 191 43 7 109 271 5 139 9091 10 132 333667 
89 11 3 63 37 3 114 41 5 198 43 7 114 271 5 149 9091 10 135 333667 
97 11 8 66 37 3 119 41 5 119 271 5 159 9091 10 138 333667 

69 37 3 124 41 5 124 271 5 169 9091 10 141 333667 
72 37 3 129 41 5 129 271 5 179 9091 10 144 333667 
75 37 3 134 41 5 134 271 5 189 9091 10 147 333667 
78 37 3 139 41 5 139 271 5 199 9091 10 150 333667 
81 37 3 144 41 5 144 271 5 153 333667 
84 37 3 149 41 5 149 271 5 156 333667 
87 37 3 154 41 5 154 271 5 159 333667 
90 37 3 159 41 5 159 271 5 162 333667 
93 37 3 164 41 5 164 271 5 165 333667 
96 37 3 169 41 5 169 271 5 168 333667 
99 37 3 174 41 5 174 271 5 171 333667 

122 37 23 179 41 5 179 271 5 174 333667 
136 37 14 184 41 5 184 271 5 177 333667 
159 37 23 189 41 5 189 271 5 180 333667 
173 37 14 194 41 5 194 271 5 183 333667 
196 37 23 199 41 5 199 271 5 186 333667 

189 333667 

192 333667 

195 333667 

198 333667 
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diU 

1 

9 

9 

9 

9 

9 

9 

9 

9 
9 

9 

3 
3 

3 
3 

3 

3 
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3 

3 
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3 
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3 
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3 

3 
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Table 4. Smarandache Symmetric Sequence of Second Order: Less frequently 
occurring prime factors. 

If p d If p d If p d # p d If p d # p d If p 

5 7 7 73 50 167 15 661 147 2341 154 14843 24 165857 

6 7 1 8 73 1 106 167 56 196 661 182 2417 197 18427 120 167611 

5 13 106 73 98 118 16712 96 683 113 2617 174 19423 195 179533 

6 13 1 114 73 8 48 173 100 683 122 2659 139 19433 119 182657 

12 31 122 73 8 91 173 43 22 773 99 2767 168 19913 165 184859 
27 31 15 130 73 8 134 173 43 69 787 95 2833 83 20399 190 194087 
42 31 15 138 73 8 17717343 65 839 180 2861 120 20431 131 210491 

57 31 15 146 73 8 74 179 33 881 67 3023 102 21613 90 244861 

72 31 15 154 73 8 12817954 165 919 35 3209 145 22811 99 263273 
87 31 15 162 73 8 160 17932 49 929 161 3251 39 23473 130 275083 

100 47 170 73 8 128 181 170 967 13 3391 180 26267 14 290971 

105 47 5 178 73 8 188 181 145 977 100 3533 53 26539 63 305603 

146 47 41 186 73 8 25 227 21 983 175 3607 162 26881 185 317371 

151 47 5 194 73 8 58 227 32 1021 13 3631 107 28649 73 323201 

192 47 41 100 83 6 239 179 1033 200 4409 162 28723 172 325681 

197 47 5 124 83 24 7 239 141 1091 6 4649 104 28813 140 380623 

100 53 141 83 17 88 257 183 1097 7 4649 138 28817 126 395107 

113 53 13 165 83 24 141257 76 1109 31 4673 25 33871 151 405869 

126 53 13 182 83 17 131 263 188 1129 100 4919 49 34613 118 414367 

139 53 13 11 97 111 313 160 1277 43 5087 124 37441 178 461317 
152 53 13 20 97 9 130 313 156 1289 30 5167 153 39623 99 481417 

165 53 13 59 97 39 39 347 18 1301 188 5179 78 41549 27 481549 
178 53 13 68 97 9 54 347 15 166 1367 26 5711 194 42643 161 496283 
191 53 13 128 97 60 128 347 74 107 1447 151 5783 103 45823 121 501233 

l35 59 160 97 32 159 347 31 147 1483 68 5843 88 46229 11 548687 

144 59 9 192 97 32 153 359 144 1493 120 7351 113 52081 38 597269 

193 59 49 3 101 109 367 1201511 23 7691 38 58417 28 608521 

12 61 4 101 1 124 367 93 1637 58 9007 48 60373 25 611999 

42 61 30 7 101 3 73 379 163 1663 50 9923 161 75193 85 627041 
72 61 30 8 101 1 191 401 62 1693 199 10151 172 96293 89 653659 

22 67 13 109 75 443 107 1741 118 11243 102 106949 69 716549 
55 67 33 67 109 54 463 85 1783 178 11527 123 112207 199 719779 

88 67 33 7 137 67 467 50 1789 38 12007 20 128819 126 972347 

43 71 8 137 154487 51 1847 :131 12511 119 132059 

78 71 35 102 149 194 487 38 1913 118 13457 164 136319 

113 71 35 54 151 108 569 169 2273 189 13627 28 146273 

148 71 35 26 163 156 601 25 2287 :156 14153 41 156841 

183 71 35 72 163 172 643 115 2309 155 14717 107 16.1039 
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Table 7. Prime factors of geE) and occurrence of selected primes 
q E Prime factors <350000 Selected primes 

2 

3 

4 

5 

6 

7 

8 

9 

10 
11 

12 

13 

14 

15 

16 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

2 

3 

4 

10 

10 

10 

10 
10 

10 
10 

10 

10 
10 

10 

10 

10 

10 
10 

100 

100 
100 

100 

100 

100 
100 

100 
100 

100 

100 

1000 

1000 

1000 

5 1000 
6 1000 

7 1000 

8 1000 
9 1000 

10 1000 
11 1000 

2 10000 

3 10000 

4 10000 

5 10000 
6 10000 

7 10000 
8 10000 

9 10000 

2 100000 

3 100000 
4 100000 

5 100000 

6 100000 

7 100000 
8 

9 

100000 
100000 

2.5.101 

2.3.5.7.13.37 
2.5.73.101.137 

2.5.41.271.9091 
2.3.5.7.13.37.101.9901 

2.5.239.4649. 
2.5.17.73.101.137. 

2.32 .5.7.13.19.37.52579.333667 

2.5.41.101.271.3541.9091.27961 
2.5.11.23.4093.8779.21649. 

2.3.5.7.13.37.73.101.137.9901. 

2.5.53.79.859. 

2.5.29.101.239.281.4649. 

2.3.5.7.13.31.37.41.211.241.271.2161.9091. 

2.5.17.73.101.137.353.449.641.1409.69857. 

2' . 5' . 7.11.13 

2'.3.5' .333667 
22 .52 .7.11.13.101.9901 
2' .5' .31.41.271. 

2'.3.5'.7.11.13.19.52579.333667 

2'.5'.43.239.1933.4649. 
2'.5'.7.11.13.73.101.137.9901. 

2'.3'.5'.757.333667. 

2'.5'.7.11.13.31.41.211.241.271.2161.9091. 
2'.5'.67.21649. 

2'.3.52 .7.11.13.19.101.9901.52579.333667. 

2'.5'.73.137 

2 3 .3.53 .7.13.37.9901 

2 3 .5 3 .17.73.137. 
23 .53 .41.271.3541.9091.27961 
2 3 .3.53 .7.13.37.73.137.9901. 

23 .53 .29.239.281.4649. 

2 3 .5 3 .17.73.137.353.449.641.1409.69857. 
23 .3'.5'.7.13.19.37.9901.52579.333667. 

2 3 .3.53 .41.73.137.271.3541.9091.27961. 

23 .53 .11.23.89.4093.8779.21649. 

2".5".11.9091 

2'.3.5' .31.37. 

2'.5'.11.101.3541.9091.27961 

2'.5'.21401.25601. 

2'.3.5'.7.11.13.31.37.211.241.2161.9091. 

2'.5'.71.239.4649.123551. 
2'.5'.11.73.101.137.3541.9091.27961. 

2'.3.5'.31.37.238681.333667. 

2 5 .55 .101.9901 

25 .3.55 .19.52579.333667 

2 5 .55 .73.101.137.9901 .. 

25 .5 5 .31.41.211.241.271.2161.9091 .. 

25 .3.55 .19.101.9901.52579.333667 .• 

2 5 .5 5 .7.43.127.239.1933.2689.4649 •• 

2 5 .5 5 .17.73.101.137.9901 .. 
2 5 .3 2 .55 .19.757.52579.333667 .. 
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41,271,9091 

37,9091 

333667 

41,271,9091 

11 

37 

37,41,271,9091 

11 

333667 
11 
41,271 

11,333667 

43 
11,73 

333667 
11,41,271,9091 

11,333667 

37 

41,271,9091 
37 

37,333667 

41,271,9091 

11 

11,9091 

37 

11,9091 

11,37,9091 

11,9091 

37,333667 

333667 

41,271,9091 

333667 

43 
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THE SMARANDACHE FRIENDLY NATURAL 
NUMBER PAIRS 

MaohuaLe 

Abstract. In this paper we completely determinate all the 

Smarandache friendly natural number pairs. 

Key words: Smarandache friendly natural number pair, Pell 

equation, positive integer solution 

Let Z, N be the sets of all integers and positive integers 

respectively. Let a, b be two positive integers with a<b. Then the pair 

(a, b) is called a Smarandache friendly natural number pair if 

(1) a+(a+I)+······+b=ab. 

For example, (1, I), (3, 6), (15, 35), (85, 204) are Smarandache 

friendly natural number pairs. In [2], Murthy showed that there exist 

infinitely many such pairs. In this paper we shall completely 

determinate all Smarandache friendly natural number pairs. 

Let 

(2) a = 1 +.fi, p = 1- J2. 
For any positive integer n, let 

(3) P(n)=!(an +pnlQ(n)= I~(an_!r} 
2 2,,2 

Notice that 1 +.fi and (1 +.fir = 3 + 2.fi are the fundamental 

solutions of Pell equations 
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(4) 

and 

(5) 

respectively. By [1, Chapter 8], we obtain the following two lemmas 

immediately. 

(6) 

(7) 

Lemma 1. All solutions (x,y) of(4) are given by 

x=P(2m+ 1), y= Q(2m+ 1), mE Z, m~O. 

Lemma 2. All solutions (x,y) of(5) are given by 

x=P(2m),y= Q(2m), mEN. 

We now prove a general result as follows. 

Theorem. If(a, b) is a Smarandache friendly natural number pair, 

then either 

(8) a = (P(2m + 1)+ 2Q(2m + 1))Q(2m + 1), 

b = (P(2m + 1)+ 2Q(2m + 1)XP(2m + 1)+ Q(2m + 1)), mE Z, m ~ 0 

or 

(9) a = (P(2m) + Q(2m)}P(2m}, 

b = (P(2m) + Q(2m)XP(2m) + 2Q(2m)),m E N. 

Proof. Let (a, b) be a Smarandache friendly natural number pair. 

Since 
(10) a + (a + 1) + ... + b = (1 + 2 + ... + b) - (1 + 2 + ... + (a -1)) 

1 1 1 
=2"b(b+l)- 2 a(a-l)=2"(b+a)(b-a+l), 

we get from (1) that 
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(11) (b+a)( b-a+ 1 )=2ab. 

Let d=gcd(a, b). Then we have 

(12) 

where aI' bl are positive integers satisfying 

(13) 

Substitute (12) into (11), we get 

(14) (bt +atXd(b\ -at )+I)=2datbt· 

Since gcd (aI' bl)=l by (13), we get gcd (alb), a)+b)=l. 

Similarly, we have gcd (d, d(bl-a)+ 1)= 1. Hence, we get from (14) that 

(IS) dlbt +ap atbtld(bt-at)+l. 

Therefore, by (14) and (15), we obtain either 

(16) 

or 

(17) 

If (16) holds, then we have 

(18) d(b\-at)+l=(b\ +a\Xb, -a, )+1=b,2 -a~ +1=2atb\. 

whence we get 

(19) 

It implies that (x,y)=(b\-a l , a) is a solution of(4). Thus, by Lemma 1, 

we get (8) by (16). 
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If (17) holds, then we have 

(20) d(b, -a,)+l=~(b, +a,Xb, -al)+1=~(bI2 -an+1=a,b,. 
2 2 

Since gcd (aI' b,)=1 by (13), we see from (17) that both a l and b, are 

odd. If implies that (b l -a ,)/2 is a positive integer. By (20), we get 

(21) a~ - 2( h, ; a, J = 1. 

We find from (21) that (x, y)=(al, (b ,-a,)/2) is a solution of (5). Thus, 

by Lemma 2, we obtain (9) by (17). The theorem is proved. 
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ON THE l1-th SMARANDACHE'S PROBLEM 

Krassimir T. Atanassov 

CLBME - Bulg. Academy of Sci., and MRL, P.D.Box 12, Sofia-1113, Bulgaria, 

e-mail: krat@bgcict.acad.bg 

krat@argo.bas.bg 

The 17-th problem from [1] (see also 22-nd problem from [2]) is the following: 

17. Smarandache's digital products: 

0,1,2,3,4,5,6, 7,8,9,0,1,2,3,4,5,6, 7,8,9,0,2,4,6,8,19,12,14,16,18, 
, T " .." ,.. ..... ' 

0,3,6,9,12,15,18,21,24,27,0,4,8,12,16,20,24,28,32,36, 0, 5,10,15,20,25 ... 
... ... " ... " 'Wi ' 

(d,,(n) is the product of digits.) 

Let the fixed natural number n have the form n = ali12 ... ak, where al, a2, ~ .. , elk E 

{O, 1, ... , 9} and al2! 1. Therefore, 

Hence, k = [loglO nJ + 1 and 

Ie 
n = L llilOi-l. 

i=l 

n- allok-1 

a2(n) = 02 = [ 10'-2 ], 

n - allOle- 1 - 021ok-2 

a3(n) = a3 = [ lok-3 ], 

( ) 
_ _ [n - a1lok-1 - ••• - ale- 2102] 

apoglO nJ n = ale-l - 10 ' 

a[loglon]+1(n) == ak = n - al1ok-1 
- ••• - ak-dO. 
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Obviously, k, aI, Cl2, ••• , ak are functions only of n. Therefore, 

[loglon]+l 

dp(n) = II llj{n). 
i=l 
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ON THE 46-th SMARANDACHE'S PROBLEM 

Krassimir T. Atanassov 

CLBME - Bulg. Academy of SCi., and MRL, P.O.Box 12, Sofia-1113, Bulgaria, 

e-mail: krat@bgcict.acad.bg 

krat@argo.bas.bg 

The 46-th problem from [1] is the following: 

Smarandache's prime additive complements: 

1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,5,4,3,2,1,0,1,0, 

5,4,3,2,1,0,3,2, 1,0,5,4,3,2, 1,0, ... 

(For each n to find the smallest k such that n + k is prime.) 

Obviously, the members of the above sequence are differences between first prime num­

ber bigger or equal to the current natural number n and the same n. It is well known that 

the number of primes smaller or equal to n is 1r(n). Therefore, the prime number smaller 

or equal to n is hen). Hence, the prime number bigger or equal to n is the next prime 

number, i.e., Jl,r(n)+l. Finally, the n-th member of the above sequence will be equal to 

{ 

Jl,r(n}+l - n, if n is not a prime number 

0, otherwise 

We shall note that in [2] the author gives the following new formula Pn for every natural 

numbern: 
O(n) 

Pn = L sg(n - 7r(i)), 
i=O 

whereC(n) = [n2+in+4] (forC(n) see [3]) and 

{ 

0, if x < 0 
sg(x) = -

1, if x> 0 
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ON THE DIVISOR PRODUCTS AND 

PROPER DIVISOR PRODUCTS SEQUENCES* 

Lm HONGYAN AND ZHANG WENPENG 

Department of Mathematics, Northwest University 
Xi'an, Shaanxi, P.R.China 

ABSTRACT. Let n be a positive integer, Pd(n) denotes the product of all positive 
divisors of n, qd(n) denotes the product of all proper divisors of n. In this paper, 
we study the properties of the sequences {PdCn)} and {qd(n)}, and prove that the 
Makowski &. Schinzel conjecture hold for the sequences {pd(n)} and {qd(n)}. 

1. INTRODUCTION 

Let n be a positive integer, pd(n) denotes the product of all positive divisors of 

n. That is, pd(n) = II d. For example, Pd(l) = 1, pd(2) = 2, Pd(3) = 3, Pd(4) = 8, 
din 

Pd(5) = 5, Pd(6) = 36, "', Pd(p) = p, .... qd(n) denotes the product of all proper 

divisors of n. That is, qd(n) = II d. For example, qd(l) = 1, qd(2) = 1, 
dln,d<n 

qd(3) = 1, qd(4) = 2, qd(5) = 1, qd(6) = 6, .... In problem 25 and 26 of [1], 
Professor F.Smarandach asked us to study the properties of the sequences {Pd(n)} 
and {qd(n)}. About this problem, it seems that none had studied it, at least we 
have not seen such a paper before. In this paper. we use the elementary methods 
to study the properties of the sequences {pd(n)} and {qd(n)}, and prove that the 
Makowski & Schinzel conjecture hold for Pd( n) and qd( n). That is, we shall prove 
the following: 

Theorem 1. For any positive integer n, we have the inequality 

where ¢( k) is the Euler '05 function and a( k) is the di·visor sum function. 

Theorem 2. For any positive integer n, we have the inequality 

Key word.s and phra.ses. Makowski &. Schinzel conjecture; Divisor and proper divisOI" product. 
* This wOl·k is supported by the N.S.F. and the P.S.F. of P.R.China. 
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2. SOME LEMMAS 

To complete the proof of the Theorems, we need the following two Lemmas: 

Lemma 1. For any positive integer n. 'we have the identities 

. dIn) 

pd(n) = n-2- and 
din) 1 

qd(n) = n-2-- , 

where d( n) = L 1 is the divisor function. 
din 

Proof. From the definition of pd(n) we know that 

So by this formula we have 

(1) 

From (1) we immediately get 

and 

Pd(n) = II d= II J' 
din din 

p~(n) = IT n = nd(n). 

din 

II 
dln,d<n 

IId 
d = ~ = n d(;) -1. 

n 

This completes the proof of Lemma 1. 

Lemma 2. For any positive integer n, let n = p~l p~2 ... p~. with Q'i ~ 2 (i = 
1,2" .. , s), pj(j = 1,2" .. ,s) are some different primes with PI < P2 < ... < ps, 
then we ha've the estimate 

6 
a (c,b(n» 2:: -;n. 

7r-

Proof. From the properties of the Euler's function we have 

c,b( n) = c,b(pr1 )¢(p~2) ... c,b(p~' ) 

(2) = pfl-Ip~2-1 ... p~.-I(pl - 1)(p2 -1)··· (Ps -1). 

Let (PI - 1 )(P2 - 1) ... (Ps - 1) = p~l pg2 .. '-p~. q~l q;2 ... q;', where 8i 2:: 0, i = 
1,2, ... ,S, Ij 2:: 1, j = 1, 2, ... ,t and ql < q2 < ... < qt are different primes. Then 
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from (2) we have 

s 1 - "/+13i t 1 - --;:f:Fr 
= pO'I +.Bl p0'2+fi2 ... pO'.+fi. qrt qT2 ... qT' II Pi II qj 

1 2 s 1 2 t Pi _ 1 1 _ l 
i=l j=l qj 

s ( ) t 1----rh:t 1 g.' 
=n 1- ' n pC:i+fii n 1 - ~ 

.=1 • J=l qJ 

s ( 1) t (1 1) =nII 1- II 1+-+···+-. O'i+.Bi . T, 
i=l Pi j=l· q] qj 

s ( 1) >n 1-- n C:i+.Bi 
1=1 p, 

~ nIT (1- \) 
i=l P, 

~nI](l-;). 

Noticing II 1 ~ l = f :2 = ((2) = ~2 ,we immediately get 
P p2 n=l 

cr(q)(n)) ~ n' II (1- p~) = :2n . 
P 

This completes the proof of Lemma 2. 

3. PROOF OF THE THEOREMS 

In this section, we shall complete the proof of the Theorems. First we prove 
Theorem 1. We separate n into prime and composite number two cases. If n is a 
prime, then d( n) = 2. This time by Lemma 1 we have 

den) 

Pd(n) = n~ = n. 

Hence, from this formula and ¢( n) = n - 1 we immediately get 

~ n 1 
cr(¢(Pd(n»))=cr(n-1)= ~ d~n-1~?=?Pd(n). 

dln-1 --
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If n is a composite number, then d(n) 2: 3. If d(n) = 3, we have n = p2, where P is 
a pnme. So that 

(3) 
d(n) de) 3 

Pd(n) = n-2- =P n =p. 

From Lemma 2 and (3) we can easily get the inequality 

dIn) a Ct 

If den) 2: 4, let pd(11) = 11-2- = PI 1 P2 2 
••• p~. with PI < P2 < ... < Pa, then we 

have 0i 2: 2, i = 1,2, ... ,S. SO from Lemma 2 we immediately obtain the inequality 

This completes the proof of Theorem 1. 
The proof of Theorem 2. We also separate 11 into two cases. If 11 is a prime, 

then we have 

From this formula we have 

If 11 is a composite number, we have den) 2: 3, then we discuss the following four 
cases. First, if d( 11) = 3, then n = p2, where P is a prime. So we have 

dIn) -1 d(n)-'J 
qd(n) =11 2 =P -=p. 

From this formula and the proof of Theorem 1 we easily get 

Second, if d( n) = 4, from Lemma 1 we may get 

(4) 

and n = p3 or n = PIP2, where P,Pl and pz are primes with PI < pz. If n = p3, 
from (4) and Lemma 2 we have 

(5) 

a ( 4> ( qd( n ))) = a ( <PC 11)) = a ( <p(p3 ) ) 

1 3 1 > -P = -ocl(n). - 2 2~ 

If n = PIPZ, we consider PI = 2 and PI > 2 two cases. If 2 = PI < P2, then P2 - 1 
is an even number. Supposing P2 -1 = ptlp~2q~1 ... q;' with ql < q2 < ... < qt, 
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qi(i = 1,2"" ,t) are different primes and Tj 2:: 1 (j = 1,2"" ,t), f3I 2:: 1, f32 2:: O. 
Note that the proof of Lemma 2 and (4) we can obtain 

(6) 

If 2 < PI < P2, then both PI - 1 and P2 - 1 are even numbers. Let (PI - 1 )(P2 -1) = 
pflp~2q~lq;2 ... q;t with ql < q2 < ... < qt,qi(i = 1,2"" ,t) are different primes 
and T j 2:: l(j = 1,2"" , t), f3I, f32 2:: 0, then we have qi = 2 and TI 2:: 2. So from 
the proof of Lemma 2 and (4) we have 

0"(4) (qd(n))) = 0" (4)(n)) 

(7) 

Combining (5), (6) and (7) we obtain 

( 
. 1 

0"(4) qd(n)) 2:: 2qd (n) if den) = 4. 

Third, if d( n) = 5, we have n = p4, where P is a prime. Then from Lemma 1 
and Lemma 2 we immediately get 

O"(¢(qd(n)) = 1T(<b(p6)) 2:: :2 p6 = ~qd(n). 
I. _ 
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Finaly, if d( n) ~ 6, then from Lemma 1 and Lemma 2 we can easily obtain 

This completes the proof of Theorem 2. 
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SOME SMARANDACHE-TYPE MULTIPUCATIVE FUNCTIONS 

Henry Bottomley 

5 Leydon Close, London SE16 SPF, United Kingdom 

E-mail: SE16@btinternet.com 

This note considers eleven particular fimrilies of interrelated multiplicative functions, 
many of which are listed in Smarandache's problems. 

These are multiplicative in the sense that a function ftn) bas the property that for any two 
coprime positive integers a and b, i.e. with a highest common factor (also known as 
greatest common divisor) oft, then fta*b)=fta)*ftb). It immediately follows that ftl)=l 
unless all other values off(n) are O. An example is d(n), the number of divisors of n. This 
multiplicative property allows such functions to be uniquely defined on the positive 
integers by descnbing the values for positive integer powers of primes. d(p')=i+ 1 if i>O; 
so d(60) = d(22 *3 I *51

) = (2+1)*(1+1)*(1+1) = 12. 

Unlike d(n), the sequences descn"bed below are a restricted subset ofall multiplicative 
functions. In all of the cases considered here, ftp~i) for some function g which does 
not depend on p. 

iDefinition 
Multiplicative with p.l\i­

.i 
j >pA ... 

. , 

IAm(n) INumber of solutions to ~ = 0 (mod n) i-ceiling[ilm] 

IBm(n) ILargest mth power dividing n m*tloor[ilm] I 

'

Smallest nwnber x (x>o) such that n*x is a perfect 
IEmCn) ,milt power (Smarandache milt power complements) , 

I G (.) l milt ro~t of ~~st mth power divisible-by ~ 
I m n I divided by largest mth power which divides n 

! H ( ) ! Smallest· mth pow~r divisible by n (Smarandache 
I m n l"m function (numbers» 

i jmllt root ofsrnallest mth power divisible by n 
iJmCn) :CSmarandache Ceil Function of milt Order) 

\Km(n) :Larl!est mth DOwer-free number dividinl! n 
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i 
I 
I 
I , . 

m*ceiling[ilm]-i 

m*( ceiling [ilm]-tloor[ilmD 

ceiling[ilm]-tloor[ilm] 

m*ceiling[ilm] 

ceiling [ilm] 

min(i,m-l) 



i(Smarandache mth power residues) 
I . 

in divided by largest mth power-free number 

I divi~ing n . _. . ... . .. __ _ ...... _ __ _. 
max:(O,i-m+ 1) 

Relationships between the functions 

Some of these definitions may appear to be similar; for example Dm(n) and Km(n), but for 
m>2 all of the functions are distinct (for some values ofn given m). The following 
relationships follow immediately from the definitions: 

Bm(n)=Cm(n)m (1) 

n=Bm(n)*Dm(n) (2) 

Fm(n)=Dm(n)*Em(n) (3) 

Fm(n)=Gm(n)m (4) 

Hm(n)=n*Em(n) (5) 

Hm(n)=Bm(n)*Fm(n) (6) 

Hm(n)=Jm(n)m (1) 

n=Km(n)*Lm(n) (8) 

These can also be combined to fonn new relationships; for example from (l), (4) and (7) 
we have 

Further relationships can also be derived easily. For example, looking at Am(n), a number 
x bas the property ~ (mod n) if and only if~ is divisible by n or in other words a 
multiple ofHm(n), ie. x is a multiple of Jm(n). But Jm(n) divides into n, so we have the 
pretty resuh that: 

n=Jm(n)* Am(n) (10) 

We could go on to construct a wide variety offurther relationships, such as using (5), (1) 
and (10) to produce: 

but instead we will note that em(n) and Jm(n) are sufficient to produce all of the functions 
from Am(n) through to Jm(n): 

Am(n)=rVJm(n) (12) 

Bm(n)=Cn,(n)m 
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Cm(n)=Cm(n) 

Dm(n)=n/Cm(n)D (13) 

Em(n)=Jm(n)m/n (14) 

FmCn)=(Jm(n)/Cm(n»m (15) 

Gm(n)=JmCn)/Cm(n) (16) 

Hm(n)=JmCn)m 

Jm(n)=Jm(n) 

Clearly we could have done something similar by choosing one element each from two of 
the sets {A,E,H,J}, {B,C,D}, and {F,G}. The choice ofC and J is partly based on the 
foIIowing attractive property which further deepens the multiplicative natw'e of these 
functions. 

Ifm=a*h then: 

Cm(n)=C.(CilCn» (17) 

Jm(n)=Ja(Jt>(n» (18) 

Duplicate functions when m 2 ... 

