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Abstract

We study Smarandache sequences of numbers, and related problems,
via a Computer Algebra System. Solutions are discovered, and some
conjectures presented.
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1 Introduction

After a good look on the Mathematics Unlimited—2001 and Beyond [5], which
addresses the question of the future of Mathematics in the new millennium, it
is impossible not to get the deep impression that Computing will be an integral
part of many branches of Mathematics. If it is true that in the XXst century
Mathematics has contributed, in a fundamental way, to technology, now, in the
XXIst century, the converse seems to be also a possibility. For perspectives on
the role of Computing in Mathematics (and the other way around) see (2, 4, 9].

Many powerful and versatile Computer Algebra Systems are available nowa-
days, putting at our disposal sophisticated environments of mathematical and
scientific computing. They comprise both numerical and symbolic computation
through high-level and expressive languages, close to the mathematical one. A
large quantity of mathematical knowledge is already available in these scientific
systems, providing eflicient mathematical methods to perform the desired cal-
culations. This has two important implications: they spare one a protracted



process of programming and debugging, so common to the more conventional
computer languages; they permit us to write few lines of code, and simpler pro-
grams, more declarative in nature. Qur claim is that explorations with such
tools can develop intuition, insight, and better qualitative understanding of the
nature of the problems. This can greatly assist, the proof of mathematical results
(see an example in Section § 2.1 below).

It is our aim to show that computer-assisted algebra can provide insight and
clues to some open questions related to special sequences in Number Theory.
Number Theory has the advantage of being easily amenable to computation
and experimentation. Explorations with a Computer Algebra System will allow
us to produce results and to formulate conjectures., We illustrate our approach
with the mathematics Maple system (all the computational processing was car-
ried with Maple version &, on an AMD Athlon(TM) 1.66 GHz machine), and
with some of the problems proposed by the Romanian mathematician Florentin
Smarandache.

Maple was originated more than two decades ago, as a project of the Sym-
bolic Computation Group of the University of Waterloo, Ontario. It is now a
registered trademark product of Waterloo Mapile Inc. We refer the reader to
(19, 13] for a gentle introduction to.Maple. For a good account on the Smaran-
dache collection of problems, and for a biography of F. Smarandache, see [10].

We invite and exhort readers to convert our mathematical explorations in
the language of their favorite Computer Algebra System; to optimize the algo-
rithms (we have followed the didactic approach, without any attempt of code
opiimization}; and to obtain the results for themselves. The source be with you.

2 Smarandache Digital Subsequences

We begin by considering sequences of natural numbers satisfying some given
property together with all their digits.

2.1 Smarandache p-digital subsequences

We are interested in the following Smarandache p-digital subsequences. Let
p = 2. From-the sequence {n”}, n € Ny, we select those terms whose digits
are all perfect p-powers. For p = 2 we obtain the Smarandache square-digitol
subsequence: we select, only those terms of the sequence {ng}:;o whose digrts
belong to the set {0,1,4,9}. With the Maple definitions

> pow := (n,p) -> seq(i”p,i=0..n):

> perfectPow := (n,p) => evalb(n = iroot(m,p)~p):

> digit := (a,num) > irem{iquo(mum,10" (length(num)-n)) ,10);

> digits := n ~> map(digit, [$1. -length(n)],n):

> digPerfectPow :=

>  (a,p) ~> evalb(select (perfectPow,digits(n),p) = digits(n)):

the Smarandache square-digital subsequence is easily obtained:



> s8ds := n -> selact(digPerfectPow, [pow(n,2)],2):

We now ask for all the terms of the Smarandache square-digital subsequence
which are less or equal than 10000%:

> ssds(10000);

[0,1,4,9, 49,100, 144, 400, 441, 900, 1444, 4900, 9409, 10000, 10404, 11449,
14400, 19044, 40000, 40401, 44100, 44944, 90000, 144400, 419904, 490000,
491401, 904401, 940900, 994009, 1000000, 1004004, 1014049, 1040400,
1100401, 1144800, 1440000, 1904400, 1940445, 4000000, 4004001, 4040100,
4410000, 4494400, 9000000, 9909904, 9941409, 11909401, 14010049, 14040009,
14440000, 19909444, 40411449, 41990400, 49000000, 49014001, 49140100,
49999041, 90440100, 94090000, 94109401, 99400900, 99940009, 100000000)]

In [3, 18] one finds the following question:

“Disregarding the square numbers of the form N x 10%, k¢ N,
N also a perfect square number, how many other numbers belong
to the Smarandache square-digital subsequence?”

From the obtained 64 numbers of the Smarandache square-digital subsequence,
one can see some interesting patterns from which one easily guess the answer.

Theorem 1. There exist an infinite number of terms on the Smarandache
square-digital subsequence which are not of the form N x 10%, keN, Na
perfect square number.

Theorem 1 is a straightforward consequence of the following Lernma.

Lemma 2. Any number of the form (10’“‘l -+ 4) X105+ 14 ke N, (144, 10404,
1004004, 100040004, ...), belong to the Smarandache square-digital subsequence.

Proof. Lemma 2 follows by direct calculation:
(10%+F1 +2)7 = (105! 4 4) x 105+ 4 4.
|

We remark that from the analysis of the list of the first 64 terms of the
Smarandache square-digital subsequence, one easily finds other possibilities to
prove Theorem 1, using different but similar assertions than the one in Lemnma 2.
For example, any number of the form (10+2 4 14) x 105+2 449, k € N, (11449,
1014049, 100140049, ...), belong to the Smarandache square-digital subsequence:

(10%+2 £ 7)" = (105+2 - 14) x 10¥+2 4 49.

Other possibility, first discovered in [12], is to use the pattern (4 x 1051 1 4) x
L10%*1 41, k & Np (441, 40401, 4004001, ...), which is the square of 2 x 105+ +1.
Choosing p = 3 we obtain the Smerandache cube-digital subsequence,



> scds := n -> select(digPerfectPow, [pow(n,3)],3):

Looking for all terms of the Smarandache cube-digital subsequence which are
less or equal than 10000° we only find the trivial ones:

> scds(10000);

[0, 1, 8,1000, 8000, 1000000, 8000000, 1000000000, 8000000000, 1000000000000]

We offer the following conjecture:

Conjecture 3. All terms of the Smarandache cube-digital subsequence are of
the form D x 10 where D € {0,1,8} and k € Ny.

Many more Smarandache digital subsequences have been introduced in the
literature. One good example is the Smarandache prime digital subsequence,
defined as the sequence of prime numbers whose digits are all primes (see [18]).

Terms of the Smarandache prime digital subsequence are easily discovered
with the help of the Maple system. Defining

> primeDig := n -> evalb(select(isprime,digits(n)) = digits(n)):
> spds := n -> select(primeDig, [seq(ithprime(i),i=1..0)]):

we find that 189 of the first 10000 prime numbers belong to the Smarandache
prime digital subsequence:

> nops(spds(10000));

189

2.2 Smarandache p-partial digital subsequences

The Smarandache p-partial digital subsequence is defined by scrolling through
a given sequence {an}, n > 0, defined by some property p, and selecting only
those terms which can be partitioned in groups of digits satisfying the same
property p (see [3}]). For example, let us consider {a,} defined by the recurrence
relation a, = ap_; + apn_2. One gets the Lucas sequence by choosing the
initial conditions a9 = 2 and a, = 1; the Fibonaccs sequence by choosing ag =
0 and a; = 1. The Smarandache Lucas-partial digital subsequence and the
Smarandache Fibonacci-partial digital subsequence are then obtained selecting
from the respective sequences only those terms n for which there exist a partition
of the digits in three groups (n = g1g2¢3) with the sum of the first two groups
equal to the third one (g1 + ga == g3).
In (3, 17, 16] the following questions are formulated:

“Is 123 (1+2 = 3) the only Lucas number that verifies a Smaran-
dache type partition?”



“We were not able to find any Fibonacci number verifying a
Smarandache type partition, but we could not investigate large num-
bers; can you?”

Using the following procedure, we can verify if a certain number n fulfills
the necessary condition to belong to the Smarandache Lucas/Fibonacci-partial
digital subsequence, i.e., if n can be divided in three digit groups, gig2g3, with
gl4+gl=g3.

> spds:=proc(n)}

> local ndl, nd2, nd3, nd, gl, g2, g3:

> nd:=length(n);

> for nd3 to nd-2 do

> g3:=irem(n,107nd3);

> if length(g3)*2>nd then break; fij;

> for ndl from min(nd3,ud-nd3-1) by -1 to 1 do
> nd2:=nd-nd3-nd1;

> gl:=iquo(n,10" (nd2+nd3));

> g2:=irem(iquo{n, 10°nd3), 10°nd2);

> if g2>=g3 then break;fi;

> if gl+g2=g3 then printf("id (Ad+}d=)d)\n",n,gl,g2,g3);fi;
> od; .

>

>

Now, we can compute the first n terms of the Lucas sequence, using the
procedure below.

> lucas:=proc(m)

> local L, i:

> L:=[2, 1]:

> for i from 1 to n-2 do L:={L{J,L{i}+L[i+1]1]:0d:
> end proc:

With n = 20 we get the first twenty Lucas numbers

> lucas{20) :

(2,1,3,4,7,11,18,29,47,76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349]
Let L be the list of the first 6000 terms of the Lucas sequence:
> L:=lucas(6000):

(elapsed time: 1.9 seconds) !

It is interesting to remark that the 6000*" element has 1254 digits:

YThe most significant time calculations are shaowed, in order to give an idea about the
involved computation effort.



> length(L[6000]);

1254

The following Maple command permit us to check which of the first 3000
elements belong to a Sarandache Lucas-partial digital subsequence.

> map(spds, L{1..3000]):

123 (1+2=3)
20633239 (206+33=239)

(elapsed time: 7hS0m)

As reported in {15}, only two of the first 3000 elements of the Lucas sequence
verily a Smarandache type partition: the 11** and 36 elements.

> L(11], L{36];

123, 20633239

‘We now address the following question: Which of the next 3000 elements of
the Lucas sequence belong to a Smarandache Lucas-partial digital subsequence?

> map(spds, L[3001..6000]):
(elapsed time: 67h59m)

The answer turns out to be none: no number, verifying a Smarandache type
partition, was found between the 3001** and the 000" term of the Lucas se-
quence.

The same kind of analysis is easily done for the Fibonacci sequence. We compute
the terms of the Fibonacci sequence using the pre-defined function fibonaceci:

> with(combinat, fibonacci):
> [seq(fibonacci(i), i=1..20)];

[1,1,2,3,5,8,13, 21, 34,55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765)

Although the 6000** Fibonacci number is different from the 6000t" Lucas
number

> evalb{(fibonacci(6000) = L[6000]1):

false

they have the same number of digits

10



> length(fibonacci (6000)) ;

1254

In order to identify which of the first 3000 Fibonacci numbers belong to the
Smarandache Fibonacci-partial digital subsequence, we execute the following
short piece of Maple code:

> map{spds, [seqg{(fibonacci(i), i=1..3000)1):
832040 (8+32=040)
(elapsed time: 8h32m)

This is in copsonance with the result reported in [13]: only one number,
among the first 3000 numbers of the Fibonacci sequence, verifies a Smarandache
type partition — the 30** one.

> fibonacci(30);

832040

As before, with respect to the Lucas sequence, we now want to know which
of the next 3000 numbers of the Fibonacci sequence belong to the Smarandache
Fibonacci-partial digital subsequence,

> map(spds, [seq(fibonacci(i), i=3001..6000)1):
(elapsed time: 39h57m)

Similarly to the Lucas case, no number, verifying a Smarandache type par-
tition, was found between the 3001*" and the 6000t" term of the Fibonacci
sequence,

3 Smarandache Concatenation-Type Sequences

Let {an}, n € N, be a given sequence of numbers. The Smarandache concabe-
nation sequence agsociated to {an} is a new sequence {s,} where s, is given
by the concatenation of all the terms aq, ..., @,. The concatenation operation
between two nurobers o and b is defined as follows:

> conc := {a,b} -> ax10"length(b)+b:

In this section we consider four different Smarandache concatenation-type sub-
sequences: the odd, the even, the prime, and the Fibonacci one.

i1



> oddSeq =1n -> select(type, [seq(d,i=1..n)],0dd):
> evenSeq := n -> select(type, [seq(i,i=1..n)],even):
> primeSeq := n -> [seq(ithprime(i),i=1..n)]:

> with(combinat, fibomacci):

> fibSeq := n —> [seq(fibonacci(i),i=1..n)]:

> # ss = Smarandache Sequence

> ss := proc(F,n)

> local L, R, i:

> L := F(n):

> R := array(l..nops{L)): R[1] := L[1]:

> for i from 2 while i <= mops(L) do

> R{i] :=conc(R{i~1],L[il):

> end do:

>  evalm(R):

> end proc:

Just to illustrate the above definitions, we compute the first five terms of the
Smarandache odd, even, prime, and Fibonacci sequUences:

> ss(oddSeq,10);

[1,13,135,1357, 13579
> ss(evenSeq,10);

2,24, 246, 2468, 246810)

> ss(primeSeq,5);

[2,23,235,2357,23571H
> s5(fibSeq,5);

[1,11,112,1123,11235)

Many interesting questions appear when one try to find numbers among the
terms of a Smarandache concatenation-type sequence with some given property.
For example, it remains an open question to understand how many primes are
there in the odd, prime, or Fibonacci sequences. Are they infinitely or finitely in
number? The following procedure permit us to find prime numbers in a certain
Smarandache sequence.

’

> ssPrimes := proc(F,n)

> local ar, i:

> ar := select(isprime,ss(F,n)):
>  convert{ar,list):

> end proc:

12



There are five prime numbers in the first fifty terms of the Smarandache odd
sequence;

> nops (ssPrimes(oddSeq, 100));

5

five prime numbers in the first two hundred terms of the Smarandache prime
sequence; )

> nops (ssPrimes(primeSeq,200));

5

and two primes (11 and 1123) in the first one hundred and twenty terms of the
Smarandache Fibonacel sequence. '

> ssPrimes (fibSeq, 120);

[11,1123]

It is clear that only the first term of the Smarandache even sequence is prime.
One interesting question, formulated in {1, Ch. 2], is the following:

“How many elements of the Smarandache even sequence are twice
a prime?”

A simple search with Maple shows that 2468101214 is the only number twice a
prime in the first four hundred terms of the Smarandache even sequence (the
term 400 of the Smarandache even sequence is a number with 1147 decimal
digits}.

> ssTwicePrime := proc(n)

> local ar, i:

> ar := select(i—>isprime(i/2),ss(evenSeq,n)):
> convert(ar,list):

> end proc:,

> ssTwicePrime (800);

(2468101214]

4 Smarandache Relationships

We now consider the so called Smarandache function. This function S(n) is
important for many reasons (cf. [10, pp. 91-92]). For example, it gives a
necessary and sufficient condition for a number to be prime: p > 4 is prime if,
and only if, 5(p) = p. Smerandache numbers are the values of the Smarandache
function.

N

13



4.1 Sequences of Smarandache numbers

The Smarandache function is defined in [16] as follows: S{n) is the smallest
positive integer number such that S(n)! is divisible by n. This function can be
defined in Maple by the following procedure:

> S:=proc(n)

> local i, fact:
> fact:=1:

> for i from 2 while irem(fact, n)<>0 do
> fact:=fact#*i:
> od:

> return i-1:
> end proc:

The first terms of the Smarandache sequence are easily obtained:

> seq(S(n),n=1..20),

1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5

A sequence of 2k Smarandache numbers satisfy a Smarandache k-k additive
relationship if

S(n)+S(n+1)+ - +S(n+k-1) = Sin+k)+Sn+k+1)+ -+ S(n+2k—1).

In a similar way, a sequence of 2k Smarandache numbers satisfy a Smarandache
k-k subtractive relationship if

S(n)—=Sn+1)— - —=Sn+k—1) = Sn+k)—S(n+hk+1)—--~S(n+2%—1).
In [3, 17] one finds the following questions:

“How many quadruplets verify a Smarandache 2-2 additive rela-
tionship?”

“How many quadruplets verify a Smarandache 2-2 subtractive
relationship?”

“How many sextuplets verify a Smarandache 3-3 additive rela-
tionship?”? . :

To address these questions, we represent each of the relationships by a Maple
function:

> add2 2:=(V,n)->V[(n]+Vin+1]1=V[o+2] +V [0+3] :
> sub2_2:=(V,n)->V[u]-V[n+1]1=V[n+2] -~V [n+3] :
> add3_3:=(V,n)->Vinl+V{n+1]1+V {0+2] =V (0+3} +V (n+41+V [n+5] :

14



We compute the first 10005 numbers of the Smarandache sequence:
> 38N:=[seq(5(i),i=1..16005)]:
(elapsed time: 59m29s)

With the following procedure, we can identify all the positions in the se-
quence V that verify the relationship F.

> verifyRelation:=proc{F,V)
>  local i, VR: VR:=[]:

> for i to nops(V)-5 do

> if F(V,i) then VR:=[VR[], i]l: fi:
> od:

> return VR;

> end proc:

We can answer the above mentioned questions for the first 10000 numbers of
the Smarandache sequence.
The positions verifying the Smarandache 2-2 additive relationship are:

> Vi:=verifyRelation(add2_2,S3N);

V1:=1[6,7,28,114,1720,3538,4313, 8474]

Similarly, we determine the positions verifying the Smarandache 2-2 sub-
tractive relationship,

> V2:=verifyRelation(sub2_2,85N);

V2= (1,2,40, 49,107, 2315, 3913, 4157, 4170
and the positions verifying the Smarandache 3-3 additive relationship:
> V3:=verifyRelation(add3_3,SSN);

V3 .= [5,5182, 9855

The quadruplets associated with the positions V1 (2-2 additive relationship)
are given by

> map(i->printf ("S(LA)+S(%a)=S(%d)+S{%d) [hd+%d=%d+Y%d]\n",
1,1+1,3+2,i+3,5(1),8(i+1),5(i+2),8(i+3)), V1):

S(B)+S(7)=S(8)+3(9) [3+7=4+6]
S(7)+5(8)=5(9)+3(10) [T+4=6+5]
5(28)+5(29)=S(30)+5(31) ([7+29=5+31]
S(114)+S(115)=3(116)+3(117) [19+23=29+13]
S(1720)+8(1721)=8(1722)+5(1723) [43+1721=41+1723]
5(3538)+8(3539)=5(3540)+5(3541) [61+3539=59+3541]
5(4313)+3(4314)=8(4315)+3(4316) [227+719=863+83]
S(B474)+3(8475)=3(8476)+5(8477) [223+113=163+173]

15



We remark that in M. Bencze’s paper [3] only the first three quadruplets were
found. The quadruplets associated with the positions V2 (2-2 subtractive rela-
tionship)} are:

> map{i->printf ("S(ld)-SUAd)=S(%4d)~-S(%d) [Ua-Yd=%d-%d]\n",
i,3+1,142,1+3,8(4) ,8(i+1) ,8(i+2),8(i+3)), Vv2):

5(1)-3(2)=8(3)-5(4) [1-2=3-4]

5(2)-8(3)=5(4)-58(6) [2-3=4-5]
3(40)-5(41)=8(42)-5(43) [5-41=7-43]
5(49)~-8(50)=8(51)-8(52) [14-10=17-13]
S{107)-58(108)=S(109)-5(110) [107-9=109-11]
5(2315)-3(2316)=5(2317)-5(2318) [463-193=331-61]
5(3813)~-5(3914)=5(3915)-5(3916) [43-103=29-89]
5(4157)-5(4158)=5(4159)-5(4160) [4157-11=4159~13]
S(4170)-5(4171)=S(4172)-8(4173) [139-97=149-107]

Only the first two and fourth quadruplets were found in {3]. The following three
sextuplets verily a Smarandache 3-3 additive relationship:

> map(i->printf ("S(Ad)+S(%d)+S (%d) =S (%d) +S (%d) +S (%d)
Ura+Za+ha=s%a+%d+%d]\n" ,1,1i+1,1+2,1+3,i+4,1+5,
5(1),8(i+1),8(4+2),8(i+3) ,S(i+4),8(i+5)), V3):

3(5)+S(6)+3(7)=8(8)+S(9)+5(10) [5+3+7=4+6+5]
8(5182)+5(5183)+5(5184) =5 (5185)+S(5186)+5(5187) [2591+73+9=61+2593+19]
S(9855)+3(9856)+5(9857) =3 (9858) +5 (9859} +3 (9860) [73+11+9857=53+9859+29]

Only the first sextuplet was found by M. Bencze’s in [3]. For a deeper analysis
of these type of relationships, see [6, 8|.

4.2  An example of a Smarandache partial perfect additive
sequence

Let {an}, n > 1, be a sequence constructed in the following way:
ap=az =1
Qop+1 = Gpi1 — 15
Ggp+2 = app1 + 1.

The following Maple procedure defines a.,.

> a:=proc(n)
option remember:
if (n=1) or (u=2) them return 1:
elif type(n, odd) then return a({n-1)/2+1)-1:
else return a((n-2)/2+1)+1:
fi:
end proc:

Y V¥ VWV VWY
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In {3] the first 26 terms of the sequence are presented as being
> 4:=1,1,0,2,-1,1,1,3,-2,0,0,2,1,1,3,5,-4,-2,-1,1,-1,1,1,3,0,2:

One easily concludes, as mentioned in (7], that starting from the thirteenth term
the above values are erroneous. The correct values are obtained with the help
of our procedure:

> seq(a(i),i=1..26);

1,1,0,2,-1,1,1,3,-2,0,0,2,0,2,2,4,-3,-1,-1,1,—-1,1,1,3,~1,1

We prove, for 1 < p < 5000, that {a,}isa Smarandache partial perfect additive
sequence, that is, it satisfies the relation

a1+az+---+ap=ap+1+ap+2+---+a2p. (1)
This is accomplished by the following Maple code:
> sppasproperty;:=proc(n)

> local SPPAS, p;

>  8PPAS:=[seq(a(i},i=1..n)];

> for p from 1 to iquo(n,2) do

> if evalb(add(SPPAS[il, i=1..p)<>add(SPPAS[il, i=p+1..2*p))
> then return false;

> fi;

> 0d;

> return true;

> end proc:

> sppasproperty(10000);

true
(elapsed time: 11.4 seconds)

We remark that the erroneous sequence A does not verify property (1). For
example, with p = 8 one gets:

> add(A{i],i=1..8)<>add(A[i],1i=9..16);
8 £ 10

5 Other Smarandache Definitions and Conjec-
tures
The Smarandache prime conjecture share resemblances (a kind of dual assertion)

with the famous Goldbach’s conjecture: “Every even integer greater than four
can be expressed as a sum of two primes”.
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5.1 Smarandache Prime Conjecture

In (3, 17, 16] the so called Smarandache Prime Congecture is formulated: “Any
odd number can be expressed as the sum of two primes minus a third prime
(not including the trivial solution p = p + ¢ — ¢ when the odd number is the
prime itself)”.

We formulate a strong variant of this conjecture, requiring the odd number
and the third prime to be different (not including the situation p = k + ¢ — p),
that is, we exclude the situation addressed by Goldbach’s conjecture {where the
even integer 2p is expressed as the sum of two primes & and g).

'The number of times each odd number can be expressed as the sum of two
primes minus a third prime, are called Smarandache prime conjecture numbers.
It seems that none of them are known (cf. [3]). Here we introduce the notion
of strong Smarandache n-prime conjecture numbers: the number of possibilities
that each positive odd number can be expressed as a sum of two primes mi-
nus a third prime, excluding the trivial solution and imposing our requirement
that the odd number and the third prime must be different, using all possible
combinations of the first n primes.

Given n, the next procedure determines such numbers for all positive odd
integers less or equal than {im.

> spcn:=proc(lim, n)

> local y, =z, i, primos, num, mat:

> mat:=array(l..lim, 1..2,[seq([‘?°, 01, i=1..lim)1):
> primos:=seq(ithprime(i), i=1..n);

> for i from 1 to n do

> for y in [primos[i..n]] do

> for z in [primos] do

> mum: =primos {i]+y-z;

> if (num>=1 and num<=lim and type(mum, odd) and
> z<>primos[i] and z<>y and z<>num) then

> if mat[oum, 2]=0 then mat([num, 1]:=[primes(i], y, zl:
> fi:

> mat [mum, 2] :=mat[num, 2]+1;

> f1i:

> od:

> od:

> od:

>  for i by 2 to lim do

> if mat(i, 2]=0 then printf("%d=? (0 possibilities)\n", i):
> else printf ("%d={d+%d-%d (%d possibilities)\n", i,
> op{mat i, 1]), mat{i, 2]):

> fi:

> od:

> evalm(mat):

> end proc:
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All positive odd numbers less or equal than 19 can be expressed according to
the conjecture, using only the first six primes.?

> spcn(19,6):

1=242-3 (6 possibilities)
3=5+5-7 (3 possibilities)
5=3+13-11 (2 possibilities)
7=5+5-3 (2 possibilities)
9=3+11-5 (7 possibilities)
11=3+13~5 (3 possibilities)
13=6+11-3 (2 possibilities)
156=5+13-3 (5 possibilities)
17=7+13-3 (3 possibilities)
19=11+11-3 (3 possibilities)

(elapsed time: 0.0 seconds)

As expected, if one uses the first 100 primes, the number of distinct possibilities,
for which each number ¢an be expressed as in our conjecture, incresses.

> spen(19,100):

1=2+2-3 (1087 possibilities)
3=5+5-7 (737 possibilities)
5=3+13-11 (1015 possibilities)
7=3+17-13 (1041 possibilities)
9=3+11~5 (793 possibilities)
11=3+13-5 (1083 possibilities)
13=3+17-7 (1057 possibilities)
15=3+17-5 (770 possibilities)
17=3+19-5 (1116 possibilities)
19=3+23-7 (1078 possibilities)
(elapsed time: 1.8 seconds)

How many odd numbers less or equal to 10000 verify the conjecture??
> SPCN1:=spcn(10000,600) :

(elapsed time: 30mS9s)

> n:=0: for i by 2 to 10000 do if SPCN1i(i,2]>0 then n:=n+l; fi; od:

4406

Using the first 600 primes, only 4406 of the 5000 odd numbers verify the con-
jecture. And if one uses the first 700 primes?

2For each number, only one of the possibilities is showed.
31n the follow spen procedure calls, we removed from its definition the last for loop (spen
without screen output).
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> SPCN2:=spcn(10000,700) :
(elapsed time: 49m34s)

> n:=0:
> for 1 by 2 to 10000 do if SPCN2{i,2]>0 then n:=n+1; fi; od;
> n;

5000

Using the first 700 primes, all the odd aumbers up to. 10000 verify the con-
Jecture. We refer the readers interested in the Smarandache prime conjecture
to [14].

5.2 Smarandache Bad Numbers

“There ave infinitely many numbers that cannot be expressed as the difference
between a cube and a square (in absolute value). They are called Smarandache
Bad Numbers(l)” — see [3].

The next procedure determines if a number n can be expressed in the form
n = |z* ~ y*| (ie, if it is a non Smarandache bad number), for any integer z
less or equal than Tng.. The algorithm is based in the following equivalence

n=lg* -9y} o y=+23-n vV Y=z +n.

For each z between 1 and z,4,, we try to find an nteger y satisfying y =
Vo3 —nory = vz® + n, to conclude that 7 is a non Smarandache bad number.

> nsbn:=proc{n,xmax)

> local x, x3:

> for x to xmax dao

> x3:=x"3;

> if issqr(x3-n) and x3<>n then return nfx, sqrt(x3-n)l;
> elif issqr(x3+n) then return nfx, sqrt(x3+n)]; fi;

> od:

> return n[‘?¢, ‘?¢]

> end proc:

F. Smarandache [16] conjectured that the numbers 5, 6, 7,10,13,14,. .. are prob-
ably bad numbers. We now ask for all the non Smarandache bad numbers which
are less or equal than 30, asing only the z values between 1 and 19. We use

the notation 7, , to mean that n = |z% — yal‘ For example, 133 means that
1=|2% - 3% =|8 -9

> NSBN:=map(nsbn, [$1..30],19);
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NSBN = [1273, 23,6,31,2,42,2, 577,677, 72,1,81,3,93,6, 102 7,
1134, 121547, 1317,70, 1477, 151 4,162 3,172 5,183 3, 195 12, 206 14,
2177,223,7, 2339, 2415, 255 10, 263,1, 2777, 282 6, 207 7, 3010 53]

As proved by Maohua Le in [11], we have just shown that 7 and 13 are non
Smarandache bad numbers: 7 = [2% — 12| and 13 = [17® — 702|. The possible
Smarandache bad numbers are:

> select(n->evalb(op(l,n)=‘7?"), NSBN):

[52,2,62,2,102,2, 149 9, 169 7, 219 7,277 7, 297 o]

Finally, we will determine if any of these eight numbers is a non Smarandache
bad number, if one uses all the z values up to 10%.

> map(nshn, (5,6,10,14,18,21,27,29] ,10°8) ;

(51,7,67,2,107 2,147 7, 167 7, 217 2,277 7, 295 4]
(elapsed time: 14h30m)

From the obtained result, we conjecture that 5,6, 10, 14, 16, 21, 27, and 29, are
bad numbers. We look forward to readers explorations and discoveries.
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Palindrome Studies
(Parti)

The Palindrome Concept and Its Applications to Prime Numbers

Henry Ibstedt
Glimminge 2036
280 60 Broby
Sweden

Abstract: This article originates from a proposal by M. L. Perez of American
Research Press to carry out a study on Smarandache generalized palindromes [1]. The
prime nurnbers were chosen as a first set of numbers to apply the development of
ideas and computer programs on. The study begins by exploring regular prime
number palindromes. To continue the study it proved useful to introduce a new
concept, that of extended palindromes with the property that the union of regular
palindromes and extended palindromes form the set of Smarandache generalized
palindromes. An interesting observation is proved in the article, namely that the only
regular prime number palindrome with an even number of digits is 11.

1. Regular Palindromes

Definition: A positive integer is a palindrome if it reads the same way forwards and
backwards.

Using concatenation we can write the definition-of a regular palindrome A in the form
A=K X2X3... Xp- . X3X2X) OT X X2X3... XXy, . .X3X2X)

where x, £ {0, 1,2, ...9} fork=1,2,3, ..n, except X #

Examples and Identification: The digits 1, 2, ..., 9 are trivially palindromes. The
only 2-digit palindromes are 11, 22, 33, ... 99.

Of course, palindromes are casy to identify by visual inspection. We see at once that
5493945 is a palindrome. In this study we will also refer to this type of palindromes as
regular palindromes since we will later define another type of palindromes.

As we have seen, palindromes are easily identified by visual inspection, something we
will have difficulties to do with, say prime numbers. Nevertheless, we need an
algorithm to identify palindromes because we can not use our visual inspection
method on integers that occur in computer analysis of various sets of numbers. The
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following routine, written in Ubasic, is built into various computer programs in this
study:

10 'Palindrome identifier, Henry Ibstedt, 031021
20 input " N";N

30 s=n\10 :r=res

40 while s>0

50 s=3\10 :r=10*r+res

60 wend

70 print n,r

80 end

This technique of reversing a number is quite different from what will be needed later
on in this study. Although very simple and useful it is worth thinking about other
methods depending on the nature of the set of numbers to be examined. Let’s look at
prime number palindromes.

2. Prime Number Palindromes

We can immediately list the prime number palindromes which are less than 100, they
are: 2, 3,5, 7 and 11. We realize that the last digit of any prime number except 2 must
be 1,3, 7or9. A three digit prime number palindrome must therefore be of the types:
1x1, 3x3, 7x7 or 9x9 where xe{0, 1, ..., 9}. Here, numbers have been expressed in
concatenated form. When there is no risk of misunderstanding we will simply write
2x2, otherwise concatenation will be expressed 2_x 2 while multiplication will be
made explicit by 2-x-2.

In explicit form we write the above types of palindromes: 101+10x, 303+10x%,
707+10x and 909+10x respectively. :

A 5-digit palindrome axyxa can be expressed in the form:
a_000_a+x-1010+y-100 where ag{l, 3, 7, 9}, xe{0, 1, ..., 9} and ye{0, 1, ..., 9}

This looks like complicating things. But not so. Implementing this in a Ubasic
program will enable us to look for which palindromes are primes instcad of looking
for which primes are palindromes. Here is the corresponding computer code (C5):

10 "Classical 5-~digit Prime Palindromes (C5)
20 'October 2003, Henry Ibstedt

30 dim V(4),0(4)

40 for I=1 to 4 :read V(I):next

50 data 1,3,7,9

60 T=1000%

70 for I=1 to 14

80 U=0:"Counting prime palindromes

S0 A=V (I)*T ’
100 for J=0 to 9
110 B=A+1010*J
120 for X=0 to 9

130 C=B+100*K

140 if nxtprm{C-1)=C then print C :inc U
150 next :next

160 U(I)=U
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170 next
180 for I=1 to 4 :print U{I):next
190 end

Before implementing this code the following theorem will be useful.
Theorem: A palindrome with an even number of digits is divisible by 11.

Proof: We consider a palindrome with 2n digits which we denote Xy, Xg, ... X,. Using
concatenation we write the palindrome

ATX1X2. . XnXp-..X2Xi
We express A in terms of Xy, Xa, ... X, in the following way:

A= (10" D (107+10)+x3 (1077 +10%)+ . xo(107™"+10™")
or

A= %107 +105Y (O
k=l

We will now use the following observation:

10%-1=0 (mod 11) for q=0 (mod 2)
and
10%1=0 (mod 11) for g=1 (mod 2)

We re-write (1) in the form:

A=Y x (10" £1+10*"' £1) where the upper sign applies if k=1 (mod 2) and
k=1

the lower sign if k=0 (mod 2).
From this we see that A=0 (mod 11) for n=0 (mod 2).

Corollary: From this theorem we learn that the only prime number palindrome with
an even number of digits is 11,

This means that we only need to examine palindromes with an odd number of digits
for primality. Changing a few lines in the computer code C5 we obtain computer
codes (C3, C7 and C9) which will allow us to identify all prime number palindromes
less than 10'® in less than 5 minutes. The number of prime number palindromes in
each interval was registered in a file. The result is displayed in table I.

Table 1. Number of prime number palindromes

Number of
Number palindromes
of of type
digits T...... 1 3...... 3 7 e, 7 9.enss 9 Total
3 5 4 -4 2 15
5 26 24 24 19 93
7 190 172 155 151 648
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9 1424 1280 1243 1225 5172
Table 2. Three-digit prime number palindromes
(Total 15)
Interval Prime Number Palindromes
100-199 | 101 131 151 181 191
300-399 | 313 353 373 383
700-799 | 727 757 787 797
200999 | 919 929
Table 3. Five-digit prime number palindromes
{Total 93)
10301 10501 10601 11311 11411 12421 12721 12821 13331
13831 13931 14341 14741 15451 15551 14061 16341 16561
16661 17477 17971 18181 18481 19391 19891 19991
30103 30203 30403 30703 30803 31013 31513 232323 30473
33533 34543 34843 35053 35153 35353 35753 36263 36563
37273 37573 38083 38183 38783 39793
70207 70507 70407 71317 71917 72227 72797 73037 73237
73637 74047 74747 75557 76367 76667 77377 77477 77977
78487 78787 78887 79397 79497 79997
70709 91019 93139 93239 93739 94049 94349 94449 94849
4949 95959 96289 96449 94749 97379 97579 97879 98389
28689
Table 4. Seven-digit prime number palindromes
{Total 468)
1003001 1008001 1022201 1028201 1035301 1043401 1055501 1062401
- 1065601 1074701 1082801 1085801 1092901 1093901 1114111 1117111
17120211 1123211 1126211 1129211 1134311 1145411 1150511 1153511
1160611 1163611 1175711 1177711 1178711 1180811 1183811 1184811
1190911 1193911 1194911 1201021 1208021 1212121 1215121 1218121
1221221 1235321 1242421 1243421 1245421 1250521 1253521 1257521
1262621 1268621 1273721 1276721 1278721 1280821 1281821 1284821
1287821 1300031 1303031 1311131 1317131 1327231 1328231 1333331
1335331 1338331 1343431 1360631 1362631 1363631 1371731  137473]
1390931 1407041 1409041 1411141 1412141 1422241 1437341  144444]
1447441 1452541 1456541 1461641 1463641 1444441 1449441 1484841
1489841 1490941 1496941 1508051 1513151 1520251 1532351  153535]
1542451 1548451 1550551 1551551 1556551 1557551 1565651 1572751
1579751 1580851 1583851 1589851 1594951 1597951 1598951 1400041
1609061 1611161 1416161 1628261 1630361 1633361 1640461  144346)
1646461 1454561 1657561 1658561 1660661 1670761 1684861 1485861
1688861 1695941 1703071 1707071 1712171 1714171 1730371 1734371
V737371 1748471 1755571 1761671 1764671 1777771 1793971  180208]
1805081 1820281 1823281 1824281 1826281 1829281 1831381 1832381
1842481 1851581 1853581 1856581 1845681 1874781 1878781 1879781
1880881 1881881 1883881 1884881 1895981 1902091 1908091 1909091
1917191 1924291 1930391 19346391 1941491 1951591 1952591 1957591
1958591 1963691 1968491 1969491 1970791 1974791 1981891 1982891
1984821  19878%1 1988891 1993921 1995991 1998991
3007003 3002003 3007003 3014103 3026203 3064603 3065603 3072703



3073703 3075703 3083803 3089803 3091903 3095903 3103013 3106013
3127213 3135313 3140413 3155513 3158513 3160613 31464413 3181813
3187813 3193913 3196913 3198913 3211123 3212123 3218123 3222223
3223223 3228223 3233323 3236323 3241423 3245423 3252523 3256523
3258523 3260623 3267623 3272723 3283823 3285823 3284823 3288823
3291923 3293923 3304033 3305033 3307033 3310133 3315133 3319133
3321233 3329233 3331333 3337333 3343433 3353533 3362633 3364433
3365633 3348633 3380833 3391933 3392933 3400043 3411143 3417143
3424243 3425243 3427243 3439343 3441443 3443443 3444443 3447443
3449443 3452543 3460643 3466643 3470743 3479743 3485843 3487843
3503053 3515153 3517153 3528253 3541453 3553553 3558553 35634653
3569653 3586853 3589833 3590953 3591953 3594953 3401063 3407063
3618163 3621263 3627243 3435363 3643443 3646463 3670763 3673763
3680863 34898463 3498963 3708073 3709073 3714173 3717173 3721273
3722273 3728273 3732373 3743473 3746473 3762673 3763673 3765673
3768673 3769673 3773773 3774773 3781873 3784873 3792973 3793973
3799973 3804083 3806083 3812183 3814183 3824283 3829283 3834383
3842483 3853583 3858383 3863683 3864683 3867683 3849683 3871783
3878783 3893983 3899983 3913193 3914193 3918193 3924293 3927293
3931393 3938393 3942493 3946493 3948493 3964493 3970793 3983893
3991993 3994993 3997993 3998993

7014107 7035307 7034307 7041407 7044407 7057507 7065407 7069607
7073707 7079707 7082807 7084807 7087807 7093907 7094907 7100017
7114117 7118117 7118117 7129217 7134317 7136317 7141417 7145417
7155517 7156517 7158517 7159517 7177717 7190917 7194917 7215127
7226227 7246427 7249427 7250527 7256527 7257527 7261427 7247627
7276727 7278727 7291927 7300037 7302037 7310137 7314137 7324237
7327237 7347437 7352537 7354537 7362637 7365637 7381837 7388837
7392937 7401047 7403047 7409047 7415147 7434347 7434347 7439347
7452547 7461647 7486647  TA72747 - TATS5747  TAB5847 74846847 7489847
7493947 7507057 7508057 7518157 7519157 7521257 7527257 7540457
7562657 7564657 7576757 7584857 7592957 7594957 7400067 7611167
7619167 7622267, 7630367 76323867 7644467 7654567 76462667 7665667
7666667 7668667  T6&9667  TETATET  TEB1867 7690967 7693967 7694947
7715177 7718177 7722277 7729277 7733377 7742477 7747477 7750577
7758577 7764677 7772777 7774777 7778777 7782877 7783877 7791977
7794977 7807087 7819187 7820287 7821287 7831387 7832387 7838387
7843487 7850587 7856587 7865687 7867687 7868687 7873787 7884887
7821987 7897987 7913197 7916197 7930397 7933397 7935397 7938397
7941497 7943497 7949497 7957597 7958597 7960697 7977797 7984897
7985897 7987897 7996997

7002009 9015109 9024209 9037309 9042409 9043409 9045409 9046409
7049409 9067609 9073709 9076709 9078709 9091909 9095909 9103019
2109019 9110119 9127219 9128219 9134319 9149419 9149419 9173719
7174712 9179719 9183819 9196919 9199919 9200029 9209029 9212129
P217129 9222229 9223229 9230329 9231329 9255529 9249629 9271729
9277729 9280829 9286829 9289829 9318139 9320239 9324239 9329239
9332339 9338339 9351539 9357539 9375739 9384839 9397939 9400049
P414149 9419149 9433349 9439349 9440449 94446449 9451549 9470749
P477749 9492949 9493949 9495949 9504059 9514159 9524259 9529259
9547459 9556559 9558559 9561659 9577759 9583859 9585859 9586859
601069 9602069 9604069 Q610169 9620269 9624269 9626269 9632369
9634369 9645469 9450569 9657549 9670769 9684849 9700079 9709079
711179 9714179 9724279 9727279 9732379 9733379 9743479 9749479
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9752579
9782879
9818189
2888889
9219199
9938399

9754579
9787879
7820289
2887889
92921299
9957599

9758579
9788879
9822289
2894989
9923299
99465699

762679
9795%79
9836389
9902099
9924299
9978799

9770779
9801089
9837389
9907099
9927299
9980899

9776779
9807089
9845489
9908099
9931399
7981899

Q779779
9809089
2852589
9916199
9932399
9989899

2781879
2817189
9871789
92918199
9935399

Of'the 5172 nine-digit prime number palindromes only a few in the beginning and at the end
of each type are shown in table 5.

Table 5a. Nine-digit prime palindromes of type 1__1
(Totat 1424)

100030001
100404001
101030101
101343101
101414101
101949101
102272201
102676201
103060301
103333301

195878591
196333691
197030791
197202791
197616791
198080891
198454821
198919891
199242991
199515991 .

100050C01
100656001
101060101
101373101
101717101
101999101
102343201
102686201
103161301
103363301

195949591
196363691
197060721
197292791
197868791
198131891
198565891
199030921
199323991
199545991

100060001
100707001
101141101
101414101
101777101
102040201
102383201
102707201
103212301
103464301

195979591
196696621
197070791
197343791
197898791
198292891
198656891
192080991
199353991
199654991

160111001
100767001
101171101
101424101
101838101
102070201
102454201
102808201
103282301
103515301

126000691
196797691
1970907921
197454791
197919791
198343891
198707891
199141991
199363991
199767991

100131001
100888001
101282101
101474101
101898101
102202201
102484201
102838201

1103303301
103575301

196070691
196828691
197111791
197525791
198040821
198353891
198787891
192171991
199393991
199909991

100161001
100999001
101292101
101595101
101919101
102232201
102515201
103000301
103323301
103696301

196323691
196878691
197121791
197606791
198070891
198383891
198878891
199212991
199494991
199999991

Table Sb. Nine-digit prime palindromes

{Total 1280)

oftype 3_3

. 300020003
300313003
300868003
301434103
301969103
302333203
302555203
303050303
303565303
303979303

394191493
394767493
395717593
396202693
396219493
397666793

300080003
3005465003
300922003
301494103
302030203
302343203
302644203
303121303
303616303
304050403

394212493
395202593
395727593
326343693
396929693
397909793

300101003

300656003
300959003
301555103
302070203
302444203
302676203
303161303
303646303
304090403

394333493
395303593
395868593
396454693
397141793
398040893

300151003
300808C03
301050103
301626103
302202203
302454203
302858203
303272303
303757303
304131403

394494493
395363593
395898593
396505693
397242793
398111893

28

300181003
300818003
301111103
301686103
302303203
302525203
302898203
303292303
303878303
304171403

394636493
395565593
3946070493
396757693
397333793
398151893

300262003
300848003
301282103
301818103
302313203
302535203
302909203
303373303
303929303
304191403

394696493
395416593
396191693
3946808693
397555793
398232893



398252893 398363893 398414893 398474893 398616893 398664893
398676893 398757893 398838893 398898893 399070993 399191993
399262993 399323993 397464993 399484993 399575993 399595993
399616993 399686993 399707993 399737993 3997467993 399878993

Table &¢, Nine-digif prime palindromes of type 77
(Total 1243)

700020007 700060007 700090007 700353007 700363007 700404007
700444007 700585007 700654007 7006466007 700717007 700737007
700848007 700858007 700878007 700989007 701000107 701141107
701151107 701222107 701282107 701343107 701373107 701393107
701424107 701525107 701595107 701606107 701434107 701727107
701747107 701838107 701919107 701979107 701999107 702010207
702070207 702080207 702242207 702343207 702434207 702515207
702575207 702626207 702646207 702676207 702737207 702767207
702838207 702919207 702929207 702989207 703000307 7030460307
703111307 703171307 703222307 703252307 703393307 703444307

795848597 795878597 7946060697 794080697 796222497 796252697
796353697 796363697 796474697 796494497 796515697 796636697
796666697 796707697 796717697 T6TATERT7 796848697 796939697
TR72862797 797363797 797303797 T97444797 797525797 797595797
797676797 797828797 797898797 797939797 797949797 798040897
798181897 798191897 798212897 7981292897 798373897 798383897
798454897 798535897 798545897 798646897 798474897 798737897
798797897 798818897 798838897 798919897 798989897 799050997
799111997 792131997 799323997 799363997 799383997 799555997
799636997 799686997 799878997 799888997 TF99939997 799959997

Tables d. Nine-digif prime palindromes of type 99
(Total 1225)

700010009 900050007 200383009 900434009 900484009 900505009
200515009 900565007 900757009 900808009 900838009 900878009
200919009 200929009 901040109 901131109 901242109 901252109
901272109 901353107 901494109 901585109 901606109 901626109
901656109 901684109 2016246109 901797109 901929109 901949109
- 902151209 902181209 202232209 902444209 902525209 902585209
902757209 902828209 902888209 903020309 903131309 903181309
903292309 903373309 903383309 903424309 9035465309 903616309
903646309 903727309 903767309 903787309 903797309 903878309
903979309 904080409 904090409 $04101409 904393409 904414409

994962499 995070599 995090599 995111599 995181599 995303599
995343599 995414599 995555599 995694599 995757599 995777599
996020697 996101699 996121699 996181699 996242699 996464699
996494699 996565699 996828699  99665669F 996686699 996808699
996818699 9946878699 994929499 994949699 996989499 997030799
PI7V1799 997393799 997464799 997474799 997555799 997737799
997818799 997909799 997949799 998111899 998121899 998171899
998202899 998282899 998333899 998565899 998446899 998757899
798898899 998939899 998979899 999070999 999212999 999272999
999434999 999454999 999565999 999674999 999486999 999727999
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An idea about the strange distribution of prime number palindromes is given in
diagram 1. In fact the prime number palindromes are spread even thinner than the
diagram makes believe because the horizontal scale is in interval numbers not in
decimal numbers, i.e. (100-200) is given the same length as (1.1:10° -1.2-10%).

Distribution of Prime Palindromes

200
180
160
140
120
100
80
60
40
20 -] 11

O_Fn E—
LALLM LA v I I TITi7

1 4 7 101316 19 22 25 28 31 34 37 40 43
Intervais as defined

Number of palindromes

Diagram 1
Intervals 1-9: 3-digit numbers divided into 9 equal intervals.
Intervals 11-18: 4-digit numbers divided into 9 equal intervals
Intervals 19-27: 5-digit numbers divided into 9 equal intervals
Intervals 28-36: 6-digit numbers divided into 9 equal intervals
Intervals 37-45: 7-digit numbers divided into 9 equal intervals

3. Smarandache Generalized Palindromes

Definition: A Smarandache Generalized Palindrome (SGP) is any mteger of the form
X1X2X3..-%n. . - X3X2X OF X(X2X3.. XnXq. .. X3X2X

where Xy, X2, X3,...Xn are natural numbers. In the first case we require n>1 since

otherwise every number would be a SGP.

Briefly speaking xx & {0,1,2, ...9} has been replaced by x; ¢ N (where N is the set of
natural numbers).

Addition: To avoid that the same number is described as a SGP in more than one
way this study will require the x¢ to be maximum as a first priority and n to be
maximum as a second priority (cf. examples below).

Interpretations and examples: Any regular palindrome (RP) is a Smarandache
Generalized Palindrome (SGP), i.e. {RP} < {SGP}.

3 is a RP and also a SGP

123789 is neither RP nor SGP

123321 is RP as well as SGP
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123231 isnotaRPbutitisaSGP 1 23 23 1

The SGP 334733 can be written in three ways: 3 3 47 3 3, 3_3473 3 and 33 47 33.
Preference will be given to 33 47 33, (in compliance with the addition to the
definition).

780978 is a SGP 78_09_78, i.c. we will permit natural numbers with leading zeros
when they occur inside a GSP.

How do we identify a GSP generated by some sort of a computer application where
we can not do it by visual inspection? We could design and implement an algorithm to
identify GSPs directly. But it would of course be an advantage if methods applied in
the early part of this study to identify the RPs could be applied first followed bya
method to identify the GSPs which are not RPs. Even better we could set this up in
such a way that we leave the RPs out completely. This leads to us to define in an
operational way those GSPs which are not RPs, let us call them Extended
Palindromes (EP). The set of EPs must fill the condition

{RP} U {EP}={GSP}

4. Extended Palindromes

Definition: An Extended Palindrome (EP) is any integer of the form

X1X2X3...Xp. .. X3X0X; OF X1X2X3...Xn Xy - - X3%7X)
where Xy, X3, X3,...X, are natural numbers of which at least one is greater than or equal
to 10 or has one or more leading zeros. xy is not allowed to not have leading zeros.
Again X, should be maximum as a first priority and n maximum as a second priority.

Computer Identification of EPs

The number A to be examined is converted to a string S of length L (leading blanks
are removed first). The symbols composing the string are compared by creating
substrings from left L, and right Ry. If L; and R, are found so that L; = Ry then A is
confirmed to be an EP. However, the process must be continued to obtain a complete
split of the string into substrings as illustrated in diagram 2.

Ly

Diagram 2
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Diagram 2 illustrates the identification of extended palindromes up to a maximum of
4 clements. This is sufficient for our purposes since a 4 element extended palindrome
must have a minimum of § digits. A program for identifying extended palindromes
corresponding to diagram 2 is given below. Since we have Le=R, we will use the
notation Z for these in the program. The program will operate on strings and the
deconcatenation into extended palindrome elements will be presented as strings,
otherwise there would be no distinction between 690269 and 692269 which would
both be presented as 69_2 (only distinct elements will be recorded) instead of 69 02
and 69_2 respectively.

Comments on the program
It is assumed that the programming in basic is well known. Therefore only the main
structure and the flow of data will be commented on:

Lines 20 — 80: Feeding the set of numbers to be examined into the program. In the
actual program this is a sequence of prime numbers in the interval a;<a<a,.

Lines 90 ~ 270: On line 130 A is sent off to a subroutine which will exclude A if it
happens to be a regular palindrome. The routine will search sub-strings from left and
right. If no equal substrings are found it will return to the feeding loop otherwise it
will print A and the first element 7, while the middle string S; will be sent of to the
next routine (lines 280 — 400). The flow of data is controlled by the status of the
variable u and the length of the middle string.

Lines 280 ~ 400: This is more or less a copy of the above routine. S, will be analyzed
in the same way as S in the previous routine. If no equal substrings are found it will
print S; otherwise it will print Z; and send $; to the next routine (lines 410 — 520).

Lines 410 — 520: This routine is similar to the previous one except that it is equipped
to terminate the analysis. It is seen that routines can be added one after the other to
handle extended palindromes with as many elements as we like. The output from this
routine consists in writing the terminal elements, i.e. S» if A is a 3-element extended
palindrome and Zs and Ss if A is a 4-element extended palindrome.

Lines 530~ 560: Regular palindrome identifier described earlier.

10 'EPPRSTR, 031028

20 input "Search interval al to a2:";Al,A2
30 A=Al

40 while A<A2

50 A=nxtprm(A)

60 gosub 90

70 . wend

80 end

20 S=str(d)

100 M=len(S)

110 if M=2 then goto 270
120 S=right(5,M-1)

130 U=0:gosub 530

140 if U=1 then goto 270
150 Il=int({(M-1)/2)

16Q U=0
170 for I=1 to Il
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180 if left(S,I)=right(S,I) then

190 :Z1=1left (S, I}
200 tMI=M-1-2*I:S1l=mid (85, I+1,M1)
210 :U=1

220 endif
230 next
240 if U=0 then gotc 270

250 print A;" ";Z21;

260 if M1>0 then gosub 280
270 return '

280 I2=int {M1/2)

290 U=0

300 for J=1 to I2
310 1f left(S1,J)=right(S1,J) then

320 1Z2=left (S1,J)

330 (M2=M1-2*J:82=mid (S1,J+1,M2)

340 :U=1

350 endif

360 next

370 if U=0 then print " ";Sl:goto 400
380 print " ";Z2;

390 if M2>0 then gosub 410 else print
400 return

410 I3=int (M2/2)

420 |, U=0

430 for K=1 to I3

440 if left(82,K)=right (582,K) then

450 123=left (52,K)

460 M3=M2-2*K:53=mid (S2,K+1,M3)

470 :U=1

4380 endif

430 next

500 if U=0 then print " ";S52:goto 520
510 print " ";Z3;" ";S83

520 return

530 T="n

540  for I=M,o 1 step -l:T=T+mid(S,I, 1) :next
550 if T=S then U=1l:'print "a=";a;"is a RP"
560 return

5. Extended Prime Number Palindromes

The computer program for identification of extended palindromes has been
implemented to find extended prime number palindromes. The result is shown in
tables 7 to 9 for prime numbers < 10’. In these tables the first column identifies the
interval'in the following way: 1 — 2 in the column headed x 10 means the interval 1-10
to 2-10. EP stands for the number of extended prime number palindromes, RP is the
number regular prime number palindromes and P is the number of prime numbers. As
we have already concluded the first extended prime palindromes occur for 4-digit
numbers and we see that primes which begin and end with one of the digits 1, 3, 7 or
9 are favored. In table 8 the pattern of behavior becomes more explicit. Primes with
an even number of digits are not regular palindromes while extended prime
palindromes occur for even as well as odd digit primes. It is easy to estimate from the
tables that about 25% of the primes of types 1...1,3...3, 7...7 and 9...9 are extended

33



prime palindromes. There are 5761451 primes less than 10°, of these 698882 are
extended palindromes and only 604 are regular palindromes.

Table 7. Extended and regular palindromes
Intervals 10 -100, 100 — 1000 and 1000 -10G00

x10 EP RPF___ P x 10° EP RP P x 100 EP RP P
1-2 0] 1 4 1-2 0 5 21 1-2 33 135
2-3 0 2 2-3 0 16 | 2-3 0 127
3.4 0 2 3-4 0 4 16 3-4 28 120
4-5 0 3 4-5 0 17 4-5 0 119
5-6 0 2 5-8 0 14 5-6 0 114
6-7 0 2 6-7 0 16 6-7 0 117
7-8 0 3 7-8 0 4 14 7-8 30 107
8-9 0 2 §-9 0 15 8-9 0 110
9-10 0 11 9-10 0 2 14| 9-10 27 112
Table 8. Extended and regularsoalind"romes
Intervals 10* -10° and 10° — 10°
x10° EP RP P X10° EP RP P
1-2 242 26 1033 1-2 2116 8392
2-3 12 983 2-3 64 8013
3-4 230 24 958 3-4 2007 7863
4-5 g 930 4-5 70 7678
5-6 10 924 5-6 70 7560
6-7 9 878 6-7 69 7445
7-8 216 24 - 902 7-8 1876 7408
8-9 10 876 8-9 63 7323
9-10 203 19 879 9-10 1828 7224
. Table 9. Extended and regulargalindromes
Intervals 10° -10° and 10° — 107
x 10° EP RP P x 10’ EP RP P
1-2 17968 190 70435 1-2 156409 606028
2-3 739 67883 2-3 6416 587252
3-4 16943 172~ 66330 3-4 148660 575795
4-5 687 65367 4 -5 6253 567480
5-6 725 64336 5-8 6196 560981
6-7 688 63799 6-7 6099 555949
7-8 16133 155 63129 7-8 142521 551318
8-9 694 62712 8-9 6057 547572
9-10 15858 151 62090 9-10 140617 544501

We recall that -the sets of regular palindromes and extended palindromes together
form the set of Smarandache Generalized Palindromes. Diagram 3 illustrates this for
5-digit primes.
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Extended and Regular 5-digit Prime Palindromes

300

250

200

150

100

Number of palindromes

50

1 2 3 4 5 6 7 8 9
(10000-99999) divided into 9 intervals

Diagram 3. Extended palindromes shown with blue color, regular with red.