When m=2, ~(n) is square-free and F2(n) is the smallest square which is a multiple of 
~(n), so 

Using (3) and (4) we then have: 

and from (13) and (14) we have 

n=C2(n)* J2(n) (21) 

so from (10) we get 

... and when m=l 

Ifm=l, all the functions descnbed either produce 1 or n. The analogue of(20) is still true 
with 
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but curiously the analogue of (22) is not, since: 

Al(n)=1 (24) 

Cl(n)=n (25) 

The two remaining functions 

All this leaves two slightly different functions to be considered: Km(n) and Lm(n). They 
have little connection with the other sequences except for the fact that since Gm(n) is 
square-free, and divides Dm(n), Em(n), Fm(n), and Gm(n), none of which have any factor 
which is a bigher power than In, we get: 

and so with (8) and (10) 

We also have the related convergence property that for any y, there is a z (e.g. 
fioor[lo~(n)]) for which 

Gm(n)=Im(n)=K2(n) for any n<=y and any m>z (28) 

Am(n)=L2(n) for any n<=y and any m>z (29) 

There is a simple relation where 

Lm(n)=La(L.,(n» ifm+I=a+b and a,b>O (29) 

and in particular 

Lm(n)=Lm.l(L2(n» ifm>l (30) 

L3(n)=L2(L2(n» (31) 

i..J(n)=L2(L2(L2(n») (32) 

so with (8) we also have 

Kro(n)=K.,(n)*Ka(nIKt,(n» ifm+l=a+b and a,b>O (33) 

Kro(n)=Km-l(n)*K2(nlKm-l(n» ifrn> 1 (34) 

K3(n)=K2(n)*K2(nlK2(n» (35) 
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Recording the functions 

The values of all these functions for n up from n=l to about 70 or more are listed in Neil 
Sinane's Oniine Encvlopedia of Integer Sequences for m=2, 3 and 4: 

.---, , 

:m=l: m=2 , m=3 ; m=4 m>=x and n<2lt 

--~- ._ ..... _-- ~--"---,-----'-- ..... --...... _---_ .. _ ........ _ .... , 
jAm(n): 1 ;A000188 ;A000189 iA000190: L2(n) 

1 Bm(n) : n ;A0088331.a.008834 ;A008835 ! 1 
I : _ i .. ! _ . .f 1'-_-'-'-__ _ 

;Cm(n): n ;A000188iA053150iA053164i 1 
~ ;' . l • 

! r--! i ! : 
:Dm(n): 1 !A007913 !A050985 iA053165! n 

jEm(n) i 1 .. 1A0079i3jA048798 jA0565551 ~(n)m/n 
i"Fm(n)~l I .. !~~55~91 .. R\O?~??1.IA05~5?~ .. i K2(n"~)m--1 
lGm(n)! 1 IAo07913 !A056552 iA056554I ~(n) 

l~m .. ~~?..l ~_ .. i~?~~!_! .. ~~?~~~!~~~~~7_\ ---~~~)=---i 
I Jm(n)! nlA019554 iA019555 iA053166 i K2(n) ! 
j 1 I ., ~ 1 ! 
iKm(n)i I iA007947 iA007948 iA058035 i n 
. '". . I I 

iLm(n) i njA003557 iA062378 jA062379I 1 
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Abstract: 

THE PSEUDO-SMARANDACHE FUNCTION 

David Gorski 
137 William Street 

East Williston, NY 11596 
(516)742-9388 

Gorfam@Worldnet.att.net 

The Pseudo-Smarandache Function is part of number theory. The function comes from the 
Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n 
represents any natural number. The value for a given Z(n) is the smallest integer such that 
1 +2+3+ ... + Z(n) is divisible by n. WIthin the Pseudo-Smarandache Function, there are several 
fonnuJas which make it easier to find the Z(n) values. 

Formulas have been developed for most numbers including: 
a) p, where p equals a prime number greater than two; 
b) b, where p equals a prime number, x equals a natural number, and b=px; 
c) X, where x equals a natural number, if xJ2 equals an odd number greater than two; 
d) x, where x equals a natural number, ifxJ3 equals a prime number greater than three. 

Therefore, formulas exist in the Pseudo-Smarandache Function for all values ofb except for the 
following: 

a) x, where x = a natural number, ifxJ3 = a nonprime number whose factorization is not 
3~ . , 

b) multiples offour that are not powers of two. 

All of these formulas are proven, and their use greatly reduces the effort needed to find Z(n) 
values. 

Keywords: 
Smarandache Function, Pseudo-Smarandache Function, Number Theory, Z{n), g{d), g[Z{n)]. 

In troduction. 
The Smarandache (sma-ran-da-ke) Functions, Sequences, Numbers, Series, Constants, 

Factors, Continued Fractions, Infinite Products are a branch of number theory. There are very 
interesting patterns within these functions, many worth studying sequences. The name ''Pseudo­
Smarandache Function" comes from the Smarandache function. [2] The Smarandache Function 
was named after a Romanian mathematician and poet, Florentin Smarandache. [1] The 
Smarandache Function is represented as S{n) where n is any natural number. S(n) is defined as the 
smallest m, where m represents any natural number, such that m! is divisible by n. 
To be put simply, the Smarandache Function differs from the Pseudo-Smarandache Function in 
that in the Smarandache Function, multiplication is used in the form of factorials; in the Pseudo 
-Smarandache Function, addition is used in the place of the multiplication. The 
Pseudo-Smarandache Function is represented by Z(n) where n represents all natural numbers. The 
value for a given Z(n) is the smallest integer such that 1+2+3+ ... + Z(n) is divisible by n. 
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d !(d) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
3 
6 

10 
15 
21 
28 
36 
45 
55 

Background 

As previously stated, the value for a given Zen) is the smallest 
integer such that 1+2+3+ ... + zen) is divisible by n. Because 
consecutive numbers are being added, the sum of 1 +2+3+ ... + Zen) is 
a triangle number. Triangle numbers are numbers that can be written in 
the fonn [d(d+1)]/2 where d equals any natural number. When written 
in this form, two consecutive numbers must be present in the 
numerator. In order to better explain the Z( n) functio~ the g( d) 
function has been introduced where g( d)=r d( d+ 1)1/2. 

Figure 1: The first ten g( d) values. 
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n Z(n) g[Z(n)] 

1 1 
2 3 
3 2 
4 7 
5 4 
6 3 
7 6 
8 15 
9 8 

10 4 
11 10 
12 8 
13 12 
14 7 
15 5 
16 31 
17 16 
18 8 
19 18 
20 15 

Figure 2: The first 20 Z(n) 
and g[Z(n)] 
values. 

1 
6 
3 

28 
10 
6 

21 
120 
36 
10 
55 
36 
78 
28 
15 

496 
136 
36 

171 
120 

g[Z(n)] values are defined as g(d) values where d 
equals Zen). Because of this, it is important to note that all 
g[Z(n)] values are g(d) values but special ones because they 
correspond to a particular n value. Since g(d)=[d(d+1)]/2, 
g[Z(n) ]=[Z(n) [Z(n)+ 1 ]/2]. Because g( d) is evenly divisible by 
n, and all g[Z(n)] are also g(d) values, g[Z(n)] is evenly 
divisible by n. Therefore, the expression [Z(n) [Z(n)+ 1 ]12] can 
be shortened to n*k (where k is any natural number). Ifk=xl2 
(where x is any natural number) then 
[Z(n) [Z(n)+ 1]/2]=(n*x)/2, and the "general form" for a 
g[Z(n)] value is (n*x)l2. Again, since (n*x)/2 represents a 
g(d) value, it must contain all of the characteristics of g(d) 
values. As said before, all g( d) values, when written in the 
form [d(d+1)]/2, must be able to have two consecutive 
numbers in their numerator. Therefore, in the expression 
(n*x)/2, n and x must be consecutive, or they must be able to 
be filctored and rearranged to yield two consecutive numbers. 
For some values ofn, g[Z(n)]=(n*x)/2 where x is much less 
than n (and they aren't consecutive). This is possible because 
for certain number combinations n and x can be factored and 
rearranged in a way that makes them consecutive. For 
example, Z(n=12) is 8, and g[Z(l2)] is 36. This works 
because the original equation was (12*6)/2=36, but after 
filctoring and rearranging 12 and 6, the equation can be 
rewritten as (8*9)12=36. 

The Pseudo-Smarandache Function specifies that only 
positive numbers are used. However, what ifboth d and n 
were less than zero? g( d) would then represent the sum of the 
numbers from d to -1. Under these circumstances, Z(n) 
values are the same as the Z(n) values in the "regular" system 
(where all numbers are greater than one) except they are 
negated. This means that Z(-n)=-[Z(n)]. This occurs because 
between the positive system and the negative system, the g( d) 
values are also the same, just negated. For example, 
g(4)=4+3+2+1=10 and g(-4)= -4+ -3+ -2+ -1=-10. Therefore, 
the first g( d) value which is evenly divisible by a given value 
ofn won't change between the positive system and the 
negative system. 
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Theorem 1 

If'p' is a prime number greater than two, then Z(p)=p-l 

Example: 

p Z(p) 

3 2 

5 4 

7 6 

11 10 

13 12 

17 16 

19 18 

23 22 

27 26 

29 28 

Figure 3: The first 10 Z(P) 
values. 

Proof 

Since we are dealing with specific p values, rather than 
saying g[Z(n)]=(n*x)/2, we can now say g[j(P )]=(P*x)/2. 
Therefore, all that must be found is the lowest value of x that is 
consecutive to p, or the lowest value of x that can be factored 
and rearranged to be consecutive to p. Since p is prime, it has 
no natural factors other than one and itself Therefore, the 
lowest value ofx that is consecutive to p is p-l. Therefore 
Z(P)=p-l. 

Theorem 2 

If x equals any natural number, p equals a prime number greater than two, and b equals pX, then 
Z(b)=b-l 

Example: 

b Z(b) b Z(b) b Z(b) 

3 2 5 4 7 6 

9 8 25 24 49 48 

27 26 125 124 343 342 

81 80 625 624 2401 2400 

243 242 3125 3124 16807 16806 

729 728 15625 15624 117649 117648 

Figure 4: the first Z(b) values for different primes. 
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x 

Proof 

The proof for this theorem is similar to the proof of theorem 2. Again, the g{ d) function is 
made up of the product of two consecutive numbers divided by two. Since b's roots are the same, 
it is impossible for something other than one less than b itself to produce to consecutive natural 
numbers (even when factored and rearranged). For example, g[Z(25)]=(25*x)/2. When trying to 
:find numbers less than 24 which can be rearranged to make two consecutive natural numbers this 
becomes g[Z(25)]=(5*5*x)/2. There is no possible value ofx (that is less than 24) that can be 
fuctored and multiplied into 5*5 to make two consecutive natural numbers. This is because 5 and 
5 are prime and equal. They can't be factored as is because the have no divisors. Also, there is no 
value ofx that can be multiplied and rearranged into 5*5, again, because they are prime and equal. 

Example: 

Z(x) 

2 3 

4 7 

8 15 

16 31 

32 63 

64 127 

128 255 

256 511 

512 1023 

1024 2047 

2048 4095 
4096 8191 
8192 16383 

16384 32767 

32768 65535 

Theorem 3 

Ifx equals two to any natural power, then Z(x)=2x-1. 

Proof 

According to past logic, it may seem like Z{x) would equal 
x-I. However, the logic changes when dealing with even numbers. 
The reason Z{x)=x-1 is because (x-l)12 can not be an integral value 
because x-I is odd (any odd number divided by two yields a number 
with a decimal). Therefore, [x(x-l)]12 is not an even multiple ofx. In 
order to solve this problem, the numerator has to be multiplied by two. 
In a sense, an extra two is muhiplied into the equation so that when the 
whole equation is divided by two, the two that was multiplied in is the 
two that is divided out. That way, it won't effect the "important" part 
of the equation, the numerator, containing the factor ofx. Therefore, 
the new equation becomes 2[x(x-l)]/2, or [2x(x-l)]I2. The only 
numbers consecutive to 2x are 2x-l and 2x+ 1. Therefore, the smallest 
two consecutive numbers are 2x-l and 2x. 
Therefore, Z{x)=2x-l. 

Figure 5: The first six Z(x) 
values. 
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Theorem 4 

If 'j' is any natural number where j/2 equals an odd number greater than two then 

jj -1, j -1 is evenly divisble by 4 

Z(j) = ~ . 2 
L, L -1 is not evenly divisble by 4 
2 2 

Example: Proof 

j Z(j) jl2 (j/2)-1 

6 3 3 

10 4 5 

14 7 7 

18 8 9 
22 11 11 

26 12 13 

30 15 15 

34 16 17 

38 19 19 

42 20 21 

46 23 23 

50 24 25 
54 27 27 

58 28 29 

62 31 31 

66 32 33 

Figure 6: The first 
twenty j( z) values. 
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10 

12 

14 

16 
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24 

26 

28 

30 

32 

When finding the smallest two consecutive numbers that 
can be made from a j value, start by writing the general form but 
instead ofwriting n substitute j in its place. That means 
g[Z(j)]=(j*x)/2. The next step is to factor j as far as possible 
making it easier to see what x must be. This means that 
g[Z(j)]=(2*j/2*x)/2. Since the equation is divided by two, ifleft 
alone as g[Z(j)]=(2*j/2*x)/2, the boldface 2 would get divided out. 
This falsely indicates that jI2*x (what is remaining after the 
boldface 2 is divided out) is evenly divisible by j for every natural 
number value ofx. However,j/2*x isn't always evenly divisible 
by j for every natural number value ofx. The two that was just 
divided out must be kept in the equation so that one of the factors 
of the g(d) value being made isj. In order to :fix this the whole 
equation must be multiplied by two so that every value of x is 
evenly divisible by j. In a sense, an extra two is multiplied into the 
equation so that so that when the whole equation is divided by two, 
the two that was multiplied in is the two that gets divided out. 
That way, it won't effect the "important" part of the equation 
containing the fuctor of two. Therefore it becomes 
g[Z(j)]=(2*2*jl2*f)12 where frepresents any natural number. This 
is done so that even when divided by two there is still one fuctor of 
j. At this point, it looks as though the lowest consecutive integers 
that can be made from g[Z(j)]=(2*2*jI2*t) are (jI2) and(j/2)-1. 
However, this is only sometimes the case. This is where the 
formula changes for every other value of j. If (jI2)-1 is evenly 
divisible by the '2*2' (4), then Z(j)=(jl2)-1. However, if (j/2)-1 is 
not evenly divisible by 4, then the next lowest integer consecutive 
to jI2 is (jI2)+ 1. (Note: If(jl2)-1 is not evenly divisible by 4, 

then the next lowest integer consecutive to j/2 is (j/2)+ 1. (Note: If (j/2)-1 is not evenly divisible by 
four, then (j/2)+ 1 must be evenly divisible by 4 because 4 is evenly divisible by every other multiple of 
two.) Therefore, if(jl2)-1 is not evenly divisible by 4 then g[Z(j)]=[(jI2)[(j/2)+1]]/2 or Z(j)=j/2. 

Theorem 5 

If 'p' is any natural number where p/3 equals a prime number greater than 3 then 

J
p -1, p -:Isis evenly divisible by 3 

7fnl- 3 3 
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Example: 

p Z(p) p/3 (p/3)-1 

15 5 5 

21 6 7 

33 11 11 

39 12 13 

51 17 17 

57 18 19 

69 23 23 

87 28 29 

93 31 31 

111 36 37 

Figure 7: The first ten 
Z(P) values. 
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Proof 

The proof for this theorem is very similar to the proof for 
theorem 4. Since p values are being dealt with, p must be 
substituted into the general form. Therefore, g[Z(P)]=(P*x)l2. 
Since what Imde p is already known, p can be factored further so 
that g[Z(p)]=(3*p/3*x)l2. At this point it looks like the 
consecutive numbers that will be made out of (the numerator) 
3*p/3*x are p/3 and (p/3)-1 (this is because the greatest value 
already in the numerator is pl3). However, this is only sometimes 
the case. When p/3-1 is divisible by 3, the consecutive integers in 
the numerator are p/3 and (pI3)-1. This means that Z(p)=p/3-1 if 
p/3-1 is evenly divisible by 3. However, ifp/3-l is not divisible by 
three, the next smallest number that is consecutive to p/3 is 
(p/3)+1. If(P/3)-1 is not divisible by 3 then (p/3)+1 must be 
divistole by 3 (see *1 for proof of this statement). Therefore, the 
consecutive numbers in the numerator are p/3 and (p/3)+1. This 
means that Z(P) = pl3 if (p/3 )-1 is not evenly divisIole by three. 

Note: Although there is a similar formula for some multiples of the first two primes, this formula 
does not exist for the next prime number, 5. 

J 
4 
5 

~ 
7 
8 

2 
10 

11 

12 

13 

Proof 

* 1 - "If (p/3 )-1 is not divisible by 3, then (P/3)+ 1 must be divisIole by 3." 

In the table to the left, the underlined values are those that are divistole by 
three. The bold numbers are those that are divisible by two (even). Since p/3 is 
prime it cannot be divisible by three. Therefore, the p/3 values must :fall 
somewhere between the lIDderlined numbers. This leaves numbers like 4, 5, 7, 8, 
10, 11, etc. Out of these numbers, the only numbers where the number before (or 
(p/3)-1) is not divisible by three are the numbers that precede the multiples of 
three. This means that the p/3 values must be the numbers like 5,8, 11, etc. 
Since all of these p/3 values precede multiples of3, (p/3)+l must be divisible by 3 
if(P/3)-I is not divisIole by 3. 

Figure 10 

Theorem 6 

If On' equals any natural number, Z(n)~n. 

Theorem 6: Part A 
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Ifr is any natural odd number, Z(r)~l 

Proof 

\Vhenr is substituted into the general form, g[Z(r)=[r*(r-l)]/2. Since r is odd r-l is even. 
Therefore, when r-l is divided by two, an integral value is produced. Therefore, (r*r-l )/2 is an 

even multiple ofr and it is also a g(d) value. Because of this, Z(r)~l. Since Z(r)~l, Z(r)~. 

Theorem 6: Part B 

If v is an natural even number, Z( v):t:v. 

Proof 

IfZ(v) = v, the general form would appear as the following: g[Z(v)]=[v(v+l)]I2. This is 
not possible because ifv is even then v+ 1 is odd. When v+ 1 is divided by two, a non-integral 
value is produced. Therefore, (v*v+ 1)/2 is not an integral multiple ofv. Therefore, Z(v):t:v. 

Theorem 7 

Ifw is any natural number except for numbers whose prime factorization equals 2 to any power, 
Z(w)<w. 

Proof 

As in several other proofs, this proof can be broken down into two separate parts, a part for 
r values (r is any natural odd number) and one for v values (v is any natural even number). As 

proven in Theorem 6: Part A, Z(r)~l. This proves that Z(r) is less than r. 
For v values, v must be substituted into the general form in order to be able to see patterns. 

Therefore, g[Z(v)]=(v*x)l2. Since v is even it must be divisible by two. Therefore, v can be 
factored making g[Z(v)]=[2*(vl2)*x]l2. Since the numerator is being divided by two, when done 
with the division, one whole factor of v will not always be left. Therefore, an extra two must be 
multiplied into the equation so that even when divided by two, there is still one whole factor ofv 

left. Therefore, g[Z(v)] E§*(v/2)*x]l2. At this point, the equation can be simplified to 

g[Z(v)]~x. Therefore, x=v-l, and Z(v)<v-l. Z(v) is less than v-I rather than less than or equal 
to v-I because as proven in theorem 4, Z(v):t:v-l. 
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Conclusion 

n Z(n) nl3 n Z(n) 

12 8 9 27 8 

20 15 15 45 9 

24 15 21 63 27 

28 7 25 75 24 

36 8 33 99 44 

40 15 35 105 14 

44 32 45 135 54 

48 32 49 147 48 

52 39 55 165 44 

56 48 65 195 39 

Figure 8 Figure 9 

Through researching the relationships between different groups of natural numbers, patterns and 
formulas have been developed to find Z(n) values for most numbers. Formulas have been developed for 
most numbers including: 

a) p, where p equals a prime number greater than two 
b) b, where p equals a prime number, x equals a natural number, and b=px 
c) X, where x equals a natural number, if xI2 equals an odd number greater than two 
d) x, where x equals a natural number, if xl3 equals a prime number greater than three 

In fact there are only two remaining groups of numbers for which there are no formulas or 
shortcuts. Formulas exist in the Pseudo-Smarandache Function for all values ofb except for the 
following: 

a) multiples offour that that are not powers of two (figure 8) 
b) x, where x = a natural number, ifx13 = a nonprime number whose factorization is not 3x 

(figure9) 

If p equals a prime number greater than two then Z(p )=p-l. If p equals a prime number greater than two, 
x equals a natural number, and b=px thenZ(b)=b-l. However, ifp=2 then Z(b)=2b-l. Ifx equals a 
natural number, and x/2 equals an odd number greater than two then if (xl2)-1 is evenly diviSI'ble by four 
thenZ(x)=(x/2)-1. Otherwise, ifx/2-1 is not evenly divist'ble by four then Z(x)=zI2. Ifx equals a 
natural number, and xl3 equals a prime number greater than three then if(x/3)-1 is evenly divisible by 
three then Z(x)=(xl3)-1. Otherwise, ifxl3-1 is not evenly divisible by three then Z(x)=xl3. All of these 
formulas are proven, and their use greatly reduces the effort needed to find Zen) values. 
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ON THE SYMMETRIC SEQUENCE 

AND ITS SOME PROPERTIES* 

ZHANG \VENPENG 

Research Center for Basic Science, Xi'an Jiaotong University 
Xi 'an, Shaanxi, P~R~China ... 

ABSTRACT. The main purpose of this paper is to prove that there is only one 
prime among the symmetric sequence. This solved the problem 17 of Professor 

F.Smarandache in [1). .~ /)t.~ 1 fCl-r ",,",,'~"_ 

1. INTRODUCTION 

For any positive integer n, we define the symmetric sequence {5( n)} as fol­
lows: 5(1) = 1, 5(2) = 11, 5(3) = 121, 5(4) = 1221, 5(5) = 12321, 5(6) = 
123321, 5(7) = 1234321, 5(8) = 12344321, ....... In problem 17 of [1], Profes-
sor F.Smarandache asked us to solve such a problem: How many primes are there 
among these numbers? This problem is interesting, because it can help us to find 
some new symmetric primes. In this paper, we shall study this problem, and give 
an exact answer. That is, we shall prove the following conclusion: 

Theorem. For any positive integer 71. ~ 2, we have the decomposition 

~,,~~ 
n n+l 
~ .-"-. 

123 ... (n - 1 )71.71.( 71. - 1) ... 321 = 11 ... 1 x 11 ... 1; 

n n 
. .-"-. .-"-. 

123 ... (71. - 1 )71.( 71. - 1) ... 321 = 11 ... 1 x 11 ... 1. 

From this theorem we may immediately deduce the following two corollaries: 

Corollary 1. 
5(2) = 11. 

Corollary 2. 
That is, 

There is only one prime among the symmetric seq1tenCe, That is, 

~M...~'. 
For any positive integer nf::S(2n - 1) is a perfect square number. 

5(2n -1) = 123 .. · (n -l)n(n -1) .. ·321 
n n 

.-"-. .-"-. 
=1l .. ·1x11···1. 

Key words and phrases. The symmetric sequence: Primes: A pt"Oblem of F.Smarandache. 
* This work is support.ed by the N.S.F. and thE" P.S.F. of P.R.China. 
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2. PROOF OF THE THEOREM 

In this section, we complete the proof of the theorems. First we let 

S1 = {ll, 1221, 123321,······ ,123··· (n - l)nn(n - 1)···321,······ ,} ~~ '1\ ~ 1 
Ire- '/ 

and 

S2 = {1.121, 12321,······ ,123··· (n -l)n(n -1)···321,······ ,} ifv\-I1\.. ~ ? 

Then it is clear that 

For any positive integer m E {Sen)}, we have m E S1 or m E S2' If m E S1, then 
there exists a positive integer n such that m = 123· .. (n - 1 )nn( n -: 1) ... 321. So 
that 

(1) 

m = I02n- 1 + 2 X 102n
-

2 + ... + n X IOn 

+ n X 10n
-

1 + (n - 1) x IOn- 2 + .. ·2 X 10 + 1 

= [102n-l + 2 X 102n-2 + ... + n) X lOn] 

+ [n X 10n
-

1 + (n-) X lOn-z + ···2 X 10 + 1] 

== Sl1 + SIZ. 

Now we compute Sl1 and S12 in (1) respectively. Note that 

and 

9S11 = 10S11 - Sl1 = lOZn + 2 X I02n- 1 + ... n X lQn+l 

- lOZn-l _ 2 X 102n - Z - ••• - n X IOn 

= 102n + lQZn-l + 102n-2 + ... + IOn+! _ n X IOn 

IOn-1 = IOn+l X - n X IOn 
9 

9S12 = 10S12 - S12 = n X IOn + (n -1) X IOn-l + ···2 X 102 + 10 

- n X IOn-l - (n - 1) X IOn-2 - ···2 X 10 - 1 

= n X IOn - 10n - 1 - lQn-2 _ ... 10-1 

IOn-1 
= n X IOn - 9 . 

So that we have 

(2) 

and 

(3 ) 
1 

S12 = 81 [917, X IOn - IOn + 1] . 
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Combining (1), (2) and (3) we have 

m = 511 + 512 

1 1 = - X [102n+1 - 9n X IOn - lOn+l] + - [9n X IOn - IOn + 1] 
81 81 

= ~ (102n+1 _lOn+l _ IOn + 1) 
81 

= ~ (IOn - 1) (lOn+l - 1) 
81 

n n+l 
~ ......---, 

(4) = 11···1 X 11···1. 

If m E 52, then there exists a positive integer n such that 

m = 123··· (n -l)n(n -1)···321. 

Similarly, we also have the identity 

m = 102n- 2 + 2 X 102n- 3 + ... + n X lOn-l 

+ (n - 1) x lOn-2 + (n - 2) x lOn-3 + .. ·2 X 10 + 1 

= ~ (102n _IOn - 9n X fon- 1) + ~ (9n X lOn~l - IOn + 1) 
81 81 

[
lOn_1]2 ~ ~ 

(5) - 9 =11···1xl1···1. 

Now the theorem 1 follows from (4) and (5). ~'r1-f::'f . 
. From theorem 1 we know that 5(n) is a composite number, if n ~ 3) Note that 

5(1) = 1 and 5(2) = 11 (a prime), we may immediately deduce the theorem 2. 
This completes the proof of the theorems. 
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ON THE PERMUTATION SEQUENCE 

AND ITS SOME PROPERTIES* 

ZHANG ,\VENPENG 

Research Center for Basic Science, Xi'an Jiaotong University 
Xi'an, Shaanxi, PoR.China 

ABSTRACT. The main purpose of this paper is to prove that there is no any perfect 
power among the permutation sequence: 12, 1342, 135642, 13578642, 13579108642, 
....... This answered the question 20 of F.Smarandach in [1]. 

~tflf:'f ) pa-r~ 
I 

1. INTRODUCTION 

For any positive integer n, we define the permutation sequence {pen)} as follows: 
P(I) = 12, P(2) = 1342, P(3) = 135642, P( 4) = 13578642, P(5) = 13579108642, 
.0 .... , Pen) = 135· .. (2n - 1)(2n)(2n - 2)· 0·42, .... o. ,. In problem 20 of [1], 
Professor F.Smaranda:ch asked us to answer such a question: Is there any perfect 
power among these numbers? Conjecture: no! This problem is interesting, because 
it can help us to find some new properties of permutation sequence. In this paper, 
we shall study the properties of the permutation sequence PC n), and proved that 
the F.Smarandach conjecture is true. This solved the problem 20 of [1], and more, 
we also obtained some new divisible properties of P( n). That is, we shall prove the 
following conclusion: 

Theorem. There is no any perfect power among permutation sequence, and 

n n 

1 ( 2 n n),..-."--,,..-."--, .; ..J.. '" C, P( n) = - 11· 10 - 13·10 + 2 = 11· . ·1 X 122· . . 2, -re-'" nt.. ~ I, 
81 

2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First for any positive 
integer n, we have 

Pen) = 102n-l + 3 X 102n
- 2 + ... + (2n -1) x IOn 

+ 2n X lOn-l + (2n - 2) X lOn-2 + .. ·4 X 10 + 2 

= [102n- 1 + 3 X 102n
-

2 + 0 .. + (2n -1) X IOn] 

+ [271 X IOn- 1 + (2n - 2) X IOn
-

2 + ···4 X 10 + 2] 

Key words and phrases. Permutation sequence; Perfect power; A problem of F.Smarandach. 
* This work is supported by the N.S.F. and the P.S.F. of P.R.China. 
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(1) 

Now we compute SI and S2 in (1) respectively. Note that 

and 

951 = 10S1 - S1 = I02n + 3 X 102n-1 + ... (2n - 1) x lOn+1 
_102n-l _ 3 X 102n - 2 - ••. - (2n - 1) x IOn 

= I02n + 2 X 102n
- 1 + 2 X I02n

- 2 + ... + 2 x IO n+1 
- (2n - 1) x IOn 

IOn - 1 - 1 = 102n + 2 X lOn+1 X 9 - (2n - 1) X IOn 

952 = 1052 - S2 = 2n X IOn + (2n - 2) X 10n
-

l + .. ·4 X 102 + 2 X 10 
- 2n X 10n

- 1 
- (2n - 2) X lOn

-
2 - .• ·4 X 10 - 2 

= 2n X lOn - 2 X 10n- 1 - 2 X lOn-2 - .. ·2 X 10 - 2 
lOn-1 

= 2n X IOn - 2 X ---
9 

So that 

(2) 

and 

(3) 1 
S2 = 81 [18n X IOn - 2 X lOn + 2] . 

Thus combining (1), (2) and (3) we have 

pen) = Sl +S2 = 8\ X [11 X 102n -18n X lOn -11 X lOn] 

1 + 81 [18n X IOn - 2 X lOn + 2] 

n n 

1 ( 2n n) ----... ~ I (4) =- 11·10 -13·10 +2 =11···1x122···2. c...Cf - 81 . l~fs-'J From (4) we can easily find that 2 1 P(n), but 4 f pen), if n ~ 2, So that pen) 
can not be a perfect power, if n ~ 2. In fact, if we assume P( n) be a perfect power, 
then Pen) = mk, for some positive integer m ~ 2 and k ~ 2. Since 2 1 P(n), so that m must be an even number. Thus we have 41 P(n). This contradiction with 
4 t P( n), if n ~ 2: Note that P(1) is not a perfect power, so that P( n) can be a 
perfect power for all n ~ 1) ~s completes the proof of the Theorem. 
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A NUMBER THEORETIC FUNCTION 

AND ITS MEAN VALUE PROPERTY* 

Lru HONGYAN AND ZHANG WENPENG 

Department of Mathematics, Northwest University 
Xi'an, Shaanxi, P.R.China 

ABSTRACT. Let p be a prime, n be any positive integer, a(n,p) denotes the power 
of p in the factorization of n!. In this paper, we study the asymptotic properties of 

the mean value L a(n, p), and give an interesting asymptotic formula for it. 
p$n 

1. INTRODUCTION 

Let p be a prime, ep ( n) denotes the largest exponent ( of power p ) which divides 

n, a(n,p) = L ep(k). In problem 68 of [1], Professor F.Smarandach asked us to 
k=:;n 

study the properties of the sequences ep(n). This problem is interesting because 
there are close relations between ep ( n) and the factorization of n!. In fact, 0'( n, p) 
is the power of p in the factorization of nL In this paper, we use the elementary 
methods to study the asymptotic properties of the mean value L 0'( n, p), and give 

p=:;n 
an interesting asymptotic formula for it. That is, we shall prove the following: 

Theorem. For any prime p and any fixed positive integer n, we have the asymp­
totic formula 

'" a( n p) = n In In n + en 4- C1 ~ + C2 ~ + ... + Ck ~ + 0 ( n ). 
L< ' ' Inn ln2 n Inkn lnk+1n 
p_n ° 

where k is any fixed positive integer, Ci (i = 1,2,··· ,) are some comp~Liable con­
stants. 

2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First for any prime p and 
any fixed positive integer n, we let a(n,p) denote the sum of the base p digits of n. 
That is, if n 0= alpO'l + a2p0'2 + ... + aspO'· with as > as-I> ... > 0'1 2: 0, where 

s 

1 ~ ai ~ p-1, i = 1,2,··· ,8, then a(n,p) = Lai, and for this number theoretic 
i=l 

function, we have the following two simple Lemmas: 

Key words and phraseso A new number theoretic function; Mean value; Asymptotic formula. 
* This work is support.ed by the N.S.F. and the P.S.F. of P.R.China. 
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Lemma 1. For any integer n 2: 1, we have the identity 

+00 [n] 1 O:'p(n) == O:'(n) == ~ ~ = -- (n - a(n,p) , 
~ p' p-1 . 
:=1 

where [x] denotes the greatest integer not exceeding x. 

Proof. From the properties of [x] we know that 

[;] = [a1PQ1 + azpa:t ... + aspo. ] 

_ { t ajpOlj -i, if O:'k-1 < i ~ O:'k 
- j=k 

0, if i > O:'s. 

So from this formula we have 

+00 [] +00 [a Ol Ol ] = ~ ~ _ ~ alP 1 + a2P 2 + ... + asp • 
0:'( n) - 6 i - 6 i 

;=1 p i=1 P 
s OJ S 

= L L ajpcxj-k = L aj (1 + p + p2 + ... + pOlj-1) 
j=lk=l j=1 
s Ol· lIs 
~ pJ- ~ 

= 6 aj' -1 = ~ ~ (ajpQj - aj) 
j=1 p P i=l 

1 = -- (n - a(n,p». 
p-l 

This completes the proof of Lemma 1. 

Lemma 2. For any positive integer n, we have the estimate 

p-1 
a(n,p):S:; lnp In n. 

Proof. Let n = a1pO
l + a2pOl

2 + ... + aspo. with as > as-I> ... > a1 2: 0, where 
1 ~ ai :s:; p - 1, i = 1,2"" , s. Then from the definition of a(n,p) we have 

s s 

(1) a(n,p) = L ai :s:; L(p -1) = (p - l)s. 
i=l i=l 

On the other hand, using the mathematical induction we can easily get the inequal­
ity 

or 

(2) 
In(n/a s ) Inn 

s< <-. 
- lnp - Inp 
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Combining (1) and (2) we immediately get the estimate 
. 

p-1 
a(n,p) ~ -I-Inn. 

np 

This proves Lemma 2. 
Now we use Lemma I and Lemma 2 to complete the proof of the Theorem. First, 

we separate the summation in the Theorem into two parts. 

(3) L a(n,p) = L a(n,p) + L a(n,p). 
v'n<p$n 

For the first part, from Lemma 1 we have 

1 L a(n,p) = L p-1 (n - a(n,p)) 
p$v'n p$v'n 

"" (1 1) "" a(n,p) 
=n 6 ;+ p(p-I) - 6 p-1 

p$v'n p$v'n 

_ n ("" ~ + "" 1 + 0 ("" ~)) _ "" a(n,p) - 6 p 6 pep _ 1) 6 m 2 L.,; p - 1 
p$vfn p m>v'n p$v'n 

(4) = n ( rfii .!.d?r(x) + A + 0 (.2..)) _ "" a(n,p). 
J~ x yin 6 p-1 

2 p$v'n 

where ?rex) denotes the number of all prime not exceeding x. For ?rex), we have 
the asymptotic formula 

(5) 

and 

(6) a31 an a3k (1) = In In n + B + -1 - + :2 + ... + -k- + 0 k+l . 
n 11 In n In 17 In 17 
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From Lemma 2 we have 

(7) "a(n,p) "Inn ,,1 L ~ 1::; ~ -1 - = Inn ~ -1 -::; Inn 1::; y'nlnn. p - np np p~Vn p~Vn p~Vn p~Vn 

Combining (4), (6) and (7) we obtain 

" n n ~ a(n,p) = nlnlnn + con + a 31 -
1 

- + a32-?-c nn In- n P<v n 

(8) + ... + a3k + + 0 ( k:l ). In n In n 

For the second part, we have 

(9) = .L 7r (:) - [v'n]7r(vn). 
m~..;n 

Applying Euler's summation formula ( see [2] Theorem 3.1 ) and the expansion into 
power-series we have 

= f (r -1 + s) (L InS m ) 
O

r - 1 em 1ns+r n s= m~vn 
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From this and (5) we get 

=n L ( __ 1 __ +a
2 1 + ... 

m(In n - In m) m(In n - In m )2 m~y'n 

+ ak+I +0 1 (1)) m(In n - In m )k+I m(ln n - In m )k+2 

=n bo+-+--+···+--+O ( bi ~ bk (1)) 
In n In2 n Ink n Ink+I n 

(10) 

= bon+bI - +b2-- + ... +bk --+0 
n n n (n) 

In n In2 n Ink n Ink+I n 

and 

(11) n n n (n) = a4II-- + a42-2- + ... + a4k-k- + 0 HI . nn Inn Inn In n 

Combining (9), (10) and (11) we have 

(12) '" a(n,p) = bon + aS1lnn + aS2+ + ... + aSk+ + 0 ( k:l )-. r.:~< n In n In n In n vn<p_n 

From (3), (8) and (12) we obtain the asymptotic formula 

'" n n n" (n) ~ a( n, p) = n In In n + cn + CI -In + c2 -2 - + ... + Ck -k - + 0 HI . 
< n Inn Inn In n p_n 

This completes the proof of the Theorem. 
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An introduction to the Smarandache Square Complementary function 

Felice Russo 
Via A. Infante 

67051 Avezzano (Aq) Italy 
felice.russo@katamail.com 

Abstract 
In this paper the main properties of Smarandache Square Complementary 
function has been analysed. Several problems still unsolved are reported too. 

The Smarandache square complementary function is defined as [4],[5]: 

Ssc(n)=m 

where m is the smallest value such that m· n is a perfect square. 

Example: for n=8, m is equal 2 because this is the least value such that m· n is a perfect square. 

The first 100 values ofSsc(n) function follows: 

n Ssc(n) n Ssc(n) n Ssc(n) n ssc(n) -------------------------------------------------------------------------------1 1 26 26 51 51 76 19 2 2 27 3 52 13 77 77 3 3 28 7 53 53 78 78 4 1 29 29 54 6 79 79 5 5 30 30 5S 55 80 5 6 6 31 31 56 14 81 1. 7 7 32 2 57 57 82 82 8 2 33 33 58 58 83 83 9 1 34 34 59 S9 84 21 10 10 35 35 60 15 85 85 11 11 36 1 61 61 86 86 12 3 37 37 62 62 87 87 13 13 38 38 63 7 88 22 14 14 39 39 64 1 89 89 15 15 40 10 65 65 90 10 16 1 41 41 66 66 91 91 17 17 42 42 67 67 92 23 18 2 43 43 68 17 93 93 19 19 44 11 69 69 94 94 20 5 45 5 70 70 95 95 21 21 46 46 71 71 96 6 22 22 47 47 72 2 97 97 23 23 48 3 73 73 98 2 24 6 49 1 74 74 99 11 25 1 50 2 75 3 100 1 

Let's start to explore some properties of this function. 
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Theorem 1: Ssc(n2) = 1 where n=I,2,3,4 ... 

In fact if k = n2 
is a perfect square by definition the smallest integer m such that m· k is a 

perfect square is m=l. 

Theorem 2: Ssc(P)=p where p is any prime number 

In fact in this case the smallest m such that mop is a perfect square can be only m=p. 

I 1 ifn is even 

Theorem 3: SSC(plf) = I where p is any prime number. 
I p ifn is odd 

First of all let's analyse the even case. We can write: 

" 2 
,,_ 2 2 2_ 2" P -p op ......... p _ p 

" and then the smallest m such that P . m is a perfect square is 1. 

Let's suppose now that n is odd We can Write: 

! 2 ! l J 2 t J 
pIt = p2 . p2 0 ........ p2 • P = P 2 • P = P 2 • P 

If 

and then the smallest integer m such that p 0 m is a perfect square is given by m=p. 

Ssc(pG .q' . SC •....... AX) = podd(G) • qodd(b) • sodd(c) ...... todd(x) 
Theorem 4: where p,q,s, .... f are 

distinct primes and the odd function is defmed as: 

I 1 ifn is odd 
odd(n)= 

I 0 ifn is even 
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Direct consequence of theorem 3. 

Theorem 5: The Ssc(n) function is multiplicative, i. e. if (n,m) = 1 then Ssc(n· m) = Ssc(n) . Sse( m) 

a J d 
Without Joss of generality lefs suppose that n = p . q and m = SC • t where p, q, s, t are distinct 
primes. Then: 

according to the theorem 4. 

On the contrary: 

Ssc(n) = Ssc(pa .l) = podci(a) _qodd(b) 

This implies that: Ssc(n . m) = Ssc(n)· Sse( m) qed 

Theorem 6: If n = pa . q" ......... p' then Ssc(n) = Ssc(pa) . Ssc(p") .......• Sse(p') where pis 

any prime number. 

According to the theorem 4: 

Ssc(n) = podd(a) . podci(h) .......• podd(l) 

and: 

Ssc(pa) = podd{a) 

SsC(p6) = podd(6) 

and so on. Then: 

qed 

Theorem 7: Ssc(n) =n if n is squarefree, that is if the prime factors of n are all distinct. All prime 
numbers, of course are trivially squarefree [3]. 

Without loss of generality let's suppose that n = p. q where p and q are two distinct primes. 
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According to the theorems 5 and 3: 

Ssc(n) = Ssc(p' q) = Ssc(p)' Ssc(q) = p' q = n qed 

Theorem 8: The Ssc(n) function is not additive. : 

In fact for example: Ssc(3+4)=Ssc(7)=7<>Ssc(3)+Ssc( 4)=3+ 1 =4 

Anyway we can find numbers m and n such that the function Ssc(n) is additive. In fact if: 

m and n are squarefree 
k=m+n is squarefree. 

then Ssc(n) is additive. 
In fact in this case Ssc(m+n)=Ssc(k)=k=m+n and Ssc(m)=m Ssc(n)=n according to theorem 7. 

... 1 L-
Theorem 9: _J Ssc(n) diverges 

In fact: 

CI) 1 ... 1 CI) 1 
L >L L:-
n=J Sse( n) p=2 Ssc(p) p=2 P where p is any prime number. 

So the sum ofinverese ofSsc(n) function diverges due to the well known divergence of series [3]: 

II) 1 
L-
p-zP 

Theorem 10: Ssc(n»O where n=J,2,3,4 ... 

This theorem is a direct consequence of Ssc(n) function definition. In fact for any n the smallest m 
such that m· n is a perfect square cannot be equal to zero otherwise m· n =0 and zero is not a 
perfect square. 

Theorem 11: 

fSsc(n) 

n-I n diverges 

163 



In fact being Ssc(n) ~ 1 this implies that: 

co Ssc(n) co 1 L >L:-
_I n ,,_1 n 

and as known the swn of reciprocal of integers diverges. [3] 

Theorem 12: Ssc(n) ~ n 

Direct consequence of theorem 4. 

Theorem 13: The range of Ssc(n) [unction is the set of squarefree numbers. 

According to the theorem 4 for any integer n the function Ssc(n) generates a squarefree number. 

0< &c(n) ~l 
Theorem 14: n for n>=1 

Direct consequence of theorems 12 and 10. 

Ssc(n) 

Theorem 15: n is not distributed uniformly in the interval]O,I] 

&c(n) =1 
If n is squarefree then Ssc(n)=n that implies n 

, a 6 
If n is not squarefree let's suppose without Joss of generality that n = p . q where p and q are 
primes. 

Then: 

Ssc(n) _ Ssc(pa).Ssc(p") 
n - pll.q" 

We can have 4 different cases. 
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1) a even and b even 

2) a odd and b odd 

Ssc(n) _ Ssc(po).Ssc(pb) _ p.q _ 1 s.!. 
n - pa .qb - pa .qb - pO-1 .qb-I 4 

3) a odd and b even 

4) a even and b odd 

Analogously to the case 3 . 

This prove the theorem because we don't have any point ofSsc(n) function in the interval ]1I4,1[ 

Theorem 16: For any arbitrary real number & > 0, there is some number n>=1 such that: 

Ssc(n) 
-""'--'- < & 

n 

Without loss of generality let's suppose that q = PI . P2 where PI and P2 are primes such that 
1 
- < & and & is any real number grater than zero. Now take a number n such that: 
q 
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Ssc(n) = PI· pz = 1 < 1 < & 

n p;l . p;l p'(t-I . p~-I PI· P2 

For a l and az even: 

Ssc(n) 1 1 
--~= < <& 

p'(t • P'? PI . pz n 

For a l odd and az even (orviceversa): 

Ssc(n) Pill 
--....:...-.;...=---'~-= < <& 

p'(t-I • p~ PI . pz 

Theorem 17: SsC(Pk #) = Pk # where Pk # is the product of first k primes (primoriaI) [3]. 

The theorem is a direct consequence of theorem 7 being Pl # a squarefree number. 

Theorem 18: The equation Ssc(n) = 1 has an infinite number of solutions. 
n 

The theorem is a direct consequence of theorem 2 and the well-known fact that there is an 
infinite number of prime numbers [6] 

Theorem 19: The repeated iteration of the Ssc(n) function will terminate always in a fIXed point 
(see [3] for definition of a fIXed point ). 

According to the theorem 13 the application of Sec function to any n will produce always a 
squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree 
number will produce always the same number. 
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Theorem 20: The diophantine equation Ssc(n)=Ssc(n+ 1) has no solutions. 

We must distinguish three cases: 

1) n and n+ 1 squarefree 
2) n and n+ 1 not squareefree 
3) n squarefree and n+ 1 no square free and viceversa 

Case 1. According to the theorem 7 Ssc(n)=n and Ssc(n+ 1)=n+ 1 that implies 
that Ssc(n)<>Ssc(n+ 1) 

Case 2. Withou toss of generality let's suppose that: 

n = pQ .q6 

n+l= pQ.q" +1=s& ·t d 

where p,q,s and t are distinct primes. 

According to the theorem 4: 

Ssc(n) = Ssc(pQ .q') = podd{Q) • qodd(6) 

Ssc(n + 1):::; Ssc(SC ·td ) = sodd{c) • todd(cI) 

and then Ssc(n)<>Ssc(n+ 1) 

Case 3. Without loss of generality let's suppose that n = p. q. Then: 

Ssc(n) = Ssc(p· q) = p.q 

Ssc(n + 1) = Ssc(p' q + 1) = Ssc(sQ . t") = sodd{Q) • toJd(b) 

supposing that n + 1 = p. q + 1 = sQ • t b 

This prove completely the theorem. 
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Theorem 21: ISsc(k) > 6.~ for any positive integer N. 
t=1 1l 

The theorem is very easy to prove. In fact the sum of first N values of Sse function can be separated 
into two parts: 

N N 

LSsc(kl ) + L&c(k2 ) 
.tl~} .tz=l 

where the ftrst sum extend over all kl squarefree numbers and the second one over all k2 not 
squarefree numbers. 
According to the Hardy and Wright result [3], the asymptotic number Q(n) of squarefree numbers 
~ N is given by: 

and then: 

because according to the theorem 7. &c( k}) = k1 and the sum of firSt N squarefree numbers is 
always greater or equal to the number Q(N) of squareftee numbers ~ N , namely: 

Tbeorem22: 
N N2 
LSsc(k) > for any positive integer N. 
tel 2·ln(N) 

In fact: 
N N N N 

ISsc(k) = LSsc(k') + LSsc(p) > L&C(p) 
i-I i'=1 r2 pz2 
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because by theorem 2, Ssc(p)=P. But according to the result of Bach and Shallit [3 J. the sum of 
first N primes is asymptotically equal to: 

and this completes the proof. 

N2 

2·1n(N) 

Theorem 23: The diophantine equations Ssc(n + 1) == Ie and &c(n) == Ie where Ie is any 
Ssc(n) &c(n+l) 

integer number have an infinite number of solutions. 

Let's suppose that n is a perfect square. In this case according to the theorem 1 we have: 

Ssc(n+l) = &c(n+ 1)= Ie 
Ssc(n) 

On the contrary if n+ 1 is a perfect square then: 

Ssc(n) = Ssc(n) = Ie 
Ssc(n+l) 

Problems. 

1) Is the difference ISsc(n+ 1 }-Ssc( n)l bounded or unbounded? 

2) Is the Ssc(n) function a Lipschitz function? 
A function is said a Lipschitz function [3] if: 

I Ssc(m)-Ssc(le) I ~M whereMis any integer 
Im-kl 

3) Study the function FSsc(n)=m. Here m is the number of different integers k such that Ssc(k)=n. 
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4) Solve the equations Ssc(n)=Ssc(n+ I)+Ssc(n+2) and Ssc(n)+Ssc(n+ 1)=Ssc(n+2). Is the number 
of solutions finite or infinite? 

5) Find all the values ofn such that Ssc(n) = Sse(n + I)· Ssc(n + 2) 

6) Solve the equation Ssc(n)· Ssc(n + 1) = Ssc(n + 2) 

7) Solve the equation Sse( n) • Ssc( n + 1) = Sse( n + 2) . Ssc(n + 3) 

8) Find all the values ofn such that S(n)k + Z(n)k = Ssc(nt where Sen) is the Smarandache 
function [1], Zen) the pseudo-Smarandache funtion [2] and k any integer. 

9) Find the smallest k such that between Ssc(n) and Ssc(k+n), for n>1, there is at least a prime. 

10) Find all the values ofn such that Ssc(Z(n))-Z(Ssc(n))=O where Z is the Pseudo Smarandache 
function [2]. 

11) Study the functions Ssc(Z(n», Z(Ssc(n) and Ssc(Z(n»)-Z(Ssc(n». 

12) Evaluate lim Sse(k) where B(k) = ~)n(Ssc(n» 
k_ B(k) IfSk 

13) Are there m, n, k non-null positive integers for which Ssc(m· n) = mk . Ssc(n)? 

14) Study the convergence of the Smarandache Square compolementary harmonic series: 

where a>0 and belongs to R 

15) Study the convergence ofthe series: 

170 



where xn is any increasing sequence such that lirnxn = C1) 
n-+<» 

16) Evaluate: 

t In(Ssc(k») 

1
· A:-z In(k) 
Im.::.-..::...-~:.--

1J--+;O n 

Is this limit convergent to some known mathematical constant? 

17) Solve the functional equation: 

&c(nY +&c(n)'-1 + ........ +&c(n) = n 

where r is an integer ~ 2. 

18) What about the functional equation: 

&c(n)' +&c(ny-l + ........ +Ssc(n)=k·n 

where r and k are two integers ~ 2 . 

19) Evaluate i)-It. 1 
1-1 &c(k) 

ISsc(n)2 
20) Evaluate .....;n"--_~ 

Ipsc(n{ 
171 



21) Evaluate: 

I." 1 " 1 lIn L..J - L..J 
,,-- 11 Ssc(f(n)) 11 fCSsc(n)) 

for ftn) equal to the Smarandache function Sen) [1] and to the Pseudo Smarandache function Zen) 
[2]. 
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ON THE PRIMITIVE NUMBERS OF 
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ABSTRACT. Let p be a prime, n be any posit.ive integer, Sp(n) denotes the smallest 
integer such that. Sp(n)! is divisible by p' •. In this paper, we study the asymptotic 
propert.it's of S'1'(n) , and give an int.el·esting asymptotic fOfmula fOf it. 

1. INTRODUCTION 

Let p be a prime, n be any positive integer, 5p {n) denotes the smallest integer 
such that Sp(n)! is divisible by pn. For example, S3(1) = 3, S3(2) = 6, 5 3 (3) = 
S3(4) = 9, ....... In problem 49 of book [IJ, Professor F.Smarandache ask us 
to study the properties of the sequence {Sp(n)}. About tIns problem, it appears 
that no one had studied it yet, at leclSt, we have not. seen such a paper before. The 
problem is interesting because it can help us to calculat.e the Smarandache function. 
In this paper, we use the elementary methods to study the asymptotic properties 
of Sp(n), and ~,.ive an interesting asymptotic formula for it. That is, we shall prove 
the following: 

Theorem. F07' any fixed prime p and any positive integer n, we ha'ue the asymp­
totic formula 

Sp(n) = (p-I)n + 0 (l:p .Inn). 

From this theorem we may immediately deduct' the following: 

Corollary. For any positive integer n, we have the asymptotic formttlas 

a) S2(n)=n+0(1nn); 

b) 5:3(n) = 2n + 0 (In 11) . 

Key UJords and phTfLSes. F.SmarandachE' prohlE'Ju; Pril11iti\"(' numbers; A~Ylllptot.i(" fot·mula. 
* This work is supported by th" N.S.F. and the P.S.F. of l' R.Chilia. 
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2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First for any iL'{ed prime 
p and any positive integer n, we let a( n,p) denote the sum of the base p digits of n. 
That is. if n = alPOl + a2p0<2 + ... + aspO<l with as > as-I> ... > 0'1 2 0, where 

s 

1 ::; ai ::; P - 1, i = 1,2,· .. ,8, then a(n, p) = L ai, and for this number theoretic 
i=1 

function, we have the following two simple Lemmas: 

Lemma 1. For any integer n 2 1, we have the identity 

where [xl denote,s the greate,st integer not exceeding x. 

Proof. From the properties of [xl we know that 

[~:] = [aIPCt1 + a2por:t ... + aspo.] 

_ { t ajpoj-i, if O'k-l < i ::; ak 
- j=k 

0, if i > as. 

So from this formula we have 

= L !:: = L alP 1 + a2P 2 + ... + asp • += [ ] += [or or Ct ] a(n) _. . 
p' • 

i=l i=l P 

This completes the proof of Lemma l. 

Lemma 2. FOT any positive integer n with pin, we have the e,stimate 

p 
a(n,p) ::; Inp Inn. 

Proof Let n = alpOl + a2pCt2 + ... + aspCt. with as > as-I> ... > 0'1 2 1, where 
1 ::; ai ::; p - 1, i = 1,2,· .. ,s. Then from the definition of a(n,p) we have 

s s 

(1) a(n,p) = 2: ai ::; 2:(p - 1) = (p - 1)8. 
i=l ;=1 
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On the other hand, using the mathematical induction we can easily get the inequal­
ity 

or 

In(n/as } Inn 
s < < --. 

- lnp - lnp 
(2) 

Combining (1) and (2) we immediately get the estimate 

p 
a(n,p) ~ Inp Inn. 

This proves the Lemma 2. 
N ow we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. For 

any fixed prime 'p and any positive integer n, let Sp( n) = k = al • pal + a2 . pa2 + 
... + as . po'. with as > as-I> ... > al ~ 0 under the base p. Then from the 
definition of Sp(n) we know that pnlk! and pn t (k -I)!, so that al 2: 1. Note that 
the factorization of k! into prime powers is 

k! = II qO'qCk) , 

q<k 

+00 [k] where II denotes the product over all prime ~ k, and aq(k) =?= i . From 
q$k ,=1 q 

Lemma 1 we immediately get the inequality 

or 
1 1 

-- (k - a(k,p) - al < n ~ --1 (k - a(k,p)). 
p-1 p-

I.e. 
(p -l}n + a(k,p) ~ k::; (p -l)n + a(k,p) + (p -1) (al -1). 

Combining this inequality and Lemma 2 we obtain the asymptotic formula 

k = (p - l)n + 0 . (: p In k) = (p - l)n + 0 (: p In n ) . 

This completes the proof of the Theorem. 
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ON A EQUATION OF SMARANDACHE 

AND ITS INTEGER SOLUTIONS* 

ZHANG VVENPENG 

Department of Mathematics, Northwest University 
Xi'an, Shaanxi, P.R.China 

ABSTRACT. Let Q denotes the set of all rational numbers, a E Q\ {-I, 0, I}. The 
main purpose of this paper is to prove that t.he equation 

~ 1 
x . a" + - . aX = 2a 

:r 

has one and only one integer solution x = 1. This solved a problem of Smarandache 
in book [1]. 

1. INTRODUCTION 

Let Q denotes the set of all rational numbers, a E Q\ {-I, 0, I}. In proble111 50 
of book [1], Professor F.Smarandache ask us to solve. the e·1uation 

1 1 x 2 x . a r + - . a = a. 
x 

(1) 

About this problem, it appears that no one had studied it yet, at least, we have 
not seen such a result before. The problem is interesting because it can help us 
to understand some new indefinite equations. In this paper, we use elementa.ry 
method and analysis method to study the equation (1), and prove the following 
conclusion: 

Theorem. For all a E Q\ {-1. 0, I}, the equation 

1 1 x 
:r . a;;; + - . (L = 2u 

x 

has one and only one integer solution ;r = 1. 

Key words and phrases. F.Smarandache equation: Integel· solut.ion: One and only OnE' solut.ion. 
* This work is supported by t.he N.S.F. and tllf> P.S.F. of P.R.China. 
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2. PROOF OF THE THEOREM 

In this section, we use elementary methods and the Rolle's Theorem in math­
ematical analysis to complete the proof of the Theorem. First we prove that the 
Theorem holds for a> 1. In fact in this case, let x is an integer solution of (1), we 
must have x > o. Then using the inequality lui + Ivl 2: 2vlul· Ivl we have 

x+l 
l1x Jll ~ :r·a;;+-·a 2:2· x·a;;·-·ax =2·a .t. 2:2·a, 

x x 

and the equality holds if and only if x = 1. This proved that for a> 1, the equation 
(1) has one and only one integer solution x = 1. 

Now we corl-sider 0 < a < 1. Let Xo is any integer solution of (1), then from 
equation (1) we know that Xo > O. To prove Xo = 1, we suppose Xo #- 1, let 

0< Xo < 1 (the proof for case Xo > 1 is the same as for 0 < Xo < 1), then ~ > 1, 
Xo 

we define the function f(x) as follows: 

f) 
1 1 x 

(x = x . a;; + - . a - 2a 
x 

It is clear that f(x) is a continuous function in the closed interval [xo,~], and 
Xo 

a derivable function in the open interval (xo,~), and more f( xo) = f( ~) = 
Xo Xo 

f( 1) = O. So from the Rolle's Theorem in mathematical analysis we know that 

l' (x) must have two zero points in the open intei-val (xo, x1o). and fll (x) must 

have one zero point in the same open interval. But from the definition of f( x) we 
have 

f '() !. 1 !. In 1 x-I x In x = a .. - - . a"· a - 2 . a + - . a· a 
x x x 

and 

f") 1 !.In2 2 x 1 Xl 1 xlIx 2 (x =-·a=· a+-·a --.0. . na--·a . no.+-·a ·In a 
x 3 x3 :r2 ;7;2 x 

1 !.In2 2 x 2 xIII x 2 = -. a=· a + _. a + -. a . n - + -. a ·In a 
x 3 x3 x2 a;7; 

>0, XE(XO,:o)' 
1 

where we have used 0 < a < 1 and In - > O. This contradiction with that 1"(;7;) 
a 

must have one zero point in the open interval (xo, :0). This proved that the 

Theorem holds for 0 < a < 1. 
If a. < 0 and a =f. -1, and equation (1) has an integer solution i, then I;rl must 

be an odd number, because negative nmnber has no real square root. So in this 
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case, the equation (1) become the following equation: 

21al = -2a = -x· a~ - ~. aX = -x· (-1)~ 'Ial~ - ~ . (-IY . lal x 

x x 

= x 'Ial~ + ~ ·Ial x
. 

x 

Then from the above conclusion we know that the Theorem is also holds. This 
completes the proof of the Theorem. 