Part I of this study is planned to deal with palindrome analysis of other number
sequences.
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Abstract

In this paper we have constructed two chains of semifields. All semifields in the
chains are Smarandache semifields. Every member of the chain is an extension
semifield of Ordered equilateral Integral triangles with Zero triangle such that it is a

semivector space over R,

Key words: Ordered integral triangle, Zero triangle, Equilateral integral triangle
Smarandache semiring, Smarandache semifield, Smarandache semivector space.

1. Introduction

Recently there has been an increasing interest in the study of Smarandache semirings
and associated structures. We propose to construct two chains of infinite Smarandache
semifields by defining Equilateral triangles.

An ordered integral triangle as defined in [1] is a triplet (a,b,c) where (a,b,c) are
positive integers satisfying a>b2¢,b +¢>a.
Let us consider a set R'={(a b, c)ab,cc I'yazbzeb+c>a} {0} where
0=(0,0,0). We shall call 0 as a Zero triangle.
We define the sum + and the product - of triangles as
(a,8,,¢)) +(ay,b,,¢,) = (a, + a,,b +b,,c +c,)
and
(a,b,¢)(ay,b,,¢,) = (a,b,¢)
where
a=2aa,—(bc,+cb,)
b=Zaa, -(ac, +ca,)
¢=2Zaa, —(ab, +ba,)
where
36

&)

2



Laa, =aa, +hh, +cc,
It is not difficult to see that;
i) (R!,+) is a commutative semigroup with identity (0,0,0).
i) (R!,) is a semigroup (in fact a monoid)
1i) Multiplication distributes over addition.
iv) {LL1) is the multiplicative identity.
v) Commutativity holds for multiplication.
Thus, (R, +,") is a commutative semiring.
Also,
vi) (ay,b,¢)+(a,,b,,6,) =(0,0,0) = a =a,=b =b =c =c,=0
Thus, (R!,+,-) is a strict commutative semiring with unity (1,1, 1). See [2].
vii) Let x.y =0 where x,ye R'. Then x=0 or y=0
We conclude that
s Al (R!,+,) is a semifield.
A triplet (a,b,c) where (a,b,c) arc positive rational numbers satisfying
azbzc,b+c>a is called an ordered rational triangle. -
Consider the following set
RE ={(a,b,c)la,b,cc Q",azbzcb+c>a) {0} where 0 is a zero triangle. Then,
it can be verified that (R?,+,.) is a strict commutative semiring with unity (1,1,1).
Also, R? is without zero divisors.
Thus,
s A2 (R2,+,.) is asemifield.
A triplet (a,b,c) where (a,b,c) are positive real numbers satisfying
azbzxzc,b+c>a is called an ordered real triangle.
Consider the set
RY ={(a,b,c)a,bce R, azbzcb+c> ap {0} where 0 is a zero triangle. Then,
it can be verified that (R",+,.) is a strict commutative semiring with unity (1,1,1).
Also, RY is without zero divisors.
Thus, ,
e A3 (R*,+,) is a semifield.
Consider the set,
R ={(ab,c)lab,ce R",azb=c} {0} where 0 is a zero triangle. Then, it can be
verified that (R ,+,.) is a strict commutative semiring with unity (1,1,1).
Also, R_is without zero divisors.

Thus,
s Ad (R ,+,.) is a semifield.

Result: From Al, A2, A3 and A4 we obtain a chain of semifields as
s (A RoR'oROR R

Where R/ is areal equilateral triangle defined in (A7)
Ordered cquilateral triangles lead us to a new chain of semifields. A triplet (a,a,a)
where g e R is called an ordered equilateral real triangle.
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Consider the following set
R ={(a,a,a)ae R} {0} where 0=(0,0,0).
Then, (Ri »+,.) s a strict commutative semiring with unity (1,1,1) and is without zero

divisors.
Thus,

. A5 (Rf,+,) is a semifield.
Similarly, triplet (a,a,a) where ae Q" is called an ordered equilateral rational

triangle.
Consider the following set

RS ={(a,a,a)lac 0"} {0} where 0=(0,0,0).
Then, (R?,+,) is a strict commutative semiring with unity (1,1,1) and is without zero
divisors.

Thus,

. A6 (RZ +,.) is asemifield.
Similarly, a triplet (a,a,a) where ae " is called an ordered equilateral Integral
triangle.

Consider the following set

R, ={(a,a,a)laec I'}\u {0} where 0=(0,0,0). _
Then, (R! ,+,) is a strict commutative semiring with unity (1,1,1) and is without zero

divisors.
Thus,

s A7 (R ,+,) is a semifield.
Result: From A1, A2, A5, A6 and A7 we obtain a chain of semifields as
. (B) RoRFSRE SRS R

2. Some Observatipns

1. Members of ordered equilateral triangles act as scalar multiples for every
semifield in the chain.

E.g. let (a,a,a)e R} and (x,y,z)e R . Then
(a,a,a)(x,y,z) = (ax,ay,az) = a(x, y, z).
Thus, multiplication by (a,a,a) e R amounts to component wise
multiplication. Hence, we call (a,a,q) a magnifier.
2. There is a chain of magnifiers
R SR o R
Every semificld in the chains (A) and (B) is of characteristic 0 .
Every semiring except R;, in chains (A) and (B) is a Smarandache semiring.
Every semifield in the chains (A) and (B) is an extension semifield of R
R! is a prime semifield as it has no proper subsemifield.

All the members in the chains are semivector spaces over the semifield R
All the semifields in the chains (A) and (B) are Smarandache semi fields
because they contain A4 as a proper subset where A is
a. A4={(0,0,0,(p,p,p),(2p,2p,2p),..(rp,rp,rp)} Which is isomorphic
38
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with 4" = {0, p,2p...rp..} which is a k-semi algebra [2].
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On Numbers That Are Pseudo-Smarandache And
Smarandache Perfect

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, IA 52233

In a paper that is scheduled to be published in volume 31(3) of Journal of Recreational Mathematics
enttled “On A Generalization of Perfect Numbers”[ 1], Joseph L. Pe defines a generalization of the

definition of perfect numbers. The standard definition is that a number n is perfect if it is the sum of its’
proper divisors.

Pe expands this by applying a function to the divisors. Therefore, a number n is said to be f-perfect if
k
n= 2 f(d)
i=1

for f an arithmetical function.

The Pseudo-Smarandache function is defined in the following way:

Feor any integer n > 1, the value of the Pseudo-Smarandache function Z(n) is the smallest integer m such
that 1 +2+3 +. ..+ mis evenly divisible by n.

This function was examined in detail in {2].

The purpose of this paper is to report on a search for numbers that are Pseudo-Smarandache and
Smarandache perfect.

A computer program was written to search for numbers that are Pseudo-Smarandache perfect. Tt was run up
through 1,000,000 and the following three Pseudo-Smarandache perfect nurbers were found.
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n=4 factors 1, 2

n=0 factors 1,2, 3

n =471544 factors 1, 2,4, 8, 58943, 117886, 235772
This leads to several additional questions:

a) Are there any other Pseudo-Smarandache perfect numbers?

b) Ifthe answer to part (a) is true, are there any that are odd?

) Is there any significance to the fact that the first three nontrivial factors of the only large number are
powers of two?

The Smarandache function is defined in the following way:

For any integer n > 0, the value of the Smarandache function S(n) is the smallest integer m such that n
evenly divides m factorial.

A program was also written to search for numbers that are Smarandache perfect. It was run up through
1,000,000 and only one solution was found.

n=12 factors -1,2,3,4,6
This also leads to some additional questions:
d) Are there any other Smarandache perfect numbers?

e) If the answer to part (a) is true, are there any that are odd?
£ Is there any significance to the fact that n has the first three nontrivial integers as factors?
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Near Pseudo Smarandache Function

A.W. Vyawahare
H. O. D. Mathematics Department,
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Abstract,

The Pseudo Smarandache Functions Z (n ) are defined by David
Gorski [11.
This new paper defines a new function K(n) where n N, which is

a slight modification of Z(n) by adding a smallest natural number
k. Hence this function is “Near Pseudo Smarandache Function

( NPSF ).

Some properties of K(n) are presented here, separately, according
to as n is even or odd. A continued fraction consisting NPSF is
shown to be convergent [3]. Finally some properties of K’ ( 1 ) are

also obtained.

MS Classification No: 11-XX
Keywords: Smarandache Functions, Pseudo Smarandache Functions,

Diphantine Equation, Continued Fractions, Covergence.

1.1 Definition

Near Pseudo Smarandache Function ( NPSF) K is defined as

follows.
K:N — N definedbyK (n)=m,where m=Xn + k and k

is the smallest natural number such that n divides m .

1.2 : Following are valuesof K(n) forn<15
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n Sn k K(n)

1 1 | 2

2 3 1 4

3 6 3 9

4 10 2 12

5 15 5 20

6 21 3 24

7 28 7 35

8 36 4 40

9 45 9 54

10 55 5 60

11 66 11 77

12 78 6 84

13 91 13 104

14 105 7 112 |
15 120 15 135 |

For more such values see appendix A

2.1 Properties

(i)
(a)

(b)

k=n iftnis odd and n/2 ifnis even.
Let 7 be odd,

Then (n+ 1) iseven and hence (n+ 1) /2 is an integer.
o 2n =n(n+1)/2, being multiple of n, is divisible by n.
Hence ndivides Xn + k iff ndivides k i.e. iff kis a multiple

of n. However, as & is smallest k = n.

Let n be even.

ThenZn + k=n(n+1)/2 + k = n’/2 + n/2 + &k

Asnis evenhence n/2 is an integer and n’/2 is divisible by n.

Hence n divides n + k iff ndivides n/2 + &k
Le.iff n < n/2 + kor k> n/2.

However ,as kissmallest k = n/2.
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(ii)

(iii )

(iv)

(v)

(vi)

K(n)=n(n+3)/2 ifnisodd and K(n})=n(n+2) /2
if n is even.

K(n) =Zn+k= n(n+1)/2 + [
If nisodd then k =nand hence K (n) =n(n+3)/2
Ifniseventhenk=n/2andhenceK(n) =n(n+2)/2.

Forall neN; n(n+2) /2 < K(n) < n(n+3)/2
Weknow K (n) iseithern(n+2) /2 Or n(n+3)/2
depending upon whether # is even or odd .

Hence forall neN; n(n+2) /2 < K(n) < n(n+3)/2

Forall neN; K(n) > n
AsK(n)>n(n+2)/2=mn+ ni/2 > n
Hence K(n) > n forall neN.

K is strictly monotonic increasing function of n.
let m<n “.m+!< nie. m + (3-2) < n
Orm+3<n+2 Som<nand m+3 <n + 2
m(in+3)<n(n+2)
Or m(m+3)/2 < n(n+2)/2
K(im) <K (n)

Hence K (n) is strictly monotonic increasing function of .

K(m+n) # K(m) + K(n)

and K(m.n) = K(m) . K(n)
WeknowK(2)=4,K(3)=9,K(5) =20, & K(6)= 24
SoK(2) + K(3)=4+9=13 &K(2+3)=K(5)= 20
HenceK(2v+ 3)=#K(2) +K(3)
AlsoK(2) . K (3)=4.9=36 & K(2.3)=K(6)=24
Hence K(2.3)# K(2).K (3)
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22 (i) K(2n+1)-K(2n) = 3n+2
K(2n+1)=(2n+1)(2n+4)/2=2n+5n+2

K(2n)=2n(2n+2)/2 =2n°+ 2n
Hence K(2n+1)— K(2n) = 3n + 2
(i) K(2n)-K(2m) = 2(n-m)(n+m+1)
K(2n)=2n{2n+2)/2 =2n’+ 2n
S K(2n) —K(2m) =2(n*-m?*)+2(n-m)

Hence K(2n) - K(2m) = 2(n-m)(n+m+1)

(i) K(2n+1)-K(2n-1) = 4n+3
K(2n+1)=(2n+1)(2n+4)/2=2n’+5n+2
K(2n~1)=(2n-1)(2n+2)/2=2n"+ n-1
Hence K(2n+1)-K(2n-1) = 4n+3

(v) K(n)-K(m)=2"""K(n+m) where
n + m

m,n areeven and n>m.

K(n)-K(m) =g(n+2)— i;f(mu)
=-{(n2+2n—m2—2m)
2

=§{(n2_—m2)+2(n—m)}

=(";m](n+m+2)

1 n+m

= (n—-m) (n+m+2)

n+m

n - m
= — " K(n+m)
n+m_
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(v) LetK(n)=m and

(a) Letn beeven then n.m is a perfect square iff (n+2) / 2isa
perfect square.

(b) Letn beodd then n.m isaperfect square iff (n+3)/2 isa
perfect square.

(c) n.misa perfect cubeiffn=2or3.

() IHfniseventhenK(n)=m=n(n+2)/2
Sn.m= n"(n+2)/2 Hence if niseventhen n.m isa

perfect square iff (n+2) / 2 isa perfect square.

(b) IlfnisoddthenK(n)=m=n(n+3)/2
inm.m=n’(n+3)/2 Henceif nisodd then n.m isa

perfect square iff (n+3) / 2 isa perfect square.

(c) Letnbeeven andletrn=2p
Then m=K(n)=K(2p)=2p/2(2p +2)

n.m=(2p). p.2(p+1)=(2p).(2p).(p+1)
n. misaperfectcube iff p+1=2p
ie iff p=1ie iffn=2

Letnbeodd andletn=2p-1 ‘

Then m=K(n)=K(2p-1) = (2p-1)(2p—-1+3)/2
=(2p-1)(p +1)

tw.m=(2p-1). (2p-1). (p+1)

.~ n . m isa perfect cube iff p+1=2p-1

ie iff p=2ie iffn= 3

~n=2and n= 3 are the only two cases where n .m isa

perfect cube.

Verification :-K(2)=4 & 2.4=8 = 2°
K(3)=9 & 3.9=27=237

48



2.3 Ratios

(i)

(i)

(iii)

Kin) n

= if n is odd.
Kin+l1) n+1

Asnisodd .. n+1 iseven. Hence K(n) =nin+3)/2

and K (nt1) = (n+1)(n+1+2)/2
= (n+1)(n+3)/2
Hence — (™) _ _ if 1 is odd.
K(nw}]) n+1
K(n) = n(n+2)

= if n is even.
K(n+1) (n+1)(n+4)

Asniseven .. n+Jisodd.Also K(n) =n(n+2)/2 and

K(ntl) =(n+l1)(n+1+3)/2 =(n+1)(n+4)/2

K(n) = n(n+2)

= if 71s even.
K(n+1) (n+1)(n+4)

Hence

K(2n) n
K(2n+2) n+2
K(2n) =2n(2n+2)/2=2n(n+1)
K(2n+2) =(2n+2)(2n+4)/2 =2(n+1)(n+2)

K(2n) n
K(2n+2) n+2

Hence

24 Equations

(1)

(ii)

Equation K (n) = n has no solntion.

WeknowK (n) =n(n+2)/2 OR n(n+3)/2

S K(n) =niff n(n+2)/2 =n OR n(n+3)/2=n
Le.fff n=0 OR n= —] which is not possible as n € N.

Hence Equation K (n) = n has no solution.

Equation K(n) = K( n+ 1) has no solution.
If niseven (orodd) then n+ 1 isodd (or even)
Hence K (n) = K(n+1)

iffnin+2)/2 =(n+1)(n+4)/2
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(iii)

(iv)
(a)

)

OR n(n+3)/2 =(n+1)(n+3)/2
le.iff n(n+2) =(n+1)(n+4)
OR n(n+3)=(n+1)(n+3)
e iff n°+2n =n’+5n+4 OR n+3n =n’+4dn+3
ieiff 3n+4=00R n+3=0
ieiff n=-4/3 OR n=-3 which is not possible as n € N.

Hence Equation K(n) = K( n+ 1) has no solution.

Equation K(n) = K( n+2) has no solution.
If niseven (orodd) then n+ 2 is even (orodd) .
Hence K(n) = K(n+2)
Yfn(n+t2)/2 =(n+2)(n+4)/2
OR n(n+3)/2 =(n+2)(n+5)/2

leiff n(n+2) =(n+2)(n+4)

| OR n(n+3)= (n+2)(n+5)
i.e.iff n*+2n=n’+6n+8 OR n'+3n=n’+7n+10
ieiff 4n+8=0 OR4n+10=9
ieiff n=-—2 OR n=-5/2 which is not possible as n € .,

Hence Equation K (n) = K( n + 2) has no solution.

To find # for which K (n) = n?
ietnbeeven.

Then K (n) = n’ iffn(n+2)/2 = n?
i.e.iﬂn2+2n =2n? Or n(n—2)=0‘
Le. iffn=0o0rn =2 Hencen =2 is the only

even value of n for which K(n) = n?

Let n be odd.

ThenK(n)=n’ if n(n+3)/2 = n?
le.iff n’+3n =20 Orn(n-3)=0
lLe. iffn=00rn=3. Hencen=3 isthe only
odd value of n forwhich K (n) = n?

So 2 and 3 are the only solutions of X (n) = n*
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2.5 Summation and product
(i) For n odd Y K(2n) - X K(2n—-1) =K(n)
ZK(2n) =Xn(2n+2)=25n(n+1)=2X(n’+n)
ZK(2n-1) =X(2n-1)(2n+2)/2n
=X (2n-1)(n+1) =% (2n” +n -1

S XK(2n)~ ZXK(2n—1) =Z(n+1) =n(n+1)/2 + n
=n(n+3)/ 2=K(n)
Hencefor n odd X K(2n) - S K(2n-1) = K(n)

Gi) 2. K(a") = K(a)+K(a®)+K(a’) +. .. + K(a")
m=1

= afa" -1}

m (a™' +3a+2) if ais even

_a(a"-1)

a1 (a™ +4a+3) if a is odd

(a) Letais even. Then

m=n

2 K(a") K (a)jrK(a®)+ K(a’) +. . .+ K(a")

m=]

=a(a+2)/2 +a’(a*+2)/2+ a’(a’+2)/2

+...+ a"(a"+2)/2
= (a/2 + a)+(d72 + &)+
(a2 + &)+ ...+(d"/2 + 4o
=(1/2) {a’ +a* + a® +. . . +a¥}
+fa +a’ +a’ .. +a")

=(1/2)fa’+ (a’)? + (a®)? +.. .+ (a®)" }

+fa +a’ + al v+ 4"
2n n
I lat=1)  a(a-1)
2 a’ -1 a-1
_a (a”—])(a"+1)+ a(a”~1)
2 (a-1)(a+1) a-1

_ afa"-1) {a (a"+1) 2}
20a-1) (a+1)

_a(a"-1) |a™ +a+2a+2
2(a-1) (a+1)
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afa”" 1) nii
= 2 727 2

2Na 1) (a™ +3a+2)
Hence K(a) + K(a’) + K(a’) +. . .+ K(a")

afa” —-1)

a™ +3a+2) if a is even
2(a’ -1) ( /

(b) Letaisodd. Then

m=n
D K(a")wK(a)yrK(a®)rK(a®) +. . . + K(a")
m=/!
=a(a+3)/2 +a*(a’+3)/2+ a’(a’+3)/2
+...+ afa®+3)/2
= (V){d + 3a+a + 38 +4d
+ 3+ .+ 34"}
=(1/2) fa’* +a' + a® + . . +a2"}
+{a +a’ +ad’ +. .. +a"}
=(1/2) {[a’+ (a®)? +. ...+ (a®)" ]
+3f{(a +a’ + d’ +. . . +a")}
1 a1 3a(a” -1
ZE{aZ(ah1)+ 2—1 )}

- afa"-1) |a (ar"+])+ 3
2a-1) (a+1)

_ala"=1) {a”"’+a+3a+3} '

2(a-1) (a+1)
- a(an—l) n+
= —2—(02__1) (a 1+4a+3)
Hence K(a) + K(a’) + K(a®) +. . .+ K(a")
oa’~1) (a™' +4a+3) if a is odd

2(a® -1)

(ii) I K(2n) = 2". n!.( n+l)!
OK(2n)=T 2n(2n+2) /2 =11 2n(n +1)
=112 .0n.T(n+1)
=2n.nl. (n+l)!

Hence Il K(2n) = 2". nl . ( n+1)!
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(iv)

HK(2n-1) = (1/2". 2n! .n!( n+l)
NK(2n-1)=TI (2n-1)(2n+2) /2
=Tl (2n—~1) (n+1)
=II (2n-1) (n +1)
=T (2n—1) 10 (n +1)
= (2n-D!(n+1)!
=(1/2n). 2n! . n! (n+l)

2.6 Inequalites

(i) (a)

(b)

For even numbers a and b > 4 ; K(a.b)>K(a).K(b)
Assumethat K(a.b ) < K(a) . K(b)

ie ab(ab+2)/2 < a(a+2)/2 . b(b+2)/2
tab+2 < (a+2).(b+2) /2

ie. ab < 2(a+b) . . . . . . . . (A)
Nowasaandb>4 solet a=4+h , b =4+ k for some
h,keN. . (A)=(4+h)(4+k)<(8+2h)+ (8+2k)
Le.16 + 4h + 4k + hk < 16 + 2h + 2k

ie2h+ 2k + hk <0 . . . . . . . (D
Butash,k eV, hence 2h + 2k + hk > 0

This contradicts (1) Hence if both @ and b are even and
a,b>4 then K(a.b)> K(a).K(b)

For odd numbers a,5>7; K(a.b ) > K(a).K(b)
LetK(a. b ) < K(a) . K(b)

ieab(ab+3)/2 < a(a+3)/2 . b(b+3)/2
Lab+3 < (a+3) . (b+3) /2

ie. 2ab+6 < gb+3a+3b+9

or ab < 3a+ 3b+ 3 .. e (B)
Nowas a,b>7 solet a=7+h, b=7+k forsomeh, ke W
S BY(THR)(T+E)<3(7+h)+3(7+k)+3

16.49 + 7h + 7k + hk < 45 + 3h + 3k

ied + 4h + 4k + hk <0 . . . . . (1)
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Buth keW hence 4 +4h+4k+hk > 0
This contradicts ( IT) Hence K(a.b) > Kf(a). K(b)

(c) For a odd,b evenand a,b>5; K(a.b )> K(a).K(b)
Let K(a.b) < Kfa). K(b)
ieab(ab+2)/2 < a(a+3)/2 . b(b+2)/2
tab+2<(a+3).(b+2) /2 v
ie. ab < 2a+3b+ 2 . . . . N (8]
Now a,b>5 solet a=6+h and b=6+k
forsomeh, ke W
SO (6+h)(6+k) < 2(6+h) + 3(6+k) + 2
ie.36 + 6h + 6k + hk < 12 +2h + 18 + 3k + 2
iedh+ 3k + hk+4 <0 . . L+ . . . (H)
But hkeW .. 4dh+ 3k + hk+ 4> 0
This contradicts (II1) Hence K (a.b ) > K(a) . K(b)

Note :- It follows from ( xii ) (a), (b) and (c) that in general if
a,b>5 then K(a.b)> K(a). K(b)

(ii) Xf ,a>5 thenforall ne N; K(a") > n K(a)
Asa>5.‘.K(a”)=K(d.a.a... n times)
>K(a).K(a).K(a)uptontimes
>{K(a)}" 2 nK(a)
Henceif @ > 5 thenforall ne N; K(a") > n K(a)

2.7 Summation of reciprocals.
n=wm 1
Il:—'] K (2 n )

(i)

is convergent.
K(2n)=2n(2n+2)/2 = 2nmn+1)
1 _ 1 1

K(2n) 2n(n+])= 2r12(]+;]41)S

1/ n?

So series is dominated by convergent series and hence it is

convergent.
52



oo
(i) ;EJK(Zn——I)

is convergent.

K(2n—1)=(2n-1) (2n+2)/2 = (2n=1) (n+1)

] /
K(2n-1) (2n-1)(n + 1)

] .
n2(2—%)(]+%)
<1/n*

Hence by comparison test series is convergent.

«" 1
o K (n)
K(n)>n( nt2)/2
1 < 2
K(n) = n?(l1+ 2/n)

g

(iii)

is convergent.

<1/n?

Hence series is convergent.

<" K (n
(iv) Z -—(——)" is divergent.
n=1 n
K(n) S + 2 5 I
n 2 2

Hence series is divergent.

28  Limits,

. K (2n)

no o 2n
K(2n)=2n(2n+2)/2 = 2nm+1)
E22n =2 n=n(n+1)

K(2n) 2n(n+1)

Z2n n(n + 1)

lim K (2n )

no> @ Z 2 n
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. K(2n-1)
i) = 2
(i) e S (Zn - 1)

K(2n—1)=(2n-1)(2n-1+3)/2

= (2n-1)(2n+2)/2=(2n-1)(n+1)
X2n-1 = 2n(n+1)/2-n=n’

K(2n-1) _(2n-1)(n+1)
d(2n-1) n’ -

(2-Lyr+ L
n n

lim K(2n~1)_2

ne e > (2 - 1 )

(i) fiiﬂi;;:i;j = 1
K(2n+1)=(2n+1)(2n+1+3)/2
=(2n+1)( n+2)
K(2n-1)=(2n-1)(2n-1+3)/2
= (2n-1)(2n+2)/2=(2n-1)(n+1)
K(2n+ 1) (2n+1)(n+ 2)
K(2n-1) (2n —-1)(n+ 1)

; 2
or K (2n+ 1) 2+ 7)1+ ")
K(2n - 1) 1 ]

(2 - =)(1+ =)
n 14

lim K (2 n + 1)
no o K (2 n - 1 )

= 1

. ) K (2n+ 2)
™ . K (2n)
K(2n+2)=(2n+2)(2n+2+2)/2
=2(n+1)(n+2)

K(2n)= 2n(2n+2)/2 =2n(n+1)

CK(2n+2)  2(n+1)(n+2)

= 1

K(2n) 2n(n+ 1)

K(2n+ 2) 2
OR K(2n) _(]+n)

im K(2n+2)=]

n 5o K(Zn)
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29 Additional Properties.

(1)

(ii)

(iii)
(a)

(b)

Let C be the continued fraction of the sequence {K(n)}

C=K(1)+ K(Zé”)
K(3)+ K76
K(5)+—“~—)————
K(7)+ . ..
_ ks K2 K(4)  K(6)

K(3)+ K(5)+ K(7)+

K(2rn)  2n'+2n
K(2n+1) 2r’+5n+2

The n ™ term T, =

Hence T, <1 foralln and .. with respectto [3], Cis

convergent and 2 < C < 3.

K (2"-1)+1isa triangular number.

Letx =2 n then

K(2n-1)+ 1= K (x-1)+1
= {(x—1)(x+2)/2) + 1
={x+x}/2

=x(x+1)/2 which is a triangular number.

Fibonacci sequence does not exist in the sequence { K(n) }
If possible thenlet K(n) + K(n+1) = K(n-+2) for some

n where n is even.
Lon(n+2)/2+(n+1)(n+4)/2=(n+2)(n+4)/2
St 2n)+(ni+5n+4)=n’+6n+8

-1+ /17
2

2

n° +n—-4=0 OR n = which is not

possibleas n e N.