Note. In fact from the process of the proof of the Theorem we can easily find that 
we have proved a more general conclusion: 

Theorem. Let R denotes the set of all real numbers. For any a E R\ { -1,0, 1}, 
the equation 

1 1 X 
x·a:+-·a =2a 

x 

has one and only one integer solution x = 1; It has one and only one real number 
solution x = 1, if a > O. 
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A NEW SEQUENCE RELATED SMARANDACHE 

SEQUENCES AND ITS MEAN VALUE FORMULA* 

ZHANG VVENPENG 
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Xi'an, Shaanxi, P.R.China 

ABSTRACT. Let n be any positive integer, a(n) denotes the product of all non-zero 
digits in base 10. For natural ;c ~ 2 and arbitrary fixed exponent m E lV, let 

Am(;c) = L amen). The main purpose of this paper is to give two exact calculating 
n<= 

formulas for Al(:C) and A2(:C)' 

l. INTRODUCTION 

For any positive integer n, let b( n) denotes the product of base 10 digits of n. 
For example, b(l) = 1, b(2)=2,··., b(10) = 0, bell) = 1, ..... In problem 22 
of book [1], Professor F .Smaradache ask us to study the properties of sequence 
{ben)}. About this problem, it appears that no one had studied it yet, at least, we 
have not seen such a paper before. The problem is interesting because it can help 
us to find some new distribution properties of the base 10 digits. In this paper, 
we consider another sequence {a( n)}, which related to Smarandache sequences. 
Let a( 11,) denotes the product of all non-zero digits in base 10 of n. For example, 
a(l) = 1, a(2) = 2, a(12) = 2, "', a(28) = 16, a(1023) = 6,······. For natural 
number x 2: 2 and arbitrary fixed e)...-ponent mEN, let 

Am(x) = L amen). (1) 
n<x 

The main purpose of this paper is to study the calculating problem of Am(x), and 
use elementary methods to deduce two exact calculating formulas for Al ( x) and 
A2(X). That is, we shall prove the following: 

Theorem. For any positive integer x, let x = a1 10k1 + a210k2 + ... + as 10k , with 
kl > k2 > ... > ks 2: 0 and 1 :5 ai :5 9, i = 2,3,··· ,s. Then we have the 
calculating formulas 

A ( ) = al a
2 ···as ~ aT -ai +2 (45+ [_1_]) .46k;-I. 

1 T 2 ~ 3 k i + 1 ' 
,=1 II aj . 

i=i 

Key words and phrases. F.Smarandache sequence; The base 10 digits; Calculating formula. 
* This work is support.ed by the N.S.F. and the P.S.F. of P.R. China. 
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A?(x)"= aia~ ... a; ~ 2a~ - 3a; + ai + 6 (285 [_1_]). 286ki - 1 

- 6?-' s + ki + 1 ' 
:=1 II a; 

j=i 

where [xl denotes the greatest integer not exceeding x. 

For general integer m ~ 3, using our methods we can also give an exact calcu­
lating formula for Am(x). That is, we have the calculating formula 

A ( . m m m ~ 1 + Bm ( ai) ([ 1] (») ( k"-1 
m x) = a 1 a2 •. , as ~ s -k' + Bm 10 . 1 + B m(10)' , 

i=1 II m Z + 1 
a" J 

j=i 

where aj as the definition as in the above Theorem, and Bm (N) = L n m . 

1~n<N 

2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First we need following 
two simple Lemmas. 

Lemma 1. For any integer k ~ 1 and 1 S c S 9, we have the identities 
a) A1(10k) = 45· 46k- 1; 

b) A 1(c·l0k)=45. (1+ (C~l)C) . 46k- 1. 

Proof. We first prove a) of Lemma 1 by induction. For k = 1, we have A 1(101) = 
AdlO) = 1 + 2 + ... + 9 = 45. So that the identity 

Al(10k) = L a(n) = 45· 46k
-

1 (2) 
n<10l: 

holds for k = 1. Assume (2) is true for k = m ~ 1. Then by the inductive 
assumption we have 

a(n) 

=A1 (9·lO m )+ 2: a(n+9·lOm
) 

O~n<lom 

=A l (9·lOm )+9· 2: a(n) 

= A l (9 . 10m
) + 9· Al{lOm) 

= Al(8 . 10m
) + 9· A1(lOm) + 8· Al(10m) 

= ........ . 

= (1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9)· A 1 (10m ) 

= 46 ... 4 1 (lOm) 

= 45. 46m
• 
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That is, (2) is true for ,,~ = m + 1. This proves the first part of Lemma 1. 
The second part b) follows from a) of Lemma 1 and the recurrence formula 

.11(c-l0 k) = 2: a(n) + 2: a(n) 
n«c-1)-10k (c-1) -10" :5n<c.10 k 

- 2: a(n) + 2: a(n+(c-l).10k) 
n«c-1)·lOk 0:5 n <10 k 

- ~ a(n) + (c -1)- ~ a(n) 
n«c-l)·10k n<10 k 

= .11«c-l) -10k) + (c -1)· .11(10k)_ 

This completes the proof of Lemma 1. 

Lemma 2. For any integer k ~ 1 and 1 :5 c :5 9, we have the identities 
c) .1z(10k) = 285 - 286k-\ 

d) .12(a - 10k) = 285 _ [1 + (a - 1)ai2a - .1)] _ 286k- 1. 

Proof. Note that .12(10) = 285. The Lemma 2 can be deduced by Lemma 1, 
induction and the recurrence formula 

= ~ a2 (n) + ~ a2(n + 9 _10 k
) 

n<g·10" 0:5n<10" 

_ ~ a2 (n) + 92
• ~ a2 (n) 

= ........ . 

= (1 + 12 +22 + ._. + 92) - .12(10k) 

= 286 -Az(10k). 

This completes the proof of Lemma 2. 

Now we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. 
For any positive integer x, let x = a1 • 10kl + a2 . 10k2 + ... + as . 10k• with 
k1 > k2 > _ .. > ks ~ 0 under the base 10. Then applying Lemma 1 repeatedly we 
have 

a(n) 

a(n) 
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= A1(al - lOki) + al - Al(x - al - lOki) 

= A1(al _lOki) + al - Al(aZ _lOk2) + alaZ - Al(X - al _lOki - aZ _lOk2) 
= ........ . 

i::i 

This proves the first part of the Theorem_ 
Applying Lemma 2 and the first part of the Theorem repeatedly we have 

O~n<x-al -10/0 1 

= AZ(al : lOki) + ai - Az(x - al - lOki) 

= AZ(al . lOki ) + ai . Az(az .lOk2 ) + aia~. Az(x - al . lOki - aZ ·lOk2) 
= ........ . 

This completes the proof of the second part of the Theorem. 
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Five Properties of the Smarandache Double Factorial Function 

Felice Russo 
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Abstract 

In this paper some properties of the Smarandache double factorial 
function have been analyzed. 

In [1], [2], [3J and [4] the Smarandache double fuctoriaI Sd.f(n) function is defined as the smallest 
number such that Sdf{n)!! is divisible by n, where the double factorial by definition is given by 
[6]: 

m!! = lx3x5x. .. m, ifrn is odd; 
m!! = 2x4x6x. .. m, ifrn is even. 

In [2] several properties of that function have been analyzed In this paper five new 
properties are reported 

1. Sdf(Pk+2) = p2 where p = 2· k + 1 is any prime and k any integer 

Let's consider the prime p = 2k + 1 . Then: 

2 k+2 wh . . 1· 3 ·5·7· .......... P ........ ·3 p ......... 5 P ........... p = m· p ere m IS any mteger. 

This because the number of terms multiples of p up to p2 are k+ 1 and the last term 
contains two times p. 
Then p2 is the least value such that 1· 3 . 5 . 7 .9· ...... p2 is divisible by pk+2. 

2. Sdf(P2) = 3· p where p is any odd prime. 
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In fact for any odd p we have: 

1·3·5· 7 ......... p· ...... ·3p = m· p2 where m is any integer. 

Ii (IOn -1)J Ij Ion -1) 3. S4l k· 9 =S4l 9 where n is any integer >1 and k=3,5,7,9 

. Ii IOn -1) Let's suppose that S4 l 9 = m then: 

(Ion -1) h . . B· th . 1·3·5·7· ....... ·m=o· 9 w ere a IS any mteger. ut m e preVIOUS 

mUltiplication there are factors multiple of 3,5,7 and 9 and then: 

I oJ. 5- 7- •.•.•. m = d·t -( 10: - I) where a' is any integer and iF 3,5,7,9. Then: 

Ii (IOn -1)J /If (IOn -1)J 4. S4 l k· 9 = S4 l
2 . 9 where n is any integer> 1 and k=2,4,6,8 

( IOn -1) h . . B· th . 2·4·6·8· ...... m = 0 ·2· 9 w ere a IS any mteger. ut m e preVIous 
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multiplication there are factors multiple of 4, 6 and 8 and then: 

(IOn -1) 2·4· 6·8· ..... ·m = a'·2· k· 9 where at is any integer and k=4,6,8. 

Then: 

5. Sdj(pm)=(2.m-1).p for p~(2m-1). Here m is any integer and p any 

odd prime. 

This is a generalization of property number 2 reported above. 
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ABSTRACT. Let ds(n) denotes the sum of the base 10 digits of n E N. For natural 
x ~ 2 and arbitrary fixed exponent mEN, let Arn(x) = L d;'Cn). The main 

n<z purpose of this paper is to give two exact ca:lculating formulas for Al (x) and Az (x). 

1. INTRODUCTION 

For any positive integer n, let ds(n) denotes the sum of the base 10 digits of n. 
For example, ds(O) = 0, ds(l) = 1, ds(2) = 2,"" ds(ll) = 2, dA12) = 3,······. In problem 21 of book [1], Professor F.Smaradache ask us to study the properties of 
sequence {ds(n)}. For natural number x ~ 2 and arbitrary fixed exponent m. E N, 
let 

Am(x) = L d:(n). (1) 
n<x 

The main purpose of this paper is to study the calculating problem of Am (x), and 
use elementary methods to deduce two exact calculating formulas for Al (x) and 
A2 (x). That is, we shall prove the following: 

Theorem. For any positive integer x, let x = a1 10k1 + a2 1Ok2 + ... + as 10k , -with 
k1 > k2 > .. , > ks ~ 0 and 1 ::::; ai ::::; 9, i = 2,3,··· , s. Then we have the 
calwlating formulas 

A1(x) = ~ a" (~k' + ~ a' _ ai + 1) . lOki. L..Jz .)z L; ') , 
i=l ~ j=1 ~ 

A ·) LS 

[k i (81ki +33) 9ki (. 1) Li 2 (4a i -l)(a i +l J] k· ?(x = a;' +-a;- + a·- ·10' - . 4 2' ) 6 i=1 j=l 

+ t ai' [C9ki - ai -1)lOki + 2 t ajlokij. (~ai) . 
&=2 ;=z ;=1 

For general integer m ~ 3, using our methods we can also give an exact calcu­
lating formula for Am (;r.). But in these cases, the computations are more complex. 

Key words and phratjes. F.Smarandache problem: Sum of base 10 digits: Calculating formula. * This work is supported by the N.S.F. and t.he P.S.F. of P.R.Chilla. 
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2. PROOF OF THE THEOREM 

In this section, we complete the proof of the Theorem. First we need following 
two simple Lemmas. 

Lemma 1. For any integer k ~ 0, we have the identities 

a) A1(10k) = ~. k .10k; 

k) (9 k a-I) k b) Ada ·10 = 2": + ~ . a·lO, 1 ~ a ~ 9. 

Proof We first prove a) of Lemma 1 by induction. For k = 0 and 1, we have 
A1 (100) = .11(1) = 0, .11(101) = .11(10) = 45. So that the identity 

A_1(10k) = L ds(n) = ~. k ·10k (2) 
n<10" ~ 

holds for k = 0 and 1. Assume (2) is true for k = m - 1. Then by the inductive 
assumption we have 

= A1(9 . 10m
-

I
) + 9. 10m

-
1 + A1(lOm

- 1 ) 

= A 1(8 . 10m
-

I ) + (8 + 9) . lOm
-

1 + 2AI (lOm-l) 

= .......... . 

= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) . lOm-l + 10A1 (10m
-

I
) 

= ~ . 10m + 10 . ~ . (m - 1) . lOm-l 
2 2 

= ~ ·m·lOm. 
2 

That is, (2) is true for k = m. This proves the first part of Lemma 1. 
The second part b) follows from a) of Lemma 1 and the recurrence formula 

k) A_1(a·lO = L dAn) + L ds(n) 
n«a-l)·10" (a -1 )·10" ~n<a·l0" 

- L ds{n) + L ds(n + (a -1) - 10k
) 

n«a-1)-10 k 0~n<10" 

L a(n) + (a - 1) - 10k + L dsCn) 
n« a -1) -10" n<10 k 
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This completes the proof of Lemma 1. 

Lemma 2. For any integer k ~ 0 and 1 Sa S 9. we have the identities 
. 81k + 33 . 

c) A2(10 k )= .k·10k
; 

4 

d) 4. ( Ok) [k(81k + 33) 9k( 1) (a - 1)(2a -1)] Ok 
·2 a·1 = 4 + 2 a- + 6 ·a·1 . 

Proof. These results can be deduced by Lemma 1, induction and the recurrence 
formula 

d~(n) 

= L d;(n)+ L d;(n+9·10k
) 

n<9·10k O~n<10k 

= ........ . 

= 10A2(10k) + (12 + 22 + ... + 92
) ·10k + 2· (1 + 2 + ... + 9)Al(10k) 

k 57 k+l 9 k = 10A2(10 ) + - . 10 + 90· - . k . 10 
2 2 

= 10A2(10k) + 5
2
7 . lOk+l + 8

2
1 . k. lOHl. 

This completes the proof of Lemma 2. 

N ow we use Lemma 1 and Lemma 2 to complete the proof of the Theorem. 
For any positive integer x, let x = a1 . lOki + a2 . 10k2 + ... + as . 10k• with 
kl > k2 > ... > ks ~ 0 under the base 10. Then applying Lemma 1 repeatedly we 
have 

= A1(a1 . lOki ) + a1(x - a1 . lOki ) + A 1(x - a1 . lOki ) 

= Adal 'lOkl) + Ada2 ·lOk2) + al(;1; - a1 . lOki ) 

+ CL2(;r - al . lOki - 02 . 10k2) + A.I (x - al . 10k, - a2 . lOk2) 
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s s i 

= L A 1 (ai . lOki) + L ai(X - L aj .10kj
) 

i=l i=l j=l 

= t (~ . k; + a i
; 1) . aj . lOki + t aj . lOki (~(l.j) 

1=1 1=2 J=l 

~ (9 k ~ a i +1) k· = L :) 'i + L- aj - -.)- . aj . 10 I. 

i=l - j=l -

This proves the first part of the Theorem. 
Applying Lemma 2 and the first part of the Theorem repeatedly we have 

A 2(x) = L d;(n) + L d;(n) 

= A 2 (a1 ·10kI ) + L (ds(n) + ad2 

O~n<x-aI·10l:I 

= A2(a1 . 10k
! ) + L (d;(n) + 2a1 . ds(n) + ai) 

= A2(a1 . 10k
! ) + ai . (x - a1 . lOkI) 

+ 2a1A1 (x - a1 . lOkI) + A2 (x - a1 . lOkI) 
= ........ . 

s sis i 
= L A 2 (aj . lOki) + L aUx - L aj .1Okj) + L 2ai A 1(X - L aj .10kj) 

i=1 i=l j=1 i=l 

This completes the proof of the second part of the Theorem. 
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On the Smarandache Lucas base and related counting function l 

Wenpeng Zhang 

Research Center for Basic Science, Xi'an Jiaotong University 

Xi'an Shaanxi, People's Republic of China 

1. INTRODUCTION AND RESULTS 

As usual, the Lucas sequence {Ln} and the Fibonacci sequence {Fn} (11. 

0,1,2, ... ,) are defined by the second-order linear recurrence sequences 

and 

for n ~ 0, Lo = 2, L1 = 1, Fo = 0 and FI = 1. These sequences playa very impor­

tant role in the studies of the theory and application of mathematics. Therefore, the 

various properties of Ln and Fn were investigated by many authors. For example, 

R. L. Duncan [1] and L. Kuipers [2J proved that (logFn) is uniformly distributed 

mod 1. H.London and R.Finkelstein [3] studied the Fibonacci and Lucas numbers 

which are perfect powers. The author [4] obtained some identities involving the 

Fibonacci numbers. 

In this paper, we introduce a new counting function a(m) related to the Lucas 

numbers, then use elementary methods to give an exact calculating formula for 

its mean value. First we consider the Smarandache's generalized base, Professor 

F.Smarandach defined over the set of natural numbers the following infinite gener­

alized base: 1 = go < gl < ... < gk < .... He proved that every positive integer N 

may be uniquely written in the Smarandache Generalized Ba..c;e a.s: 

n 

N=L(f.i9j, 
;=0 

with 0 < 0i < [9i+1 - 1] 
- - gi' 

1 This work is supported by the ~.S.F. anJ P.N.S.F. of P.R.China. 
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(integer part) for i = 0,1,··· ,n. and of course an 2: 1, in the following way: if 

and so on untill one obtains a rest rj = o. 

This base is important for partitions. If we take the gi as the Lucas sequence, 

then we can get a particular base, for convenience, we refer to it as a Smaran-

dache Lucas base. Then any positive integer m may be uniquely written in the 

Smarandache Lucas base as: 

n 

m = L aiLi, with all ai = 0 or 1, 
i=l 

(1) 

That is, any positive integer may be written as a sum of Lucas numbers. Now for 
n 

an integer m = L aiLi, we define the counting function a( m) = a1 + a2 + ... + an. 
i=l 

The main purpose of this paper is to study the distribution properties of a( m), and 

present a calculating formula for the mean value 

Ar(N) = L ar(n), r = 1, 2. (2) 
n<N 

That is, we prove the following two main conclusions: 

Theorem 1. For any positive integer k, 'we have the calculating formulae 

A1(Lk) = L a(n)=kFk-1 
n<Lk 

and 

Theorem 2. For any positive integer N, let N = Lkl + Lk2 + ... + Lk. with 

kl > k2 > ... > ks under the Smarandache Lucas base. Then we have 

and 
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Further, 
s 

Al(N) = L [kiFk;-l + (i -l)LkJ. 
;=1 

For any positive integer r ~ 3, using our methods we can also give an exact 

calculating formula for AALk). But in these cases, the computations are more 

complex. 

2. PROOF OF THE THEOREMS 

In this section, we complete the proof of the Theorems. First we prove Theorem 

1 by induction. For k = 1, 2, we have A1(Ld = Al(l) = 0, A 1 (L2 ) = Al(3) = 2 
and Fo = 0, 2Fl = 2. So that the identity 

A1(Lk ) = L a(n) = kFk-l (3) 
n<LIc 

holds for k = 1 and 2. Assume (3) is true for all k ~'m -1. Then by the inductive 

assumption we have 

Al(Lm) = L a(n) + L a(n) 
n<Lm_ 1 Lm_1$n<Lm 

= Al(Lm - 1 ) + L a(n + L m - l ) 
O$n<L m _ 2 

=A1 (Lm - 1 )+ L (a(n) + 1) 
O$n<Lm _ 2 

=Al(Lm-d+Lm-2+ L a(n) 
n<Lm_ 2 

= (m -1)Fm - 2 + (m - 2)Fm - 3 + Lm - 2 

= m(Fm - 2 + Fm - 3 ) - Fm - 2 - 2Fm - 3 + L m - 2 

= mFm - l - Fm - 1 - Fm - 3 + L m - 2 

= mFm - 1 , 

where we have used the identity Fm - l + Fm - 3 = L m - 2 • That is, (3) is true for 
k = m. This proves the first part of Theorem 1. 
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Now we prove the second part·of Theorem 1. For k = 1, 2, note that 1 = F1 = 

Fo + F-1 or F-1 = 1, we have A2(LI) = .4.2 (1) = 0, A 2(L2) = A 2(3) = 2 and 

1 [ { 0, 5 (k - l)(k - 2)Lk-2 + 5(k -1)Fk- 2 + 7(k - 1)Fk- 3 + 3Fk- 1] = 2, 

So that the identity 

if k = 1; 

if k = 2. 

1 
A 2(Lk) = 5 [(k - l)(k - 2)Lk- 2 + 5(k - 1 )Fk-2 + 7(k -1)Fk-3 + 3Fk-d (4)' 

holds for k = 1, 2. Assume (4) is true for all k ~ m - 1. Then by the inductive 

assumption, the first part of Theorem 1 and note that L m - 1 + 2Lm - 2 = 5Fm -; 

and Fm - 1 + 2Fm - 2 = L m - 1 , we have 

= A2(Lm-d + A2(L m - 2 ) + 2A1(L m - 2) + L m - 2 

1 = 5 [em - 2)(m - 3)Lrn - 3 + 5(m - 2)Fm - 3 + 7(m - 2)Fm - 4 + 3Frn - 2 ] 

1 + 5 [em - 3)(m - 4)Lm-4 + 5(m - 3)Fm- 4 + 7(m - 3)Fm- s + 3Fm- 3 ] 

+ 2(m - 2)Fm - 3 + L m - 2 

= ~ [em -l)(m - 2)L rn - 3 + 5(m - 1)Fm - 3 + 7(m -1)Fm - 4 + 3Frn - 2 ] 
5 

1 + 5 [em - l)(m - 2)L m - 4 + 5(m - 1)Fm - 4 + 7(m - l)Fm - s + 3Fm - 3 ] 

- ~ [2(rn - 1)L rn - 3 + (4m -10lL m - 4 + 5Fm - 3 + 7Fm - 4 + 10Fm - 4 
5 

+ 14Fm - s] +2(m -2)Fm - 3 +Lm - 2 

= ~ [em -l)(m - 2)Lm- 2 + 5(m - 1)Fm- 2 + 7(m - 1)Fm- 3 + 3Fm - 1 ] 
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1 
- -:- [2(m - 2)(Lm - 3 + 2Lm - 4 ) - 2Lm - 4 + 5(Fm - 3 + 2Fm - 4 ) 

oJ . 

+ 7(Fm - 4 + 2Fm - 5 )] + 2(m - 2)Fm - 3 + Lm - 2 

1 
= 5" [(m - l)(m - 2)Lm - 2 + 5(m - I)Fm - 2 + 7(m - I)Fm - 3 + 3F~-1] 

1 
- 5" [10(177. - 2)Fm - 3 - 2Lm - 4 + 5Lm - 3 + 7Lm - 4 ] 

+ 2(m - 2)Fm - 3+ Lm - 2 

1 
= 5" ((m -l)(m - 2)Lm - 2 + 5(m - I)Fm - 2 + 7(m - I)Fm - 3 + 3Fm-d. 

That is, (4) is true for k = m. This completes the proof of Theorem 1. 

Proof of Theorem 2. Note that N = Lkl + Lk2 + ... + Lk., applying Theorem 1 we 

have 

Al(N) = L a(n) + L a(n) 
n<Lkl Lkl $;n<N 

= A1(Lk 1 ) + L a(n) 
Lkl $.n<N 

L (a(n) + 1) 

and 

(a2 (n) + 2a(n) + 1) 
O$.n<N-Lk l 

= A2 (LkJ + N - Lkl + A2 (N - LkJ + 2A1(N - LkJ. 

This proves the first part of Theorem 2. 

The final formula in Theorem 2 can be proved using induction on .s and the 

recursion formulae. This completes the proof of Theorem 2. 
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On a Generalized Bisector Theorem 
J. Sandor 

Babe§-Bolyai University, 3400 Cluj, Romania 

In the book [1] by Smarandache (see also [2]) appears the following generalization of 

the well-known bisector theorem. 

Let AM be a cevian of the triangle which forms the angles u and v with the sides AB 

and AC, respectively. Then 
AB MB sinv 
AC = MC' sinu (76) 

We wish to mention -here that relation (1) also appeared in my book [3J on page 

112, where it is used for a generalization of Steiner's theorem. Namely, the following result 

holds true (see Theorem 25 in page 112): 

Let AD and AE be two cevians (D, E E (BC» forming angles a, [3 with the sides 

AB, AC, respectively. IT A::; 90° and a::; [3, then 

BD.BE AB2 
-C-D-· C-E- ~ -AC2-' (77) 

Indeed, by applying the area resp. trigonometrical formulas of the area of a triangle, 

we get 
BD A(ABD) AB sin a 
- = = -:-::::-:--:-:--~ 
CD A(ACD) ACsin(A-a) 

(i.e. relation (1) with u = a, v = [3 - a). Similarly one has 

Therefore 

BE AB sin(A - (3) 
CE = ACsin.B 

BD· BE (AB)2 sin a sin(A - (3) 
CD· CE = AC sin[3 . sin(A - a)' (78) 

Now, identity (3), by 0 < a ~ {3 < goo and 0 < A-{3 ~ A-a < 90° gives immediately 

relation (2). This solution appears in [3]. For a = {3 one has 

BD . BE = (AB)2 
CD·CE AC 

(79) 

which is the classical Steiner theorem. When D == E, this gives the well known bisector 

theorem. 
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On a Conjecture of F. Smarandache 

Wang Yang l
•2 Zhang Hong Li u 

(1. Department of Mathematics, Northwest University~ 2.Department of Mathematics, Nanyang 
Teacher's College, Henan China 473061; 
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AbstraCt: The main purpose of this paper is to solve a problem generated by Professor 
F.Smarandache. 

Key word: Permutation sequence; k-power. 

Let n be a positive integer, n is called a k-power ifn=m\ where k and m are positive 
integer, and k~2. Obviously, ifn is a k-power, p is a prime, then we have pk/n, ifp/n. 

In his book "Only Problems, not Solutions", Professor F.Smarandache defined a 
permutation sequence: 12, 1342, 135642, 13578642, 13579108642, 135791112108642, 
1357911131412108642,13579111315161412108642>135791 113151718161412108642, ... , 
and generated a conjecture: there is no any k-power among these numbers. The main 
purpose.ofthis paper is to prove that this conjecture is true. 

Suppose there is a k-power a(n) among the permutation sequence. Noting the fact: 
12=22x3, we may immediately get: a(n)~ 1342>10000. For the last two digits ofa(n) is 42, 
so we have a(n)=42(modIOO) 

Noting that 41100, we may immediately deduce: a(n)=42=2(mod4). 
So we get 2Ia(n), 4}aCn). However, 2 is a prime, then 41a(n) contradicts with 4}a(n). So 

a(n) is not a k-power. 

This complete the proof of the conjecture. 

REFERENCES 
[1] Chengdong Pang, Chengbiao Pang. Elementary Number Theory. 6·th ed. Being,1 992. 
[2] FSmarandache. Only problems, not Solutions [MJ. Xiquan publishing House, 1993;25. 

199 



Paradoxes Review 

FeugLiu 
Dept. ofManagemaJt Science and Engineering. 

Shaanxi Economics and Trade Institute (Souah Campus). South Cuihua Road, Xi'an, Shaanxi, 710061, P. R. China 
E-mail: youchul@finmu.edu.cn 

Abstract: I came aaoss one of the Smarandache divine paradoxes and felt very strongly that it is really oW' 
Buddhist·s obIiptiOIl to laelp understaDd the uuderlying tndb. There seem a lot of toughest points in the cultural 
difference. and it will be the most difticuItjob to reach the mutual point as neutrality. What I can do is to try oW' 
best and find cooperatioa. Limited to the time, I just put a few as my first review. 

1 S .. ralldadle DiYbae Parade .. at 
htgr.llwww.pllup.mm pIuI:1PM1""k¥~.btm 

DIWIe Paradox (1): Can God canmit suicide? 
If God camot. then it appears that then is somethiDg God cannot do, 1hcn:b'e God is not omnipotent. 
If God can commit suicide. then Gad dies - because He has to prow it. therefore God is not immoctal 

1.1 nere Is C8daioII _ tile law oIldeadty ill leek 
• There are two me8IIings in the refining to God: ODe is his etemal spirit. one is body. 
• When we refer to tho etemaI spirit. 1bero is DO suicide at aD---it is merely our iUusioa.. 
• Wbea we refer to the body. it is acmally not ~just ODe ofbis clothes. Goers omnipotence implies that 

he can cbange his cIoCbes at his wiII. 1'ba'etCre, there is no suicide in him. 
The empet'ClI' gave a profOlllld ceremmious funeral to Master Dbarma. the First PaIrian:h of 

Buddhism iD CbiDa ~g &om India, a&r his death. Weeks later however. someone just returning 
from the west claimed he reaDy saw the Master going to the west. To his astonishment, the emperor 
decided to UDtOmb to wriij. Still to their astonishment. there is oo1hing more 1han a shining shoe in it 
that sent firil radiaat light. 

There em be countless figures of the same Bodbisattw simultaneously exist, ~ording to the 
sutras (Yea. Cain KUDg [ID. 
(SiJK:e VeIL Master ChiD Kung is a BudiIUst monk, his Buddhist name is Chin Kug .xl his surname 
is the UDified one: Sakyam~ normally not medtiODcd) 

• However, there is suicide as a mamer we believe, sa the problem becomes: whether God can show us 
sudl a mamer. 

1.1 God lives to save as, DOt to IdI u 
• As the greatest teacher, tberc is nodUng silly at all in his mind. How can we compare our silliDess with 

God? 

a) Everyone is brought up by JUs pareDb and the society with toil and moil - from pregnancy. 
bir1b. to breeding. nurtming.... they suffered everythingjust fa' the future ofbim. What a silly 
dead when he is not wiDing to 18ce difficulties that his parents dealt with for decades? He must be 
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crazy. How can we image God as crazy? Nor even a psychologically healthy person. 

b) Although God can change his clothes at his wm. but be can never even think of such a manner: 

once we assmne he showed, he would be as silly as us. and ifmillions of people followed this 

silliness, who would be the murderer? 

c) The same silliDess truly happens in presat auna where millions ofimoccnt people believed in a 

cheater ofBuddbism-Li Hongzhi lIIId his Falungong. 

• God signifies the supreme power and m~ of mercy. 
a) Just because compassion constitutes the nature of pus people. God never allows suicide, 

instead, he saves people fivm death. 
b) F (X' the well-disciplined Bnddbists, DCitber do they commit suicide, nor kiD even eat animals. 

Instead, they often free captive animals from deadt. . 

1.3 God Ihres for aD fIesl, aet for Iaimsdf 

• WheDever we ask whether God can show 111 ill the manner of death? S1D'e, but never for himself. be 
suffers and dies far every being: to sac us all 

I A Tbe CODSeqaeace or saidde Is dellaitely sIaowa fa tile Ufe after death ad Ia the following cydes or Ufe as 

well 

• Much more can we learn from Buddhism that bases its whole theory OIl the c:ause-eft'ect phenomena of 
our daily routines. and the destiny lies just in this. 

SIIIIIJ'aJIdache Social Paradox: 

In a democracy sbouId the nondemocratic ideas be aIIowed"1 
a) lfyes. ie. the nondemDcratic ideas are allowed, thelLODe not has a democracy anymore. (The nondemocratic 

ideas may overturn the society.) 

b) IfDD, Le.. other ideas are DOt aDowed - even those IlOIIdemocratic -, then one not has a democracy either. 

because the freedom of spcec:b is restricted. 

Deaocncy ad IlOIldemocrac:y c:oemt ill OM ceatnuIidiDa. 

• There is DO tndh ICbIaIIy. just because there is prejudic:e. 
a) The supreme truth lies in its void D8IUre: Dao in Daoism. the wisdom in Buddhism. Dao is void in 

that wbeaever we speak of tile order ofll8blre. what we imagine can never be Dao (inferred fi'om 

Daodejing. B. Wang. X. Guo). So is Buddha: be is not sbowa in any kind offorms like figure, 

image. the truth. the ideal, etc.. what we see is merely our phantasm, DOt teal (the Diamond SutnI, 

Yeo. Chin Kung [1 D. He is ideal just because be doesn't pursuit idealness. 

b) Whenever we speak ofb'lldt. comparative to fidse merely, like posithle to negati~, good to bad, 

wise to error, Buddhist w.y to errant manner (inferred &om Daodejing. B. Wang, X. Guo). 

c) There is ooIy ODe step between tndl and prejudice. Trudl becomes prejudice when it is over 

believed regardless of ccmstraiDt of situations. 

• There is no absolute democracy. 
a) As shown above, when we mention democracy, we relate to nonclemocracy too: we call fur 

democnacy because there is dicramrship. 

b) Absolute democracy bas DO meaning - ifit had. it were self-contradictory: just as the paradox 

shows. 
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• Then: needs neutrality between 1bem as baIaDce. 
a) Absolute democracy allows seif-cemered societies to expand. the outcome must be canflicts. It is 

even WQ'SC in the expansion ofberesy, e.g., in Hitler's Nazi Reich in which most of the people are 

cheated. The democracy turned out to be a dictatorship. 

b) There is DO absolute dictatcrsbip either. Absolute dictatorship against people's will definitely lead 

to its being overtmuwn. and that accading to people's wiD can lead to prosperity too (in the Tang 

dynasty of China the emperor even Invited BucklUsm &om India even when Chine had its own 

deep rooted c:ultures). 

c) Absolute democracy/dic:ratorsllip wJ1l definitely lead to the negabon of itself.. This is one of the 

essenriaHties ofDaoism: diDgs will develop in the opposite direction when they become exlreme. 
refiected in ueutrosophy as the Law of Inverse Effect (F. Smarandache). 

d) In reali1;Y society is based OIl the balance between these two fitctors, so Mao Zedong advocates the 

unity of democ::racy and caUaIism, i.e., democntic cenlraIism in his tbeay. Howe'JeI' he never 

implemented it duo to some effect, e.g., he lamc:bed the Cultural Revolution. 

b) SlIlInIId.:be's DIusion: 

Suppose you 1raveI to a third world COUIdIy, for example RomaDia. You arrive in the capital city of Bucharest, 

late in the night, and want to exchange a $100 biD to tile c:ountry'SWIlc:ucies, which .-e called-lei". AU exchange 
oftic:es are closed. A local citizen approacbes _ paoposes you to exchnge your bin. He m a tbiet: 

You giw him the $100 bill, be gives}'08 the equivalent in the COUD1Iy's currency, i.e. 25,000 lei. But the laws 
of the CODDb'y do not aOow exdwIge OIl the street, aad both of you know it. 
The thief cries "police!-. and gives you the dollars back with oae band, while with the otha' hImd takes back his 

lei, and I1IIIS out VIaIisbing behind a bm1cfin&. 
The thiefhas dICItcd you. 

Taken by surprise, you don"t reaIi2e whit had llappenecl. SlId looking ill your band expecting to see back a 
$100 bill, actually you see a $1 biJI .•• in}'Oll' mind, in the very first seconds, it appears the illusion that the $100 

biD cIIangcd, undeF JOUl' eyes, into a $1 biU! 

3.1 ne..e iI ......... te fact 

One time in Taag cIyDasty of China, the Fifth Patriarch ofBuddhism announced to his d"lSCiples that everyone 

write a verse to show his insight ofdie Buddhist wisdom. 

At this, the most eligible one presented os the waD the verse: 

Our body be a BocIIi tree, 

Our miad a mirror bright. 

Clean aad polish iequendy. 

Let DO cbt alight. 

Just as a choreman in the miJI of tile temple, HuineDg answered it witb his own: 

There m DO BocIU tree, 

Nor stand of a mirror' bright, 

Since aU is void, 

Where can the dust aligbt? 

3.1 nCR Is fact, bat BIeRly beliefs crated by oandves 

• Let's foUow the sutra(adapted from [2l): 
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Huineng arrived at a Temple in Guaugzbou where a pennant was being blown by wind. Two 

monks who happened to see the pennant were debating what was in motion, the wind or the pennant. 

Huineng beard their discussion and said: "It was neither the wind nor the pennant. What actually 

moved were your own minds." Overbearing this conversation, the assembly (a lecture was to begin) 

were startled at Huineng's knowledge and outstanding ¥iews. 

• When we see pennant and wind we will naturally believe we are right in our consciousness. however it 
is subjective. In other words, what we call "the objective world" can never absolutely be objective at all. 

• Whenever be believe we are objective, this belief however is subjective too. 

• In fact, all these tbingsare merely our mental creations (called illusions in Buddhism) tbatin tmn cbeat 

our consc:iousocss: There is neitber pemant nor wind. but ow mental creations. 

• The figure "you" in the paradox 11M created two di1ferent things: $100 currency first and then a $1 note, 

and he absolUtely believed in both ofhis creations separatcly. As the result, he believes both are 

simultaneously true. But in fact Beidler Is true • tIley are aD lIis beIid's. 

• Tho world is made up of 0 .... subjective beliefs that ill tmn cheat our consciousness. This is in fact a 
cumulative cause-effect pbenomCllOll. 

• Everyone can extricate himself out oftbis mIlD; said Sakyamuni and aD the Buddhas. Bodbisattvas 
around the universe. their number is as maay as that of the sands in the Ganges (LimitIess Life Sutra, 

Yen. Chin Kung [I]). 

[1] Chin Kung: What is Buddhism, http:/hllww.amtb.org.h\i/e-budlE-BlID.HTM • 

[2] Yaa Kuanhu Culture and Education Fund: The Pictorial Biography ofThe Sixth Patriarch Master Huiueng, 

English translation by Yan Shudong. Cui Jiuquao, Zhang autang. Shabgbai Ancient Books Press, 2000 

[3] F. Smara .. dar:he:; Neutrosophy: A UnifYiDs Field in Logics: Ncutrosopbic I.o!ic. Neutrosopby, Ncubosopbic 

Set, Neutrosopbic Probability (second edition). American Research Press, 1999. 
htijJ://www.gallup.tulm.cdul-smarandachdeBook-llcutrosophics2.pdf. 

[41 B. Wang, X. Guo (8DDOtated ancient): Laozi Zhuaogzi. Shanghai Ancient Boob Press, 1995. 

Special tIumk is given to Li Lingfei for his c:onstructing discussion. He also provides the hint to the illusion 

paradox. 
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THE EQUATION a 2(k+2, S(n))= a 2(k+l,S(n))+ a 2(k, S(n)) 

Xigeng Chen 

Abstract. For any positive integer a, let Sea) be the Smarandache 

function of Q. For any positive integers rand b, let a (r, b) be the first 

r digits of b. In this paper we prove that the title equation has no 

positive integer solutions (n, k). 

Key words: Smarandache function, diophantine equation 

Let N be the set of all positive integers. For any positive integer a, 

let S(a) be the Smarandache function of a. For any positive integer 

(1) b = t ···t t s 2 J 

with s digits, let 

(2) a(r,b) = ts' ··ts- r+1 

be the first r digits of b. Recently, Bencze [1] proposed the following 

problem: 

Problem Determine all solutions (n, k) of the equation 

(3) a 2 (k + 2,S(n))=a 2 (k + 1,S(n))+ a 2 (k,S(n)),n,k EN. 

In this paper we completely solve the above-mentioned problem 

as follows. 

Theorem The equation (3) has no solutions (n, k). 

Proof. Let (n, k) be a solution of (3). It is a well known fact that 

Sen) is a positive integer (see [2]). Let b=S(n). We may assume that b 
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has s digits as (1). For any positive integer r, by the defmition (2) of 

a (r, b), we have 

( ) {
I O.a(r, b) + ts-r+l' if r <s, 

(4) a r + l,b = 
a(r,b1 if r~s. 

If k>s-l, then from (4) we get a (k+2, b)= a (k+l, b). Hence, by 

(3), we obtain a (k, b )=0, a contradiction. 

If k<s-I, then from (4) we get 
(5) a(k+2,b)~10·a(k+l,b} 

Hence, by (3) and (5), we get 

(6) 99· a 2 (k + l,b)~ a 2 (k,b} 

However, we see from (4) that a(k+l, b)?: a(k, b). Therefore, (6) is 

impossible. Thus, the equation (3) has no solutions (l7,k). 
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Xingen Chen 

Abstract. For any positive integer a, let S( a) be the Smarandache 

function of a. For any positive integer r and b, let fJ (r, b) be the last r 

digits of b. In this paper we determine all positive integer pairs (n, k) 

for which the title equality holds. 

Key words: Smarandache function, digit, equality 

For any positive integer a, let Sea) be the Smarandache function 

of a. For any positive integer 

(1) 

with s digits, let 

(2) f3(r, b) = f,·· ·fl 

be the last r digits of h. Recently, Bencze [1] proposed the foHowing 

problem: 

Problem Determine all positive integer pairs (n, k) for which 

(3) j32 (k + 2,S(n») = f32 (k + 1,S(n») + j32(k,S(n)} 

In this paper we completely solve the above-mentioned problem 

as follows. 

Theorem A positive integer pair (n, k) satisfies (3) if and only if 

n satisfy 
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(4) 

where c is a nonnegative integer, d is a positive integer with 1 ~d~9. 

By the definition of the Smarandache function (see [2]), we have 

S(m!)=m for any positive integer m. Therefore, by the above theorem, 

we obtain the following corollary immediately. 

Corollary For any fixed positive integer k, there exists infinitely 

many positive integers 

(5) n = (1O k
+

2 c + 10k d)! ,c ~ 0, d = 1,2,. .. ,9, 

Satisfying (3). 

The proof of Theorem Let (n, k) be a positive integer pair 

satisfying (3), and let b=S(n). Then b is a positive integer. We may 

assume that b has s digits as (1). For any positive integer r, by the 

definition (2) of fJ (r, b), we have 

(6) O~P(r,b)<lor 

and 

(7) p{r + l,b)= fJ{r,b) + lor tr+l. 

If (k+2*0, then from (6) and (7) we get 

(8) fJ{k + 2,b)~ p(k + l,b) + 10*+1 >f3{k + I,b)+ p(k,b} 
It implies that 

(9) 

which contradicts (3). 

If (k+2=0, then from (7) we get 
(10) p{k + 2,b)= fJ{k + l,b} 
Substitute (10) into (3), we get fJ (k, b )=0. It implies that (1=···=tk=O 
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by (2). Thus, b=S(n) satisfies (4). The theorem is proved. 
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ON THE SMARANDACHE DOUBLE 
FACTORIAL FUNCTION 

Maohua Le 

Abstract. In this paper we discuss varIOUS problems and 

conjectures concerned the Srnarandache double factorial function. 

Keywords: Smarandache double factorial function, inequality, 

infinite series, infinite product, diophantine equation 

For any positive integer n, the Srnarandache double factorial 

function Sdj( n) is defined as the least positive integer m such that m!! 

is divisible by n, where 

{
2.4 ... m, 

m!!= 
1.3 ... m, 

if 21m, 

if 21m. 

In this paper we shall discuss various problems and conjectures concerned 

Sdj(n). 

1. The valua of Sdf(n) 

By the definition of Sd.f(n), we have Sdj(l)=l and Sdj(n» 1 if n 

> 1. We now give three general results as follows. 

Theorem 1.1. If2.rn and 

(1 1) - QI Q2 a~ . n- PI P2 ,,·PIc 

is the factorization of n, where PI' P2' ••• , Pk are distinct odd primes 

and OJ> 02' "', Ok are positive integers, then 
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Proof. Let mj = sdf(P/') for i= I, 2, ... , k. Then we get 2,r mi 

(i=1,2, ... , k) and 

(1.3) a'i "'-12 k pj mj .. ,l-, , ... , . 

(1.4) m "Imll z=. 1 2 ... k i-· .. , ~" ,. 

Therefore, by (1.3) and (1.4), we get 

(1.5) P;' I m!!,i = 1,2, .. . ,k. 

Notice that PI' P2, .•• , Pk are distinct odd primes. We have 

(1.6) gcd(p;' , p;l ) = 1, 1 ~ i <j ~ k. 

Thus, by (1.1), (1.5) and (1.6), we obtain nlm!1. It implies that 

( 1.7) Sdf(n)~m. 

On the other hand, by the definition of m, if Sdj(n)<m, then there 

exists a prime power 

(l.8) 

~/(l < . <k) PJ -1-

P;' I Sdf(n)!!. 

such that 

By (1.1) and (1.8), we get n I Sdf(n)!!, a contradiction. Therefore, by 

(1.7), we obtain Sd.f{n)=m. It implies that (1.2) holds. The theorem is 

proved. 

Theorem 1.2. If 21n and 

(1.9) 

where a, n l are positive integers with 2,rn l , then 
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(1.10) 

Proof. Let mo=SdfC2a) and m1=SdfCn1). Then we have 

(1.11) 2almo!!, ndmJ!!. 

Since (2m 1)!!=2.4···(2m1)=2nl
' • m1!=2nl

, • ml!!(mJ-1)!!, we get ml!!1(2m1)!!. 

It implies that 

(1.12) 

Let m=max(mo' 2m1). Then we have mo!!lm~! and (2ml)!!lm!!. Since 

gcd (2a, n l )=l, we see from (1.9), (1.11) and (1.12) that nlm!!. Thus, 

we obtain SdfCn)~m. It implies that (1.10) holds. The theorem is 

proved. 

Theorem 1.3. Let a, b be two positive integers. Then we have 

{

Sdf(a) + Sdf(b), if 21 a and 21 b, 

(1.13) Sdf(ab)~ Sdf(a)+2Sdf(b), if 2/a and 21b, 

2Sdf(a) + 2Sdf(b)-1, if 21a and 21b. 

Proof. By Theorem 4.13 of [4], if21a and 21b, then 

(1.14) Sdf{a)=2r, Sdj{b)=2s, 

where r, s are positive integers. We see from (1.14) that 

(1.15) 

Notice that 

al(2r)!!, bI(2s)!!. 

(1.16) (2r + 2s)!! 2
r
+

s
• (r + s)! (r + s)! (r + SJ 

(2r)U(2s)!! = (2 r
• r!)(2s

• s!) = r!s! = r ' 

where (
r +sJ (r+ sJ r is a binomial coefficient. Since r is a positive 

integer, we see from (1.16) that 
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( 1.17) (2r)!!(2s)! !1(2r+2s)!! 

Thus, by (1.15) and (1.17), we get abl(2r+2s)!1. It implies that 

(1.18) Sdf(ab)~2r+2s, if21a and 21b. 

If21a and 21'b, then 

( 1.19) Sdj{a)=2r, Sdf(b )=18+ 1, 

where a is a positive integer and s is a nonnegative integer. By (1.19), 

we get 

(1.20) aI(2r)!!, bI(2s+1)!!' 

Notice that 

(1.21) 
(2r + 4s + 2)!! _ 2r

+
2s

+
l
• (r + 2s + I)! 2s

• s! 

(2r)!!(2s + l)!! 2r
• r! (2S + I)! 

= 23.+1. s! (r + 2s + I)! = 2-h - l . S!(r + 2s + 1). 
r!(2s + 1) r 

We find from (1.21) that 

(1.22) (2r)!!(2s+ I)! !1(2r+4s+2)!!. 

Thus, by (1.20) and (1.22), we obtain abl(2r+4s+2)!1. It implies that 

(1.23) Sdf(ab)~2r+4s+2, if21a and 2/b. 

If 2 I a and 2 I b , then 

( 1.24) Sdf( a )=2r+ 1 , Sdf( b )=2s+ I, 

where r, s are nonnegative integers. By (1.24), we get 

( 1.25) al(2r+l)!!, bl(2s+I)!!. 

Notice that 
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(1.26) 
(4r+4s+3J.! _ (4r+4s+3)! (2r)!!. (2s)!! 

(2r + 1)!!(2s + I)!! (4r + 4s + 2)!! (2r + I)! (2s + I)! 

= (4r+4s+3)! . 2r. r! 2s. s! 
22r+2s+1. (2r + 2s + I)! (2r + I)! (2s + I)! 

r!s! ( 4r + 4s + 3 J 
= 2r+s+1 2r + 2s + 1,2r + 1,2s + 1 ' 

( 
4r + 4s + 3 J 

where 2r + 2s + 1, 2r + i, 2s + 1 is a polynomial coefficient. Since 

( 
4r +4s+3 J 

2r + 2s + 1, 2r + 1, 2s + 1 
is a positive integer and (2r+ 1 )! !, (2s+ 1 )! ! 

are odd integers, we see from (1.26) that 

( 1.27) (2r+l )!!(2s+ I)! !Ie 4r+4s+ 3)!!. 

Thus, by (1.25) and (1.27), we get abl( 4r+4s+ 3)!!. It implies that 

(1.28) Sdj{ab)~4r+4s+3, if21 a and 21 b. 

The combination of (1.18), (1.23) and (1.28) yields (1.13). The n 

theorem is proved. 

Theorem 1.4 Let p be a prime and let a be a positive integer. The 

we have 

(1.29) 

Proof. Let m=SdflJf). By Theorem 4.13 of [4), if p=2, then m is 

even. Hence, (1.29) holds for p=2. If p>2, then m is an odd integer 

with 

(1.30) 

213 



We now suppose that pi m. Let t be the greatest odd integer such that t 

<m andplt. Then we have 

(1.31) m!!=t!!(t+2)···(m-2)m, 

where t+2, ... , m-2, m are integers satisfYingp.(Ct+2)···(m-2)m. Therefore, 

by (1.30) and (1.31), we get 

(1.32) palt!! 

By (1.32), we get m=Sdj(pq)~t<m, a contradiction. Thus, we obtain 

plm. The theorem is proved. 

Theorem 1.5 Let P be the least prime divisor of n. Then we have 

(1.33) Sd.f{n),?:;p. 

Proof. Let m=Sd.f{n). By Theorem 4.13 of [4], if 21n, then p=2 

and m is an even integer. So we get (1.33). 

If21 n, let n = p;lp;2 ... p; • • where PI' P2, ... , Pk are distinct odd 

primes and aI' a2, ••• , ak are positive integers. By Theorem 1.1, we get 

(1.34) m = max(Sd/(p;' 1Sd/(P;l 1 ... ,Sd/(p;t )} 

Further, by Theorem 1.4, we have Pi I Sdj(pjai ) for i= 1, 2, ... , k. 

It implies that Sd/(P;' ) ~ Pi for i= I, 2, ... , k. Thus, by (1.34), we 

obtain 

(1.35) m'?:;min{PI,P2' ···,Pk)=P. 

The theorem is proved. 

Theorem 1.6 For any positive integer n, we have 
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(1.36) Sdf(n!) = {
n, 

2n, 

if n = 1,2, 

if n>2. 

Proof. Let m=Sdj{n!). Then (1.36) holds for n=I, 2. Ifn>2, then 

both n! and m are even. Since (2n)! !=2"n!, we get 

(1.37) m~2n. 

If m<2n, then m=2n-2r, where r is a positive integer. Since m=Sdj{n!), 
(2n - 2r ).! _ 2,,-r. (n - r)! _ 2,,-r 

- -
n! (n - r + I) ... (n -I)n 

(1.38) 
n! 

must be an integer. But, since either n-I or n is an odd integer great 

than 1, it is impossible by (1.38). Thus, by (1.37), we obtain m=2n. 

The theorem is proved. 

Theorem 1.7 The equality 

( 1.39) Sdf(n)=n 

holds if and only if n satisfies one of the following conditions: 

(i)n=1,9. 

(ii) n=p, where p is a prime. 

(iii) n=2p, where p is a prime~ 

Proof. Let m=Sdj{n). If 2 I n, let n = P;' p;z ... p;k be the 

factorization of n. By Theorem 1.1, we (1.34). Further, by Theorem 

4.7 of [4], we have 

(lAO) Sdf(P;i )~ p;', i = 1, 2, ... , k. 

Therefore, by (1.34) and (1.40), we obtain 

(I 41) < (a, az a4 ) . m - max PI ,P2 ,···,Pk 

It implies that if k> I, then m<n. If k=1 and (1.39) holds, then 
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(1.42) 

By Theorem 4.1 of [4], (1.42) holds for a,=l. Since 2 In, p, is an odd 

prime. By Theorem 1.3, if (1.42) holds, then we have 

(1.43)p;1 = m = Sdj(P;I)= Sdj(p,p, ... p,)5: 2a,· Sdj(p,) -1 = 2a l PI -1 

Since PI ~3, (1.43) is impossible for at >2. If a)=2, then from (1.43) 

we get 

(1.44) 

whence we obtain PI=3. Thus, (1.39) holds for an odd integer n if and 

only if n= 1.9 or p, where p is an odd prime. 

If 21n, then n can be rewritten as (1.9), where n) is an odd integer 

with n l ~ 1. By Theorem 1.2, if (l.39) holds, then we have 

(l.45) n=2Qn , ~ max(Sdj{2°), 2Sdj{nJ). 

We see from (1.45) that if(l.39) holds, then either n)=1 ora=l. 

When nt=I, we get from (1.39) that a=l or 2. When a=I, we get, 

(1.46) 2n)=Sdj{2n). 

It is a well known fact that if n) is not an odd prime, then there exists a 

positive integer t such that t<n) and nIl t!. Since (2t)!!=21 
• t!, we get 

(1.47) Sdj{2n)~2t~2n" 

a contradiction. Therefore, n) must be an odd prime. In this case, if 

Sdj{2n)<2n), then Sdj{2n,)=2n,-2r, where r is a positive integer. But, 

smce 

(1.48) 

is not an integer, it is impossible. Thus, (1.39) holds for an even 
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integer if and only if n=2p, where p is a prime. The theorem is proved. 

2. The inequalities concerned Sdf{n) 

Let n be a positive integer. In [4], Russo posed the following 

problems and conjectures. 

(2.1) 
n n 

---~-+2 
Sdf(n) 8 

Problem 2.1. Is the inequality 

true for any n? 

Problem 2.2. Is the inequality 

(2.2) Sdf(n) >_1_ 
n nO.73 

true for any n? 

Problem 2.3. Is the inequality 

(2.3) 1 <n-5/4 

n·Sdf(n) 

true for any n? 

(2.4) 
1 1 __ -1/4 
-+ -.........n 
n Sdf(n) 

Problem 2.4. Is the inequality 

true for any n with n>2? 

Conjecture 2.1. For any positive number e , there exist some n 

such that 

(2.5) Sdf(n) < e 
n 

In this respect, Russo [4] showed that if n:::; 1000, then the 
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inequalities (2.1), (2.2), (2.3) and (2.4) are true. We now completely 

solve the above-mentioned questions as follows. 

Theorem 2.1. For any positive integer n, the inequality (2.1) is 

true. 

Proof. We may assume that n> 1000. Since m!!~945 for m=l, 

2, ···,9, ifn>1000, then Sdj{n)~10. So we have 

n n n 
---::;·-<-+2. 
Sdf(n) 10 8 

(2.6) 

It implies that (2; 1 ) holds. The theorem is proved. 

'The above theorem shows that the answer of Problem 2.1 is "yes". 

In order to solve Problems 2.2, 2.3 and 2.4, we introduce the 

following result. 

Theorem 2.2. If n=(2r)!!, where r is a positive integer withr r~ 

20, then 

(2.7) SdfCn) <no. l . 

Proof. We now suppose that 

(2.8) Sdf{n)~n°.l. 

Since n=(2r)!!, we get Sdf{n)=2r. Substitute it into (2.8), we obtain 

that ifr~20, then 

(2.9) 2r~«2r)!!)O,I_20,lr(r!)O.1 ~22(r!)O.l. 

By the Strling theorem (see [1]), we have 

(2.10) r!>.Jzur(; J. 
Since r~20, we get rle> Fr . Hence, by (2.9) and (2.10), we obtain 
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(2.11 ) 

a contradiction. Thus, we get (2.7). The theorem is proved. 

By the above theorem, we obtain the following corollary immediately. 

Corollary 2.1. If n=(2r)!!, where r is a positive integer with r?:-

20, then the inequalities (2.2), (2.3) and (2.4) are false. 

The above corollary means that the answers of Problems 2.2, 2.3 

and 2.4 are "no". 

Theorem 2.3. For any positive number e , there exist some 

positive integers n satisfy (2.5). 

Proof. Let n=(2r)!!, where r is a positive integer with r?:-20. By 

Theorem 2.2, we have 

(2.12) 

By (2.12), we get 

(2.13) 

Sdf(n)<nO. 1 =_1_ 
n n nO.9 • 

lim Sdf(n) = 0; 
r~CIJ n 

Thus, by (2.13), the theorem is proved. 

By the above theorem, we see that Conjecture 2.1 is true. 

3. The difference ISdftn+l)-Sdj(n)1 

In [4], Russo posed the following problem. 

Problem 3.1. Is the difference ISd.f{n+l)-Sd.f{n)1 bounded or 

unbounded? 
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We now solve this problem as follows. 

Theorem 3.1. The difference ISdj{n+ 1)-Sdj(n)1 is unbounded. 

Proof. Let m be a positive integer, and let p be a prime. Further 

let ord (p, m!) denote the order ofp in m. For any positive integer a, it 

is a well known fact that 

(3.1) ord(p,a!) = ~ [~]. 
k=1 pk 

(see Theorem 1.11.1 of[3]). 

Let r be a positive integer. Then we have 

(3.2) 

where 

(3.3) s=2r-l. 

By (3.1), (3.2) and (3.3), we get 

(3.4) ord(2, 2r! !)=2r-'+ord(2, 2r-1 !)=2r-I+(2r-2+···+2+ I )=2r_1 

Let n=2/, where t=2r. Then, by (3.4), we get 

(3.5) Sd.f(n)=2r+2 

On the other hand, then n+ 1 =2'+ 1 is a Fermat number. By the 

proof of Theorem 5.12.1 of [3], every prime divisor q of n+ 1 is the 

- form q=2r+11+ 1, where I is a positive integer. It implies that 

(3.6) q~2r+1+ 1. 

Since n+ 1 is an odd integer, by Theorem lA, we get from (3.6) that 

(3.7) Sdj{n+l)~q~2r+'+ l. 

We see from (3.8) that the difference ISdj{n+l)-Sdj(n)1 is unbounded. 

Thus, the theorem is proved. 
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4. Some infinite series and products concerned Sdf(n) 

In [4], Russo posed the following problems. 

Problem 4.1. Evaluate the infinite series 

(4.1) S= I (-It. 
n-ISdf(n) 

Problem 4.2. Evaluate the infinite product 

(4.2) P= n I 
n=1 Sdf(n) 

We now solve the above-mentioned problems as follows. 

Theorem 4.1. S=co. 

Proof. For any nonnegative integer m, let 

-1 <Xl 1 
g(m)= + I (.( )). 