Let K(n)+K(n+1)=K(n-+2) for somenwhere nis odd.
T n(n+3)/2+(n+1)(n+3)/2=(n+2)(n+5)/2
S (n+3) (2n+1)=n*+7n+10

n’ =7 OR n = .\/_7 which is not possible as # € N.
Hence there is no Fibonacci sequence in { K(n)}

Similarly there is no Lucas sequencein { K(n) }
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(iv) K(n) > max{K(d) : Whered is a proper divisor of n and n
is composite }.
As d is a proper divisor of n .. d < nand as function K is
strictly monotonic increasing hence K (d) < K (n ).
So for each proper divisor d we have K (n) > K(d )
and hence K(n)> max{K(n)}

(v) Palindroﬁtes in { K(n) }
K(ll)=77, K(21)=252, K(29) =464,
K(43) =989, K(64)=212

are only Palindromes forn < 100 .

(vi)  Pythagorean Triplet
We know that (5, 12, 13 ) is a Pythagorean Triplet.
Similarly (K (5), K(12),K(13) ) is aLinear Triplet because
K(5)+ K(12)=K(13).

(vii) K(2") =2"(2"+2)/2=2%"1 4 2"
S K(27)=2°+23=32+8=40 and 40 + 1 = 41 is prime.
Similarly K (2%) =27 +2% =128+ 16 =144 and 140 — [ =
139 is prime.
Hence it is conjectured that K (2")—1 or K(2")+1is

prime.

31  Tofind K~ when nis odd

K(n)=n(n+3)/2 =t (say)

L on =K‘1(t)Alsoasn(n+3) /2 =t

-3+, 9+81t —3+J9+8t
on= ' OR KTI(L)=11= —

2 2

-3+ 9+8¢
OR K'(¢t,) = ’

2
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3.2

33

Note:

(1)

(1)

(1)
(it)
(iii)
(iv)
™)

(vi)

(vii)

In the above expression plus sign is taken to ensure that
K7'(t,) enN
Also K™'(t,) e N iff /9 + 8¢, isan odd integer

and forthis 9+ 8¢, should be a perfect square.

From above two observations we get possible values of ¢,

as 2, 9, 20, 35 erc . .

Following are some examples of K (t:)

r t, K'(t)=n,lq.= t,/n,
1 2 1 2
2 9 3 3
3 20 5 4
4 35 7 5
5 54 9 6
6 77 11 7
7 164 13 8

Following results are obvious.
Kitt,)=n,=2r-1
tr=1t, 4 + (4r—1)

L= n.q,=(2r=1)q,

ny =g, +(r-2)

b=t + r.n,

Every t,. isa triangular number.

As t,—t,_; = 4r—1]

- SeconddzﬁierenceDz(t,) =dr—1—-[{4(r-1)-1]=4

57



3.4

3.5

3.6

To find K~/ when n is even

(I)

(1)

(i)
(i)
(iii)
(iv)
(v)
(vi)
(vi)
(vii)

 viii )

K(n)=n(n+2)/2 =t (say)

T on =K“1(I)Alsoasn(n+2) /2 =t

—2+,/4 8t
=N oR Kl (1)=n = 141530

2
OR K™'(t,) = ~I+JI+2( = n,
Note:
In the above expression plus sign is taken to ensure that
K'(t,) eN
Also K '(t,) e N iff misanoddinteger.

and for this first of all 7+ 2¢, should be a perfect square.
of some odd integer.
From above two observations we get possible values of ¢,

as 4, 12, 24, 40 etc . .

Following are some examples of K (t,)

r t, K'(t,)=n, [q,= t,/n,
1 4 2 2
2 12 4 3
3 24 6 4
4 40 8 5
5 60 10 6
6 84 12 7
7 112 14 8

Following results are obvious.
‘K—](t,)=n,=2r_

t,=1t,_; + 4r

lr = nrq, =2r. q,;

n, =g, +(r-1)

Lt,=2t,_y +(r+1).n,
tr=n,{n,-r+1]

Every t, is a multiple of 4

t, =4 p where p is a triangular number.

Forr=8 t,=144,n.=16and q,=9. Soforr=8; 1,, n,, and q,
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are all perfect square.

(ix) As t,—t,.; = 4r

.2 Second diffterence D (t,) =4r —[4(r—1)] =4

3.7 Monoid
LetM={K'(2), K'(4), K'(9), K" (12) ... }bethe
collection of images of K including both even and odd n.
Let o stands for multiplication. Then (A, #) is a Monoid.
For it satisfies (1) Closure (1) Associativity (1I1) Identity
Here identity is K (2 ) .
In fact (M, @) is a Commutative Monoid,
As inverse of an element does not exist in M hence it is not a group.

Coincidently, M happens to be a cyclic monoid with operation + .
Because K/ (9)= [K'(2)]°
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Valuesof K(n)forn= 1.To 100

Appendix - [A]

n n k K(n) n Zn K K(n)
1 1 1 2 26 351 13 364
2 3 1 4 27 378 27 405
3 6 3 9 28 406 14 420
4 10 2 12 29 435 29 464
5 15 5 20 30 465 15 480
6 21 3 24 31 496 31 527
7 28 7 35 32 528 16 544
8 36 4 40 33 561 33 594
9 45 9 54 34 595 17 612
10 55 5 60 35 630 35 665
11 B6 11 77 36 666 18 684
12 78 6 84 37 703 37 740
13 91 13 104 38 741 19 760
14 105 7 112 39 780 39 819
15 120 15 135 40 820 20 840
16 136 8 144 41 861 41 902
17 153 17 170 42 903 21 924
18 171 9 180 43 946 43 989
19 190 19 209 44 990 22 1012
20 210 10 220 45 1035 45 1080
21 231 21 252 46 1081 23 1104
22 253 11 264 47 1128 47 1175
23 276 23 299 48 1176 24 1200
24 300 12 312 49 1225 49 1274
25 325 25 350 50 1275 25 1300
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n Zn k K(n) n zn k K(n)
51 1326 51 1377 76 2926 38 2964
52 1378 26 1404 77 3003 77 3080
33 1431 53 1484 78 3081 39 3120
54 1485 27 1512 79 3160 79 3239
55 1540 55 1595 80 3240 40 3280
56 1596 28 1624 81 3321 81 3402
57 1653 57 1710 82 3403 41 3444
58 1711 29 1740 83 3486 83 3569
59 1770 59 1829 84 3570 42 3612
60 1830 - 30 1860 85 3655 85 3740
61 1891 61 1952 86 3741 43 3784
62 1953 31 1984 87 3828 87 3913
63 2016 63 2079 88 3916 44 3960
64 2080 32 2112 89 4005 89 4094
65 2145 65 2210 90 4095 45 4140
66 2211 33 2244 91 4186 91 4277
67 2278 67 2345 92 4278 46 4324
68 2346 34 2380 93 4371 93 4464
69 2415 69 2484 94 4465 47 4512
70 2485 35 2520 95 4560 95 4655
71 2556 71 2627 96 4656 48 4704
72 - 2628 36 2664 97 4753 97 4850
73 2701 - 73 2774 98 4851 49 4900
74 2775 37 2812 99 4950 99 5049
75 2850 75 2925 100 5050 50 5100
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ON THE k-POWER FREE NUMBER SEQUENCE

ZBANG TIANPING

Department of Mathematics , Northwest University
Xi'an, Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the distribution properties
of k-power free numbers, and give an interesting asymptotic formula.

1. INTRODUCTION AND RESULTS

A natural number 7 is called a k-power free number if it can not be divided by
any p*, where p is a prime number. One can obtain all k-power free number by the
following method: From the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 2%, 26+1 ok+2 )

-take off all multiples of 3%.

-take off all multiples of 5%.

...and so on (take ‘off all multiples of all k-power primes).

Now the k-power free number sequence is 2, 3, 4,5,6,7,9,10,11,12,13,14,15,17, - - - .
In reference [1], Professor F. Smarandache asked us to study the properties of the
k-power free number sequence. About this problem, it seems that none had stud-
led it before. In this paper, we use the analytic method to study the distribution

properties of this sequence, and obtain an interesting asymptotic formula. For con-
 venience, we define w(n) as following: w(n) = r, if n = p{*ps*-..p%. Then we
‘have the following:

Theorem. Let A denotes the set of all k-power free numbers. Then we have the
asymptotic formula |

sz(n) = E-(l—?(lkn)—m)— +O(zlnlnz),

n<r
neA

where ((k) is the Riemann zeta-function.

Key words and phrases. k-power free numbers; Mean Value; Asymptotic formula.
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2. SEVERAL LEMMAS

Lemma 1. For any real number z > 2, we have the asymptotic formula

Zw( n)=zlnlnz+ Az + O (ln$>

n<T

Z w(n) =z(nlnz)? + 0O (rlnlnz).

n<e
- 1 1
whereA-7+Z(1n(l—5) +5).
P
Proof. (See reference [2]).

Lemma 2. Let p(n) is Mébius function, then for any real number z > 2, we have
the followmg identity

= pnjun) 1 1
2w T

s -
n=1 p P 1

Proof. From the definition of w(n) and p(n), we have

— p(nwin) & p(n) p|n i np 1o~ pln)
D=y Z Z =-2.5 2
" n (p =1 T et

I e N S OR W AREE  SS IS
- zp:ps ('n=l n§>(1 ps) h C(S);ps_li

This proves Lemma 2.

Lemma 3. Let k > 2 is a fized integer, then for any real number z > 2, we have
the asymptotic formula

z(Inln z)?
Z w(m)u(d) = —_Qal?c)_) +O(zlnlnz).
dfm<a

Proof. From Lemma 1, we have

> mud) = Y ud) Y wim)

dkm<z d(a:%c' m<z/dk
z
= Z u(d)(dk(lnln —)? +O( lnlnEE)>
dSm%
~ p(d) klnd\\?
=z Z F(lnlnx—#lnln <1- s +0O(zlnlnz)
dgm%

u{d) Ind
z(Inln )Z 7 tO|ehlnz 37 - | +O@hing)
d<zk
w(lnlna:)2
=————=——+0(zlnlnz).
iy o)

This proves Lemma 3. 63



Lemma 4. For any real number x > 2, we have the estimate
S WAd)uld) = Ofz).
d*m<z
Proof. From Lemma 1, we have

>, Fdud) = Y Adud Y 1= Z [ }

dkmsx d<$-‘% 77'L<.’1:/d}c

2 .
_zz (d +o > W) | = O=).

d(:r: k ds:c%
This proves Lemma 4.

Lemma 5. For any real number x > 2, we have the estimate

S WP((d,m)u(d) = O(z).

dem<z

Proof. Assume that (u,v) is the greatest common divisor of © and v, then we have

2, Alldmud) = 30 )3 3 ) =3 D) Y e [

df*m<z d<:1:% uld m<z/d* d<:z:k u|d
- ulm —
u(d) 3 2w
uld
—-mz +0 Z /.L(d)Zuﬁ(u) =0 (z).
de% uld

This proves Lemma 5. _
Lemma 6. For any.real number z > 2, we have the asymptotic formula

Y wdw(m)u(d) = Czlnlnz + O(z),

‘dkm<ax
— 1 1
where C = —"Cm Zp: FE_:T

Proof. From Lemma 1 and Lemma 2 we have

> wdwmpd) = > widud) S wm)

d’“mgz d<:|:% mS:l,‘/dk
zlnln . Az z

= 3 wl(@u(d) (~—-—-dk +Fe0(722))

d<:1:% E
_ klnd wdp(d) /s

-7 Zl (1“1”““1“( oz ))*‘Am > = 0(q5)

d(zTc' d<z®
w(d)p(d) Ind T
(““1”““)2_“*0 * Y e | 70 (s
d<z

= C’mlnlnzz+0(z).

This proves Lemma. 6. 64



ZHANG TIANPING

3. PROOF OF THE THEOREM

In this section, we shall complete the proof of the Theorem. For convenience we
define the characteristic function of k-power free numbers as follows:

1, ifnis a k-power free number;
u(n) = .
0, otherwise.

From Lemma 3, Lemma, 4, Lemma 5 and Lemma 6, we have

2P =Y ) Y ) = Y wAdEmud)

n<x n<z dk|n d*m<z
neA

= > (w(d) +w(m) - w((d, m)))? u(d)

dkm<z

= Y @+ Y P+ Y W m)uld)

dém<z d*m<z dkm<x

+2 Z w(d)w(m)u(d) | + O Z w(dyw(m)
dem<z dEm<z
_ (z(lnlnm)2
S\ (k)
z(lnlnz)?

This completes the proof of the Theorem .

+0(z lnlnm)) +2(Czlnlnz + O(z)) + O(z Inln z)

’
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ON THE k-POWER COMPLEMENT AND
k-POWER FREE NUMBER SEQUENCE

ZHu WEIY!

College of Mathematics and Physics Science, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

ABSTRACT. The main purpose of this paper is to study the distribution
properties of &-pawer free numbers and k-power complement numbers, and
give an interesting asymptotic formula.

1. INTRODUCTION AND RESULTS

Let k > 2 is a positive integer, a natural number n is called a k-power
free number if it can not be divided by any p*, where p is a prime number.
One can obtain all k-power free number by the following method: From
the set of natural numbers (except 0 and 1)

-take off all multiples of 2%(i.e. 2F, 2k+1 0k+2

-take off all multiples of 3%.

-take off all multiples of 5*.

-..and so on (take off all multiples of all k-power primes).

For instance, the k-power free number sequence is called cube free sieve
if k = 3, this sequence is the following 2, 3,4, 5,6,7,9,10,11, 12, 13, 14, 15, 17

Let n > 2 is any integer, a(n) is called a k-power complement about n
if a(n) is the smallest integer such that n x a(n) is a perfect k-power, for
example a(2) = 2871 q(3) = 351 g(25) =1, - -- .

In reference [1], Professor F. Smarandache asked us to study the prop-
erties of the k-power free number sequence and k-power complement num-
ber sequence. About these problems, it seems that none had studied them
before. In this paper, we use the elementary method to study the dis-
tribution properties of these sequences, and obtain an interesting asymp-
totic formula. For convenience, we define Q(n) and w(n) as following:
Qn) =o1+as +...+a;, w(n) =7, if n=pfps? - -p be the factor-
ization of n into prime powers. Then we have the following Theorem.

Key words and phrases. k-power free numbers; k-power complement numbers, Mean
Value; Asymptotic formula. '
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Theorem. Let A denotes the set of all k-power free numbers. Then for
any real number £ > 2, we have the asymptotic formula

3 ofam) = e S a0 (),

neA

where ((s) is the Riemann zeta-function, u(k) is a constant depending only
on k .

2. SEVERAL LEMMAS

Lemma 1. For any real number x > 2, we have the asymptotic formula

S w(n )—xln]nx+Am+O(1 x)

naT

Zﬂ(n) =zlnlhz+Bz+0 (ﬁ;)

n<s

whereAz’Y-l-Zp:(ln(l—;l)) )B A Zp(p—l)

Proof. (See reference [2]).

Lemma 2. For any real number x > 2, we have the asymptotic formula

Z w(n) = ¢ Hk)zlnlng + Az~ (k) + Cz + O (ln_m_a;) .

n<zx
ncA

Proof. Let (u,v) denotes the greatest common divisor of w and v. Then
from Lemma 1 we have

Yowm) = wm) Y ud= Y whnd)ud= 3 ud Y wind)

ngji ngz dkln dkﬂSE d<:1:7t' ﬂ-S-’-E/dk
ne =
= 2. uld) [ > (wcn)w(d)—w((n,d)»}
d<a® n<z/d
=3 uld) 3w+ Y wded 5] - X k@Y 3
a<zt nSafdk d<z® d<z® uld HST/d"

Az . z
= Z u(d) |:dk ].Il].n dk +‘ dk +O(IIHI1 (1,#—1%_@;))]

d<z®

+$Zg—@%:igd—)—r0(z’klnm)—2p(d)z [ }

d<z® d<z® uld
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dk

o] foe) _ﬁﬂ
= zinloe ; H% . AI; “ék Z u(d)cu(d) Z w(d) 0 5

d=1
-1 -1 e
(K)zlnlnz + Az¢ (k)+cx+o(m).
where )
= p(dw(d) S op(d) Y,
C = Z Lkt el A Z e w

d=1 d=1
This proves Lemma 2.

Lemma 3. For any real number z > 2, we have the asymptotic formula

> Qn) = ¢ k)rlninz + Be¢™ ()+Dx+o(E%).

R<x
neA

Proof. From Lemma 1, we have

2_0m=3"0m Y ud= Y Qndud =3 pd) 3 Qmd)

<z < kin i L n<zc/d*
2;A n<z dk| df*n<z d<z® <z/d
= wd) { > (9<n)+kﬂ(d))}

d<I-‘1: ﬂSI/d"
= Z @ Y o Z d) kY d)[ ]

dgmk n<z/d d<mk
= 2 1aln & B‘“ 0 {min (1, -
= % w0 e e B0 (s (152

d<z¥

+ kx Z u(d)ﬂ (a:% Inz:)
d<zk

— mmif_‘gﬂ +B$i%§;ﬂ +’wi u(dzl?(d)
d=1 _

= ¢"YB)xInlnz + Bo(=' (k) + Dz + O ( nx) ,
where

2, w(dQ(d
D=kZ'u( c)ik()'
d=1

This proves Lemma 3.

3. Proor or THE THEOREM

In this section, we shall complete the proof of the Theorem. According
to the definition of k-power complement number and &- -power free number,
and applying Lemma 2, 3, we have

Y Qnxan) =k wn)= .0+ 3 Qa(n))

n<z n<z n<x n<z
ngA neA ncA neAd

68
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or

Y. Q@m) =k wmn) -3 Qn)

nsz n<z n<z
neA ncA nEA

=k [¢TMk)rtalng + Az¢H (k) + Cz + O (fg”
— [C“l(k)mlnlnﬂs-f- Bl‘qu(k) +Dz+0 (_‘7:_)}

Inz
_(k=Dazlhlnz ?(z)lnm +uBs+0 (2.
where kA— B
u(k) = —C—(—k)— +kC —-D
This completes the proof of the Theorem .
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On the 80th Problem of F.Smarandache(I)

He Xiaolin Guo Jinbao
College of Mathematics and Computer Science,Yanan University,Shaanxi China 716000

Abstract Using analytic methold,this paper studies the first power mean
of a(n) and its generation, and gives a mean value formula,where a(n) is the
sequence in problem 80 of“ only problems not solutions” which was presented
by professor F.Smarandache.

Keywords number-theoretic function; mean-value; asymptotic formula

In 1993,number-theoretic expert F.Smarandache presented 100 unsolved problems in
[1],it arose great interests for scholars.Among them,the 80th problem is:

Squareroot: 0,1,1,1,2,2,2,2,2.3.3,3,3.3,3,3,4,4,4,4,4,4,4.4. 45 5.5.5 5.5.5,5,5,5.5.,6,6.6,6.6
6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7.8,8,- - -

Study this sequences.

7

We donote the sequence in problem 80 as a(n),it is not difficult to show that a(n) =

[v/1 ],where [z] is the maximal integer that is no more than z.

1. Mean-value about a{n)

Theorem 1 Tet n be a positive integer , and a(n) = [\/n |,then

3]

3
Ya(n) =Y [Vrl= izt + Sz 4 O(zh)
3 2
n<z n<z
Proof For an arbitray positive NUMBER =,there must existS positive integer
N such that N <z < (N + 1)%,50 we have

¢

> aln) =3 [vn]

n<r n<T
= 3 Mil+ 3 Vil+-+ 3 WVil+ o)
1322 22<i< 32 N2<i<e<(N+1)?
=3-1+5-1+~-+[(N+1)?—N2]-N+O(N)
=3 (27 + 1)j + ON)
J<N

=237+ j+OW)
iN <N
1
= 2NN + DN + 1)+ AN (N + 1) + O()
3

I 3Ny O(N)
3 2
)

oy

2 3
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2. Generalized mean-value about a(n)

Theorem 2 Let 1 be a positive integer, and a(n) = [n %] then

Z Z[?’H =~x3+5:1:+113:§+0($:17)
< <z 2 4
n<x n
Proof > a(n) = Z[ﬂ%]
n<r n<r

= 3 B+ X B+ Y oW

13323 23<ic3? N3 (N +1)3

=T7-1+419-24 -+ (N +1)3= N%.N + O(N)

=2 G+1* -7+ 0@

J<N

=3 #4333+ i+0m)

J<N J<N J<N
1 1 1
=3[GN(V + D+ 3- g+ DEN + 1)+ oN(N +1) + O(N)

2N4+5N?+ 4N2+O(N)
% %+%z+%m%+0(r )

[

Genarally,we have the following
Theorem 3 Let n be a positive integer,and a(n) = [n %] then

Y an) = Y] = ™ 4 0f)

n<z n<T k+1

Proof Z a{n) = Z[n%]

n<z n<z
= ¥ G+ ¥ G+ > G+ oW
16 <25 ok <j¢ 3k ngigz<(N+1)k

=3[+ 1) -+ o)
IXN

k k k

=5 GF+ Y A Y 7+ O(N)

J<N 1 JEN | 9 =Nk
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If we generaliz it from other view ,we can also have
Theorem 4 Let n be a positive integer,and b(n) = (a(n))? = [\/n [?,then

Lo =TT - 122+ 2+ 0()

n<r 3

Proof Y b(n) =3 [Vn]?

n<x n<x

= Y MiP+ 3 WiP++ >, Wi+ on?

12<ic2? 23 <i<3? N<Li<a<(N+1)?
:3-1+5-4+---+[(N+1)2—N2]N2+O(N2)
= >_[G+1* =545 + O(N%)

FETY

—2 3 2+ Y A+ 00V

J<N j<N

[;N(N L+ -é[.N(N + 12N + 1) + O(N?)

4

3
= %a:z + %z% + O(x)
Theorem 5 Let n be a positive integer,and b(n) = (a(n))® = [/n % then

S bn) =3 [Vn]? =—a:2+2:c +O0(z %)

Nt

=2-
1 3 2
=3 N+ O(N7)

n<x n<z
Proof 3 b(n)= 3 [vn
nLT nsz
= Y WiP+ ¥ WViP+--+ > Wi+ oW
12<ic2? 22332 N2<i<a<(N+1)?

=3-1456-8+4-+[(N+1)2 ~ NN + O(N?)

= TG+ 12~ 75 + O(N)

JEN
=23 7+ 3 P2 +0W?
JSN <y
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= 2. NN + 12N + (BN +3N — 1) + [HV(N + 1) + O)

g -
= gN5 + %N‘* + O(N?)

= %mg + 2:1:2 + O(wé)

Theorem 6 Let n be a positive integer,and b(n) = (a(n))* = [y/n |¥ then

ILOED YN I SRCIES

n<x nsz k+2

Proof » b(n)=) [Vnl*

n<z n<r

= > MMiF+ 3 Wi+ >, WMifF+owk

13<ia? 22 i< 32 N2 (N 41)2

=3-15F4+5.25 + ... + [(N 4 1)2 - N N*  O(N¥)

= 31 +1)% - 5455 + O(NF)
I<N

=22jk+1+ Z]k—FO(Nk)

jsN <N

k2 k+1
O(N
Pz PO
= kizz%g'-f_()(g:&%i)

=9.
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On the 80th Problem of F.Smarandache(1I)

He Xiaolin Guo Jinbao

College of Mathematics and Computer Science, Yanan University,Shaanxi China 716000

Abstract The main purpose of this paper is to study the first power mean
of d(a(n})); p(a(n)) and their generations,and a sery of regular result is ob-
tained,where ¢(n) is Euler totient funstion,d(n) is divisor function and a{n)
15 the sequence in problem 80 of “only problems not solutions” which was
presented by professor F.Smarandache.

Keywords number-theoretic function; mean-value; asymptotic formula

In 1993, professor F.Smarandache presented 100 unsolved problems in [1])it arose great
interests for scholars. Among them,the 80th problem is:

Square root: 0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,
6,6.6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8 8, - -

Study this sequences.

We donote the sequence in problem 80 as a(n),it is not difficult to show that a(n) =

n |,where[z] is the maximal integer that is no more than r.
4 i)

1. Mean-value of d(a(n))and it’s generalization

Theorem 1 Let n be a positive integer,and a(n) = [\/7 ], d(n) be divisor func-

tion,then
Z da{n)) = Z d([vn]) = %z logz + (2(: - %) z -+ O(:r%)

n<e nsz
Where ¢ is Euler’s constant.

Proof Z d(a(n)) = 2 d([vn])

nz n<e

= > dVid+ Y dVih+-+ 2 d([Vi]) + O(N°)

12<iq? 22<i3? NI<i<a<(N+1)2

=3.d(1) +5-d(2) 4 + [(N +1)% = N2d(N) + O(N?)

= (2 + 1)d() + O(N¥)

JEN

Let AN) = 3 d(j) = Nlog N + (2c—~ )N + o(N )P

J<N

.f(7) = 27 + 1,by Abel’s

identity[Q];we have

. N

> (27 +1)d(j) = A(N)F(N) - A1) /(1) */ A(t)f'(t)at
<N, .

= [Nlog N + (2e — 1)N + O(N7)](2N + 1) — A(1)f(1) — /lN [tlogt — (2c— 1)i + O(NF)] - 24z
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$olte

s N N .
=2N"log N +2(2c ~ 1)N* + O(N )_2/ ﬂogtdt_2/ (QC—I)tdt-2/ O(t%)dt
1 1 - 1

=2V log N —2(2¢ — YN + O(N¥) - N1og N 1 LV? - 2(2 — V? + O(v})
= N?logN + (2(:—— %) N2 4 O(N?)
S0
2 dla(n) = >~ (2j + 1)d(j) + O(N9)

i<N J<N

= N?log N + (QC - é) N? £ O(N?) + O(N)

1 1
= -éxlog:c+ (26 - 5) T+ O(J:%)

Similarly,we have

Theorem 2 Let n be a positive integer,and a(n) = [né], d(n) be divisor function,then

3 dla(n) = 3 d(ind]) = 3zloga -+ (20— 5) @+ 0@

n<z n<x

Where ¢ is Euler’s constant.

Proof Y d(a(n)) = 3 d([“%])

n<z n<z

= ¥ dE )+ X AN+ S d(t]) + o)

132’ 2338 N3<i<p(N+1)3

=7-d(1) +19-d(2) +--- 4 [(N + 1)® — N)d(N) + O(N?)

= > (3% £ 3 + 1)d(j) + O(V?)
JEN

Let AN) = 3 d(j) = Nlog N + (2c — YN + OVH™ 7(j) = 32 + 35 + 1, simi-

jEN
larly , we have

3 + 33 + 1)d() = AN F(N) — A1) [ awrme

J<N
= [Nlog N + (2¢ - 1)N + O(N?)](3N2 + 3N + 1y — /1N [tlogt — (2c — 1)t + O(¢2)](6t + 3)dt

=3N%log N +3(2c — 1)N® + O(N3) + 3N log N +3(2c — 1)N? + Nlog N + (2c — )N

v N N, N N
72— 1)N—/ 61% log td —/ 6(2c — 1)12dt + O (/ smt) —f 3tlogtdt—/ 3(2¢ — 1)tat
1 1 1 1 1
Because
v » 2
f 6t logtdt = 2N3log N — 5N3 + e,
1
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N
/ 6(2¢ — 1)t2dt = 2(2c — 1)N® + o,
1

N 3 5 3
/ 3tlogtdt:§N IogN—aNQ+CS,
1

So

, : . . .
(355 +35 +1)d(5) = 3N log N 4+ 3(2c = 1)N® — 2N%10g NV + §N3 —2(2c— 1)N? + O(N3)
JEN

= N¥log N -+ (2c - -é) N® 4+ O(NE)

As a result,we have

3 da(n)) = 3 d(fn3))

JEN <N
= > (35% + 35 + 1)d(j) + O(N?)
J<N

= N3log N + (20— %) N3+ O(N2) + O(N¢)
1 1 5
= gxloga:+ (2c- 5) T+ O{zs)

Theorem 3 Let n be a positive integer , and a(n) = {n%],d(n) be divisor func-
tion,then

Y da(n) = 3 d(ink]) = 1ologz + O()

n< Nz

Proof Y d(a(n))=>_ d([n])

n<e n<r

> odEE)+ Y @) e+ S d(lid) o)
1k i 2k 2k <43k NE<i<z<(N+1)*

= (25 = 1)d(1) + (3¢ —2)d(2) + .- + [(V + 1)F — N¥d(N) + O(N?)