Sdf(2m + 1) i=ISdf 2' 2m + 1 
(4.3) 

By (4.1) and (4.3), we get 

(4.4) S= I gem). 
m=O 

We see from (4.3) that 
1 1 1 

(4.5) g(O)=-I+ Sdf(2) + Sdf(4) + Sdf(8) + ... 

11111 
=-1+-+-+-+- + ... >-. 

2 4 4 6 6 

For positive integer m, let t=Sdj{2m+ 1). Then t is an odd integer with t 

~3. Notice that 2m+llt!! and 

(4.6) (2t)! !=2' • t!!. 

We get from (4.6) that i(2m+l)I(2t)!! forj=I, 2, .'., t.1t implies that 
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(4.7) Sdj{2l"(2m+ 1»~2t,j=1, 2, ... , t. 

Therefore, by (4.3) and (4.7), we obtain 
1 1 111 

(4.8) g(m»--+-+-+-=-. 
t 2t 2t 2t 2t 

On the other hand, by Theorem 4.7 of[4], we have t~2m+1. By (4.8), 

we get 

(4.9) gem»~ 2(2~ + 1) 

Thus, by (4.4), (4.5) and (4.9), we obtain 
1 00 1 

(4.10) S>-+ L =00. 
6 m='2(2m + 1) 

The theorem is proved. 

Theorem 4.2. P=O. 

Proof. Since Sdj{n) > 1 ifn> 1, by (4.2), we getp=O immediately. 

The theorem is proved. 

5. The diophantine equations concerned Sdf{n) 

Let N be the set of all positive integers. In [4], Russo posed the 

following problems. 

Problem 5.1 Find all the solutions n of the equation 

(5.1) Sdj{n)!=Sdj{n!), nEN. 

Problem 5.2 Is the equation 

(5.2) (Sdj{n)l=k· Sdj{nk), n, kEN, n> 1, k> 1 

have solutions (n, k)? 

Problem 5.3 Is the equation 
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(5.3) Sdj(mn)=mk • Sdj(m), m, n, kE N 

have solutions em, n, k)? 

We now completely solve the above-mentioned problems as follows. 

Theorem 5.1 The equation (5.1) has only the solutions n=l, 2, 3. 

Proof. Clearly, (5.1) has solutions n=l, 2, 3. We suppose that (5.1) 

has a solution n with n>3. By Theorem 1.6, ifn>2, then 

(5.4) Sdj(n)!=2n. 

Substitute (5.4) into (5.1), we get 

(5.5) Sdf{n)!=2n. 

Let m=Sdf{n). If n>3 and 2 I n, then n?!5, m?!5 and 41mL 

However, since 2112n, (5.5) is impossible. 

If n >3 and 21n, then m=2t, where t is a positive integer with t> 1. 

From (5.5), we get 

(5.6) (2t)!=2n. 

Since m=Sdj(n), we have nI(2t)!!. It implies that 

(2t)!! = 2· (2t)!! = 2· (2t)!! = 2 
n (2t)! (2t)!!(2t -I)!! (2t -I)!! 

must be an integer. But, since t> 1, it is impossible. Thus, (5.1) has no 

solutions n with n>3. The theorem is proved. 

Theorem 5.2 The equation (5.2) has only the solutions (n, k)=(2, 

4) and (3, 3). 

Proof. Let (n, k) be a solution of (5.2). Further, let m=Sdf{n). By 

Theorem 1.3, we get 
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(5.7) Sdf(nk)<2 • Sdf(n)+2 • Sdf(k)'~2(m+k). 

Hence, by (5.2) and (5.7), we obtain 

(5.8) mk<2k(m+k), m> 1, k> 1. 

If m=2, then from (5.8) we get k~6. Notice that n=2 if m=2. We 

find from (5.2) that if m=2 and k~6, then (5.2) has only the solution 

(n, k)=(2, 4) 

If m=3, then from (5.8) we get k~3. Since n=3 if m=3. We see 

from (5.2) that if m=2 and k~3, then (5.2) has only the solution (n, 

k)=(3,3) 

If m=4, then from (5.8) we get k~2. Notice that n~ or 8 if m=4 

and n=5 or 15 if m=5. Then (5.2) has no solution (n, k). Thus, (5.2) 

has only the solutions (n, k)=(2, 4) and (3.3). The theorem is proved. 

Theorem 5.3. All the solutions (m, n. k) of (5.3) are given in the 

following four classes: 

(i) m=I, n and k are positive integers. 

(ii) n=l, k=1, m=l, 9,p or 2p, where p is a prime. 

(iii) m=2, k= I, n is 2 or an odd integer with n ~ 1. 

(iv) m=3, k=l, n=3. 

Proof. If m=1, then (53) holds for any positive integers n and k. 

By Theorem 1.7, if n=l, then from (5.3) we get (ii). Thus, (i) and (ii) 

are proved. 

Let (m, n, k) be a solution of (5.3) satisfying m> 1 and n> 1. By 

Theorem 1.3, if21m and 21n, then we have 
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(S.9) SdJCmn)~SdJCm)+Sdf{n). 

Further, by Theorem 4.7 of [4], Sdf(m)~m. Therefore, by (S.3) and 

(S.9), we obtain 

(S.10) 

When n=2, we get from (S.1 0) that m=2 and k= 1. 

When n>2, we getSdJCn)~4 and (S.10) is impossible. 

If 21m and 2 I n, then 

(5.11) SdJCmn)~Sd.f{m)+2 • Sdf{n). 

Notice that m~2, n is an odd integer with n~3, Sd.f{n)~3. We obtain 

from (S.3) and (S.ll) that 

(5.12) m ~SdJCm) ~(mk-2)Sdf(n) ~3(mk-2) ~ 3 (m-2). 

From (5.12), we get /11=2. Then, by (5.3), we obtain 

(5.13) Sdf{2n)=2k • Sdf{n). 

Since Sdj{2n)~2n, we see from (5.13) that k=1 and 

(5.14) Sdj{2n)=2 • Sdj{n). 

Notice that (5.14) holds for any odd integer n with n~ 1. We get(iii). 

If21 m and 21n, then we have 

(5.1S) Sd.f{mn)~2 • Sd.f{m}+Sdj{n). 

By (5.3) and (5.15), we get 

(5.16) 2m~2 • Sdj{m)~(mk-l) • Sdj{n). 

When n=2, we see from (S.16) that m=3 and k=l. When n>2, we get 

from (S.16) that 2m~4(mk-l )~4(m-l»2m, a contradiction. 
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If21 m and 21 n, then we have 

(5.17) Sdj{mn)~2 • Sdj{m)+2 • Sdj{n)-l. 

By (5.3) and (5.17), we get 

(5.18) 2m-1 ~2 • Sdj{m)-l ~(mk-2) • Sdj{n)~3(mk-2). 

It implies that k=1 and m=3 or 5. Wher m=3 and k=1, we get from (5.3) 

that 

(5.19) Sdj{3n)=3 • Sd.f{n). 

Since Sdj{3n)~Sd.f{n)+6, we find from (5.19) that n=3. Thus, we get 

(iv). When m=5 and k=l, we have 

(5.20) Sdj{5n)=5 • Sd.f{n). 

Since Sdj{5n)~Sdj{n)+10, (5.20) is impossible. To sum up, the 

theorem is proved. 

Let p be a prime, and let N(P) denote the number of solutions x of 

the equation 

(5.21) Sdj{x)=p, xEN. 

Recently, Johnson showed that ifp is an odd prime, then 

(5.22) N(p)=2(P-3Y2. 

Unfortunately, the above-mentioned result is false. For example, by 

(5.22), we get N(19)=28=256. However, the fact is that N( 19)=240. We 

now give a general result as follows. 

Theorem 5.4. For any positive integer t, let pet) denote the tth 

odd prime. If p=p(t) , then 
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(5.23) 
I-I 

N (p) = .n ( a( i) + 1), 
1=1 

where 

• Xl ([ P-2] [(P-3)/2]]. 
(5.24) a(z) = m7:\ (p(i)t - (p(i)t ,1 = 1,2, .. . ,t-1. 

Proof. Let x be a solution of(5.21). It is an obvious fact that 

(5.25) :x=dp. 

where d is a divisor of (P-2)!!. So we have 

(5.26) N(P )=d( (p-2)!!), 

where d«(P-2)!!) is the number of distinct divisors d of (P-2)!!. 

By the definition of(P-2)!!, we have 

(5.27) (P-2)! !=(P(1 »a(1)(p(2»a(2) •• '(p(t-1 »a(I-I), 

where 

(5.28) aU)=ord(p(i), (P-2)!!), i=l, 2, "', t-1. 

Notice thet 

(529) (p _ 2)!!= (p - 2)! . 

2,p-3)12 -( P ~ 3} 
We get 

(5 .30)ord{p(i),{p - 2)!!) = ord{p{i),{p - 2)!) - or{ p(i){ p ~ 3 }} 

Therefore, by Theorem 1.11.1 of [3], we see from (5.28) and (5.30) 

that aU) (i=1, 2, ... , t-1) satisfy (5.24). Further, by Theorem 273 of 

[2], we get from (5.27) that 
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(5.31) 
I-I deep - 2)!!) = n(a(i) + 1). 
i=1 

Thus, by (5.26), we obtain (5.23). The theorem is proved. 

References 

[1] Hall, M., Combinatorial theory, London: Blaisdell Pub. Co., 1967. 

[2] Hardy, G. H. and Wright, E. M., An introduction to the theory of 

numbers, Oxford: Oxford Univ. Press, 1938. 

[3] Hua, L. -K., Introduction to number theory, Berlin: Springer­

Verlag, 1982. 

[4] Russo, F., An introduction to the Smarandache double factorial 

function, J. Smarandache Notions, 2001,12: 158-167. 

Department of Mathematics 

Zhanjiang Normal College 

Zhanjiang, Guangdong 

P. R. CHINA· 

228 



ON THE PSEUDO-SMARANDACHE 
SQUAREFREE FUNCTION 

MaohuaLe 

Abstract. In this paper we discuss various problems and conjectures 

concered the pseudo-Smarandache squarefree function. 

Keywords: pseudo-Smarandache squarefree function, difference, 

. infinite series, infinite product, diophantine equation 

For any positive integer n, the pseudo-Smarandache squarefree 

function ZW(n) is defined as the least positive integer m such that mn 

is divisible by n. In this paper we shall discuss various problems and 

conjectures concered ZW(n). 

1. The value of ZW(n) 

By the definition of ZW(n), we have ZW(I)=l. For n> 1, we give 

a general result as follows. 

Theoren 1.1. If n> 1, then ZW(n)=PIP2"'Pk> where PI' P2' "', Pk 

are distinct prime divisors of n. 

Proof. Let m=ZW(n). Let PI' P2' "', Pk be distinct prime divisors 

of n. Since nlmn, we get Pilm for i=l, 2, "', k. It implies that PIP2'" 

Pklm and 

(1.1) 

On the other hand, let r(i) (i=1, 2, "', k) denote the order of Pi 

(i=1,2, "', k) in n. Then we have 
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(1.2) . < logn ._ r(z)_ <n,z-I,2, ... ,k. 
logPi 

Thus, we see from (1.2) that (PJP2···Pkr is divisible by n. It implies 

that 

(1.3) m~PJP2···Pk. 

The combination of (1. I) and (1.3) yields m= PJP2···Pk. The theorem 

is proved. 

2. The difference IZW(n+l)-ZW(n)1 

In [3], Russo given the following two conjectures. 

Conjecture 2.1. The difference IZW(n+I)-ZW(n)1 is unbounded. 

Conjecture 2.2. ZW(n) is not a Lipschitz function. 

In this respect, Russo [3] showed that if the Lehmer-Schinzel 

conjecture concered Fennat numbers is true (see [2]), then Conjectures 

2.1 and 2.2 are true. However, the Lehmer-Schinzel conjecture is not 

resolved as yet. We now completely verify the above-mentioned 

conjectures as follows. 

Theorem 2.1. The difference IZW(n+ 1 )-ZW(n)1 is unbounded. 

Proof. Let P be an odd prime. Let n=2P -I, and let q be a prime 

divisor of n. By a well known result of Birkhoff and Vandiver [I], we 

have q=21p+ 1, where I is a positive integer. Therefore, by Theorem 1.1, 

we get 

(2.1) ZW(n)=ZW(2P-l)~q=21P+1~2P+l. 

On the other hand, apply Theorem 1.1 again, we get 

(2.2) ZW(n+ 1 )=ZW(2P)=2. 
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By (2.1) and (2.2), we obtain 

(2.3) IZW(n+l)-ZW(n)I~2p-1. 

Notice that there exist infinitely many odd primes p. Thus, we find 

from (2.3) that the difference IZW(n+ 1 )-ZW(I1)1 is unbounded. The 

theorem is proved. 

As a direct consequence of Theorem 2.1, we obtain the following 

corollary. 

Corollary 2.1. ZW(n) is not a Lipschitz function. 

3. The sum and product of the reciprocal of ZW(n) 

Let R be the set of all real numbers. In [3], Russo posed the 

following two problems. 

Problem 3.1. Evaluate the infinite product 

(3.1) 
<Xl 

p= n ---
11=1 ZW(n) 

Problem 3.2. Study the convergence of the infinite series 

(3.2) 
<Xl 1 

S (a) = I ( ())' a E R, a >0. 
n=1 ZW n a 

We now completely solve the above-mentioned problems as 

follows. 

Theorem 3.1. p=o. 

Proof. By Theorem 1.1, we get ZW(n» 1 for any positive integer 

n with n> 1. Thus, by (3.1), we obtain P=O immediately. The theorem 

is proved. 

Theorem 3.2. For any positive number a, Sea) is divergence. 
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Proof. we get from (3.1) that 

(3.3) Sea) = I 1 > ~ 1 . 
n=l (ZW(n)Y r=1 (ZW(2 r )Y 

By Theorem 1.1, we have 

(3.4) ZW(2r)=2 , 

for any positive integer r. Substitute (3.4) into (3.3), we get 

(3.5) 
co 1 

S(a)=r-=oo. 
r=12r 

We find from (3.5) that Sea) is divergence. The theorem is proved. 

4. Diophantine equations concerning ZW(n) 

Let N be the set of all positive integers. In [3], Russo posed the 

following problems concerned diophantine equations. 

Problem 4.1. Find all solutions n of the equation 

(4.1) ZW(n)=ZW(n+l)ZW(n+2), nEN. 

Problem 4.2. Solve the equation 

(4.2) ZW(n). ZW(n+l)=ZW(n+2), nEN. 

Problem 4.3. Solve the equation 

(4.3) ZW(n). ZW(n+1)=ZW(n+2). ZW(n+3), nEN. 

Problem 4.4. Solve the equation 

(4.4) ZW(mn)=mkZW(n), m, n, kEN. 

Problem 4.5. Solve the equation 

(4.5) (ZW(n)t=k. ZW(kn), k, n E N, k> 1, n> 1. 

Problem 4.6. Solve the equation 

(4.6) (ZW(n)/+(ZW(n)tl+···+ZW(n)=n, k, n EN, k> 1. 

In this respect, Russo [3] showed that (4.1), (4.2) and (4.3) have 
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no solutions n with n ~ 1000, and (4.6) has no solutions (n, k) 

satisfying n~ 1000 and k~5. We now completely solve the above­

mentioned problems as follows. 

Theorem 4.1. The equation (4.1) has no solutions n. 

Proof. Let n be a solution of (4.1). Further let p be a prime 

divisor of n+ 1. By Theorem 1.1, we get pIZW(n+ 1). Therefore, by 

(4.1), we getpIZW(n). It implies thatp is also a prime divisor of n. 

However, since gcd (n, n+l)=I, it is impossible. The theorem is 

proved. 

By the same method as in the proof of Theorem 4.1, we can prove 

the following theorem without any difficult. 

Theorem 4.2. The equation (4.2) has no solutions n. 

Theorem 4.3. The equation (4.3) has no solutions n. 

Proof. Let n be a solution of(4.3). Further let PI,P2, .•. ,Pk and ql' 

q2, "', qt be distinct prime divisors of n(n+1) and (n+2)(n+3) 

respectively. We may assume that 

(4.7) PI<P2< ... <Pt, ql <q2< ···<qt. 

Since gcd (n, n+1)=gcd (n+2, n+3)=1, by Theorem 1.1, we get 

ZW(n). ZW(n+l)=P1P2"'Pk 

(4.8) ZW(n+2). ZW(n+3)=qIQ2···q, 

Substitute (4.8) into (4.3), we obtain 

(4.9) PIP2···Pk=QIQ2···Q,. 

By (4.7) and (4.9), we get k=t and 

(4.10) Pi=Qi' i=I, 2, ···,k. 

Since gcd (n+l, n+2)=I, if21n andpj (1 0~k) is a prime divisor 

of n+l, then from (4.10) we see that Pj is an odd prime with p)n+3. 
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Since gcd (n+ 1, n+3)=1 if21 n, it is impossible. 

Similarly, if 2 I nand qj (i~~k) is a prime divisor of n+2, then 

qj is an odd prime with q)n. However, since (n, n+2)=1 if 2 I n, it is 

impossible. Thus, (4.3) has no solutions n. The theorem is proved. 

Theorem 4.4. The equation (4.4) has infinitely many solutions (m. 

n, k). Moreover, every solution (m, n, k) of (4.4) can be expressed as 

(4.11) m=PIP2···Pn n=t, k=1, 

where PI' P2' •. ', Pr are distinct primes, t is a positive integer with gcd 

(m, t)=1. 

Proof. Let (m, n, k) be a solution of (4.4). Further let d=gcd (m, 

n). By Theorem 1.1, we get from (4.4) that 

(4.12) ZW(mn) = zw(;.n)= Zw(; }ZW(n) = m·ZW(n). 

Since ZW(n):;t:O, we obtain from (4.12) that 

( 4.13) ZW(; )=m" 

Furthermore, since m~ZW(m), we see from (4.13) that k=d=1 and 

m=pIP2···Pn where PI' P2' ... , Pr are distinct primes. Thus, the solution 

(m, n, k) can be expressed as (4.11). The theorem is proved. 

Theorem 4.5. The equation (4.5) has infinitely many solutions (n, 

k). Moreover, every solution (n, k) of(4.5) can be expressed as 

(4.14) n=2r
, k=2, rEN. 

Proof. Let (n, k) be a solution of (4.5). Further let d=gcd (n, k). 

By Theorem 1.1, we get from (4.5) that 

(4.15) ZW(nk) = kZW( n. ~) = kZW(n).zw(~) = (ZW(n»)'. 
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Since ZW(n):;i:O and k> 1, by (4.15), we obtain 

(4.16) kZW(=) = (ZW(n»H. 

Since n> 1, we find from (4.16) that k and n have the same prime 

divisors. 

Let PI' Pb "', PI be distinct prime divisors of n. Then we have 

ZW(n)=ptP2'''PI' Since ZW(k1d)~k, we get from (4.16) that 

(4.17) e ~kZW(=)=(zw(n»'-' =(p,p, ... p,)'-'. 

Since k> 1, by (4.17), we obtain t=1 and either 

(4.18) k=3, PI=3, 

or 

( 4.19) 

Recall that k and n have the same prime divisors. If (4. 18) holds, then 

ZW(k/d)=ZW(I )=1 and (4,16) is impossible. If (4. 19) holds, then the 

solution (n, k) can be expressed as (4.14). Thus, the Theorem IS 

proved. 

Theorem 4.6. The equation (4.6) has no solutions (n, k). 

Proof. Let (n, k) be a solution of (4.6). Further let m=ZW(n), and let PI' 

P2' "', P, be distinct prime divisors of n. By Theorem 1.1, we have 

(4.20) n = p~'p;2 ... p;' ,ZW(n) = PIP2 ."P" 

where ai' a2, "', al are positive integers. Substitute (4.20) into (4.6), 

we get 

(4 21) I ( )k-I a -I a2-1 a-I . + PIP2 .. ·Pr + ... + PIP2· .. Pr = PI' P2 ···P,' . 

Since gcd (1, PtP2"'pt)=I, we fmd from (4.21) that a l=a2=···=at=1. It 
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implies that k= 1, a contradiction. Thus, (4.6) has no solutions (n, k). 

The theorem is proved. 
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THE EQUATION S(l.2)+S(2.3)+···+S(I1(n+l))=S(n(n+l)(n+2)/3) 

Maohua Le 

Abstract. For any positive integer a, let Sea) be the Srnarandache 

function of a. In this paper we prove that the title equation has only 

the solution n= 1. 

Key words: Smarandache function, diophantine equation 

Let N be the set of all positive integers. For any positive integer a, 

let S(a) be the Smarandache function of a. Recently, Bencze [1] 

proposed the following problem: 

Problem Solve the equation 

(I) S(I· 2)+ S(2· 3)+ ... + S(n(n + 1))= ~in(n + IXn + 2)}n E N. 

In this paper we completely solve the above-mentioned problem 

as follows_ 

Theorem The equation (1) has only the solution n=1. 

Proof By the definition of the Smarandache function (see [2]), we 

have S(I)=I, S(2)=2 and 

(2) S(a)~3, a~3_ 

Since S(l.2)=S(1.2.3/3)=S(2), the equation (1) has a solution n=1. 

Let n be a solution of (1) with n> 1. Then, by (2), we get 
-

(3) S{I- 2)+ S(2 -3)+··· + S{n{n + l))~ 2 + 3(n-l) = 3n-1. 

Therefore, by (I) and (3), we obtain 
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(4) sGn(n + l)(n + 2));;' 3n-1. 

(5) 

On the other hand, since (n+2)!=1.2···n(n+ 1)(n+2), we get 
1 
-n(n + 1)(n + 2) I (n + 2)!. 
3 

We see from (5) that 

(6) sGn(n + l)(n + 2)):;; n+ 2. 

The combination of (4) and (6) yields 

(7) n + 2 ~ 3n - 1, 

whence we get n~3/2<2. Since n~2, it is impossible. Thus, (1) has 

no solutions n with n> 1. The theorem is proved. 
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SOME CONJECTURES ON PRIMES ( I ) 

MaohuaLe 

Abstract. For any complex number x, let exp(x)=lf. For any 

positive integer n, let Pn be the nth prime. In this paper we prove that 

cxp(~(n +1)1 Pn+1 )/exp(~ Pn In)< exp(~3/5 )/exp(.J3/2} 

Key words: prime, inequality. 

For any complex number x, let exp(x)=lf. For any positive integer 

n, let Pn be the nth prime. Recently, Russo [2] proposed the following 

conjecture: 

Conjecture For any positive integer n, 

(1) 

In [2], Russo verified (l) for Pn~ 107
• In this paper we completely 

solve the above-mentioned conjecture as follows. 

Theorem For any positive integer n, the inequality (1) holds. 

Proof We may assume thatPn> 107
• Then we have n> 1000. 

It is a well known fact that 

(2) Pn>nlogn, 

for any positive integer n (see [1]). By (2), we get 
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On the other hand, since P n+ I > n+ 1, we get 

(4) exp( ~ -~ + ~::11 }-ex{~ -~ +1)<exP(1.5) 

The combination of (3) and (4) yields 

(5) 

Thus, by (5), we get (1) immediately. The theorem is proved. 
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SOME CONJECTURES ON PRIMES (II) 

MaohuaLe 

Abstract. For any positive integer n, let Pn be the nth prime. 

In this paper we give a counter-example for the inequality 

cxp(~(n + 1 )/ P n+1 )/ exp(~ P n / n )< exp(.J3 / 5 )/ exp(.J3 / 2 } 

Key words: prime, inequality 

For any positive integer n, let Pn be the nth prime. Recently, 

Russo [3] proposed the following conjecture: 

Conjecture For any positive integer n, 

(1) () 1 ( )9/-0 IplI' n + 1 -/1' Pn+II<"2 n + 1 '. 

In [3], Russo verified the equality (1) holds for Pn~ 107
• However, 

we shall show that (I) is false for some n. 

Let Pn and Pn+1 be twin primes. Then we have 

(2) Pn+1 = Pn +2. 

If (1) holds, then from (2) we get 

I I 1 ( )9/50 (3) P n - 2n < 2 n +1 . 

It is a well known fact that 

(4) 

for any positive integer n (see [2]). Therefore, by (3) and (4), we 

obtain 
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(5) ( )< 1 ( )9/50 n logn-2 - n+l ,n>6. 
2 . 

By [1], Pn=297.2546-1 and Pn+1=297.2546+1 are twin primes. 

Then we have n> 1010. Therefore, (5) is impossible. Thus, the 

inequality (1) is false for some n. 
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SOME CONJECTURES ON PRIMES (III) 

MaohuaLe 

Abstract. For any positive integer n, let Pn be the nth prime. 

In this paper we prove that the equality 

(.J Pn -logPn+J/(.J Pn+1 - logpJ~ (J3 - log5 )/(.J5 -log3 ) for any n. 

Key words: prime, inequality. 

For any positive integer n, let Pn be the nth prime. Recently, 

Russo [2] proposed the following conjecture: " 

Conjecture For any positive integer n, 

(1) 
fP: -logplI+! > .J3 -log5 

.J PnT! -logPn - .J5 - log3' 

In [2], Russo verified the equality (1) holds for Pn~107. In this 

paper, we completely solve the above-mentioned problem as 

follows. 

(2) 

Theorem For any positive integer n, the equality (1) holds. 

Proof We may assume that Pn> 107
• Since 

.J3 -log5 <0.11, 

.J5 -log3 

if (1) is false, then from (2) we get 

(3) .J Pn <logPn+' + 0.1l.J Pn+I' 

It is a well known fact that 
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(4) 

for any positive integer 11 (see [1, Theorem 245]). Substitute (4) 

into (3), we obtain 

(5) 

However, (5) IS impossible for Pn> 107
• Thus, the theorem IS 

proved. 
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SMARANDACHE COSETS 

W. B. Vasantha Kandasamy 

Abstract 

This paper aims to study the Smarandache cosets and derive some interesting 
results about them. We prove the classical Lagranges theorem for 
Smarandache semigroup is not true and that there does not exist a one-to-one 
correspondence between any two right cosets. We also show that the classical 
theorems cannot be extended to all Smarandache semigroups. This leads to the 
definition of Smarandache Lagrange semigroup, Smarandache p Sylow 
subgroup and Smarandache Cauchy elements. Further if we restrict ourselves 
to the subgroup of the Smarandache semigroup all results would follow 
trivially hence the Smarandache coset would become a trivial definition. 

Keywords: 

Smarandache cosets, Smarandache Lagrange semi groups, Smarandache p­
Sylow subgroups, Smarandache Cauchy element, Smarandache Normal 
subgroups and Smarandache quotient groups. 

Definition [2]: The Smarandache semigroup is defined to be a semigroup A 
such that a proper subset of A is a group (with respect to the same induced 
operation). 

DefiDition 1. Let A be a Smarandache semigroup. A is said to be a 
commutative Smarandache semigroup if the proper subset of A that is a group 
is commutative. 
If A is a commutative semigroup and if A is a Smarandache semigroup then A 
is obviously a commutative Smarandache semigroup. 

Definition 2. Let A be a Smarandache semigroup. H ~ A be a group under the 
same operations of A. For any a E A the Smarandache right coset is Ha = {ha 
I h E H}. Ha is called the Smarandache right coset of H in A. Similarly left 
coset ofH in A can be defined. 

Example I: Let ZJ2 = {O, 1,2, .... ll} be the Smarandache semigroup under 
mUltiplication modulo 12. Clearly Z12 is a commutative Smarandache 
semigroup. Let A = {3,9} be a subgroup of ZJ2 under multiplication. 92 = 9 
(mod 12) acts as identity with respect to multiplication. For 4 E Z12 the right 
(left) coset of A in ZJ2 is 4A = {OJ. For 1 E Z12 the right (left) coset of A in Zl2 
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is IA = {3, 9}. Hence we see the number of elements in nA is not the same for 
each n E Zt2. 

Example 2. 'Z9 = {a, 1,2, ... , 8} be the commutative Smarandache semigroup 
under multiplication modulo 9. A = {I, 8} and At = {2, 4, 1,5, 7, 8} are the 
subgroups of 'Z9. Clearly order of A does not divide 9. Also order of Al does 
not divide 9. 

Example 3. Let S denote the set of all mappings from a 3-element set to itself. 
Clearly number of elements in S is 27. S is a semigroup under the composition 
of maps. 

Now S contains S3 the symmetric group of permutations ofdegree 3. The order 
of~ is 6. Clearly 6 does not divide order ofS. 

Thus we see from the above examples that the classical Lagrange theorem for 
groups do not hold good for Smarandache semigroups. It is important to 
mention here that the classical Cayley theorem for groups could be extended to 
the case of Smarandache semigroups. This result is proved in [3]. For more 
details please refer [3]. Thus: 

Definition 3. Let S be a finite Smarandache semigroup. If the order of every 
subgroup ofS divides the order ofS then we say Sis aSmarandache Lagrange 
semigroup. 

Example 4. Let L = {a, 1,2, 3} be the semigroup under multiplication. A = 
{I, 3} is the only subgroup of Z4. Clearly IAV4. Hence 4 is a Smarandache 
Lagranges semigroup. 

But we see most of the Smarandache semigroups are not Smarandache 
Lagrange semigroup. So one has: 

Definition 4. Let S be a finite Smarandache semigroup. Ifthere exists at least 
one group, i.e. a proper subset having the same operations in S, whose order 
divides the order of S, then we say that S is a weakly Smarandache Lagrange 
semigroup. 

Theorem 5. Every Smarandache Lagrange semigroup is a weakly 
Smarandache Lagrange semigroup and not conversely. 

Proof: By the very definition 3 and 4 we see that every Smarandache Lagrange 
semigroup is a weakly Smarandache Lagrange semigroup. 

To prove the converse is not true consider the Smarandache semigroup given in 
Example 3. 6 does not divide 27 so S is not a Smarandache Lagrange 
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semigroup but S contains subgroup say {(I 2 3),(1 2 3),(1 2 3)} of 123231312 
order 3. Clearly 3 divides 27. Thus S is a weakly Smarandache Lagrange 
semigroup. 

Thus the class of Smarandache Lagrange semigroup is strictly contained in the 
class of weakly Smarandache Lagrange semigroup. 

Theorem 6. Let S = {I, 2, ... , n}, n ~ 3, be the set with n natural elements, S(n) 
the semigroup of mappings of the set S to itself. Clearly S(n) is a semigroup 
under the composition of mapping. S(n) is a weakly Smarandache Lagrange 
semigroup. 

Proof: Clearly order of S(n) = nn. Sn the symmetric group of order nL Given n 
~ 3, n! does not divide nn for 

• tina a-\ limos 
• :& 

nx···xn nx···xn -=------
n! 123.4.···.n -1.n 12.···.n-l 

Now since (n -1, n) = 1, that is n - 1 and n are relatively prime. We see n! does 
not divide nD

• Hence the class of Smarandache semigroups S(n), n ~ 3, are 
weakly Smarandache Lagrange semigroup. 

Coronary. S(n) , n = 2, is a Smarandache Lagrange semigroup. 

Proof Let n = 2. Then S(n) = {(~ ~}G ~}G ~}G ~)}, IS(n)1 = 4. ~ = 

{G ~}G :J} is the symmetric group of degree 2 and I~I divides 4
2

• Hence 

the claim. 

Now the natural question would be: does there exist a Smarandache semigroup, 
which are not a Smarandache Lagrange semigroup and weakly Smarandache 
Lagrange semigroup? The answer is yes. The Smarandache semigroup Z9 = 
{O, I, 2 , .... 8} under multiplication given in example 2 does not have 
subgroups which divides 9, hence the claim. 

Now to consider the converse of the classical Lagrange theorem we see that 
there is no relation between the divisor of the order of the Smarandache 
semigroup S and the order of the subgroup S contains. The example is quite 
interesting. 
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Example 5: Let ZIO = to, 1,2, ... , 9} be the semigroup of order 10. Clearly ZIO 
is a Smarandache semigroup. The subgroups OfZlO are AI = {l, 9} ,A2 = {2, 4, 
6, 8} and A3 = {l, 3, 7, 9}, ~ = {4, 6}. Thus 4 does not divide 10, which 
contradicts Lagrange's theorem (that the order of a subgroup divides the order 
of the group) in the case ofSmarandache semigroup. Also ZIO has subgroups 
of order 5 leading to a contradiction of the classical Sylow theorem (which 
states that if pa divides the order of the group G then G has a subgroup of order 
pa) again in the case of Smarandache semigroup. This forces us to define 
Smarandache p-Sylow subgroups of the Smarandache semigroup. 

Definition 7. Let S be a finite Smarandache semigroup. Let p be a prime such 
that p divides the order ofS. If there exists a subgroup A in S of order p or pt (t 
> I) we say that S has a Smarandache p-Sylow subgroup. 

Note. It is important to see that pt needs not to divide the order of S, that is 
evident from Example 5, but p should divide the order ofS. 

Example 6. Let ZI6 = to, 1,2, ... , 15} be the Smarandache semigroup of order 
16 = 24. The subgroups OfZI6 are At = {I, IS}, A2 = {l, 3, 9, Il}, A3 = {I, 5, 
9, 13}, and ~ = {I, 3, 5, 7, 9, 11, 13, IS} of order 2,4, and 8 respectively. 
Clearly the subgroup ~ is the Smarandache 2-Sylow subgroup ofZl6. 

The Sylow classical theorems are left as open problems in case of 
Smarandache p-Sylow subgroups of a Smarandache semigroup. 

Problem 1. Let S be a finite Smarandache semigroup. If p~SI and S has 
Smarandache p-Sylow subgroup. Are these Smarandache p-Sylow subgroups 
conjugate to each other? 

Problem 2. Let S be a finite Smarandache semigroup. If p divides order of S 
and S has Smarandache p-Sylow subgroups. How many Smarandache p-Sylow 
subgroups exist in S? 

Let S be a finite Smarandache semigroup of order n. Let a E S now for some r 
> 1, if ar = I then in general r does not divide n. 

Example 7. Let S = {I, 2, 3, 4, S} be the set with 5 elements S (S) be the 
semigroup of mappings of S to itself. S(S) is a Smarandache semigroup for 
S(5) contains S5 the permutation group of degree 5. Clearly IS(5)1 = 55. Now 

(
I 2 3 4 5) (1 2 3 4 5)4 . . 

E S(5). Clearly = IdentIty element ofS(5), 
23415 23415 

but 4 does not divide IS(5)1 = S5. Thus we define Smarandache Cauchy 
element. 
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Definition 8. Let S be a finite Srnarandache semigroup. An element a E A, A 
c S, A the subgroup of S, is said to be a Smarandache Cauchy element of S if 
aT = I (r ~ 1), 1 unit element of A, and r divides the order of S; otherwise a is 
not a Smarandache Cauchy element. 

Problem 3. Can we fmd conditions on the Smarandache semigroup S so that 
every element in S is a Smarandache Cauchy element of S? 

Problem 4. Let Zn be the Smarandache semigroup under usual multiplication 
modulo n. Is every element in every subgroup ofZn is a Cauchy element ofZn? 
(n is not a prime.) 

Remark: Zn = {O, I, 2, ... , n-l} is a Smarandache semigroup under 
multiplication. Clearly every x in Zn is such that xr = 1 (r> 1), but we do not 
whether every element in every subgroup will satisfY this condition. This is 
because the subgroups may not have 1 E Zn as the identity element. 

Definition 9. Let S be a finite Smarandache semigroup, if every element in 
every subgroup of S is a Smarandache Cauchy element; then we say S is a 
Smarandache Cauchy semigroup. 

Theorem 10. Let S(n) be the Smarandache semigroup for some positive 
integer n. S(n) is not a Smarandache Cauchy semigroup. 

Proof: Clearly So is a subgroup of S (n). We know IS (n)1 = nO and ISoI = !!. 
But So contains elements x of order (n-l), and (n-l) does not divide nO. So S (n) 
is not a Smarandache Cauchy semigroup. 

Thus we see the concept of the classical theorem on Cauchy group cannot be 
extended to finite Smarandache semigroups. 

Theorem 11. There does not exist in general a one-to-one correspondence 
between any two Smarandache right cosets of A in a Smarandache semigroup 
S. 

Proof: We prove this bytbe following example. Let S = ZIO = {O, 1,2, ... ,9}. A 
= {l, 9} is a subgroup ofS. A2 = {2, 4, 6, 8} is a subgroup ofS. 3A = {3,7} 
and SA = {S}. Also SA2 = {OJ and 3A2 = A2. So there is no one-to-one 
correspondence between Smarandache co sets in a Smarandache semi group. 

Theorem 12. The Smarandache right cosets of A in a Smarandache semigroup 
S does not in general partition S into either equivalence classes of same order 
or does not partition S at all. 
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Proof: Consider ZIO given in the proof of Theorem 12. Now for A = {I, 9} the 
subgroup of ZIO that is the coset division of ZIO by A are {O}, {5}, {I, 9}, 
{2,8}, {3, 7} and {4, 6}. So A partitions S as cosets the Smarandache 
semigroup into equivalence classes but of different length. But for A2 = 
{2,4,6,8} is a subgroup of ZIO. 6 acts as the identity in A2. Now the coset of 
division of ZIO by A2 is {2,4,6,8} and to} only. Hence this subsets do not 
partition ZIO. 

Problem 5. Does there exist any Smarandache semigroup S such that there is 
one-to-one correspondence between cosets of A in S? 

Now we proceed to define Smarandache double cosets of a Smarandache 
semigroup S. 

Definition 13. Let S be a Smarandache semigroup. A c S and B c S be any 
two proper subgroups ofS. For XES define AxB = {axb I a E A, b E B}. AxB 
is called a Smarandache double cosel of A and BinS. 

Example 8: Let ZIO = {a, 1, 2, ... , 9}. A = {t, 9} and B = {2, 4, 6, 8} be 
subgroups ofthe commutative Smarandache semigroup of order 10. Take x = 5 
then AxB = to}. Takex= 3 then AxB = {2, 4,6, 8}. For x = 7,AxB = {2, 4, 6, 
8}. Thus ZIO is not divided into equivalence classes by Smarandache double 
cosets hence we have the fonowing theorem. 

Theorem 14. Smarandache double coset relation on Smarandache semigroup S 
is not an equivalence relation on S. 

Dermition 15. Let S be a Smarandache semigroup. Let A be a proper subset of 
S that is a group under the operations ofS. We say A is a Smarandache normal 
subgroup of the Smarandache semigroup S ifxA s;;;; A and Ax s;;;; A or xA = to} 
and Ax = to} for all XES if 0 is an element in S. 

Note. As in case of normal subgroups we cannot define xAx -1= A for every x E 

S, X-I may not exist. Secondly if we restrict our study only to the subgroup A it 
has nothing to do with Smarandache semigroup for every result is true in A as 
A is a group. 

Example 9. Let ZIO = to, 1,2, ... , 9} be a Smarandache semigroup of order lO_ 
A = {2,4,6,8} is a subgroup ofZ IO which is a Smarandache normal subgroup of 
ZIO. It is interesting to note that that order of the normal subgroup of a 
Smarandache semigroup needs in general not to divide the order of the 
Smarandache semigroup. So if we try to define a Smarandache quotient group 
it will not be in general a group. 
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Definition 16. Let S be a Smarandache semigroup and A a Smarandache 
nonnal subgroup of S. The Smarandache quotient group of the Smarandache 

semigroup S is ~={Ax/XES}. 
A 

Note.! in general is not a group, it is only a semigroup. Further, as in classical 

group theory, the number of elements in ~ or in A or in S look in general not 
A 

to be related. Earlier example of ZIO, IZIGI = 10, IAI = 4 and IZIO I = 2 proves 
. A 

this note. 
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Abstract 

SMARANDACHE LOOPS 

W. B. Vasantba Kandasamy 

In this paper we study the notion ofSmarandache loops. 
We obtain some interesting results about them. The notion of 
Smarandache semigroups homomorphism is studied as weJ/ in 
this paper. Using the definition of homomorphism of 
Smarandache semigroups we give . the classical theorem of 
Cayley for Smarandache semigroups. We also analyze the 
Smarandache loop homomorphism. We pose the problem of 
finding a Cayley theorem for Smarandache loops. Finally we 
show that all Smarandache loops L,,(m) for n > 3, n odd, 
varying n and appropriate m have isomorphic subgroups. 

Keywords: 

Loops, Bruck Loop, 801 loop, Moufang loop, Smarandache loop, power 
associative loop, right or left alternative loop, Smarandache semigroup 
homomorphism, Smarandache loop homomorphism. 

Definition [1, Brock]: 

A non-empty set L is said to fonn a loop if on L is defmed a binary operation 
called product denoted by'.' such that 

1. For a, bEL, we have a • bEL 
2. There exists an element eEL such that a • e = e • a = a for all a E L ( e called 

identity element ofL) 
3. For every ordered pair (a,b) E Lx L there exists a unique pair (x, y) E Lx L such 

that a. x = b and y • a = b. 

Bya loop, we mean only a finite loop and the operation '.' need not always be 
associative for a loop. A loop is said to be a Moufang Loop if it satisfies anyone of the 
following identity. 

I. (xy)(zx) = (x(yz»x 
2. «xy)z)y = x(y(zy) 
3. x(y(xz» = «xy)x)z 

for all x, y, Z E L. 
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A loop L is said to be Bruck Loop ifx(yx.)z = x(y(xz» and (xyr l = x·ly.! for all X, 

y, Z E L. L is a Bot Loop if «xy)z)y = x((yz)y) for all X, y, Z E L. L is a right 
alternative loop if (xy)y = x(yy) for all x, y ELand left alternative if (xx)y = x(xy). L 
is said to be an alternative loop if it is both a right and a left alternative loop. A loop L 
is said to be power associative if every element generates a subgroup_ L is said to be 
di-associative if every 2 elements ofL generates a subgroup_ Let!..n( m) = (e, 1,2,3, 
... , n) be a set where n > 3, n is odd and m is a positive integer such that (m,n) = I and 
(m-l ,n) = I with m < n. Defme on !..n(m) a binary operation '.' as follows. 

1. e. i = i. e = i for all i E !..n(m) 
2. i. i = for all i E LuCm) 
3. i. j = t wheret = (mj-(m-l) i) (mod n) for all i. j E Ln(m) i:t; j, i:t; eandj:t; e. 

Lu(m) is a loop. 

We call this a new class ofloops. 

For more about loops and its properties please refer to [I] , [5] , [6] , [7] , [8] , [9] , 
[10], [II], [12] and [13]. 

Definition 1: 

The Smarandache Loop is defined to be a loop L such that a proper subset A ofL is a 
subgroup (with respect to the same induced operation). That is + :t; A c L. 

Example 1 

Let L be a loop given by the following table 

• e al 3.2 a3 34 as 116 a7 
32 e al 3.2 a3 34 as 116 a7 
as a) e as a2 116 a3 a7 84 
e 32 as e 116 a3 a7 84 a) 

86 a3 a2 86 e a7 34 a, as 
33 34 3(j a3 a7 e a) as a2 
a7 as a3 a7 34 al e a2 86 
34 36 a7 84 a) as 82 e a3 
a) a7 84 al as a2 86 a3 e 

L is a Smarandache loop. For the pair (e, a2) is a subgroup ofL. 

Theorem 2 

Every power associative loop is a Smarandache loop. 
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p,.oo! 

By definition of a power associative loop every element in L generates a 
subgroup in L. Hence the proof. 

Theorem 3 

Every di-associative loop is a Smarandache loop. 

p,.oo! 

Since in a di-associative loop L every two elements ofL generate a subgroup in L. 
So every di - associative loop has subgroups, hence L is a Smarandache loop. 

Theorem 4 

Every loop Lu(m) for n >3, n an odd integer. (n,m) = (0. m-l) = 1 with m < n is a 
Smarandache loop. 

p,.oo! 

Since Ln(m) is power associative we have for every a in Ln(m) is such that a2 = e, 
{a,e} forms a subgroup for every a in Lu(m). Hence the claim. Thus it is interesting to 
note that for every odd integer n there exists a class of Smarandache loops of order n+ 
1. For a given n > 3, n odd we can have more than one integer m, m < n such that 
(m,n) = (m-l, n) = 1. For instance when n = 5 we have only 3 Smarandache loops 
given by Ls(2), Ls(3) and L5(4). 

DefinitioD 5 

The Smarandache Bolloop is defined to be a loop L such that a proper subset A ofL is 
a Bolloop ( with respect to the same induced operation). That is eII:I; Ac S. 

Note 1 - Similarly is defined Smarandache Bruck loop, Smarandache Moufang loop 
and Smarandache right ( left) alternative loop. 

Note 2- In definition 5 we insist that A should be a sub loop ofL and not a subgroup of 
L. For every subgroup is a subloop but a sub loop in general is not a subgroup. Further 
every subgroup will certainly be a Moufang loop, Bolloop, Bruck loop and right( left) 
alternative loop, since in a group the operation is associative. Hence only we make the 
definition little rigid so that automatically we will not have all Smarandache loops to 
be Smarandache Bolloop, Smarandache Bruck loop, Smarandache Moufang loop and 
Smarandache right (left) alternative loop. . 

Theorem 6 

Every Bol loop is a Smarandache Bol loop but every Smarandache Bol loop is not a 
Bolloop. 
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Proof 

Clearly every Bolloop is a Smarandache Bol loop as every sub loop of a Bol loop 
is a Bo1 loop. But a Smarandache Bol loop L is one which has a proper subset A 
which is a Bolloop. Hence L need not in general be a Bol loop. 

DefinitioD 7 

Let S and S' be two Smarandache semigroups. A map ~ from S to S' is said to be a 
Smarandache semigroup homomorphism if ~ restricted to a subgroup A c S and A' 
c S' is a group homomorphism. that is ~ : A c S ~ N c S' is a group homomorphism. 
The Smarandache semigroup homomorphism is an isomorphism if ~ : A ~ N is one 
to one and onto. 
Similarly, one can define Smarandache semigt'oup automorphism on S. 

Theorem 8 

Let N be any set finite or infinite. S(N) denote the set of all mappings ofN to itself. 
S(N) is a semigroup under the composition of mappings. S(N), for every N, is a 
Smarandache semigroup. 

Proof 

S(N) is a semigroup under the composition of mappings. Now let A(N) denote 
the set of aU one to one mappings of N. Clearly ~ * A(N) c S(N) and A(N) is a 
subgroup of S(N) under the operation of composition of mappings, that is A(N) is the 
pennutation group of degree N. Hence S(N) is a Smarandache semigroup for all N> 1. 

Example 2 

Let S = {set of all maps from the set (1,2,3,4) to itself} and S' = {set of all map 
from the set (1, 2, 3, 4, 5, 6) to itself}. Clearly S and S' are Smarandache semigroups. 
For A = S4 is the permutation subgroup of S and A' = ~ is also the permutation 
subgroup of S'. Define the map ~ : S ~ S' , ~(A) = B' = {set of all permutations of (1, 
2, 3, 4) keeping the positions of 5 and 6 fixed} ~ N. Clearly + is a Smarandache 
semigroup homomorphism. 

From the definition of Smarandache semigroup homomorphism one can give the 
modified fonn of the classical Cayley's theorem for groups to Smarandache 
semigroups. 

Theorem 9 (Cayley's Theorem for Smaraodache semigroups) 

Every Smarandache semigroup is isomorphic to a Smarandache semigroup of 
mappings of a set N to itself, for some appropriate set N. 
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Proof 

Let S be a Smarandache semigroup. That is there exists a set A, which is a proper 
subset ofS, such that A is a group (under the operations ofS ), that is cjI ':t:. A c S. Now 
let N be any set and S(N) denotes the set of all mappings from N to N. Clearly S(N) is 
a Smarandache semigroup. Now using the classical Cayley's theorem for groups we 
can always have an isomorphism from A to a subgroup of S(N) for an appropriate N. 
Hence the theorem. 

Thus by defining the notion of Smarandache semigroups one is able to extend the 
classical theorem of Cayley. Now we are interested to fmding the appropriate 
formulation of Cayley's theorem for loops. 

It is important to mention here that loops do not satisfY Cayley's theorem but for 
Smarandache loops the notion of Cayley's theorem unlike Smarandache semigroups is 
an open problem. 

Definition 10 

Let L and L' be two Smarandache loops with A and N its subgroups respectively. A 
map + from L to L' is called Smarandache loop homomorphism if + restricted to A is 
mapped to a subgroup N of L', that is + : A ~ N is a group homomorphism. The 
concept of Smarandache loop homomorphism and automorphism are defmed in a 
similar way. 

Problem 1 Prove or disprove that every Smarandache loop L is isomorphic with a 
Smarandache Loop L' or equivalently 

Problem 2 Can a loop L' be constructed having a proper appropriate subset A' of 
L' such that A' is a desired subgroup ~ ':t:. A' c L' ? 

Problem 3 Characterize all Smarandache loops which have isomorphic subgroups? 

Example 3 

Let Ls(3) be a Smarandache loop given by the following table 

• e 1 2 3 4 5 
e e 1 2 3 4 5 
I 1 e 4 2 5 3 
2 2 4 e 5 3 1 
3 3 2 5 e 1 4 
4 4 5 3 1 e 2 
5 5 3 1 4 2 e 
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and L7(3) is another Smarandache loop given by the following table 

• e I 2 3 4 5 6 7 
e e I 2 3 4 5 6 7 
1 1 e 4 7 3 6 2 5 
2 2 6 e 5 I 4 7 3 
3 3 4 7 e 6 2 5 1 
4 4 2 5 1 e 7 3 6 
5 5 7 3 6 2 e I 4 
6 6 5 I 4 7 3 e 2 
7 7 3 6 2 5 1 4 e 

These two loops have isomorphic subgroup, for L7(3) and 10(3) have subgroups of 
order 2. 

Theorem 11 

All Smarandache loops Lu(m), where n > 3 , n odd, for varying n and appropriate m, 
have isomorphic subgroups. 

Proof 

All Smarandache loops Ln(m) have subgroups of order 2. Hence they have 
isomorphic subgroups. 

Note- This does not mean Ln(m) cannot have subgroups of order other than two. the 
main concern is that aJI loops L,,(m) have subgroups of order 2. 
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Abstract 

The aim of this article is to present a discrete model for histogram shaping. This is 
an important image transformation with several practical applications. The model that is 
proposed is based on a generalization of the inferior part function. Finally, an algorithm 
based on this model is developed. 

Key Words: histogram, histogram shaping, discrete random variable. 

1 Introduction 

Histogram equalization or histogram flattening is one of the moot important nonlinear point 
operations. This transformation aims to distribute uniformly the gray levels of the input image 
such that the histogram of the output image is flat. Histogram equalization has been studied 
for many years (see [1], [3], [4]) and many practical applications have been proposed so far. A 
direct generalization of this transformation is represented by histogram shaping or histogram 
specification (see [1], [3]). The idea of histogram shaping is to transform the input image 
into one which has histogram of a specific shape. Obviously, when the output shape is flat, 
histogram equalization is obtained. Both histogram equalization and histogram shaping have 
become classical image transformations, therefore it has been quite difficult to find the initial 
reference source. One of the earliest references about is [2]. 

The mathematical model of histogram equalization and shaping is based on stochastic ap­
proach. Let us consider that the input digital image is 1= (fi,j: i = 1,2, ... , nj j = 1,2, .0., m) 
where 

1</,· ·<G - toJ-

represents the gray value of pixel (i, j) 0 The probability or frequency of gray level k E 1, ... , G is 
defined by 

(k) = #{(i,j): I(i,j) = k} k - 1 G (1) Pi , - , ... , , 
m·n 

where #((i,j): I(i,j) = k} gives the number of pixel with the gray level equal to k. Based on 
these probabilities, the digital image f can be considered a discrete random variable 

::: ~(G) ) 

1. Recall that the cumulative probability distribution of PI is 
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k 

Pf: {1,2, ... , G} -+ [O,IJ, Pf(k) = L Pf(l). (3) 
l=O 

A more productive approach is to consider the digital image as a continuous random variable Pf : 
[0, (0) -+ [0,11 such that fooo pj(x)dx = 1. In this case the cumulative probability distribution is 

Based. on this continuous model the histogram shaping transformation can be defined more 
easily. Consider that the input digital image f is transformed such that the histogram of the 
output image 9 has a shape given by the cumulative distribution Q : [0,00) -+ [0,1). The 
equation that gives histogram shaping is [3J 

(4) 

The main inconvenience arising form Equation(4) is represented by the inverse function Q-l. 
Firstly, because the calculation of Q-l might not be easier even for simple shapes. Secondly, we 
cannot define Q-l for the discrete case therefore it would be difficult to apply (4) to a discrete 
computation. Perhaps, this is the real reason for seeing no discrete models for histogram shaping. 
In the following we will propose a discrete model for this transformation. 

2 The Superior Smarandache f-Part 

In order to propose an equation for the discrete case, we have to find a. substitute for Q-l. This 
is given by the Superior Smarandache f-Part , which represents a direct generalization of the 
classical ceiling function. Smarandache proposed [5] a generalization of the ceiling function as 
follOwing. Consider that f : Z -+ R an increasing function such that li11ln-+-oof(n) = -00 and 
lim..-+oo/(n) = 00. The Superior Smarandache f-Part associated with f is fn : R -+ Z defined 
by 

fn(x) = k {:} I(k -1) < x S f(k). 

Smarandache studied this function in relation to some functions of Number Theory and proposed 
several conjectures on them [6J. Tabirca also studied the Superior Smarandache f-Part [7] when 
fen) = ~ i G and proposed equations for fn when a = 0,1,2. Tabirca also applied this 
function to static parallel loop scheduling rSI. 

Now, we propose a version of the Superior Smarandache f-Part for our discrete case. Consider 
that r : {I, 2, ... , G} -+ (O,IJ is an increasing function such that r(C) = 1. We also consider 
that this function is extended to 0 with 1(0) = O. The Superior Smarandache f-Part associated 
with I is 10 : (0,11-+ {1, ... ,G} defined by 

jn(x) = k {:} I(k -1) < x S j(k), Vx E [0,1]. (5) 

This function is also extended in 0 by rO(O) = O. 
Some properties of the function 10 are proposed in the following. 

Theorem 1 
fO (f(k» = k, Vk E {I, 2, ... ,G}. (6) 
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Proof The proof is based on the definition of fil and on the double inequality 

f(k - 1) < f(k) ~ f(k) . 

• 
Theorem 2 

x~f(tO(x») <x+s~p(f(k+l)-f(k», 'v'XE(O,I]. (7) 

Proof 
Let us denote k = fO(x). The definition of fO provides f(k - 1) < x ~ f(k). From this 

equation, it directly follows that x ~ f(fD(x». 
The second part of Equation (7) comes from the following implication: 

f(k) < f(k) + x - f(k - 1) =? 

f (to (x») < x+s~p(f(k) - f(k -1» . 

• Based on these properties, the histogram shaping model of the discrete case is proposed. 

3 Histogram Shaping for the Discrete Case 

Consider that the input image f = (fiJ: i = 1,2, ... , n; j = 1,2, ... , m) is transformed into the 
output image 9 = (giJ: i = 1,2, ... , nj j = 1,2, ... , m) such that the histogram of g has a certain 
shape. Let us presume that the shape of the output histogram is given by the discrete random 
variable 

... G ) 

... Ph (G) 
(8) 

where 2:~IPh(k) = 1. 
The general equation of histogram shaping is similar with Equation (4) but pE is used in 

place of PhI. Let consider that the equation of image 9 is 

g(i,j) = pE (Pf(f(i,j»), 'v' (i,j) E {I, ... ,n} x {1,2, ... ,m}. (9) 

We prove that the cumulative probability distribution of 9 is very close to the cumulative 
probability distribution of h. 

Theorem 3 
Pg(k) = PI (pJ (Ph (k))), 'v'k E {I, 2, ... , G}. (10) 

Proof The proof is given by the following transformations: 

k 

Pg(k) = Pr[g(i,j) ~ k] = LPr [pE (PfU(i,j))) = 1] = 
l=1. 
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= LPr[Ph(l-I) < PI(f(i,j) ~ Ph(l)] = 
1=1 

k 

= LPr [pY (Ph(l-I» < PP (PI (f(i,j)) ~ Py (Ph(l))] = 
1=1 

k 

= LPr [{/(i,j) ~ Py (Ph(l»)} - {/(i,j) ~ Py (Ph(I-I))}] = 
1=1 

k 

= L (Pr [/(i,j) ~ Py (Ph(l))] -Pr [/(i,j) ~ Py (Ph(I-I))]) = 
l=1 

k 

= L (PI (pJ (Ph(ln) - Pj (p} (Ph(I-I))) = 
1=1 

= PI (pY (Ph(kn) - PI (pY (Ph (D))) 

Since Pf (pY (Ph(O») = 0 we find that Pg(k) = Pj (p} (Ph(k))) holds . 

• From Theorems 2 and 3 the following equation is directly obtained. 

Ph(k) ~ Pg(k) < Ph(k) + sup (Pf{j + 1) - PjU» , Vk E {O, 1, ... , G -I}. (11) 
j 

Equation (11) provides an estimation of the gap between the quantities Ph(k) and Pg(k). When 
SUPj (Pf{j + 1) - Pj(j» is smaller these two quantities are very close. Although Equa.tion (11) 
does not give a perfect equality we can say that the histogram of the image 9 has the shape very 
close to h. 

The algorithm based on this model firstly finds the functions Pf, Ph and pE. Secondly, 
Equation (9) is applied to obta.in the value g(i,j) for each pair (i,j). A full description of this 
algorithm is presented below. 

Inputs: 
n.m - the image sizes. 
f=(f[i.j]: i=l •...• n; j=l •...• m) - the input image. 
p_h=(p_h[i]: i=l •..•• G) - the desired shape. 