]

= Y[+ 1)F — 4d(5) + O(Ne)
<N

Let A(N) = Z d(j) = Nliog N + (2¢ — 1}N+O(N%)[2]

JEN

JFG) =[G+ 1)F — %] then

3 (34 0 = 4d0) = AN)F00 - AW~ [ A7

J<N

= [Nlog N + (2¢ = 1)N + O(N)][(V + 1)F — N*] — A(1)£(1)
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_ /‘V [tlogt + (2 — 1)t + O(£5)](k{t + 1R — gty
1

k

1

k
=[NlogN + (2~ )N+ O(N7)](} NEh

=1 i

k-1

_k/ [tlogt — 2(2e — 1)t + O¢3 (Z t*1=1qy

k

1

k

1

I

N
NFlog N — /1 1 log kdt + O(NF)

N¥log N N¥log N + O(N*)

— N*log N + O(NF)

So

2. Mean-value of ¢{a

Theorem 4 Let
function,then

n<z

Zd(an) Zd 71;

n<z n<z

= > [G + 1)k — 5*ld0) + o)

Jj<N

= N¥log N + O(N*) + O(V)

1
=T log z + O(z)

(n)) and it’s generalization

n be a positive integer,and a(n) = [/7n ],(n) be Euler totient

pla(n)) = Zw[f =—x2+0(zlogz)

n<y

Proof Z wla(n)) = Z w([vn])

n<z

= > o

12<i<2?

n<z

Vid+ Y e(Vil 4o+ > e(Vi]) + O(N)

22 <i<3? N2 (N+1)2

= 3p(1) + 5p(2) + -+ [(V + 1) = N2p(IV) + O(I)

=) (2j+ 1)

J<N

(J) + O(N)
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Let A(N) = 3 o(j N + O(Nlog N, £(3) = 27 + 1 then
<N

S 21+ (i) = AN - A1) - [ A0 (hat
J<N '

- {%m +OW IogN)] (2N +1) - /1 " L%t? + 0t logt)} 24t
6

N+ O(N®1og N) — %Nu“* + O(N?%log N)
= %N‘g + O(N? log V)

Then

2oe(vr]) = 37 (25 + () + O(N)

n<y JEN
4
= FN3 + O(N?log N) + O(N)
4
= ;5.7:% + Oz log z)

Similarly,we have

Theorem 5 Let n be a positive integer,and a(n) = [n%],tp(n) be Euler totient
function then
Y elan)) =3 p(nd) = ~—$3 +O(zlog z)
n<r n<z
Proof 3} (a(n) = 3" o([n3])
n<z n<z

= 3 e+ T el ++ S i)+ o)

13<ig2? 2<ic3d NELi<z < (N+1)3

To(1) +90(2) + - 4+ [(V + 1) —~ N3p(N) + O(N)

Il

= > (3% +3i + 1)e(d) + O(N)

J<N

Let A(N) = Z o(N) = —3-N2 +O(Nlog ), £(7) = 372 + 35 + 1 then
I<N

365 +35 + Upl) = A — AWsW - [ A e

J<N
N

- {%N2+O(NlogN)} (3N2 4+ 3N + 1) —f [%tg—f—O(tlogtﬂ (6t + 3)at
1 J

9 e 9 3

*Ter 2ﬂ.2N + O(N”log N)
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So
S w(liT]) = 37 (352 4 35 + Dply) + O(N)

n<r <N

9
= ﬁpﬂ + O(N3log N) + O(N)

232 s + O(zlogz)

Theorem 6 Let n be a positive integer,and a(n) = [n%},(p(n) be Euler totient
function,then

> wlalm) = 3 plinf]) = s '® + Olsloga)
N n<e
Proof 3 pla(n) = 3" ¢([nt])
n<zL n<z

= X e+ Y e +--+ S oty + oW

1h<ig ok 2k ik NE<i<az{N+1)k
= Y[+ D = iFe(s) + O()
JEN

Let A(N) = 3 o) = S5N% + O(Nlog M), 7(3) = [(5 + ¥ — "} then
F<N

S+ 1% = ) = AN - 407~ [ A

JS<N
3 . kr3 _ -
= [gNQ +O(N logN)J [(V + 1) — N¥) _/1 [7—5# + O(tlog t)] E{(t + 1)t — 5 1at
_ 3k ke k _kE-1)3
= N O(NVRlog N) — 2
— ﬁk k+1 k
"G l)7r2N -+ O(N"log N)
So
1
2 wela(n)) = 3 o([nk))
n<T n<
= 2 [G + 1F = 5*le(5) + O(N)
JsN
6k k41 k
=GN OV logN) + O(N)
6k kbl
= W-’r 4 O(zlog x)
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Smarandache Concatenated Magic Squares

Muneer Jebreel Karama
ssmathhebron@yahoo.com
S5-Math-Hebron / UNRWA / Field Education Officer /
Box 19149 / Jerusalem / Israel.

Abstract:

In this article, | present the results of investigation of
Smarandache Concatenate Magic Squares formed from the
magic squares, and report some conjectures.

Key words:

Magic Square, Smarandache Concatenate Magic
Squares, Smarandache Prime - Concatenate Magic Squares.

1) Introduction:

A magic square consists of the distinct positive integers , 1 ,2
;- N, such that the sum of the n numbers in any horizontal ,
vertical , or main diagonal line is always the same constant, for
more details see [1],[2],and [3].

2) Smarandache Concatenated Magic Squares
(SCMS):

SCMS is formed from concatenation of numbers in magic
squares such that the sum of the n numbers in any horizontal,
vertical, line is always the same constant, but not necessary main
diagonal the same constant.

3) Examples:

Consider the following magic square (4x4), figure .1

14 24 25 11

19 17 16 22

15 21 20 18

26 12 13 23
Figure .1
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Then we can formed many Smarandache Concatenated Magic

Squares,

such as in figure.2 (concatenation the numbers in magic squares

horizontally)

Or as in figure.3 (concatenation the numbers in magic squares

vertically)

1424 2425 2511 1114

1917 1716 1622 2219

1521 2120 2018 1815

2612 1213 1323 2326
Figure .2

1419 2417 2516 1122

1915 1721 1620 2218

1526 2112 2013 1823

2614 1224 1325 2311
Figure .3

or many concatenation digits such as in figure .4,5 and 6 .

142425

242511

251114

111424

191716

171622

162219

221917

152120

212018

201815

181521

121323

132326

232612

261213

Figure 4

14242511

24251114

25111424

11142425

19171622

17162219

16221917

22191716

15212018

21201815

20181521

18152120

26121323

12132326

13232612

23261213

Figure .5

1424251114

2425111424

2511142425

1114242511

1917162219

1716221917

1622191716

2219171622

1521201815

2120181521

2018152120

1815212018

2612132326

1213232612

1323261213

2326121323

Figure .6
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4) Conjectures:

1) There are infinitely many Smarandache Concatenated Magic
Squares formed from one magic square.

2) The sum of the n numbers in any horizontal, vertical, line is
always the same constant , and follow concatenated pattern,

for example the concatenate pattern in figures 1,2,3,4,5and 6 ,

follow concatenate pattern which is : 74, 7474,747474

,74747474,7474747474 ..., and so on .

5) Smarandache Prime - Concatenate Magic

Squares: is formed from concatenation of only primes numbers in
magic squares [ see , JRM,30:1,p297] such that the sum of the n
numbers in any horizontal, vertical, line is always the same
constant, but not necessary main diagonal the same constant.

Example : this example found in [JRM,30:1,p297]

101 029 083

053 071 089

059 113 041
Figure .7

¢

Then we can form the following Smarandache Prime - Concatenate
Magic Squares , Figure.8 and 9 .,

101029 | 029083 | 083101

053071 | 071089 | 089053

059113 | 113041 | 041059
Figure .8

101029083 | 029083101 | 083101029

053071089 | 071089053 | 089053071

059113041 113041059 | 041059113
Figure .9

The sum of the n numbers in any horizontal, vertical, line is
always the same constant , and follow concatenated pattern,

for example the concatenate pattern in figures 7,8, and 9 , follow
concatenate pattern which is : 213, 213213,213213213 ..., and so
on .
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6) Conjectures:

There are infinitely many Smarandache Prime - Concatenated
Magic Squares formed from only prime’s magic squares.

7) Open Question:

1) Are there Smarandache Prime - Back Concatenated Magic
Squares?

Z) Are there Smarandache Back Concatenated Magic Squares?

References:
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4) Ashbacher.C, Smarandache Magic  (problem - number
2466),Journal of Recreational Mathematics,30:1,p.297,2002.

83



PROOF OF FUNCTIONAL SMARANDACHE ITERATIONS

ZHENG J]ANFENG
Shaanxi Financi & Economics Professional College
Xianyang, Shaanxi, P.R. China

ABSTRACT: The paper makes use of method of Mathematics Analytic to prove Functional
Smarandache Iterations of three kinds.

I.Proving Functional Smarandache Iterations of First Kind.
Kind 1.

Let f:A4— 4 beafunction, such that f(x)<x forallx, and min { f(x),xe 4} >y
different from negative infinity.
Let f have p=>1 fix points: mSx<x < <xp. (The point x is called fix, if
f)y=x.1.
Then:
S71(x) = the smallest number of iterations k such that
J

]:(f(---{”(x)--i): constant.

iterted k times

Proof: I.When A< Q or AcR, conclusion is false.

Counterexample:
Let A=[0,1] with f(x)=x®, then f(x)<x, and x =0, x,=1 are fix points.

Denote: 4, (x)= ﬁf(...f(x)...)) v Aix)=f(x), (n=1,2,-).

n fmes

then 4 (x)=x2 (41,2, ). ,
For any fixed x=0, x=1, assumed that the smallest positive integer k exist, such that
An(x)=a (constant), hence, 4,.,(x)=7(4,(x))= f(a)=a, that is to say a be fix point.

k+1 -
So x2 =0 or 1, = x=0 or 1, this appear contradiction. If AcZ, let A be set of all

rational number on [0,1] with f(x)=x", using the same methods we can also deduce
contradictory result.
This shows the conclusion is false where AcQ or AcR.

I1. when AcZ, the conclusion is true.

(). If x=x, (x, is fix point, 7=1,--p ). Then S =fx)=x=4,(x). So for any

positive integer n, 4,(x)=x ( 7=l,-p), = ST1(x)=1.
| s

Keywords and phrases. Functional iterations; fix point; limit.
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(2). Let x#x, (xisfixed,i=l,« p), if f@)=x, (i=l,p), then STl(x)=1, if
S

SxX)#x but f(f(x))= 4,(x)=x, ( 7=1,*p ), then ST1(x)=2. In general, for fixed
/
positive integer k, if A (X)) # x; A= x; 0 A (%) # x;, but A (x) = x; then

ST1(x)=k
f

(3). Let x#x; (xis fixed ), and for Vne N A0 #x; (i=1,-p), this case is

no exist.

Because x is fix point, my < < Ay(X) << 4,(x) < 4(x) <x. So sequence {4,001 is
descending and exist boundary, this makes know that {4,(x)} is convergent. But, each item
of {x4n(x)} is integer, it is not convergent, this appear contradiction. This shows that
the case is no exist.

(4). Let x#yx, (xisfixed,i=l,+ p), if exist the smallest positive integer k such
that 4,(x)=a ( a=x, ), it is yet unable. Because A =4, x)=a ,
A ()= F(A4,(x) = f(a)=a, this shows that a is fix point , namely, a=yx,, this also
appear contradiction.

Combining (1), (2), (3) and (4) we have

S71(x) = the smallest number of iterations % such that
oy ,

S fx)--)= x; (x; is fix point, 7=1,-p ).
iterted k times
This proves Kind 1.
We easily give a simple deduction.
Let f:4->4 bea function, such that f(x)<x forallx, and min{ f(x),xed} > Mo »

different from negative infinity.
Let f(mg) = myg, namely, my 1s fTix point, and only one.

Then: S/1(x) = the smallest number of iterations k such that
f .
FUC L)) = my-
lterted k times .
2.Proving Functional Smarandache Iterations of Second Kind.

Kind 2.
Let g:4— 4 be a function, such that g(x)>x for all x, and let & > x.
Then:

SI2(x,b) = the smallest number of iterations k such that
g

g(g(--g(x)--))2b.

iterted k times
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Proof: Firstly, denote: B, (x)= g(g(--g(x)--), ( n=1,2, ).

[. Let ACZ, for ¥ x<b, xeZ, assumed that there are not the smallest positive
integer k such that B, (x)=b,then for V neN have B,(x)<b, so
X< Bi(X) <By(x) < < B,(x) < <b.
This makes know that {Bn(x)} is convergent, but it is not convergent. This appear
contradiction, then, there are the smallest k such that B,(x)=b.
[I. Let AcQ or AcR.
(1). For fixed x<A. If g(x)=>g(b)>b, then B.(x)zg(x)>b ( neN ), SI2(x,bh)=1,

g
if g(x)<g(d) but By(x)2g(b)>b,then B (x)2g®B)>b ( n>2 ), S12(x,b) =2. In.
g

general, if PB(x)<g(b), By(x)<g®) ,~ B, (x)<g(®), but By (x)=zg(b)>b, then
SI2(x,b)=k.
g

(2).For fixed x<b, B (x)<g(b), ( neN ) then
X< By(X) <By(x) < - < B (x) <--- < g(b),
so {B,(x)} is convergent. Let l_i)Ian(x) =h" B,(x)<g®y ( nenN ), . b*Sg(b).
D. p=gb). imp,(x)=p" - for e=g(b)~b>0, 3 positive integer k, when n>k such
that |B,(x) gb)<e. So B,(x)>g(b) s=g(b) (g(b) b)=b. That is to say there are the -
smallest & such that B (x)>56. 2). b < g®). v gh)> b*, <o {B,(x)} does not converge
at g(h). So Jgy>0, for VN, 34, when n >N, such that Bnl(x)——g(b*) >gy, then,
B, () 2g()+e, - B,(x)>p+go. On the other hand, B,(x)<p" ( neN ),

B, (x)< b then p'+g, <Bp,(x)< b, but this is unable. This makes know that there is not

the case.

By (1) and (2) we can deduce the conclusion is true in the case of A belong to Q or
. .

Combining I. andII., we have: for any fixed x>b there is
SI2(x,b) = the smallest number of iterations k such that
g .

g(g(--g(x)--))2b.
o ovy Z

iterted k times

This proves Kind 2.

3.Proving Functional Smarandache Iterations of Second Kind.
Kind 3.

Let h: A— 4 be a function, such that &(x) < x for all x, and let b < x.
Then:
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SI3(x,b) = the smallest number of iterations k such that
h
h(h(---h(x)--)) < b.
—_—

iterted k fimes

Using similar methods of proving Kind 2 we also can prove Kind 3, we well not prove
again in the place.

We complete the proofs of Functional Smarandache Iterations of all kinds in the place.
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ON THE INFERIOR AND SUPERIOR £-TH POWER PART
OF A POSITIVE INTEGER AND DIVISOR FUNCTION

ZHENG JIANFENG
Shaanxi Financial & Economics Professional College,
Xianyang, Shaanxi, P.R.China

ABSTRACT: For any positive integer », let a(n) and 5(n) denote the inferior and superior k-th power
part of n respectively. That is, a(n) denotes the largest k-th power less than or equal to », and b(n)
denotes the smallest k-th power greater than or equal to n. In this paper, we study the properties of
the sequences {a(n)} and {b{r}}, and give two interesting asymptotic formulas.

Xey words and phrases: Inferior and superior k-th power part; Mean value; Asymptotic formula.

1. INTRODUCTION

For a fixed positive integer £>1, and any positive integer n, let a(n) and b(n) denote the inferior
and superior k-th power part of n respectively .That is, a(n) denotes the largest k-th power less than
or equal to , b(n) denotes the smallest k-th power greater than or equal to n. For example, let £&=2
then a(l)=a(2)=a(3)=1,a(¥)=a(5)= -—-=a(7)=4, --,b(1)=1, b(2)=b(3)=b(4)=4, b(5)=b(6)=
=b(8)=8+; let k=3 then a(l)=a(2)= ---=a(7)=1, a(8)=a(9)= ---=a(26)=8,--,b(1)=1, b(2)=b(3)= -
=b(8)=8, b(9)=b(10)==--=h(27)=27---. In problem 40 and 41 of [1], Professor F. Smarandache asks
us to study the properties of the sequences {a(n)} and {b(n)}. About these problems, Professor
Zhang Wenpeng [4] gave two interesting asymptotic formulas of the cure part of a positive integer.
In this paper, we give asymptotic formulas of the k-th power part of a positive integer. That is, we
shall prove the following:
Theorem 1. For any real number x>1 , we have the asymptotic formula

1——]—+£

Zd(a(n))—}a:’( )“IAOxlnkx+Ax1nk1 +od A xinx s dpx+ O(x 26N
n<x '

where 4, 4, --- A, are constants, especially when & equals to 2, 45=I; d(n) denotes the
Dirichlet divisor function, # is any fixed positive number.

For the sequence {h(n)} , we can also get similar result.
‘Theorem 2. For any real number x>1, we have the asymptotic formula

leee

d(b(n))——w( 6 ye- tlnkx+Axlnklx+ + A xInx+ Ax+ Ox 2% )
k-1 k

ol kk’ kx 7)

2. A SIMPLE LEMMA
To complete the proof of the theorems, we need following
Lemma 1. For any real number x>1, we have the asymptotic formula
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d(n*)= k“‘Bxln"x+Bxln“x+ +B, xInx+ B x+0(x? S
k-1

nix
By are constants, especially when k=2, 4p=1; ¢ is any fixed positive number.

d(n )

where By, B;, ---

Proof. Let 5 = o + i be a complex number and f(s) = Z

n=l1

Note that d(n*) << n", So it is clear that f{s) is a Dirichlet serics absolutely convergent in

Re(s)>1, by the Buler Product formula [2] and the definition of d(n} we have

f(S)EH(1+d(pk) d(pu) -+—dQ—Im—)+---]

25 ns
P

p"p P

L 2k+l kn+1 J
+...

k+1
_H( p?.s + + Pns
= ¢ O[] (1+(k-1);17j

INSEPT . 1
=¢2(s)n[(1+—~) ~Cha 5= J
” ps pZA P(k I)s
k+1
=D g, 0
aalen)
where ¢(s) is Riemann zeta-function and H denotes the product over all primes.

7

From (1) and Perron’s formula [3] we have

Ydwrt)=o— " :;i ((23)) g = ds+ 0( A J : e

nsx

1
where g(s) is absolutely convergent in Re(s)>z+&'. We move the integration in (2) to
1 .
Re(s) = 5 + & . The pole at 5 =1 contributes to
(3)

6
i(—)"“lBox,ln'c x+leln"“1 x+o+ B xInx+ Byx,

where B,, B, ,.. B are constants, especially when k=2 B, =1.

1 . Yo
For 5 Lo <l,notethat (s)=C(o+it) < It| 2" . Thus, the horizontal integral contributes to
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LI x2
2 4
O[X +T], (4)

and the vertical integral contributes to
11-5
0{ xz In* T] . (5)

1 3
On the line Re(s) =5+ &, taking parameter 7' = x2, then combining (2), (3), (4) and (5) we

have

k-1 1
Za’(n"):l —67 Boxln"x-i-B]xln"“x+---+ka+ x2 |
N\

nsx

This proves Lemma 1.

3. PROOFS OF THE THEQREMS ‘
Now we complete the proof of the Theorems. First we prove Theorem 1.
For any real number x >1, Let M be a fixed positive integer such that

M* <x<(M+1), (6)

then, from the definition of afn), we have

Sdam=%  Tdam+ Y dam)

niz m=2 (m-1)* <n<m* M*<n<x

=¥ Sdety+ Yaar

m=l m* <nefman)t M* gnsx

=S ot 4y Dd(m) +0[ 5 d(M")J,

m=1 M*Lns(M+1)*

y ,
= kY m*d(m*) + O(M* 1+ (7

m=1
where we have used the estimate () << n®.

Let B(y) = Zd(nk) , then by Abel’s identity and Lemma 1, we have

n<y

f m*d(m*) = M*'B(M) - (k - 1) jM V2 B(y)dy +0()

= M""[%(%)""BDAJ In* M+ BMIn* A +... +BM]
L
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~ (k- 1)]'"(%(%)“130})*4 m*y+ By "y 4o+ Bkyk‘l)ajz

k—~1-+5
+0 (M 2
1

k-1 1
_ {6 BM In*M+CM " M+ +C._M+0 M 27| (8)
kk’ 7[2 0 1 k-1

Applying (7) and (8) we obtain the asymptotic formula

k-1 1,
> d(a(n) = f;j BOM"ln"M+C1M"]nHM+-~+C‘HM"+O{Mk2 J (9)

nsx

where B),C,,---,C, ; are constants.
From (6) we have the estimates

O<x~M"<(M+D)"-M" =kM*" + C2M*2 ... 41

k-1

=M"“(k+Cf;§J—+---+XJlk_—])<<xT, (10)
and
Ink 1 ‘e
In*x=k"In* M + =k In* M+O(x* ). (11)
- |
Combining (9), (10) and (11) we have
1
b———+g
3 d(a(n ))—kk'( 2)" YgxIn® x4 Axin® b v 4, whx+ dpx+ 0 %),
n<sx kn

where 4y equals to By .

This proves Theorem 1.

Using the methods of proving Theorem 1 we can also prove Theorem 2. This completes the proof of
the Theorems.
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1. INTRODUCTION

This paper considers the following ten recurrence type Smarandache sequences.

(1) Smarandache Odd Sequence : The Smarandache odd sequence, denoted by {OS(n)} =1,
is defined by (Ashbacher [1])

OS(n)=135 ... 2n-1), n>1. (1.1)
A first few terms of the sequence are
1,13 135, 1357, 13579, 1357911, 135791113, 13579111315, .

(2) Smarandache Even Sequence : The Smarandache even sequence, denoted by {ES(n)}~ =t
is defined by (Ashbacher [1])

ES(n)=24...(2n), n>1. (1.2)
A first few terms of the sequence are
2,24, 246, 2468, 246810, 24681012, 2468101214, ...,
of which only the first is a prime number.
(3) Smarandache Prime Product Sequence : Let {p,}“,= be the (infinite) sequence of primes
in their natural order, so that p,=2, p,=3, ps=3, ps=7, ps=11, ps=13,
The Smarandache prime product sequence, denoted by {PPS(n)} =1, 18 defined by
(Smarandache [2])
' PPS(H)—plpz...pn+l, n>1. (13)
(4) Smarandache Square Product Sequences : The Smarandache square product sequence of
the first kind, denoted by {SPS1(n)}” -1, and the Smarandache square product sequence of
the second kind, denoted by {SPS2(n)}*, =1, are defined by (Russo [3])
SPSi1(n)=(1%(2%)...(n»)+1=(n!)*+1, n>1, (1.4a)
‘ SPS2(n)=(1%) (2%)...(n*)~-1=(n!)*~1, n>1. (1.4b)
A first few terms of the sequence {SSPi(n)}*,-1 are
SPS1(1)=2, SPS1(2)=5, SPS((3)=37, SPS1(4)=577, SPS1(5)=14401,
SPSi(6)=518401=13x39877, SPS1(7)=25401601=101x251501,
SPS1(8)=1625702401=17x95629553, SPS1(9)=131681894401,
of which the first five terms are each prime.
A first few terms of the sequence {SPS2(n)}”,= are
SPS2(1)=0, SPS2(2)=3, SPS2(3)=35, SPS2(4)=575, SPS2(5)=14399,
SPS2(6)=518399, SPS2(7)=25401599, SPS2(8)=1625702399, SPS2(9)=131681894399,
of which, disregarding the first term, the second term is prime, and the remaining terms of
the sequence are all composite numbers (see Theorem 6.3). '
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(5) Smarandache Higher Power Product Sequences : Let m (>3) be a fixed integer. The
Smarandache higher power product sequence of the first kind, denoted by,
{HPPS1(n)}"s=1, and the Smarandache higher power product sequence of the second kind,
denoted by, HPPS2(n)} =y, are defined by

HPPS1(n)=(1"™)2™)...(n™+1=(n))"+1, n>1, (1.3a)
HPPS2(n)=(1")(2™)...(a™M-1=(ny™-1, n>1. (1.5b)

(6) Smarandache Permutation Sequence : The Smarandache permutation sequence, denoted

by {PS(n)}“s=1, is defined by (Dumitrescu and Seleacu 4D

PS(n)=135...(2n-1)(2n)(2n-2)...42, n>1. (1.6)
A first few terms of the sequence are
12,1342, 135642, 13578642, 13579108642, ....
(7) Smarandache Consecutive Sequence : The Smarandache consecutive sequence, denoted
by {CS(n)} ™1, is defined by (Dumitrescu and Seleacu E3);

CS(n)=123...(n—)n, n=1. (1.7)
A first few terms of the sequence are
1,12, 123, 1234, 12345, 123456, ....
(8) Smarandache Reverse Sequence : The Smarandache reverse sequence, denoted by,
{RS(n)}“n=y, is defined by (Ashbacher [1])

RS(n)=n(n—1)...21, n=1. (1.8)
A first few terms of the sequence are
1,21,321, 4321, 54321, 654321, ....
(9) Smarandache Symmetric Sequence: The Smarandache symmetric sequence, denoted by
{S5(n)} =1, is defined by (Ashbacher [1])
1,11,121, 12321, 1234321, 123454321, 12345654321, ....
Thus,

SS(n)=12...(n-2)}(n-1)(n-2)...21, n=3; SS(1)=1, SS(2)=11. (1.9)
(10) Smarandache Pigrced Chain Sequence : The Smarandache pierced chain sequence,
denoted by {PCS(n)}.~", is defined by (Ashbacher [1]) \
101, 1010101, 10101010101, 101010101010101, ..., (1.10)
which is obtained by successively concatenating the string 0101 to the right of the
preceding terms of the sequence, starting with PCS(1)=101.
As has been pointed out by Ashbacher, all the terms of the sequence {PCS(M)} =t I8
divisible by 101. We thus get from the sequence {PCS(n)},-", on dividing by 101, the
sequence {PCS(n)/101}4=;". The elements of the sequence {PCS(n)/101} - are
1, 10001, 100010001, 1000100010001, .... (1.11)
Smarandache [5] raised the question : How many terms of the
sequence{PCS(n)/101},-," are prime?
In this paper, we consider some of the properties satisfied by these ten Smarandache
sequences in the next ten sections where we derive the recurrence relations as well.
For the Smarandache odd, even, consecutive and symmetric sequences, Ashbacher (1]
raised the question : Are there any Fibonacci or Lucas numbers in these sequences?
We recall that the sequence of Fibonacci numbers, {F(n)},~”, and the sequence of
Lucas numbers {L.(n)},=", are defined by (Ashbacher [1])
F(0)=0, F(1)=1; F(n+2)=F(n+1)+F(n), n>0, (1.12)
L(0)=2, L(1)=1; L(n+2)=L(n+1)+L(n), n=0, (1.13)
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Based on computer search for Fibonacci and Lucas numbers, Ashbacher conjectures
that there are no Fibonacci or Lucas numbers in any of the Smarandache odd, even,
consecutive and symmetric sequences (except for the trivial cases). This paper confirms the
conjectures of Ashbacher. We prove further that none of the Smarandache prime product and
reverse sequences contain Fibonacci or Lucas numbers (except for the trivial cases).

For the Smarandache even, prime product, permutation and square product sequences,
the question is : Are there any perfect powers in each of these sequences? We have a partial
answer for the first of these sequences, while for each of the remaining sequences, we prove
that no number can be expressed as a perfect power. We also prove that no number of the
Smarandache higher power product sequences is square of a natural number.

For the Smarandache odd, prime product, consecutive, reverse and symmetric
sequences, the question is : How many primes are there in each of these sequences? For the
Smarandache even sequence, the question is : How many elements of the sequence are twice
a prime? These questions still remain open.

[n the subsequent analysis, we would need the following result.

Lemma 1.1 : 3)(10™+10"+1) for all integers m,n>0.

Proof : We consider the following three possible cases separately :

(1) m=n=0. In this case, the result is clearly true,

(2) m=0, n=1. Here,
10™+10"+1=10"+2=(10"-1)+3,

and so the result is true, since 3|10"-1=9(1+10+10%...+10"").