Output: 
g=(g[i.j]: i=l •...• n; j=l •...• m) - the input image. 

double P_h(int k){ 
double s=O; 

} 

if (k<=O II lOG) return 0; 
for(int i=l;i<=k;i++)s=s+p_h[i]; 
return s; 

int P_h_Inv(double x){ 
int k; 
if(x<=O I I x>l) return 0; 
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} 

Figure 1: Lerma's picture 1. 

for(k=OjP_h(k)<=Xjk++)j 
return k-l; 

double P_f(int k){ 

} 

double 8=0, p_f[G]j 
if(k<=O I I k>G) return 0; 
for(int i=l;i<=G;i++)p_f[i]=Oj 
for(int i=l;i<=n;i++)for(int j=l;j<=m;j++)p_f[f[i.j]]=p_f[f[i,j]]+l./(n*m); 
for(int i=1;i<=k;i++)8=s+p_h[i]; 
return s; 

int [] 0 Hist_Shaping(int n, int m. int f DOH 
int g En] Em] j 

} 

for(int i=lji<=n;i++)for(int j=ljj<=m;j++) 
g[i,j] = P_h_Inv(P_f(f[i.j]»j 

return g; 

In order to show that the algorithm performs well we consider an example presented in [I}. 
Histogram shaping can be used to compare two images of the same scene, which have been taken 
under different lighting conditions. When the histogram of the first image is shaped to match 
in the histogram of the S€Cond image, the lighting effects might be eliminated. 

Consider that we have the images presented Figures 1 and 2. They are two different Lenna's 
images where the second one has a poor lighting. Each image also contains the histogram for 
the red channel. The histogram shaping algorithm was applied to transform the second image 
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Figure 2: Lenna.'s picture 2. 

according to the histogram of the first image. Figure 3 shows the resulting image which is the 
same as the first image. Moreover, the histograms of the first and third images are very alike 
with similar positions for peaks and valleys. 

4 Conclusions 

This article has introduced a discrete model for the histogram shaping transformation. The 
model that has been proposed uses the Smaranda.che ceiling function and is based on the equation 
g = pR (PIU»· A example has been also presented in order to prove that the method is viable. 
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On an additive analogue of the function S 

J6zsef Sandor 

Babe§-Bolyai University, 3400 Cluj-Napoca, Romania 

The function S, and its dual S. are defined by 

Sen) = minim EN: nlm!}; 

S.(n) = maxim EN: mlln} (see e.g. [1]) 

We now define the following" additive analogue" , which is defined on a subset of real 

numbers. 

Let 

Sex) = minim EN: x:$ m!}, x E (1,00) (1) 

as well as, its dual 

S.(x) = maxim EN: m!:$ x}, x E [1,00). (2) 

Clearly, Sex) = m if x E «m - I)!, m!] for m 2: 2 (for m = 1 it is not defined, as 

O! = I! = I!), therefore this function is defined for x > 1. 

In the same manner, S.(x) = m if x E rm!, (m + I)!) for m 2: 1, i.e. S. : [1,00) -+ N 

(while S: (1,00) -+ N). 

It is immediate that 

{ 

S.(x) + 1, 
Sex) = 

S.(x), 

if x E (k!, (k + I)!) (k 2: 1) 
(3) 

if x = (k + I)! (k 2: 1) 
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Therefore, S.(x) + 1 ~ S(x) ~ S.(x), and it will be sufficient to study the function 

S.(x). 

The following simple properties of S. are immediate: 

l O S. is surjective and an increasing function 

2" S. is continuous for all x E [l,oo)\A, where A = {k!, k ~ 2}, and since lim S.(x) = 
:z;/k! 

k - 1, ~~!S.(x) = k (k ~ 2), s. is continuous from the right in x = k! (k ~ 2), but it is 

not continuous from the left. 

30 S. is differentiable on (1,00) \ A, and since lim S.(x) - :~(k!) = 0, it has a right-
:'".k! X - • 

derivative in Au {1}. 

40 S. is Riemann integrable in [a, b] c R for all a < b. 

a) If [a, b] C [k!, (k + 1)!) (k ~ 1), then clearly 

lb S.(x)dx = k(b - a) 

b) On the other hand, since 

i n = 1(k+1)! 1(k+2)! l(k+I-k)! 
+ + ... + 

kl k! (kH)! (k+l-k-l)! 

(where l > k are positive integers), and by 

we get 

l
(k+l)! 

S.(x)dx = k[(k + 1)! - k!] = k2 . k!, 
k! 

(4) 

(5) 

i ll S.(x)dx = k2 . k! + (k + 1)2(k + 1)! + ... + [k + (1 - k - 1)]2[k + (1- k - I)!] (6) 
kl 

c) Now, if a E [k!, (k + 1)!], bE [1!, (1 + I)!), by 

l
b 

= l(kH
)! + 111 + t 

a a (kH)! ill 
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and (4), (5), (6), we get: 

lb S.(x)dx = k[(k + 1)! - a] + (k + 1)2(k + 1)! + ... + 

+[k + 1 + (l- k - 2)f[k + 1 + (l - k - 2)!] + l(b -l!) 

We now prove the following 

Theorem 1. 

S 
log x 

.(x) rv-­

loglogx 

Proof. We need the following 

(x -+ 00) 

(7) 

(8) 

Lemma. Let Xn > 0, Yn > 0, Xn -+ a> 0 (finite) as n -+ 00, where Xn,Yn -+ 00 
Yn 

(n -+ 00). Then 

logxn 
-- -+ 1 (n -+ 00). 
10gYn 

(9) 

Proof. log Xn -+ log a, i.e. logXn -logy = log a +c(n), with c:(n) -+ 0 (n -+ 00). So 
Yn 

log Xn _ 1 = log a + c:(n) -+ 0 + 0 . 0 = o. 
log Yn log Yn log Yn 

Le ) 
nloglogn! 1 

mma 2. a I , -+ j 
ogn. 

b) 
logn! 

:---:-=--~ -+ 1 i 
log(n + 1)! 

) 
loglogn! 1 

c -+ asn-+oo 
loglog(n + 1)! 

(10) 

Proof. a) Since n! rv Ce-n nn+1
/

2 (Stirling's formula), clearly logn! rv nlogn, so b) 

follows by I I(Ogn ) rv 1 «(9), since ~1 rv 1). Now c) is a consequence of b) by the 
og n+ 1 n+ 

Lemma. Again by the Lemma, and log n! rv n log n we get 

log log n! rv log(nlogn) = logn +loglogn rv logn 

and a) follows. 
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Now, from the proof of (8), remark that 

nloglog n! S*(x) log log x n log log(n + I)! 
.,.---~-=-~ < < --=--=.;:...--:.... 
log(n + I)! log x logn! 

and the result follows by (10). 
00 1 

Theorem 2. The series ~ n(S*(n»)a is convergent for a > 1 and divergent for 

a~l. 

Proof. By Theorem 1, 

A::--l0.c:=-g_n_ < 8.(n) < B logn 
log log n log log n 

(A, B > 0) for n 2: no > 1, therefore it will be sufficient to study the convergence of 

f (loglogn)a 
n2:no n(logn)a . 

The function f(x) = (log log x)a/x(log x)!X has a derivative given by 

x2(logX)2Q: J'(x) = (log logxt-1(log xt-l[I - (log log x) (log x + a)] 

implying that f'(x) < 0 for all sufficiently large x and all a E R. Thus f is strictly 

decreasing for x 2: Xo. By the Cauchy condensation criterion ([2]) we know that L a,.. ~ 

L 2n a2" (where ~ means that the two series have the same type of convergence) for 

(a,..) strictly decreasing, a,.. > O. Now, with a.. = (loglogn)Q:jn(logn)a we have to study 

~2n(loglog2n)a ~ (lOgn+a)Q: 
~ ~(log2n)!X ~ ~ n+b ' where a,b are constants (a = log log 2, b = 

log 2). Arguing as above, (bn ) defined by bn = CO!:: a) Ct is a strictly positive, strictly 

decreasing sequence, so again by Cauchy's criterion 

Now, lim Cn+! = ~, by an easy computation, so D'Alembert's criterion proves 
n--->oo Cn 2"'-

the theorem for a #- 1. But for a = 1 we get the series '"' 2n( nb +b a) , which is clearly 
~ 2n + 

divergent. 
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HIP6TESE DE SMARANDACHE: EVIDENCIAS, 
IMPLICA<;OES E APLICA<;OESI 
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Conselheiro Furtado, 15741501 
Belem, PA 66040-100, Brasil 

(Setembro 4, 2000) 

RESUMO: Em 1993, Smarandache propos que DaO hA uma velocidade limite na 
natureza, baseado no paradoxo EPR-Bell (Einstein, Podolsky, Rosen, Bell). Embora 
~ que este paradoxo foi resolvido recentemente, ainda ba vanas outras evidencias 
que nos guiam a acreditar que a hipbtese de Smarandache esta correta na mecanica 
qu3.ntica e ate nas teorias de unifi~o. Se a biplltese de Smarandache revelar-se 
verdadeira em qualquer circunstincia, alguns aspectos da fisica moderna terao que se 
"reajustar" para concordar com a hip6tese de Smarandache. Em adi~o, quando 0 

significado da hipOtese de Smarandache tomar-se totalmente entendido, uma revoluC;llo 
na tecnologia, especialmente nas comunica¢es, ira surgir. 

I. EVIDENCIAS DE FEN6MENOS SUPERLUMINAIS E A lIIP6TEsE DE 

SMARANDACHE 

Aparentemente foi SommerfeJd quem primeiro notou a possiveJ existencia de 
particulas mais nipidas que a luz, mais tarde chamadas de tachyons por Feinberg [I]. 
Todavia, tachyons possuem massa imagiruiria, assim nunea foram detectados 
experimenta1mente. Por massa imaginaria entendemos uma massa proibida pela teoria da 
relatividade. Entretanto, a relatividade nao proibe diretamente a existencia de partfculas 
superiuminais sem massa, como 0 f6ton, mas sugere que fenomenos superJuminais 
cuIminariam em viagem no tempo. Entao, muitos fisicos assumiram que fenomenos 
superluminais DaO existem no universo, outra forma teriamos que explicar tOOos os 
paradoxos do tipo "mate 0 seu avo" [2]. Urn famoso exemplo de paradoxo deste tipo e 0 

problema de causaIidade. 

1 A ser publicado, Smarandache Hypothesis: Evidences, Implications and Applications, em "Smarandache 
Notions Journaln

, Vol. 12, 4, University of New Mexico, a convite de Dr. Minh Perez. 
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Mesmo assim, a mecaruca quantica sugere que movimentos superluminais existem. De 
fata, hi hip6teses da exisrencia obrigat6ria de movimentos superluminais na natureza [3, 
4]. 0 paradoxo EPR-Bell eo mais famoso exemplo. Ponderando sobre este paradoxo, 
Smarandache propos em 1993, em urna palestra ao BrasH, que nao M tal velocidade 
limite no universo, como postulado pot Einstein [5]. Parece que este paradoxo foi 
recentemente resolvido por L. E. SzabO [6]. Mesmo assim, ainda ha vanas evidencias de 
velocidades infinitas (comunica~o instantanea) no universo, como veremos brevemente. 

1.1. A Teoria de Rodrigues-Maiorino 
Estudando solu~Oes das eq~s de Maxwell e Dirac-Weyl, Waldyr Rodrigues Jr. e 

Jose Maiorino foram capazes de propor uma teoria unificada para constru~ de 
velocidades arbitr8.rias na natureza (por arbitnUia entende-se 0 ~ v $; c) em 1997 (1]. 
Eles tambem sugeriram que n30 lui tal velocidade limite no universo, assim a hip6tese de 
Smarandache pOde ser promovida a teorla como teoria de Smarandache-Rodrigues­
Maiorino (SRM). 

Fato Unico da teoria de Rodrigues-Maiorino e que 0 principia da relatividade especial 
sofre urna quebra, entretanto, mesmo constru~Oes relativisticas da mecaruca quantica, 
como a equa~ de Dirac, concordam plenamente com fenomenos superiuminais. De 
acordo com a teoria de Rodrigues-Maiorino, ate mesmo urn conjunto bem posicionado de 
espelhos pode acelerar urna onda eletromagnetica a velocidades superiores a da luz. Essa 
afi~ foi mais tarde confmnada por Saari e Reivelt (1997) [8], que produziram uma 
onda X (nomeada desta forma por J. Y. Lu, um contribuidor de Rodrigues) usando uma 
lampada de xenonio interceptada com urn conjunto de lentes e orificios. 

A teoria SRM e urna constru~ matemAtica pura e forte da e~o de onda 
relativistica que nos indica que MO lui nenhuma velocidade limite no universo. 

I. 2 Experimentos Superluminais 
Muitos experimentos, principalmente modos evanescentes, resuItam em propa~o 

superluminal. 0 primeiro modo evanescente bem sucedido foi obtido em 1992 por Nimtz 
[9]. Nimtz produziu urn sinal 4.34c, e mais tarde urn sinal FM 4.7c com a 40a sinfonia de 
Mozart. Esse sucesso de Nimtz seria rnais tarde superado por outros resultados ate 8 
vezes mais nipidos que a constante c. 

No caso do experimento de Nimtz nao esta claro se ele viola 0 paradoxo de 
causalidade. Em contrapartida, L. J. Wang, A. Kuzmich e A. Dogariu recentemente 
publicaram urn extraordinario resultado de dispersao anomala 0 quaJ urn pulso de Juz foi 
acelerado 310 ± 5 vezes a velocidade da luz, sem violar 0 paradoxo de causalidade, 
portanto resultando em viagem no tempo! Na pratica, isto significa que urn pulso de luz 
propagando pela celula de vapor atoallco aparece na saida muito antes de ter propagado a 
mesma distancia no vacuo e 0 pico do pulso parece sair da celula antes mesmo de entrar 
[10]. 
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1.3. Revisao da Velocidade da Gravidade 
A teoria geral da relatividade postula que a velocidade da gravidade e a mesma que a 

constante c. Porem, se a velocidade da luz nao e a velocidade limite do universo, nao 
seria hom de revisar este postulado? Van Flandem publicou alguns resultados astrofisicos 
que indicam que a gravidade e superluminal [11]. Observa~oes de algumas galaxias feitas 
pela NASA sugerem que algumas galaxias estao girando com velocidade superluminal 
[12]. 

Os clados de Van Flandem fOmID mais tardes explicados por uma teoria que nao usava 
de movimentos supeduminais por Ibison, Puthoff e S. R. Little [13]. Ainda assim, 
observ~es de sinais superluminais vindo de gahixias permanece inexplicadas pelo 
ponto de vista sub luminal. 

1.4. Tachyons 
Alguns model os da teoria de supercordas, nossa mais promissom candidata para teoria 

unificada da fisica, inclui tachyons, as particulas habeis de viajar mais nipido que a luz. 
Mesmo assim, fisicos encontraram uma maneira de "cottar" a teoria de maneira que as 
solu~s de tachyons desaparecem; alguns outros, como Freedman, defendem que a 
teoria de supercordas nao deveria ser cortada de tal forma em absoluto [1]. A teoria das 
supercordas e provavelmente 0 melhor campo para 0 estudo de tachyons, pois nao ira 
fol¥U' 0 uso do artificio de massa imaginaria. Prof. Michio Kaku comparou a id6ia de 
mais dimensOes em fisica a urn esquema de matrizes em seu Hyperspace. Imagine uma 
rnatriz 4x4 a qual ternos dentro a teoria da relatividade e outra rnatriz 4x4 onde temos 0 

Modelo Padrio. Se construinnos uma matriz maior, digamos 8x8, seriarnos capaz enta~ 
de incluir ambas a mec3nica quintica e a relatividade em uma (mica matriz. Esta e a ideia 
principal de unific~o a partir da adi'Yoo de mais dimensOes. Da mesma maneira, 
trabalbando apenas com matrlzes 4x4 nao temos espa~o suficiente para trabalhar com 
tachyons. Todavia, em uma matriz maior terlamos 0 espa'YQ necessario para encontrar 
construr;i5es s6lidas de modelos de tachyons. 

Tachyons ja foram, de uma maneira obscura, observados em chuveiros de ar de mios 
c6smicos. 

ll. IMPUCAC;OES E APUCAC;OES 

De acordo com a teoria de Rodrigues-Maiorino a conseqiiencia da existencia de 
fenornenos superluminais seria a quebra do principio da relatividade, mas nao 
precisariarnos alterar nada na mecanica quantica. Mais precisamente, nos parece que e a 
mecanica quantica quem esti banindo a antiga teoria relativistica segundo a teona SRM. 
Apesar disso, na reaJidade a teoria da relatividade aceita algum tipo de comunica~o 
superJuminal que resulta em viagem no tempo, como Wang e seus contribuidores 
mostraram. 
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Talvez nos poderemos, num futuro distante, enviar mensagens para 0 futuro ou 
passado. De qualquer forma, fenomenos superluminais teriam urna ap1ica~o mais 
realista com comunicayiio local, pais de acordo com a teoria Rodrigues-Maiorino, a onda 
X e fechada no sentido que ela nao perde energia enquanto viaja. Entio, uma mensagem 
de radio superluminal de onda X chegaria a seu destino com quase a mesma condilYiio em 
que foi enviada e ninguem, exceto 0 destino, poderia espiar 0 conteudo da mensagem. A 
inven~o de urn tal transrnissor superJuminal seria de grande pader associado a pastilha 
para desviar a luz em 90° do MIT na manufatura de fibras 6pticas. 

m.CONCLUsAo 

Os vanos experimentos e teorias s6lidas que nascem da mecanica quantica envolvendo 
fenomenos superluminais sao alto-niveis de indica~o da hip6tese de Smarandache que 
MO ba tal velocidade limite na natureza. Isto implica em uma quebra do postulado da 
relatividade de Einstein, mas MO em nenhum. campo da mecinica quantica, ate mesmo na 
fun~ de onda relativistica. Como em nossa evolu~o chegou urn tempo em que a 
mecanica newtoniana nao era suficiente para compreender alguns novos aspectos da 
natureza, talvez se aproxima urn tempo em que a teoria da relatividade de Einstein deve 
ser deixada de lado, pois entao a mecamca quantica ira govemar. 
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SUPERLUMINALS AND THE SPEED OF LIGHT 

Jason WRIGHT* 

Abstract: This brief paper was submitted as partial require­
ment for a Chemistry course. The topic was recommended to 
Dr. Kamala Sharrna*. 

Key Concepts: superluminals, loca1ity/nonloca1ity, mechanistid 
nonmechanistic, Smarandache Hypothesis. 

Definitions: 
Superlmninals are phenomena capable of greater than light 

speed. 

Locality is the assumption that change in physical systems 
requires presence of mechanistic links between cause and effect 

Nonlocality is that which is displayed by physical systems in 
which change evidently happens without such mechanical links. 

Mechanistic is direct physical contact (push-and-pull interactions) 
between parts of dynamic systems characteristic of machines. 

Nonmechanistic is nonphysical interaction between parts of a 
dynamic system characteristic of superluminals. 

For more than a century, an argmnent has been carried on concerning which is a 

more accurate pictme, or model, of the workings of the universe. Basic to this argument 

is the difference between the view of the world presented to us by classical (Newtonian) 

physics and quantum physics. Oassical physics held sway on a macroscopic scale Wltil 

Max Planck discovered that on the very small scale, quantmn mechanics was more 

accurate than classical mechanics could provide. Central to this argument were 

*Univcrsity of New Mexico, Gallup, New Mexico, USA. 
*Jason Wright, P.O. Box 1647, Gallup, NM 87305 
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physicists like Planck, Einstein, Hizenburg, Scheodinger, Bohr, Bohm, and a number of 

others. Most basic to this controversy is how action at a distance can occur, e.g., how 

does the sun hold the planets in place without any mechanical means of doing so. 

Einstein did not agree with Newton's theory of gravitation, because there was no 

evidence, and still isn't, of any force acting across space to hold the planets near the sun. 

Einstein developed his own theory of gravitation to give a much more mechanical view 

of gravitation. The sun influences the space, warps the space, near it, so that the planets 

roll around the SWl much as marbles would roll around a tightly stretched sheet with 

some sort of indentation in the middle of it 

Einstein's theory of gravitation was as good or better than Newton's, however, on 
the subatomic level, motions could not be accounted for accurately without a new theory: 
Quantmn Mechanics. With Quantmn physics a new wrinkle was added to the discussion. 
It appeared that particles could communicate at a greater than light speed. Einstein 
thought this possibility absurd, and he and a couple of his assistants came up with a 
thought experiment (EPR) to refute the possibility that speeds greater than light could 
occur. Being convinced that the speed of light was the top speed of the universe, Einstein 
imagined two particles with opposite spins could change their relative spins only if 
somehow they communicated at greater than the speed of light Since he had already 
absolutely accepted the speed oflight as the maximum velocity in the universe, he had to 
conclude that this instantaneous communication between the spinning particles was 
absurd, or absoluteJy impossible. Seems like sort of a circular argument 

Paralleling this mechanistirlnorunechanistic debate was the concept oflocality/ 
nonlocality. Local was used as synonymous with mechanical and nonlocality with non­
mechanical. Bell argued that if we could show that the notion of ''local'' did not exist at 
the subatomic level, then speeds seemingly occurring at greater than light would be 
explainable. I.e., if some things in the universe are really nonloca1, then communication 
could occur instantly, because they would not involve time or space. These 
instantaneous messengers came to be called superluminaIs. Bell's experiments proved 
the existence of superlurninals, and, hence, Bohr's view of mechanies was proven right, 
and Einstein's view wrong. There can be nonmechanistic action at a distance at the 
subatomic level, if you can show some sort of communication without regard for time 
and space. 

In our macroscopic world wc live in a universe of"loca1ity" but on the subatomic, 
microscopic world, all localities can be taken as the same locality, and, therefore, non­
local. On a large scale our world seems to be very mechanistic, i.e., things have to touch 
and move things through space and time for anything to happen, whereas, on the small 
scale, subatomic level, things are still capable of behaving as they did at the big bang, 
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i.e., they all were at the same place at the same time: All places were one place and all 
times 
were one time. Therefore, if subatomic particles have retained their big bang behavior, 
and experiments are showing that they do, then these particles are communicating at 
faster than light velocities, because they don't have to traverse any time or space. Super­
hnninal communication does seem to be possible, i.e., communication unrelated to any 
particular velocity. 

Dr. Florentin Smarandache argues in his paper, "There Is No Speed Barrier In 

The Universe," called "Smarandache Hypothesis," that paired entangled particles 

(photons) commWlicate instantly concerning their individual states, i.e., measuring one 

immediately determines the measurement of the other no matter how far separated. His 

conclusion had to be that this sort of subatomic particle behavior must be taken as sound 

evidence that, on the quantum level, there is no restraining finite speed. Even after Bell's 

inequality experiment, which extended the Einstein - Podolsky - Rosen (EPR) thought 

experiment, that has shown conclusively that there has to be phenomena interacting at 

greater than light speed, there is criticism of Dr. Smarandache's paradox. The criticisms 

go like this: "While it is true that modern experiments ~ demonstrated the existence 

of types of measurable superluminal phenomena, none of these experiments are in con-

flict with causality or special relativity since no information or physical object actually 

travels at speeds greater than light to produce the observed phenomena." It seems easy 

enough for these criticisms to say "no information" is moving from particle to particle or 

that these particles are not "physical objects," but, then, what is happening between them, 

and what are they. The point is that something is occurring at greater than light speed. 

called "superlurninals," and it has been measured. It may be better for us to say that there 

is some sort of "interaction" between subatomic particles happening at greater than light 

speed, however, whatever we call it, it exists, and, therefore, we have to amend our view 

oflight speed as the maximwn universal velocity. 
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Various experimental appamtus were designed essentially with the same premise, that 

of splitting up certain qualities or characteristics of different kinds of particles. The 

results at the detector were startling and very difficult to explain unless at the 

quantwn level one assumed communication, or some sort of interaction, between the 

particles at a greater than light speed. John Stewart Bell's experiments have swept away 

the assmnption, on the microscopic level, because we now have proof. However, that has 

been an enormous, almost overwhelming discovery, because it shows us that nature can 

behave in a totally nonconnnonsensical manner. Things do work on one another without 

touching and without regard for time or space. This finding has been abhorrent to many 

physicists, including Einstein, however, he was wrong in his belief in a totally 

mechanistic world. A great deal of our world is quite concealed from us, and our lab 

work on it, and our mathematics, reveal that in the very small subatomic world, things 

behave according to laws and a logic very different from the laws and logic of the very 

large world of people, and, planets, and galaxies. This is difficult for many ofus to 

accept, but assumptions were made about the operations of the universe, and some of 

these assmnptions are being shown wrong. In a similar way we believed for a very long 

time, we assumed, that the earth was the center of our solar system We now have to 

alter our thinking relative to another fimdamental matter. 

An even more crucial area of concern relative to the issue of supcrluminals, a 

much more fundamental area of physics that was i1Iwninated by experiments developed 

for testing for the possibly of superluminals, is the ongoing debate over whether the 

universe is a totally mechanistic one (classica1lNewtonian/loca1) or is it in some sense 

non-mechanistic (nonloca1). John Stewart Bel~ an Irish physicist, worked out 
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experiments to test the classical asstnnption that nature works in a strictly "local," 

mechanistic way. The results of these experiments revealed that the classical assumption 

was wrong - nature is in some sense nonlocal (nonmechanistic), and, hence, the 

possibility of effects occurring between subatomic particles at a speed greater than light, 

is quite real. David Bohm, another physicist who spent much of his life studying this 

surprising side of nature, remarked ncar the end of his life, "Quantwn strangeness is a 

keyhole through which we have caught a first glimpse of another side of nature, one in 

which the universe is neither deployed across vast reaches of space and time nor harbors 

many 'lbings". Rather it is one, interwoven thing, which incorporates space and time but 

in some sense subordinates them (e.g. superluminals) perhaps by treating them as 

important but non-fimdamental aspects of the interface between the universe and the 

observer who investigates it" 
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Abstract 
The h)pOlhesis formulated by Smarandache Oil /he possibili~r that J70 

barriers exist in the Unh'erse for an ()~ject to lravel af aJ~V ,~peed is here 
shortly analyzed. 

In 1980, contrarily to what previously postulated by Einstein, Smarandache, according to the EPR 

paradox, formulated the hypothesis that no barriers exist in the Universe for an object (or particle 

or infom1ation or energy) to travel at any speed. 

Recently, EPR-type experiments (entanglement and tunneling) have been carried out which prove 

that quantum mechanics is "non-local" and that the speed of light can be overcome. In fc'lct, these 

experiments have highlighted that "space-time" separated systems, which previously had mutually 

interacted, are anyhow connected and such a connection is instantaneous, discriminating and not 

attenuated. 

Instantaneousness is not new in Physics. It suffices mentioning the Newtonian Physics where the 

instantaneousness of the force of gravity is hypothesized. However, gravity decreases with the 

square of distance and such an interaction acts on all of the masses in the Universe, contrarily to 

what "non-local" mechanics seems to do. 

If it is possible to travel at speeds greater than that of light, is it possible to exchange information 

faster than the speed of light? The answer is no. It has been demonstrated that even if it was 

possible to transmit information into the space at speeds great~r than that of light the receiver is 

not capable to correctly reconsti)lct the sent information. Therefore, the Einstein principle of 

causality is not violated: consequently, it is not possible to detect an etTect earlier than its cause. 

To exchange information at speeds greater than that of light, the Schroedinger's equation must be 

admitted slightly non-linear. So far. all of the dedicated experiments ha\e proved exactly the 

contrat")'. However. the Physics of Chaos has highlighted that nature, which until a fe\\' years ago 
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'vas thought to be linear, prefers instead showing itself through highly non-linear phenomena and 

that the linear ones constitute a rare exception. So, ,vhy shall we believe that, on an atomic scale 

where quantum mechanics applies, nature should follow linear relationships? 

Moreover, is it actually true that relativity prevents from any possibility that objects exist which 

travel at a speed greater than that of light? Actually, relativity states that it is not possible to 

accelerate an object up to a speed greater than that of light since this \.vould need to rely on all of 

the energy of the Universe; in fact, as the speed of the object increases its mass gets greater and 

greater. On the other hand, relativity does not preyent the possibility that objects exist with a 

speed greater than that of light, such as in specific reactions where tardiolls (v<c) can originate 

tachiol1s (v>c). In such a case, a particle does not need to be accelerated to a speed greater than 

that of light since it already exists \vith a speed greater than "c". The only problem with tachions is 

that these hypothetical particles should posses an imaginary mass that is too strong of an 

assumption from a physical point of view. Severa] unsuccessful experiments have been carried out 

so far with the aim to find tachions (i.e., through the attempt to detect Cerenkov's radiation that 

should be emitted by the ones that travel at a speed greater than that oflight) 

TIlis might mean that: 

1) tachions do not exist 

2) tachions interact only rather wealdy with matter (capture rate less than that of neutrinos) and 

there~bre it is complicated to detect them. 

3) Necessary energies to generate tachions are too high for the performances of present 

accelerators. 

In summary, the emerging "non-local" quantum mechanics seems to con-validate the Smanmdache 

Hypothesis, without violating Einstein's "causality" principle. The relativity theory will need to be 

completely re-vvritten jf proofs are brought that Schroedinger's equation is weakly "non-linear"; in 

which case, information could be transmitted faster than light. 

Unf()J1unatelv, it is not possible to resolve this dispute for the 1110ment~ all of the hypothesis 

remain still valid. 
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Thomas Koshy, "Elementary Number Theory with Appilcations", 2002 

The best Elementary Num her Theory textbook for students 
Reviewer: M. perz from USA 

I recommend it for all College and University students taking number theory classes. The book is concise, 
well documented, easily understandable, up to date with the last developments in the field, and with very 
nice examples and attractive proposed problems. I read this textbook without letting if off my hands - like a 
detective novel or an exciting story. 
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