(3) m>1, n=1. In this case, writing
10™+10"+1=(10™-1)+(10"-1)+3,

we see the validity of the result. [

2. SMARANDACHE ODD SEQUENCE {0S(n))®»

The Smarandache odd sequence is the sequence of numbers formed by repeatedly
concatenating the odd positive integers, and the n-th term of the sequence is given by (1.1).
For any n=1, OS(n+1) can be expressed in terms of OS(n) as follows : For n>1,

OS(n+1)=135 ...(2n—-1)(2n+1)
=10°0S(n}+(2n+1) for some integer s>1. (2.1)
More precisely, '
. s=number of digits in (2n+1).
Thus, for example, OS(5)=(10)0S(4)+7, while, OS(6)=(10)OS(5)+11.
By repeated application of (2.1), we get
0S(n+3)=10° OS(n+2)+(2n+5) for some integer s21

:105[10t OS(n+1)+(2n+3)]+(2n+5) for some integer t>1 (2.22)

=10""[10" OS(n)+(2n+1)]+(2n+3)10°+(2n+5) for some integer u>1, (2.2b)
so that

sH+u s+t

OS(n+3)=10 +(2n+3)10%+(20+5), (2.3)
where s>t>u>1.
Lemma 2.1 : 3| OS(n) if and only if 3| OS(n+3).
Proof : For any s, t with s>t>1, by Lemma 1.1,
3| [(2n+1)10° " +(2n+3)10°+(2n+5) =20+ (10T 4+10%+1)+(10°+2).

The result is now evident from (2.3). O

OS(n)*+(2n+1)10
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From the expression of OS(n+3) given in (2.2), we see that, for all n>1,

OS(n+3)=10°" OS(n+1)+ (2n+3)(2n+3)

=10 OS(n)+ 2n+1)(20+3)(2n+5).

The following result has been proved by Ashbacher [1].
Lemma 2.2 : 3| OS(n) if and only if 3 |n. In particular, 3 | OS(3n) for all n>1.

In fact, it can be proved that 9]0S(3n) for all nx>1.

We now prove the following result.
Lemma 2.3 : 5| 0S(5n+3) for all n>0.
Proof : From (2.1), for any arbitrary but fixed n>0,

OS(5n+3)=10" OS(5n~2)+(10n+5) for some integer s>1.

The r.h.s. is clearly divisible by 5, and hence 5 | OS(5n+3).
Since n is arbitrary, the lemma is established. _

Ashbacher [1] devised a computer program which was then run for all numbers from
135 up through O8(2999)=135...29972999, and based on the findings, he conjectures that
(except for the trivial case of n=1, for which OS(1)=1=F(1)=L(1)) there are no numbers in the
Smarandache odd sequence that are also Fibonacci (or, Lucas) numbers. In Theorem 2.1 and
Theorem 2.2, we prove the conjectures of Ashbacher in the affirmative. The proof of the
theorems relies on the following results.
Lemma 2.4 : For any n=1, OS(n +1)>10 OS(n).
Proof : From (2.1), for any n>1,

OS(n+1)=10" OS(n)+(2n+1)>10° OS(n)>10 OS(n),
where s21 is an integer. We thus get the desired inequality. [
Corollary 2.1 : For any n>1, OS(n+2)-0S(n)>9[{0S(n+1)+0S(n)].
Proof: From Lemma 2.4,
OS(n+1)-0S(n)>9 OS(n) for all n>1. (2.4)
Now, using the inequality (2.4), we get
OS(n+2)-08(n)=[O8(n+2)~0S(n+1)]*+[OS(n+1)-0S(n)]>9[0S(n+1)+OS(n)],
which establishes the lemma. [
Theorem 2.1 : (Except for n=1,2 for which OS(1)=1=F(1)=F(2), 0S(2)=13=F(7)) there are
no numbers in the Smarandache odd sequence that are also Fibonacci numbers.
Proof : Using Corollary 2.1, we see that, for all n>1, '
OS(n+2)}-0S(n)>9[0S(n+1)+0OS(n)]>0S(n+1). (2.5)
Thus, no numbers of the Smarandache odd sequence satisfy the recurrence relation (2.10)
satisfied by the Fibonacci numbers. O
By similar reasoning, we have the following result.

Theorem 2.2 : (Except for n=1 for which OS(1)=1=L(2)) there are no numbers in the
Smarandache odd sequence that are Lucas numbers.

Searching. for primes in the Smarandache odd sequence (using UBASIC program),
Ashbacher [1] found that among the first 21 elements of the sequence, only OS(2), OS(10)
and OS(16) are primes. Marimutha [6] conjectures that there are infinitely many primes in the
Smarandache odd sequence, but the conjecture still remains to be resolved.

In order to search for primes in the Smarandache odd sequence, by virtue of
Lemma 2.2 and Lemma 2.3, it is sufficient to check the terms of the forms OS(3n+1), n>1,
where neither 3n+1 nor 3n—1 is of the form 5k+3 for some integer k1.
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3. SMARANDACHE EVEN SEQUENCE {ES(n)}*,-,

The Smarandache even sequence, whose n-th term is given by (1.2), is the sequence of
numbers formed by repeatedly concatenating the even positive integers.
We note that, for any n>1,

ES(n+1)=24 ...(2n)(2n+2)
=10 ES(n)+(20+2) for some integer s>1. (3.1)
More precisely,
s=number of digits in (2n+2).
Thus, for example, ES(4)=2468=10 ES(3)+8, while, ES(5)=246810=10% ES(4)+10.
From (3.1), the following result follows readily.
Lemma 3.1: For any n>1, ES(n+1)>10 ES(n).
Using Lemma 3.1, we can prove that
ES(0+2)~ES(n)>9[ES(n+1)+ES(n)] for all n=1. (3.2)
The poof is similar to that given in establishing the inequality (2.1) and is omitted here.
By repeated application of (3.1), we see that, for any nx1,
ES(n+2)=10" ES(n+1)+(2n+4) for some integer t=1
=10t[1 0" ES(n)+(2n+2)]+(20+4) for some integer u>1
=10"" ES(n)+(2n+2)10+(2n+4),
so that
ES(n+3)=10° ES(n+2)+(20+6) for some integer s>1
=10°[10" ES(n+1)+(2n+4)]+(2n+6)
=10"""ES(n)+(20+2) 10"+ (2n+2)10%+(2n+6), (3.3)
for some integers s, t and u with s>t>u>].
From (3.3), we see that

ES(0+3)=10"" ES(n+1)+(2n+4)(2n+6)

=10 ES(n)+(2n+2)(2n+4)(2n+6).
Using (3.3), we can prove the following result.
Lemma 3.2 : 1f 3| ES(n) for some n=1, then 3 | ES(n+3), and conversely.
Lemma 3.3 : Forall n>1, 3 | ES(3n).
Proof : The proof is by induction on n. Since ES(3)=246 is divisible by 3, the lemma is true
for n=1. We now assume that the result is true for some n, that is, 3 | ES(3n) for some n.
Now, by Lemma 3.2, together with the induction hypothesis, we see that
ES(3n+3)=ES(3(n+1)) is divisible by 3. Thus the result is true for n+1. [1
Corollary 3.1 : For all n=1, 3| ES(3n-1).
Proof : Let n (21) be any arbitrary but fixed integer. From (3.1),
ES(3n)=10° ES(3n-1)+(6n) for some integer s>1.
Now, by Lemma 3.2, 3| ES(3n). Therefore, 3 must also divide ES(3n~1).
Since n is arbitrary, the lemma is proved. []
Corollary 3.2 : For any n>1, 3 1 ES(3n +1).
Proof : Let n (21) be any arbitrary but fixed integer. From (3.1),
ES(3n+1)=1OSES(3n)+(6n+2) for some integer s>1.
Since 3 | ES(3n), but 3 does not divide (6n+2), the result follows. I
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Lemma 3.4 ; 4 lES(Zn) for all n>1.
Proof : Since 4 | ES(2)=24 and 4 ’ES(4)=2468, we see that the result is true for n=1,2. Now,
from (3.1), for n>1,

ES(2n)=10° ES(2n-1)+(4n),
where s is the number of digits in (4n). Clearly, s>2 for all n>3. Thus, 4]10° if n>3, and we get
the desired result. 7

Corollary 3.3 : For any n20, 4 { ES(2n+1).
Proof : Clearly the result is true for n=0, since ES(1)=2 is not divisible by 4. For n>1, from
(3.1),

ES(2n+1)=10" ES(2n)+(40+2) for some integer s>1.

By Lemma 3.4, 4| ES(2n). Since 4 1 (4n+2), the result follows. (]
Lemma 3.5 : For all n=1, 10 | ES(5n),
Proof : For any arbitrary but fixed n>1, from (3.1),
ES(50)=10° ES(5n~1)+(10n) for some integer s>1.

The result is now evident from the above expression of ES(5n). O
Corollary 3.4 : 20|ES(10n) for all n>1.
Proof : follows by virtue of Lemma 3.4 and Lemma 3.5. a

Based on  the computer findings  with  numbers up  through
ES(1499)=2468...29962998, Ashbacher [1] conjectures that (except for the case of
ES(1)=2=F(3)=L(0)) there are no numbers in the Smarandache even sequence that are also
Fibonacci (or, Lucas) numbers. The following two theorems establish the validity of
Ashbacher’s conjectures. The proofs of the theorems make use of the inequality (3.2) and are
similar to those used in proving Theorem 2.1. We thus omit the proof here.
Theorem 3.1 : (Except for ES(1)=2=F(3)) there are no numbers in the Smarandache even
sequence that are Fibonacci numbers.
Theorem 3.2 : (Except for ES(1)=2=L(0)) there are no numbers in the Smarandache even
sequence that are Lucas numbers.

Ashbacher [1] raised the question: Are there any perfect powers in ES(n)? The
following theorem gives a partial answer to the question.

Theorem 3.3 : None of the terms of the subsequence {ES(2n-1)}"1= is a perfect square or
higher power of an integer (>1).
Proof : Let, for some n>1,

ES(n)=24 ...(2n) =x? for some integer x>1.
Now, since ES(n) is even for all n>1, x must be even. Let x=2y for some integer y=1. Then,

ES(n)y=(2y)*=4y?,
which shows that 4 | ES(n).

Now, if n is odd of the form 2k-1, k=1, by Corollary 3.3, ES(2k-1) is not divisible by

4, and hence numbers of the form ES(2k-1), k=1, can not be perfect squares. By same
reasoning, none of the terms ES(2n~1), n>1, can be expressed as a cube or higher powers of
an integer. [
Remark 3.1 : It can be seen that, if n is of the form kx10°+4 or kx10°+6, where k (1<k<9)
and s (21) are integers, then ES(n) cannot be a perfect square (and hence, cannot be any even
power of a natural number). The proof is as follows : If

ES(n)=x* for some integer x>1, (*)
then x must be an even integer. The following table gives the possible trailing digits of x and
the corresponding trailing digits of x* ; -
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Trailing digit of x Trailing digit of x?

QN N

4
6
6

8 4
Since the trailing digit of ES(kx10°+4) is 8 for all admissible values of k and s, it follows that
the representation of ES(kx 10°+4) in the form (*) is not possible. By similar reasoning, if n is
of the form n=kx10°+6, then ES(n)=ES(kx10°+6) with the trailing digit of 2, cannot be
expressed as a perfect square (and hence, any even power of a natural number). Thus, it
remains to consider the cases when n is one of the forms (1) n=kx10°, (2) n=kx10°+2,
(3) n=kx10°+8 (where, in all the three cases, k (1<k<9) and s (=1) are integers). Smith [7]
conjectures that none of the terms of the sequence {ES(n)}®- is a perfect power,

4. SMARANDACHE PRIME PRODUCT SEQUENCE {PPS(n)}*-

The n-th term, PPS(n), of the Smarandache prime product sequence is given by (1.3).
The following lemma gives a recurrence relation in connection with the sequence.
Lemma 4.1: PPS(n+1)=py, PPS(n)—(pn+1~1) for all n1.
Proof : By definition,
| PPS(0+1)=pip2 ... pupi1 +1=(p1p2. .. pu )Pt 1 ~pas 1+,
which now gives the desired relationship. O
From Lemma 4.1, we get
Corollary 4.1: PPS(n+1)-PPS(m)=[PPS(n)~1](pn+1—1) for all n21.
Lemma 4.2 : (1) PPS(n)<(p,)"" for all n24, (2) PPS(n)<(p,)"? for all n>7,
(3) PPS(m)<(p)* for all n=10, (4) PPS(n)<(pn+))"" for all n>3,
(5) PPS(1)<(pn+1)" > for all n26, (6) PPS(n)<(pu+1)"™ for all n>9.
Proof : We prove parts (3) and (6) only, the proof of the other parts is similar.
To prove part (3) of the lemma, we note that the result is true for n=10, since

PPS(10)=6469693231<(p10)’=29"=:17249876309.
Now, assuming the validity of the result for some integer k (=10), and using Lemma 4.1, we
see that,

PPScH1)=psr PPS(K)~(prs1~1) <picss PPS(K)

: <prs1(p)™™ (by the induction hypothesis)

<(Prr (P )" =)™,
where the last inequality follows from the fact that the sequence of primes, {pn} ny. is
strictly increasing in n (21). Thus, the result is true for k+1 as well.
To prove part (6) of the lemma, we note that the result is true for n=9, since

PPS(9)=223092871<(p10)*=29%=594823321 .
Now to appeal to the principle of induction, we assume that the result is true for some integer
k (29). Then using Lemma 4.1, together with the induction hypothesis, we get

PPS(k+1)=pir PPS(K)~(prr1~1)<pxr1 PPS(K)<prrt (i) = (pres )F 2.
Thus the result is true for k-+1.

All these complete the proof by induction. 00

Lemma 4.3 : Each of PPS(1), PPS(2), PPS(3), PPS(4) and PPS(5) is prime, and for n>6,
PPS(n) has at most n—4 prime factors, counting multiplicities.
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Proof : Clearly PPS(1)=3, PPS(2)=7, PPS(3)=31, PPS(4)=211, PPS(5)=2311 are all primes.
Also, since

PPS(6)=30031=59x509, PPS(7)=510511=19x97x277, PPS(8)=9699691=347x27953,
we see that the lemma is true for 6<n<8.

Now, if p is a prime factor of PPS(n), then P=pn-1. Therefore, if for some n=9, PPS(n)
has n-3 (or more) prime factors (counted with multiplicity), then PPS(n)>(pn)"",
contradicting part (6) of Lemma 4.2.

Hence the lemma is established. [

Lemma 4.3 above improves the earlier results (Prakash (8], and Majumdar [9]).

The following lemma improves a previous result (Majumdar [10]).

Lemma 4.4 : For any n>1 and k>1, PPS(n) and PPS(n+k) can have at most k—1 number of
prime factors (counting multiplicities) in common.
Proof : For any n>1 and k>1,

PPS(n+k)-PPS(n)=pips...pa(PasiPasa. .. Prk—1). 4.1)
If p is a common prime factor of PPS(n) and PPS(n+k), since ppysy, it follows from (4.1)
that p | (Pn+1Pn+2- - Park—1). Now if PPS(n) and PPS(n+k) have k (or more) prime factors in
common, then the product of these common prime factors is greater than (py)*, which can
not divide ppvipnsa. . . Prrk— 1 <(Prsg)

This contradiction proves the lemma. (]

Corollary 4.2 : For any integers n (=1) and k (21), if all the prime factors of pyrpnsa.. . pusi—1
are less than pye, then PPS(n) and PPS(n+k) are relatively prime.

Proof : [f p is any common prime factor of PPS(n) and PPS(n+k), then pj( pus(posa.. Po—1).
Also, such p>p, contradicting the hypothesis of the corollary. Thus, if all the common
prime factors of PPS(n) and PPS(n+k) are less than Pa+k> then (PPS(n),PPS(n+k)=1. (]

The following result has been proved by others (Prokash [8] and Majumdar [10D.
Here we give a simpler proof.

Theorem 4.1: For any n>1, PPS(n) is never a square or higher power of an integer (>1).
Proof : Clearly, none of PPS(1), PP3(2), PPS(3), PPS(4) and PPS(5) can be expressed as
powers of integers (by Lemma 4.3).
Now, if possiblé, let for some n>6,
PPS(n)=x" for some integers x (>3), £ (>2). (*)
Without loss of generality, we may assume that £ is a prime (if £ is a composite number,
letting £=pr where p is prime, we have PPS(n)=(x")"=NP, where N=x"). By Lemma 4.3, E<n+4
and so € cannot be greater than py_s (£2pn-s = £>n-4, since p,>n for all n>1). Hence, £ must
be one of the primes py, ps,..., Pn-s. Also, since PPS(n) is odd, x must be odd. Let x=2y+lfor
some integer y>0. Then, from (x),
P1p2-.pa=(2y+1)"~1
L £ :
=@)*OEN A ) @2y, (*)
1 £-1
If £=2, we see from (**), 4 | PtP2-..Pa, Which is absurd. On the other hand, for £>3, since
el P1P2...Pn, it follows from (**) that £ | v, and consequently, €2 ] Pip2...Pa, Which is impossible.

Hence, the representation of PPS(n) in the form (*) 1s not possible.

Using Corollary 4.1 and the fact that PPS(n+1)-PPS(n)>0, we get

PPS(n+2)—PPS(n)=[PPS(n+2)—PPS(n+1)]+[PPS(n+1)~PPS(n)]
>[PPS(n+1)-1](pnia—1)
>2[PPS(n+1)-1] for all n>1.
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Hence,
PPS(n+2)~PPS(n)>PPS(n+1) for all n>1. (4.2)

The inequality (4.2) shows that no elements of the Smarandache prime product
sequence satisfy the recurrence relation for Fibonacci {or, Lucas) numbers. This leads to the
following theorem.
" Theorem 4.2 : There are no numbers in the Smarandache prime product sequence that are
Fibonacci (or Lucas) numbers (except for the trivial cases of PPS(1)=3=F(4)=1(2),
PPS(2)=7=L(4)).

5. SMARANDACHE SQUARE PRODUCT SEQUENCES {SPSi(n)}® s, {SPS2()},-,

The n-th terms, SPSi(n) and SPS2(n), are given in (1.4a) and (1.4b) respectively.
In Theorem 5.1, we prove that, for any n>1, neither of SPSi(n) and SPSz(n) is a square of an
integer (>1). To prove the theorem, we need the following results.
Lemma 5.1: The only non—negative integer solution of the Diophantine equation x*-y?=1 is
x=1, y=0.
Proof : The given Diophantine equation is equivalent to (x-y)(x+y)=1, where both x—y and
x+y are integers. Therefore, the only two possibilities are
(1) x=y=1=x+y, (2)x~y=—l=x+y,
the first of which gives the desired non-negative solution. 0
Corollary 5.1: Let N (>1) be a fixed number. Then,
(1) The Diphantine equation x*~N=1 has no (positive) integer solution x,
(2) The Diophantine equation N-y?=1 has no (positive) integer solution y.
Theorem 5.1 : For any n>1, none of SPSi(n) and SPS2(n) is a square of an integer (>1).
Proof : If possible, let

SPSi(n)=(n !)*+1=x* for some integers n>1, x>1. :
But, by Corollary 5.1(1), this Diophantine equation has no integer solution x.

Again, if

SPS2(n)=(n !)*-1=y? for some integers n>1, y>1,
then, by Corollary 5.1(2), this Diophantine equation has no integer solution y.

All these complete the proof of the theorem. [ :

In Theorem 5.2, we prove a stronger result, for which we need the results below.

Lemma 5.2 : Let m (22) be a fixed integer. Then, the only non-negative integer solution of
the Diophantine equation x*1=y™ is x=0, y=1.
Proof : For m=2, the result follows from Lemma 5.1. So, it is sufficient to consider the case
when m>2. However, we note that it is sufficient to consider the case when m is odd; if m is
even, say, m=2q for some integer g>1, then rewriting the given Diophantine equation as
(y)*—x*=1, we see that, by Lemma 5 -1, the only non-negative integer solution is y%=1, x=0,
that 1s x=0, y=1, as required.

So, let m be odd, say, m=2q+1 for some integer q=1. Then, the given Diophantine
equation can be written as

=y oIy =Dy ). (***)

From (***), we see that x=0 if and only if y=1, since yH 4y 410,

Now, if x#0, from (***), the only two possibilities are
(1) y-1=x, y*%+y* 4 +1=x.

But then y=x+1, and we are led to the equation (x+1)2q+(x+1)Zq"1+...+(x+l)2+2=0, which is
impossible.
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(2) y=1=1, y9+y? ¢ 1=y,
Then, y=2 together with the equation
x2=24_ (5.1)
But the equation (5.1) has no integer solution x (>1). To prove this, we first note that any
integer x satisfying (5.1) must be odd. Now rewriting (5.1) in the following equivalent form
(=DEFD=2(2%-1)(2%1),
we see that the Lh.s. is divisible by 4, while the r.h.s. is not divisible by 4 since both 2%-1 and
2%+1 are odd.
Thus, if x=0, then we reach to a contradiction in either of the above cases. This
contradiction establishes the lemma. [
Corollary 3.2 : Let m (22) and N (>0) be two fixed integers. Then, the Diophantine equation
N*+1=y™ has no integer solution y.
Corollary 5.3 : Letm (22) and N (>1) be two fixed integers. Then, the Diophantine equation
x*+1=N"™ has no (positive) integer solution x.
Lemma 5.3 : Let m (22) be a fixed integer. Then, the only non-negative integer solutions of
the Diophantine equation x —y =1 are ( 1) x=1, y=0; ( 2) x=3, y=2, m=3.
Proof : For m=2, the lemma reduces to Lemma 5.1. So we consider the case when m23,
From the given Diophantine equation, we see that, y=0 if and only if x=£1, giving the
only non-negative integer solution x=1, y=0. To see if the given Diophantine equation has
any non-zero integer solution, we assume that x=1.
If m is even, say, m=2q for some integer g1, then x2~y’"5x2~(yq)2=l, which has no
integer solution y for any x>1 (by Corollary 5.1(2)).
Next, let m be odd, say, m=2q+1 for some integer q=1. Then, x*~y*7"'=1, that is,
(1) )=y .
We now consider the following cases that may arise :
(1) x=1=1, x+1=y*9""
Here, x=2 together with the equation y**"'=3, which has no integer solution y.
(2) x—l=y, x+1=y*.
Rewriting the second equation in the equivalent form (y*~1)(y%+1)=x, we see that (y*+1) [ X.
But this contradicts the first equation x=y+1 if ¢>1, since for g>1, yq+1>y+1*x
If g=1, then
y-Dy+1=x = y-1=1, y+1=x,
so that y=2, x=3, m=3, which is a solution of the given Diophantine equation.
(3) x~1=y" for some integer t with 2<t<q, q=2 (so that x+1=y2q_t+l).
In this case, we have
2x=y [1+y%
Since x does not divide v, it follows that
1+y2 T =Cx for some integer C21.

q t)+1]

Thus,
2x=y'(Cx) = Cy'=2.

If C=2, then y=1, and the resulting equation x*=2 has no integer solution. On the other hand,
if C#2, the equation Cy'=2 has no integer solution. Thus, case (3) cannot oceur.

All these complete the proof of the lemma. [J
Corollary 5.4 : The only non-negative integer solution of the Diophantine equatlon xX—y'=1
15 x=3, y=2.
Corollary 5.5 : Let m (>3) be a fixed integer. Then, the Diophantine equation x*~y™=1 has
x=1, y=0 as its only non-negative integer solution.
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Corollary 5.6 : Let m (>3) and N (>0) be two fixed integers. Then, the Diophantine equation
x’-N™=] has no integer solution x.
Corollary 5.7 : Let m (=3) and N (>1) be two fixed integers with N+3. Then, the Diophantine
equation N2~y"‘=1 has no integer solution.
We are now in a position to prove the following theorem.
Theorem 5.2 : For any n>1, none of the SPSi(n) and SPSx(n) is a cube or higher power of an
integer (>1).
Proof : is by contradiction. Let, for some integer n21,
SPS,(n)=(n! )2+1:ym for some integers y>1, m23.
By Corollary 5.2, the above equation has no integer solution y.
Again, if for some integer n>1,
SPSa(n)=(n!)*~1=z° for some integer z>1, s=>3,
we have contradiction to Corollary 5.7. 1

The following result gives the recurrence relations satisfied by SPSi(n) and SPS,(n).

Lemma 5.4 ; For all n>1,

(1) SPS)(a+1)=(n+1)*SPS,(n)-n(n+2),

(2) SPSa(n+ )=(n+1)’SPS(n)+n(n+2).
Proof : The proof is for part (1) only. Since

SPSy(n+1)=[(a+ DI+ 1=(n+ 1) (n1)>+1]~(n+1)2+1,
the result follows. O
Lemma 5.5 : For all n>1,

(1) SPS(n+2)-SPS(n)>SPS;(n+1),

(2) SPSy(n+2)-SPSy(n)>SPSy(n+1).

Proof : Using Lemma 5.4, it is straightforward to prove that
SPS(n+2)-SPS,(n)=8PSy(n+2)-SPSy(n)=(n!)* [(n+1)X(n+2)*-1].

Some algebraic manipulations give the desired inequalities. [

Lemma 5.5 can be used to prove the following results.

Theorem 5.3 : (Except for the trivial cases, SPS,(1)=2=F(3)=L(0), SPS,(2)=5=F(5)) there are
no numbers of the Smarandache square product sequence of the first kind that are Fibonacci
(or Lucas) numbers.

Theorem 5.4 : (Except for the trivial cases, SPSy(1)=0=F(0), SPSy(2)=3=F(4)=L(2)) there are
no numbers of the Smarandache square product sequence of the second kind that are
Fibonacci (or Lucas) numbers.

The question raised by Iacobescu [11] is : How many terms of the sequence
{SPS(n)}™s= are prime?

The following theorem, due to Le [12], gives a partial answer to the above question.
Theorem 5.5 : If n (>2) is an even integer such that 2n+1 is prime, then SPSi(n) is not a
prime.

Russo [3] gives tables of values of SPSi(n) and SPS(n) for 1<n<20. Based on
computer results, Russo [3] conjectures that each of the sequences {SPSi(n)}%,~ and
{SPS2(n)} " contains only a finite number of primes.

6. SMARANDACHE = HIGHER ~ POWER  PRODUCT  SEQUENCES
{HPPS (1)} ®nei, {HPPSy(1)} ey

The n-th terms of the Smarandache higher power product sequences are given in (1.5). The
following lemma gives the recurrence relation satisfied by HPPS(n) and HPPS;(n).
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Lemma 6.1 : For all n>1,
(1) HPPS (0t 1)=(n+1)"HPPS (n)~[(n+1)™+1],
(2) HPPSQ(n+1):(n+1)"‘HPPS;;_(n)-I—[(nH)mH].
Theorem 6.1: For any integer n>1, none of HPPPS (n) and HPPS(n) is a square of an integer
(>1).
Proof : If possible, let

HPPS,(n)=(n!)™+1=x? for some integer x>1.
This leads to the Diophantine equation x’~(n!)™=1, which has no integer solution x, by virtue
of Corollary 5.6 (for m>3). Thus, if m>3, HPPS(n) cannot be a square of a natural number
(>1) for any n>1.

Next, let, for some integer n>2 (HPPS2(1)=0)

HPPS(n)=(n!)"-1=y* for some integer y>1.
Then, we have the Diophantine equation y2+1=(n!)m, and by Corollary 5.3, it has no integer
solution y. Thus, HPPS,(n) cannot be a square of an integer (>1) for any n>1. O
The following two theorems are due to Le [13,141].
Theorem 6.2: If m is not a number of the form 2' for some £=1, then the sequence
{HPPS,(n)}*,=| contains only one prime, namely, HPPPS | (1)=2.
Theorem 6.3: If both m and 2™-1 are primes, then the sequence {HPPS,(n)}* - contains
only one prime, HPPS,(2)= 2"-1; otherwise, the sequence does not contain any prime.
Remark 6.1 : We have defined the Smarandache higher power product sequences under the
restriction that m>3, and under such restriction, as has been proved in Theorem 6.1, none of
HPPS(n) and HPPS,(n) is a square of an integer (>1) for any n>1. However, if m=3, the
situation is a little bit different : For any nzl, HPPS,(n)=(n!)*~1 still cannot be a pertect
square of an integer (>1), by virtue of Corollary 5.3, but since HPPS (n)=(n!)*+1, we see that
HPPS1(2)=(2!)*+1=3", that is, HPPS(2) is a perfect square. However, this is the only term of
the sequence {SPPS;(n)} = that can be expressed as a perfect square.

7. SMARANDACHE PERMUTATION SEQUENCE {PS(1)} “ e

For the Smarandache permutation sequence, given in (1.6), the question raised (Dumitrescu
and Seleacu [4]) 1s : [s there any perfect power among these numbers?

Smarandache conjectures that there are none. In Theorem 7.1, we prove the
conjecture in the affirmative. To prove the theorem, we need the following results.
Lemma 7.1 : For n>2, PS(n) is of the form 2(2k+1) for some integer k>1.
Proof : Since for n>2,

PS(n)=135...(2n~1)(2n)(2n--2)...42, (7.1)
we see that PS(n) is even and after division by 2, the last digit of the quotient is 1. [
An immediate consequence of the above lemma is the following.
Corollary 7.1 : For n22, 2*| PS(n) if and only if £=1.
Theorem 7.1: For n>1, PS(n) is not a perfect POWer.
Proof : The result is clearly true for n=1, since PS(1)=3x2% is not a perfect power. The proof
for the case n>2 is by contradiction.
Let, for some integer n>2,
PS(n)=x" for some integers x>1, £>2.
Since PS(n) is even, so is x. Let x=2y for some integer y>1. Then,
PS(n)=2y)=2"y", '
which shows that 2° l PS(n), contradicting Corollary 7.1. (]
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To get more insight into the numbers of the Smaradache permutation sequence, we
define a new sequence, called the reverse even sequence, and denoted by {RES(n)}%~ as
follows :

RES(n)=(2n)(2n-2)...42, n>1. (7.2)
A first few terms of the sequence are
2,42, 642, 8642, 108642, 12108642, ...
We note that, for all n>1,

RES(n+1)=(2n+2)(2n)(2n—-2)... 42
=(2n+2)10*+RES(n) for some integer s>n, (7.3)
where, more precisely,
s=number of digits in RES(n).
Thus, for example,
RES(4)=8x10°+RES(3), RES(5)=10x10*+RES(4), RES(6)=12x10°+RES(5).

Lemma 7.2 : For all n=1, 4 | [RES(n+1)-RES(n)].
Proof : Since from (7.3),

RES(n+1)-RES(n)=(2n+2)10° for some integer s (=n>1),
the result follows. (]
Lemma 7.3 : The numbers of the reverse even sequence are of the form 2(2k+1) for some
integer k>0. ’
Proof : The proof is by induction on n. The result is true for n=1. So, we assume that the
result is true for some n, that is,

RES(n)=2(2k+1) for some integer k>0.
But, by virtue of Lemma 7.2,

RES(n+1)»-RES(n)=4k' for some integer k>0,
which, together with the induction hypothesis, gives,

RES(n+1)=4k'+RES(n)=4(k+k"+2.

Thus, the result is true for n+1 as well, completing the proof. O
Lemma 7.4 : 3| RES(3n) if and only if 3| RES(3n-1),
Proof : Since,
RES(Bn)=(6n)1OS+RES(3n_1) for some integer s>n,

the result follows. O i

By repeated application of (7.3), we get successively
RES(n+3)=(20+6)1 0™ +RES(n+2) for some integer s=n+2
=(2n+6)IOS+(2n+4)1Ot+RES(n+1) for some integer t=n+1
=(2n+6)10*+(2n+4)10+(2n+2)10*+RES(n) for some integer u>n, (7.4)
so that, ‘
RES(n+3)-RES(n)=(2n+6)10°+(2n+4)1 O[+(2n+2)1 0", (7.5)
where s>t>u>n>1.

Lemma 7.5 : 3| [RES(n+3)}-RES(n)] for all n>1.
Proof: is evident from (7.5), since
3| (2n+6)107+(2n+4)10%(20+2) 10"
=10"[(2n+6)(10°"+10"+1)=2(10°"+2)]. {1
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Corollary 7.2 : 3 |RES(3n) for all n>1.
Proof : The result is true for n=1, since RES(3)=642 is divisible by 3. Now, assuming the
validity of the result for n, so that 3| RES(3n), we get, from Lemma 7.5,
3] RES(3n+3)=RES(3(n+1)), so that the result is true for n+1 as well.
This completes the proof by induction. [
Corollary 7.3 : 3 | RES(Gn-1) for all n>1.
Proof : follows from Lemma 7.4, together with Corollary 7.2. O
Corollary 7.4 : For any n=0, 3 { RES(3n+1).
Proof : Clearly, the result is true for n=0. For n>1, from (7.3),
RES(3n+1)=(6n+2)10"+RES(3n) for some integer s>3n.
Now, 3 | RES(3n) (by Corollary 7.2) but 3 )( (6n+2). Hence the result. O
Using (7.4), we that, for all n>1,
RES(n+2)-RES(n)
=[RES(n+2)-RES(n+1)]+[RES(n+1)-RES(n)]
=[(20+4)10-1JRES(n+1)+[(2n+2)10"-1]RES(n), (7.6)
where t and u are integers with t>u>n+1.
From (7.6), we get the following result.
Lemma 7.6 : RES(n+2)-RES(n)>RES(n+1) for all n>1.

PS(n), given by (7.1), can now be expressed in terms of OS(n) and RES(n) as
follows : For any n>1,

PS(n)=10" OS(n)+RES(n) for some integer s>n, (7.7)
where, more precisely,
s=number of digits in RES(n).

From (7.7), we observe that, for n>2, (since 4110° for s>n>2), PS(n) is of the form
4k+2 for some integer k>1, since by Lemma 7.3, RES(n) is of the same form. This provides
an alternative proof of Lemma 7.1.

Lemma 7.7 : 3 | PS(3n) for all n=1.
Proof : follows by virtue of Lemma 2.2 and Corollary 7.2, since
PS(3n)=10° OS(3n)+RES(3n) for some integer s=3n. (J
Lemma 7.8 : 3| PS(n) if and only if 3 | PS(n+3).
Proof : follows by virtue of Lemma 2.1 and Lemma 7.5. []
Lemma 7.9 : 3| PS(3n-2) for all n>1. |
Proof : Since 3 |PS(1)=12, the result is true for n=1. To prove by induction, we assume that
the result is true for some n, that is, 3| PS(3n-2). But, then, by Lemma 7.8, 3| PS(3n-1),
showing that the result is true for n+1 as well. 1
Lemma 7.10 : For all nz1, PS(a+2)-PS(n)y>PS(n+1).
Proof : Since
PS(n+2)=10° 0S(n+2)+RES(n+2) for some integer s=n+2,
PS(n+1)=10" OS(n+1)+RES(n+1) for some integer t>n+1,
PS(n)=10" OS(n)+RES(n) for some Integer u2n,
where s>t>u, we see that
PS(n+2)-PS(n)=[10° OS(n+2)-10" OS(n)]+[RES(n+2)-RES(n)]
>10°[0S(n+2)-08(n)[+[RES(n+2)-RES(n)]
>10' OS(n+1)+RES(n+1)=PS(n+1),
where the last inequality follows by virtue of (2.4), Lemma 7.6 and the fact that 10°>10". 0
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Lemma 7.10 can be used to prove the following result.
Theorem 7.1 : There are no numbers in the Smarandache permutation sequence that are
Fibonacei (or, Lucas) numbers.
Remark 7.1 : The result given in Theorem 7.1 has also been proved by Le [15]. Note that
PS(2)=1342=11x122, PS(3)=135642=111x1222, PS(4)=13578642=1111x12222,
as has been pointed out by Zhang [16]. However, such a representation of PS(n) is not valid
for n25. Thus, the theorem of Zhang [16] holds true only for [<n<4 (and not for 1<n<9).

8. SMARANDACHE CONSECUTIVE SEQUENCE {CS(n)}%=1
The Smarandache consecutive sequence is obtained by repeatedly concatenating the positive

integers, and the n-th tem of the sequence is given by (1.7).
Since

CS(n+1)=123.. (n~D)n(n+1), n=1,
we see that, for all n>1,
CS(n+1)=10° CS(m)*+(n+1) for some integer s>1, CS(1)=1. 8.1
More precisely,
s=number of digits in (n+1).
Thus, for example, CS(9)=10 CS(8)+9, CS(10)=10% CS(9)+10.
From (8.1), we get the following result :
Lemma 8.1 : For all n=1, CS(n+1)~CS(n)>9 CS(n).
Using Lemma 8.1, we get, following the proof of (2.1),
CS(n+2)-CS(n)>9[CS(n+1)+CS(n)] for all n=1. (8.2)
Thus,
CS(n+2)-CS(n)>CS(n+1), n>1. (8.3)

Based on computer search for Fibonacci (and Lucas) numbers from 12 up through
CS(2999)=123...29982999, Asbacher [1] conjectures that (except for the trivial case,
CS(D=1=F(1)=L(1)) there are no Fibonacci (and Lucas) numbers in the Smarandache
consecutive sequence. The following theorem confirms the conjectures of Ashbacher.
Theorem 8.1 : There are no Fibonacei (and Lucas) numbers in the Smarandache consecutive
sequence (except for the trivial cases of CS(1)=1=F(1)=F(2)=L(1), CS(3)‘123—L(10))
Proof : is evident from (8.3). O
Remark 8.1 : As has been pointed out by Ashbacher [1], CS(3) is a Lucas number. However,
CS(3)=CS(2)+CS(1).

Lemma 8.2 : Let3|n. Then, 3| CS(n) if and only if 3| CS(n—1).

Proof : follows readily from (8.1). 0

By repeated application of (8.1), we get,
CS(n+3)=10° CS(n+2)+(n+3) for some integer s=1
~=1OS[10t CS(n+1)+(nt+2)]+(n+3) for some integer t>1

=10""[10" CS(n)y+(n+1)]+(n+2)10%+(n+3) for some integer u>1
=10"""" CS(n)+(n+1) 10" H(n+2) 10%+(n+3), (8.4)

where s=t>u>1.

Lemma 8.3 : 3| CS(n) if and only if 3| CS(n+3).

Proof : follows from (8.4), since

3|[(n+1)10°"+(n+2) 10*+(n+3)]=[(n+ 1) 105"+ 105+1)+(10%+2)]. O
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Lemma 8.4 : 3| CS(3n) for all n>1.
Proof : The proof is by induction on n. The result is clearly true for n=1, since 3 | CS(3)=123.
So, we assume that the result is true for some n, that is, we assume that 3 ] CS(3n) for some n.
But then, by Lemma 8.4, 3 | CS(3n+3)=CS(3(n+1)), showing that the result is true for n+1 as
well, completing induction. [
Corollary 8.1 : 3{CS(3n-1) for all n>1.
Proof: From (8.1), for n>1,
CS(3n)=10" CS(3n—-1)+(3n) for some integer s>1.
Since, by Lemma 8.4, 3|CS(3n), the result follows. O
Corollary 8.2 : 34 CS(3n+1) for all n=0.
Proof : For n=0, CS(1)=1 is not divisible by 3. For n=1, from (8.1),
CSG3n+1)=10" CS(3n)+3n+1),
where, by Lemma 8.4, 3 ’ CS(3n). Since 3 1 (3n+1), we get desired the result. O
Lemma 8.5 : For any n>1, 5 l CS(5n).
Proof: Fornx1, from (8.1),
CS(5n)=10" CS(5n--1)+(5n) for some integer s>1.
Clearly, the r.h.s. is divisible by 5. Hence, 5 { CS(5n). O

For the Smarandache consecutive sequence, the question is : How many terms of the
sequence are prime? Fleuren [17] gives a table of prime factors of CS(n) for n=1(1)200,
which shows that none of these numbers is prime. In the Editorial Note following the paper
of Stephan [18], it is mentioned that, using a supercomputer, no prime has been found in the
first 3,072 terms of the Smarandache consecutive sequence. This gives rise to the conjecture
that there is no prime in the Smarandache consecutive sequence. This conjecture still remains
to be resolved. We note that, in order to check for prime numbers in the Smarandache
consecutive sequence, it is sufficient to check the terms of the form CS(3n+1), n>1, where
3n+1 is odd and is not divisible by 3.

¢

9. SMARANDACHE REVERSE SEQUENCE {RS(n)}"s-i

The Smarandache reverse sequence is the sequence of numbers formed by concatenating the
increasing integers on the left side, starting with RS(1)=1. The n-th term of the sequence is
given by (1.8).

Since,

RS(n+1)=(n+1)n(n-1)...21, n>1,
we see that, for all, n>1,
RS(n+l)=(n+1)lOs+RS(n) for some integer s>n (with RS(1)=1) (9.1)
More precisely,
s=number of digits in RS(n).
Thus, for example,
RS(9)=9x10°+RS(8), RS(10)=10x10"+RS(9), RS(11)=11x 10" '+RS(10).
Lemma 9.1 : For all n>1, 4| [RS(n+1)-RS(n)], 10| [RS(a+1)-RS(n)].
Proof : For all n21, from (9.1),
~ RS(n+1)-RS(n)=(n+1)10° (with s>n),
where the r.h.s. is divisible by both 4 and 10. O
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Corollary 9.1 : For all n>2, the terms of {RS(n)}"= are of the form 4k+1,
Proof : The proof is by induction of n. For n=2, the result is clearly true (RS(2)=21=4x5+1).
So, we assume the validity of the result for n, that is, we assume that
RS(n)=4k+1 for integer k>1.
Now, by Lemma 9.1 and the induction hypothesis,
RS(n+1)=RS(n)+4k'=4(k+k")+1 for some integer k'>1,
showing that the result is true for n+1 as well, [
Lemma 9.2 : Let 3 | n for some n (=2). Then, 3 l RS(n) if'and only 1f 3 ] RS(n-1).
Proof : follows immediately from (9.1). O
By repeated application of (9.1), we get, for all n1,
RS(n+3)=(n+3)10+RS(n+2) for some integer s>n+2
=(n+3)10°+(n+2)10+RS(n+1) for some integer t2n+1
=(n+3)1 OS+(n+2)10t+(n+1)10u+RS(n) for some integer u>n, (9.2)
where s>t>u. Thus, ‘
RS(n+3)=10"[(n+3)10° " +(n+2)10™"+(n+1)]+RS(n). (9.3)
Lemma 9.3 : 3| [RS(n+3)-RS(n)] for all nx1.
Proof : is immediate from (9.3). O
A consequence of Lemma 9.3 is the following.
Corollary 9.2 : 3| RS(3n) if and only if 3 | RS(n+3).

Using Corollary 9.2, the following result can be established by induction on n.

Corollary 9.3 : 3 l RS(3n) for all n>1.

Corollary 9.4 : 3 | RS(3n~1) for all n1.

Proof : follows from Corollary 9.3, together with Lemma 9.2. O

Lemma 9.4 : 3 {RS(3n+1) for all n>0.

Proof : The result is true for n=0. For n>1, by (9.1),
RS(3n+1)=(3n+1)10°+RS(3n).

This gives the desired result, since 3 | RS(3n) but 3 /f (Bnt+l1). 0

The following result, due to Alexander [19], gives an explicit expression for RS(n) :

i-1
> (1+Llog j)
n =1
Lemma 9.5 : For all n21, RS(n)=1+2, i*10
: )

In  Theorem 9.1, we prove that (except for the trivial cases of
RS(1)=1=F(1)=F(2)=L(1), RS(2)=21=F(8)), the Smarandache reverse sequence contains no
Fibonacci and Lucas numbers. For the proof of the theorem, we need the following results.
Lemma 9.6 : For all n=1, RS(n+1)>2RS(n).

Proof : Using (9.1), we see that
- RS(n+1)=(n+1)10°+RS(n)>2RS(n) if and only if RS(n)<(n+1)10°,
which is true since-RS(n) is an s-digit number while 10° is an (s+1)-digit number. [J
Corollary 9.5 : For all n21, RS(n+2)-RS(n)>RS(n+1).
Proof : Using (9.2), we have
RS(n+2)-RS(n)=[RS(n+2)-RS(n+1)+[RS(n+1)-RS(n)]
=[(n+2)1 Ot—(n+ D10 H2[RS(n+1)-RS(n)]
>2[RS(n+1)-RS(n)]
>RS(n+1), by Lemma 9.6.

This gives the desired inequality. O
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Theorem 9.1: There are no numbers in the Smarandache reverse sequence that are Fibonacci
or Lucas numbers (except for the cases of n=1,2).

Proof : follows from Corollary 9.5. O

For the Smarandache reverse sequence, the question is : How many terms of the sequence are
prime? By Corollary 9.2 and Corollary 9.3, in searching for primes, it is sufficient to consider
the terms of the sequence of the form RS(3n+1), where n>1. In the Editorial Note following
the paper of Stephan [18], it is mentioned that searching for prime in the first 2,739 terms of
the Smarandache reverse sequence revealed that only RS(82) 1s prime. This led to the
conjecture that RS(82) is the only prime in the Smarandache reverse sequence. However, the
conjecture still remains to be resolved. Fleuren [17] presents a table giving prime factors of
RS(n) for n=1(1)200, except for the cases n=82,136,139,169.

10. SMARANDACHE SYMMETRIC SEQUENCE {SS(n)}* =

The n-th term, S8(n), of the Smarandache symmetric sequence 1s given by (1.9).
The numbers in the Smarandache symmetric sequence can be expressed in terms of the
numbers of the Smarandache consecutive sequence and the Smarandache reverse sequence as
follows : For all n>3,

SS(n)=10° CS(n—1)+RS(n-2) for some integer s>1, (10.1)
with SS(1)=1, SS(2)=11, where more precisely,

s=number of digits in RS(n-2).
Thus, for example, SS(3)=10 CS(2)+RS(1), SS(4)=10? CS(3)+RS(2).

Lemma 10.] : 3| SS(3n+1) for all nx>1.
Proof : Let n (21) be any arbitrary but fixed number. Then, from (10.1),
SS(3n+1)=10° CS(3n)+RS(3n-1).
Now, by Lemma 8.4, 3 | CS(3n), and by Corollary 9.4, 3 ] RS(3n-1). Therefore, 3 | SS(3n+1).
Since n is arbitrary, the lemma is proved. O
Lemma 10.2 : For any nz1, (1) 34 SS(3n), (2) 3 { SS(3n+2).
Proof : Using (10.1), we see that
SS(3n)=10° CS(3n—-1)+RS(3n-2), n>1.
By Corollary 8.1, 3 | CS(3n—-1), and by Lemma 9.4, 3 *RS(3n~2). Hence, CS(3n) cannot be-
divisible by 3,
Again, since _
SS(3n+2)=10° CS(3n+1)+RS(3n), n=1,
and since 3 *CS(Bnﬂ) (by Corollary 8.2) and 3 ( RS(3n) (by Corollary 9.3), it follows that
SS(3n+2) is not divisible by 3. (0

Using (8.3) and Corollary 9.5, we can prove the following lemma. The proof is
similar to that used in proving Lemma 7.10, and is omitted here.
Lemma 10.3 : For all n21, S§(n+2)-SS(n)>SS(n+1).

By virtue of the inequality in Lemma 10.3, we have the following.
Theorem 10.1 : (Except for the trivial cases, SS(1)=1=F(1)=L(1), SS(2)=11=L(5)), there are
no members of the Smarandache symmetric sequence that are Fibonacci (or, Lucas) numbers.

The following lemma gives the expression of SS(n+1)-SS(n) in terms of CS(n)-CS(n-1).
Lemma 10.4 : SS(n+1)-SS(n)=10°"[CS(n)~CS(n-2)] for all n>3, where
s=number of digits in RS(n-2), s+t=number of digits in RS(n-1).
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Proof : By (10.1), for n>3,
SS(m)=10° CS(n—-1)+RS(n-2), SS(n+1)=10>" CS(n)+RS(n—1),

so that
SS(n+1)-8S(n)=10°[ 10" CS(n)-CS(n—1)]+[RS(n—1)—RS(n—2)]
=10°[10'CS(n)~CS(n—-1)+n-1)] (by(9.1)). )
But,
1, if 2<n--1<9
t={ ' =number of digits in (n—1).

m+1, if 10™<n-1<10™"~1 (for all m>1)
Therefore, by (8.1)
CS(n—1)=10' CS(n-2)+(n~1),
and finally, plugging this expression in (¥***), we get the desired result. [
We observe that SS(2)=11 is prime; the next eight terms of the Smarandache
symmetric sequence are composite numbers and squares :
SS(3)=121=117% SS(4)=12321=(3x37)*=111%,
SS(5)=1234321=(11x101)*=1111% SS(6)=123454321=(41x271)*=11111%
S8(7)=12345654321=(3x7x 1 1x13x37)*=111111%,
SS(8)=1234567654321=(239x4649)=1111111%,
SS(9)=123456787654321=(11x1010101)*>=11111111%,
S8(10)=12345678987654321=(9x37x333667)*=(111x1001001)y>=111111111%
For the Smarandache symmetric sequence, the question is : How many terms of the
sequence are prime? The question still remains to be answered.

11. SMARANDACHE PIERCED CHAIN SEQUENCE {PCS(0)}yr®

In this section, we give answer to the question posed by Smarandache [5] by showing that,
starting from the second term, all the successive terms of the sequence {PCS(n)/101}4=1",
given by (1.11), are composite numbers. This is done in Theorem 11.1 below.

We first observe that the elements of the Smarandache pierced chain sequence, {PCS(n)}n—l ,
satisfy the following recurrence relation :
PCS(n+1)=10* PCS(n)+101, n=2; PCS(1)=101. : , (11.1)
Lemma 11.1 : The elements of the sequence {PCS(n)} " are
101, 101(10%*+1), 101(10*+10*+1), 101(10'2+10%+10%+1), .
and in general,
PCS(n)=101[10*"D+10*"2+ . +10%+1], n>1. (11.2)
Proof : The proof of (11.2) is by induction on n. The result is clearly true for n=1. So, we
assume that the result is true for some n.
Now, from (11.1) together with the induction hypothesis, we see that
PCS(ni+1)=10* PCS(n)+101
=10*101(10*™Y+10% 24 +10%+1)]+101
=101(10"+10*" D+ +10*+1),
which shows that the result is true for n+1. O
It has been mentioned in Ashbacher [1] that PCS(n) is divisible by 101 for all n>1, and
Lemma 11.1 shows that this is indeed the case. Another consequence of Lemma 11.1 is the
following corollary.

110



Corollary 11.1 : The elements of the sequence {PCS(n)/101},-,” are

1, x+1,x TX‘H X+,
and in general

PCS(n)/101=x""4+x"2+.. +1, n>1, (11.3)
where x=10". '
Theorem 11.1 : For all n>2, PCS(n)/101 is a composite number.
Proof : The result is true for n=2. In fact, the result is true if n is even as shown below : If n
(24) is even, let n=2m for some integer m (>2). Then, from (11.3),

PCS(2m)/101 =M I k]

M+ (k)
~(x+1)(x2‘“ il .+13

that is, PCSQ2m)/101=(10*1)[10*™ V410%™ 2Dy | 413, (11.4)
which shows that PCS(2m)/101 is a composite number for all m (22).

Next, we consider the case when n is prime, say n=p, where p (=3) is a prime. In this case,
from (11.3),

PCS(p)/lOl =P xR == 1D (x-1).
Let y=10® (so that x=y°). Then,

pesp) XP-1 yP=1 0 (FP-1)(yP+1)

101 x—1 2

vl (y+1)y-1)

{(y D HyP DDy )

(y+D)iy-1)

=7y YT LD P Ry )
that is, PCS(p)/101=[10*" D=1 03P 2410204 | +1][10%P D102 -D . +1],  (11.5)
so that SPC(p)/101 is a composite number for each prime p (23).
Finally, we consider the case when n is odd but composite. Then, letting n=pr where p is
the largest prime factor of n and r (>2) is an integer, we see that
PCS(n)/101=PCS(pr)/101
_Xpr*l_;_xpr—2+ +1
—l l)(XP LpyP 2y +1)+XP(F 2)(XP L2, A1)
PP D)
=(x"" x4 .+12[xp(f‘”+x"“‘2_)+. 1)
that is, PCS(ny/101=[10%PD410% Dt +1][10%De10%CDy 41, (11.6)
and hence, PCS(n)/101=PCS(pr)/101 is also a composite number.
All these complete the proof of the theorem. 0
Remark 11.1 : The Smarandache pierced chain sequence has been studied by Le [20] and
Kashihara [21] as well. Following different approaches, they have proved by contradiction
that for n>2, PCS(n)/101 is not prime. In Theorem 11.1, we have proved the same result by
actually finding out the factors of PCS(n)/101 for all n>2. Kashihara [21] raises the question :
Is the sequence PCS(n)/101 square-free for n>2? From (11.4), (11.5) and (11.6), we see that
the answer to the question of Kashihara is yes.
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THE FULFILLED EUCLIDEAN PLANE
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ABSTRACT. The fulfiled euclidean plane is the real projective plane IT completed
with the infinite point of its infinite line denoted TI°. This new incidence structure
is a structure with neighbouring elements, in which the unicity of the line through
two distinct points is not assured. This new Geometry is a Smarandacheian struc-
ture introduced in [10] and {11], which generalizes and unites in the same time:
Euclid, Bolyai Lobacewski Gauss and Riemann Geometries.
Key words: Non-euclidean Geometries, Hjelmslev-Barbilian Geometry, Smaran-

dache Geometries, the fulfilled Euclidean plane.

1. HJELMSLEV-BARBILIAN INCIDENCE STRUCTURES

When the first Non-euclidean Geometry was introduced by Bolyai and
Lobacewski even the great Gauss said that people were not prepared to receive
a new Geometry. Now we know and accept many kinds éf new Geometries. In 1969
Florentin Smarandache had put the problem to study a new Geometry in which the
parallel from a point to a line to be unique only for some points of points and lines
and for the others: none or more. More general: An axiom is said Smarandachely
denied 1f the axiom behaves in at least two different ways within the same space (i.e.,

validated and invalided, or only invalidated but in multiple distinct ways). Thus, a
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Smarandache Geometry is a geometry which has at least one Smarandachely denied
axiom.

Are nowadays people surprise for such new ideas and new Geometries? Certaintly
not. After the formalized theories were introduced in Mathematics, a lot of new
Geometries could be acéepted and semantically to be proved to be non-contradictory
by the models created for them as in {1], 2], [3], (4], [3], (6], (8], [9], [12].

Definition 1.1. We consider P, D, I the sets which verify:

(1) PXD':@

(2) [IcPxD

The elements of P are called points, the elements of D are called lines and I defines
an incidence relation on the set P x D. (P, D, I) is called an incidence structure.
If (P, d) € I we say that the point P &€ P and the tine d € D are incident.

In the incidence structures introduced by D. Hilbert were accepted the axiom:

Axiom 1.1. P, € P, d; € D, (Pod;)el,4,5=1,2imply P, = P, or dy = ds.

In [3] J. Hjelmslev generalized these incidence structures considering (P, D, [) in
which this axiom is denied, and the uniqueness of a line incident with two different
points is not assured.

Definition 1.2. Two distinct points P, P, € P of a (P,D,I) are said to be
neighbouring, denoted P, o Pg, if there are at least dy,dy € D, d; # dy such that:

(3) (Bdy) €I, 4,7=1,2

?

An incidence structure (P,D,I) with a neighbouring relation is denoted

(P,D,1,0).

114



D. Barbilian proved that such incidence structures are consistent, considering in

[1] a Projective Geometry over a ring. Later such structures were studied in (2], [4]

(51, [6], (8], (9], [12].

?

2. THE FULFILLED EUCLIDEAN PLANE

The mathematical model for the real projective plane I is:
(4) Pl ={(oX,0Y,pZ)| X,Y,Z,p €R, p+#0}\ {(0,0,0)}
where (XY, Z) are homogeneous coordinates for a point
(5) D' = {lga,qb,qdl] a,b,c,g € R, ¢ £ 0} \ {[0,0,0]}

is the set of the lines of the TT plane.
The incidence between a point M (X,Y,Z) and a line [a, b, ¢] is defined through

the condition
(6) aX +bY +¢cZ =0
The infinite line denoted through [oo] has the equations [0, 0, 1} or:
(7) Z=0.
The infinite points of the TI plane have homogeneous coordinates of the type:
(8) (X,Y,0), X*4+Y?10

Let we observe that in IT any line has its infinite point - except the infinite line
[o<]. In this note we introduce it.

Definition 2.1. The infinite point of the infinite line [oo] is T(0,0,0) (the unique
point which were not considered in P in (4)).

From (6) and (8) we can see that 17 (0,0, 0) an infinite point incident with any line

from 7.

115



Definition 2.2. The real projective plane I completed with the point U(0, 0, 0)
is called the completed real projective plane or the fulfilled euclidean plane,

denoted T,
Definition 2.3. We denote P” := P'U{(0, 0, 0)} or P” := P'U{{/}. The incidence

relation 7 C P x D’ now we prolonge it at I’, I’ © P” x D’ such that:

(9) [,I'P’XD’ =1
and
(10) Ula,VaeD

3. THE INCIDENCE STRUCTURE WITH NEIGHBOURING OF ORDER k

Definition 3.1. In an incidence structure (P, D, I, o) with neighbouring ele-
ments we define an order of neighbouring of two lines d; € D, i=1,2. The lines
d, and dy are called neighbouring of order k if there are exactly k& distinct points

incident with them, that is:
(11) (di,P) e, i=1,2, J=1k

Definition 3.2. An incidence structure (P,D,1,0) in which any two lines are
neighbouring elem;ants of order £ is called a Hjelmslev Barbilian plane of order k.

Theorem 3.1. The fulfilled euclidean plane T is an incidence structure with
neighbouring lines Hielmslev Barbiliah of order two.

Proof. Any two lines from II are incident with exactly one point, II being a
projective plane. In II° any two lines are incident also with the point U(0,0,0)
which was not considered in II.

If two lines a and b from II are incident with the P point, that is:

(12) “ Pla,b
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then in T the lines a and b are incident with the two points P and U. Such we have:
(13) Pol

that, is — after definition 1.2 — P and U are neighbouring points.

The lines a and b of D’ are neighbouring lines of order two:
(14) a oy b,
because we have:
(15) P,UI'a,b, a +#b,

for any two distinct lines from II°.

If o or b is the infinite line [oc] then P from (12) is an infinite point. If a and b
are different of the line [oc] then P is a propre point of 7.

In any case a and b are always incident with exactly two points from IT". Such we
proved that IT" is a Hjelmslev-Barbilian plane of order two.

If I is the real projective plane of a TI-euclidean plane we can see that:
(16) eIl

Definition 3.3. In the real space we consider a sphere § tangent in P to a II
" euclidean plane and let be ¥V the diametral opposite point of P on the S. We define

the stereographyc projection of the pole N from S to IT°:
(17) f:S—T
F(M) .= M" where {M'}) = NMNnTI

and

fINY =T
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Such through f we obtain a bijection between the all points of S and the points
of T

Some others applications of TT° we gave in [14] as a transdisciplinary study given

after the notions given in [7].

REFERENCES

[1] D. Barbilian, Zur Aziomatik der projectiven Ringgeometrie, I, 11 Iber. Deutsch. math. Verein,
50(1940), 179-229; 51(1941), 34-76.
(2] W. Benz, Geomstric und Geometrie von Hjelmslev, Math. Annalen 164(1966), 118-123.
[3] 1. Hielmslev, Die Geometrie der Wirklichkeit, Acta Math. 40(19186).
[4] W. Klingenberg, Projective und affine Ebenen mit Nachbarelementen, Math. Zeitschr.
60(1954), 384-406.
[6] W. Lingenberg, Desauguessche Ebenen mit Nachbarelementen, Abh. Math. Sem. Univ. Ham-
burg, 20(1955), 97-111.
(6] W. Leissver, Affine Barbilian Ebenen, 1,11 . of Geometry 6(1975), 31-57, 105-129.
{7] Basarab Nicolescr, Nous, la particule et le monde, Transdisciplinarité, Edition du Rocher,
Paris 2002.
{8} F. Radd, Affine Barbilian Structures, Journal of Geometry, 14(1980), 75-102.
[9] W. Seier, Uber Hielmsley Structuren, Abh. Math. Sem. Hamburg 42(1974), T 107-133; 11 236~
254.
(10] Florentin Smarandache, Paradezist mathematics, Lecture, Bloomsburg University, Math.
Dept., PA, U.S.A,, 1985,
[11] Florentin Smarandache, Collected Papers, Vol. II, University of Kishinev, Press Kishinev, P.
5.98, 1007,
[12] "Angela Vasiu, On a class of }IjelmslcvaBarbiléan translation structures, Proceedings of Sym-
posium on Geometry ”Babes-Bolyai” Univ. 1984, 320-323.
[13] Adrian Vasiu, Angela Vasiu, J. Bolyai invites us to more wisdom, to our awekening, Proceed-
ings of Sympesium in Geometry, ”Babes-Bolyai” University, Nr. 2, 1003, p. 200-216.
[14] Adrian Vasiu, Angela Vasiu, Geometria tnterioard { The Inner Geometry), Editura Albastri,

2001, http://www.gmi.ro.

118



Numeros Felizes e Sucessdes de Smarandache:
Digressoes com o Maple

Delfim F. M. Torres
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3810-193 Avciro, Portugal

Resumo

Dando jus & matemdtica experimental, mostramos como o Maple pode
seT usado na investigagho matemética de algumas quest3es actualmente sem
resposta na Teoria dos Ntimeros. A tese defendida é que os alunos de um
curso de Matemstica podern facilmente usar o computador como um lugar
onde se excita e exercita a imaginagio.

1 Introducao

Albert Einstein é conhecido por ter ditc que “a imaginagio & mais importante
que o conhecimento”. Se assim é, porqué esperar pelo mestrado ou doutoramento
para comegar a enfrentar problemas em aberto? Nio ¢ a criatividade prerrogativa
dos mais novos? Em [3] mostrei como com muito pouco conhecimento é possivel
debrugar-mo-nos sobre algumas questdes actualmente sem resposta na Teoria de
Computagdo. Aqui, e a propésito do ano 2003 ter sido escolhido pela APM como
o ano da Matemdiica e Tecnologia, vou procurar mostrar como o computador e um
ambiente moderno de computacao algébrica, como seja o Maple, podem ser exce-
lentes auxiliares na abordagem a “quebra-cabecas” que 2 matemdtica dos nimeros
actualmente nos coloca. A minha escotha do sistema Maple prende-se com o facto
de ser este o programa informatico actualmente usado na cadeira de Computadores
no Ensino da Matemdtica, no Departamento de Matemsatica da Universidade de
Aveiro. Desta maneira os meus alunos serdo prova viva de que basta um semes-
tre de “tecnologias na educaggo matemética”, para nos podermos aventurar por
* “mares ainda néo navegados”. O leitor que queira aprender sobre o Maple poderd
comegar por consultar o nosso site de Computadores no Ensino da Matemdtica:
http://webct.ua.pt/public/compensmat/index.html.

2 Numeros felizes

Seja n € N um. nimero natural com representagio decimal n = d . . . dg, 0<d; <9
(#=0,...,k), e denotemos por o(n) a soma dos quadrados dos digitos decimais de
n: a{n) = Ef:()(di)g. Dizemes que n é um naimero feliz se existir um r € N tal
que (go---oo)(n) =1. Por exemplo, 7 ¢ um nimero feliz (r = 5),

|

T Vezes

o(7) = 49, 5(49) = 97, ¢(97) = 130, o(130) = 10, o(10) = 1;

1
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enquanto 2 nao:

7(2) = 4, o(4) = 16, o(16) = 37, o(37) = 58, o (58) = 89,
a(89) = 145, o(145) = 42, o(42) = 20, o (20) = 4 ...

Vamos definir em Maple a fungao caracteristica Booleana dos niimeros felizes. Comegamos
por definir a fungdo digitos que nos devolve a sequéncia de digitos de uma dado
nimero n

> digitos := n ~> seq(iquo(irem(n,107i),10"(i-1)),i=1. .length(n)):
> digitos(12345);

5,4,3,2,1
A fungao o é agora facilmente construfda

> sigma := n -> add(i"2,i=digitos(n)):
> sigma(24);

20
O processo de composicio da fungio o é obtido usando o operador @ do Maple;

> s = (n,r) > seq((sigma@@i)(n),i=1..1):
> s(7,5);

49, 97, 130, 10, 1
> 5(2,9);
4, 16, 37, 58, 89, 145, 42, 20, 4

Para automatizarmos o processo de decisao se um ntimero & feliz ou NA0, TeCOITEMOs
a alguma programagao. O seguinte procedimento deve ser claro.

> feliz := proc(n)
local L, v:
L= {};
v := sigma(n): )
while (not (member(v,L) or v=1)) do
L := L union {v}:
v = sigma(v):
end do:
if (v = 1) then true else false end if:
end proc:

vV V VV V V V VY

Podemos agora questionar o sistema Maple acerca da felicidade de um determinado
nimero.

> feliz(7);
true
> feliz(2);
false .
A lista de todos os niimercs felizes até 100 & dada por

> select(feliz, [$1..100]);
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[1,7,10,13,19,23,28, 31,32, 44,49, 68, 70,79,82,86,91,94,97,100]
Concluimos entao que existem 20 nimeros felizes de entre os primeiros 100 naturais
> nops(select(feliz, [$1..100]));
20

Existem 143 nimeros felizes n&o superiores a 1000; 1442 nao superiores a 10000; e
3038 nao superiores a 20000:

> nops(select{(feliz, [$1..1000]));
143

> nops(select(feliz, [$1..10000]));
1442

> nops(select(feliz, [$1..20000]));
3038

Fstas dltimas experiéncias com o Mapie permitem-nos formular a. seguinte conjec-
tura.

Conjectura 1. Cerca de um sétimo de todos os miimeros séo felizes.

Uma questio interessante é estudar nimeros felizes consecutivos. De entre os
primeiros 1442 nimeros felizes podemos encontrar 238 pares de nimeros felizes
consecutivos (o mais pequeno é o (31,32));

> felizDezMil := select(feliz, [$1..10000]):
> nops(select{i—>member(i,felizDezMil) and
member(i+1,felizDezMil) ,felizDezMil)) ;

238

onze ternos de niimeros felizes consecutivos, o mais pequeno dos quais é o (1880, 1881, 1882);

1

> select (i->member(i,felizDezMil) and
" member(i+l,felizDezMil) and
member (i+2,felizDezMil) ,felizDezMil) 3

(1880, 4780, 4870, 7480, 7839, 7840, 8180, 8470, 8739, 8740, 8810]

dois quaternos de nimeros felizes consecutivos, o mais pequeno dos quais é o
(7839, 7840, 7841, 7842);

> select(i—->member(i,felizDezMil) and
member (i+l,felizDezMil) and
member (i+2,felizDezMil) and
member(i+3,felizDezMil),felizDezMil);

[7839,8739]
e nenhuma sequéncia de cinco nimercs felizes consecutivos.

> select(i—>member(i,felizDezMil) and
member(i+1,felizDezMil) and
member (i+2,felizDezMil) and
member(i+3,felizDezMil) and
member(i+4,felizDezMil),felizDezMil);
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Sabe-se que a primeira sequéncia de cinco ntmeros felizes consecutivos comega com
0 44488,

feliz(44488) and feliz(44489) and feliz(44490) and
feliz(44491) and feliz(44492);

true

E também conhecida uma sequéncia de 7 nimeros felizes consecutivos, que comega
com o ndmero 7899999999959059999999996 (vide [4]).

3 Sucessoes de Srﬁarandache

Dada uma sucessio de inteiros {n}, a correspondente sucessdo de Smarandache
{55} é definida por concatenagio de inteiros como se segue:

51 :u1,32=u1u2,...,sn:-u1~--un,

Estamos interessados na sucessao de Smarandache associada acs mimeros felizes.
Os primeiros elementos desta sucessio sio:

L, 17,1710, 171013, 17101319, 1710131923, 171013192328,17101319232831, ...

Comegamos por implementar a concatenagdo de inteiros em Maple.

> conc := (a,b) -> ax10"length(b)+b:
> conc(12,345);

12345

Formando a lista dos nidmeros felizes até wm certo n, € usando a fun¢io conc acima
definida, a correspondente sucessao de Smarandache ¢ facilmente obtida.

> sh := proc(a)
> local L, R, i:
> L := select(feliz,[$1..n]):
> R := array(i..nops(L),L):
> for i from 2 by 1 while i <= nops(L) do
> R{i]:=conc(R[i~-1],L[i]):
> end do:
>  return(R):
> end proc:
"Como

> select(faliz, [$1..31]);
[1,7,10,13,19,23,28,31]
os primeiros 8 valores da sucessio de Smarandache sioc entio
> print(sh(31));
‘ [1,17,1710, 171013, 17101319, 1710131923, 171013192328, 17101319232831]

Existem Inuitas questdes em aberto associadas i sucessio de Smarandache dos
nimeros felizes (vide [2]). Umas dizem respeito & existéncia de nimeros primos
Da sucessio; outras & existéncia de ndmeros felizes, Fagamos agora alguma inves-
tigagao a este respeito. Usando o Maple é facil coneluir que de entre os primeiros
143 termos da sucessio de Smarandache dos nimeros felizes, apenas 3 sao primos.
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> primos := select(isprime,sh(1000)):
> nops{[seq(primos[i],i=1..143)1);

3

Se fizermos print (primos) vemos que os trés primos sio 52 =17, 55 = 17101319 e
543 {s43 € um primo com 108 digitos decimais).

> primos{2], primoes[5];
17, 17101319
> length(primos[43]);

108

Apenas sio conhecidos estes niumeros primos pa sucessio de Smarandache dos
nimeros felizes. Permanece por esclarecer se eles serdo ou nao em ndmero finito
(vide [1]).

Existem 31 nimeros felizes de entre os primeiros 143 termos da sucessio de
Smarandache dos nimeros felizes:

> shFelizes := select(feliz,sh(1000)):
> nops([seq(shFelizes[i],i=1..143)1);

31

Recorrendo ao comando print (shFelizes) vemos que esses nimeros sao o 81, 811,

S14, $30; 531, 535, S48, 552: 558, 562, 567, 569, 571; 5761 $77, 578, 582, S83, 585, 508, $104»
5108, 5110, S114, §115, 5117, 5118, 5119, 5122, 5139 € Sw40. A titulo de curicsidade, s14¢9
tem 399 digitos:

> length(shFelizes[140]);

399

Muito existe por esclarecer relativamente & existéncia de nimeros felizes consecu-
tivos na sucessio de Smarandache dos nimercs felizes. Olhando para cs resulta-
dos anteriores vemos que o par mais pequeno de nimeros felizes consecutivos & o
(830, 531); enquanto o terno mais pequeno é o (s7g, 577, 578). Quantos termos con-
secutivos sdo possiveis? B capaz de encontrar exemplos, digamos, de seis ndmeros
felizes consecutivos? Estas e outras questdes estio em aberto (wide {1]). Ferramen-
tas como o Maple sio boas auxiliares neste tipo de investigagdes. Fico A espera de
algumas respostas da sua parte.
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Calculating the Smarandache Numbers
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Abstract

The Smarandache Numbers are:
1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29,5,31,8,11,17,7,6,37,
19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11,7,19,29,59,5,61,31,7,8,13,11,67.17
23,7,71, 6,73,37,10,19,11,13,79,6,9,41,83.7, ...

and defined as the smallest integer m such that n divides m! Finding the exact value of
a(n) is an open problem, and this paper presents an effective algorithm for

determining the value of a(n).

>

Keywords
Smarandache functions, factorial, prime numbers

Introduction

The process involved is fairly simple, and we need to know the factorisation of n.
From this factorisation, it is possible to exactly calculate by which m each prime is
satisfied, i.e. the correct number of exponents appears for the first time. The largest of
these values gives a(n).

Satisfying %k
T

o satisty p*, we find the lowest m such that pk divides m!.

For e){ample, if we look at 3*=81, then m=9 suffices and is also the lowest possible
value of m we can achieve.

We can see that m=9 suffices, as 9!=1.2.3.4.5.6.7.8.9, of which 3,6 and 9 are
multiples of 3, and 9 happens to be 3°. As 3, 6 and 9 are the first multiples of 3, this
implies m=9 is minimal.

The key to finding m lies in the value of'k, and with the distribution of 3’s over the
integers.

The pattern of divisibility by 3, beginning with 1, is;
0010010020010010020010010030....

For the purpose of the Smarandache numbers, we can remove the 0°s from this, as we
are only concerned with accumulating enough 3’s.

(A)11211211311211211311211211+41...
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The pattern present here can be generalized at a basic level to allow us to calculate the
values of the sums whenever a number appears for the first time.

This gives us the sub-sequences 1, 112, 112112113, etc..., and we are interested in
the sums of these, i.e.:

(B) 1,4, 13,40 ...

This 1s the partial sums of 1+3+9+27+.__, and this is result of evaluating (3"-1)/2.
Now we can deduce the value of m from k, where does k appear in B? Our k in the
example was 4, and this appears as B(2). This means that to reach 3* we need 3 terms

from A (=3%"), and multiplying by 3 gives the answer we require of 9.

But how about 3***? To calculate m for this, we reduce in by as many possible of the
terms of A.

A fuller list of A is:

(pari/gp code)

three(n)=(3"n-1)/2

Jor (n=18,printl(three(n)","))

1,4,13,40,121,364,1093,3280,

364 is too large, but 121 is Ok. 333-121=212, and again 212-121=91.
121 is A(3), so the data collected so far is [2*5]

Continuing, 91-2*40=11, and 11-2*4=3, and 3=1*3, thus we have the data [2%5,2%4,
2%¥2, 3*1]. ’

To interpret this data, we just re-apply it to the distribution of 3’s. 2*5 means that we
need 2*3* consecutive multiples of 3 — by this stage we have satisfied 3**?. 2*4 means

that we add a further 2*3° multiples of 3, 2*2 means that we add a further 2*3!
multiples of 3, and finally we add 3* multiples of 3.

The whole sum is therefore 2*81+2*¥27+2*3+3*1=162+54+6+3=225, and this gives
us the answer directly: (225*3)! = 675! is the smallest factorial that 3*** divides.

This can be proven with a small Pari program:

? for(i=1,2000,if(i!263°333==0,print| (i) break))
673

Calculating a(n)
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Then we need to calculate the m value for each prime and exponent, and a(n) is the
largest.

This Pari/GP code performs the necessary calculations

{

findm(x,y)=local(m,n,x1);

m=0;n=1;x1=x-1;

while (((x*n-1)/x1)<=y,n++);n--;

while (y>0,

while (((x*n-1)/x1)<=y,y-=((x"n-1)/x1);m+=(x"(n- IMin--);
x*m

}

This is the findm() function. n is boosted until larger than necessary, and then
trimmed down one so that is must be less than or equal to y. Then y is decreased by
the largest possible value of (x"n-1)/(x-1) possible until y=0. m is continually
incremented throughout this process as appropriate, and the returned value is x*m.

{
smarandache(n)=local(f,fl,ms);
if (n==1,1,

factor(n);fl=length(f],1]);
ms=vector(fl,i,0);

for (i=1 fl,ms[i]=findm(f[1,1],f[i2]);
vecmax(ms))

}

The smarandache() function returns 1 if n is 1, otherwise it creates the ms vector of
lowest possible m values, and returns the largest value.

The program results in this data:

?for (i=1,100,print] (smarandache(i)","))
1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29,5,31,8,11,17,
7,6,37,19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11,7,19,29,59,5,61,31,7,8,1
3,11,67,17,23,7,71,6,73,37,10,19,11,13,79,6,9,41,83,7,17,43,29,11,89,6,13,23 31,
47,19,8,97,14,11,10,

which give-a 100% correlation with the sequence given in the abstract.

At 100Mhz, it takes about 1 minute to generate the sequence to n=10000.

Reference:
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On Additive Analogues of Certain Arithmetic

Functions

Jozsef Sandor
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1. The Smarandache, Pseudo-Smarandache, resp. Smarandache-simple functions

are defined as ([7], [6])

S(n) = min{m € N: a|m!}, (1)
Z(n) = min {mEN: mm;—l)} (2)
Sp(n) = min{m € N: p”|m!} for fixed primes p. (3)

The duals of 5 and Z have been studied e.g. in [2], [5], [6]:

Se(n) = max{m € N: mln}, (4)
Z.(n) :max{mEN: m_(m%}_)w'n} ’ (5)

We ’note here that the dual of the Smarandache simple function can be defined

in a similar manner, namely by
Spe(n) = max{m € N: m!|p"} (6)

This dual will be studied in a separate paper (in preparation).
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2. The additive analogues of the functions S and S, are real variable functions,
and have been defined and studied in paper [3]. (See also our book 6], pp. 171-174).
These functions have been recently further extended, by the use of Euler's gamma
function, in place of the factorial (see [1]). We note that in what follows, we could
define also the additive analogues functions by the use of Euler’s gamma function.
However, we shall apply the more transparent notation of a factorial of a ‘positive
integer.

The additive analogues of § and S, from (1) and (4) have been introduced in 3]
as follows:

S(@)=min{meN: z <ml}, 5:(1,00) R, (7
resp.
Si(z) =max{meN: ml <z}, S,:[l,00) >R (8)

Besides of properties relating to continuity, differentiability, or Riemann integra-

bility of these functions, we have proved the following results:

Theorem 1.

log z
Selz) ~ loglogz (z = o0) ®)
(the same for S(z)). -
Theorem 2. Thr,; series ,
= 1
e — 10
2 S (10

s convergent for o > 1 and divergent for o < 1 (the same for S.(n) replaced by

3. The additive analogues of Z and Z, from (2), resp. (4) will be defined as

Z(z):min{mEN: xgm;“”} (11)
Z.(x) = max {m eN: TW_;L}—) < :c} (12)
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In (11) we will assume z € (0, +o0), while in (12) z € 1, +oo).

The two additive variants of S,(n) of (3) will be defined as
P(z) = Sp(z) = min{fm € N: p® <ml}, (13)
(where in this case p > 1 is an arbitrary ﬁv;:ed real number)
Pu(z) = Spulz) = max{m e N: m! <p°} - | (14)

From the definitions follow at once that

(k- 1)k k(k+1)
2 ’ 2

Zx)=k & z¢ for k> 1 (15)
( |

k(k+1) (k k+2)
Z*(m)=k®w€{(+),(+l)(+)> (16)
2 2
For z > 1 it is immediate that
Zu(z)+ 12 Z(z) > Z,(x) (17)
‘Therefore, it is sufficient to study the function Z,(z).
The following theorems are easy consequences of the given definitions:
Theorem 3.
' 1
Z(x) ~ E\/&c +1 (z— o0) (18)
Theorem 4.
= 1
- 15 convergent for o > 2 19
2Ty =
- 1
and divergent for o < 2. The series ———— 15 convergent for all o > 0.
P eATIE
klk+1 k+1 2
Proof. By (16) one can write L;—l <z< (—4_-—)2(—114};), sok?+k—2z <0
and &%+ 3k -2 — 2z > 0. Since the solutions of these quadratic equations are k 5 =
~-1lEtv8x+1 | =3x8z +1 ) V8r+1-3
— resp. kza = — and remarking that B S— >
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1 < z > 3, we obtain that the solution of the above system of inequalities is:

ke {1@??__1} if zell,3);
(20)
kE’(ﬁT;gE—S,\/ﬁ?_l} i x &3 +oo)
So, forz >3
—-——_‘/1—*28_”_3 < Z(z) < h—u@“ ! (21)

unplying relation (18).
Theorern 4 now follows by (18) and the known fact that the generalized harmonic
(0]
1
i — i gent only for 8 > 1.
series nz=1 —7 18 convergent only for

The things are slightly more complicated in the case of functions P and F,. Here

1t is sufficient to consider P,, too.

First femark that

Plr)=m & z¢

! !
logm! log(m + 1)) | (22)

logp’  logp
The following asymptotic results have been proved in (3] (Lemma 2) (see also

(6], p. 172)

m loglog m)! log log m!
1 I~ mlog: —_— =~ — ] — 23
og T~ T l0g ™, log m! " loglog(m + 1)! (m— o0} (23)

By (22) one can write

log 1 ! | log log(: 1)
mloglogm! — m loglog p < mlog x < mloglog(m + 1) — (loglogp) m 7
logm! log m! = logm! log m! log m!
. log x )
giving - ~ — 1 (m — o0), and by (23) one gets log z ~ log m. This means that:
ogm!

Theorem 5.
log P(z) ~logz (z — o) (24)

The following theorem is a consequence of (24), and a convergence theorem

established in [3]:

131



(es]
1/ logl
Theorem 6. The series Z - ( °6 ogn) is convergent for a > 1 and diver-
n

log P.(n)

n=]

gent for o < 1.

=~ 1 [loglogn\*”
Indeed, by (24) it is sufficient to study the series Z — (M) (where
n

logn

n>ng

no € N is a fixed positive integer). This series has been proved to be convergent for

@ > 1 and divergent for o < 1 (see [6], p. 174).
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Recursive Prime Numbers
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Sabin Tabirca Kieran Reynolds
*Computer Science Department, University College Cork, Ireland
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Many researchers study prime numbers for the curiosities that they possess rather than
the position they occupy at the foundations of Number Theory. This study may be in
any numbers of areas from applications to multimedia to searching for special or
unusual primes. It is truly awe inspiring to see how much time can be expended on
prime numbers without a realistic application.

In this article, a sequence of prime numbers, called Recursive Prime Numbers, is
identified before a complete search is undertaken to verify that the sequence is finite
by finding all existing prime numbers of the specified form. This could be done with
considerable effort by hand, but here a simple computer program has been used to
speed the calculations. So now the question. must be answered; what are recursive
prime numbers. The easiest way to answer that is to say that a prime number is
recursively prime if the number js prime can be constructed by adding a digit to an
already recursive prime number.

1. Recursive Prime Numbers

The idea of Recursive Prime Numbers arose when asked if it were possible to create
infinite sequences of prime numbers by adding digits to the end of an existing prime.

Definition 1. 4 number is said to be a recursive prime number if it and all of the
- initial segments of the decimal expansion are prime. We can recursively define those
numbers as follows:

a) 2, 3, 5, 7 are recursive prime numbers

b) if agay...ay is a recursive prime number and ayay..a,a,,q is a prime number

then ayay..ayay,,| is a recursive prime number as well.

Example 1. 23333 is a recursive prime number since 2, 23, 2333 and 23333 are all
prime.

Although, with only a little examination it becomes clear that it is very unlikely that
such an infinite sequence could be found, still the concept is one that is quite
interesting and demanded some attention. It is not a difficult task to systematically
find all prime numbers of this form. Let us consider the following sets of prime
numbers

Ma)y={a},V a {2357} | ' (1)

gy = {10-x+ y:xe L a), ye{1,3,7,9},10 - x+ yis prime}v nx1 (2)
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L@)=U L'(a), Y ac {2,357, 3)

nzl

where Z'(a) represents the set of the recursive prime numbers which start with the
digit @ and have # digits.

We used Java computation to generate the set L(a) of all the recursive prime numbers
that start from the digit a (see Figure 1). The program chooses to use Java’s long type
as opposed to the reference type, Biginteger. This choice was made to simplify the
code in the expectation that there would be no need for the increased size provided for
Biglnteger. Similarly, a simple trial division primality test has been used in lieu of a
- more efficient test since the numbers are expected to remain relatively small in all
cases (see Figure 1). There are many references available for those interested in
primality testing, [Knuth, ***], [Shallit, 1996], [Romero, 1998].

The code creates two queues queueOld and queueNew for the sets L'(a) and 7"/ (a)
respectively. Initially, the queue queueOld contains the digit a. The loop for simulates
Equation (2) by generating the elements of queueNew from the elements of queueQld
and the set of last digits. An element prime of queueOld is removed from the queue,
which is concatenated with the last digits {1, 3, 7, 9}. Ifa prime number is obtained,
we insert it in the queue queueNew. When all those numbers are composite, we find
that queueNew is empty, therefore the computation finishes.

public Vecter listRecurs(long a){
LinkedList queueOld = new LinkedList();
LinkedList queueNew = new LinkedList();
Vector primes = new Vector();

queueCld.addLast (new Long(a)); // digit is added to queue
long [] lastDigit = {1, 3, 7, 9};

for (int n=1;! queueOld.isEmpty () ;n++) |
// generate queueNew for the set L™!(a)

while (! queueOld.isEmpty{)){
// get an element prime from queueOld
long prime = ((Long)queueOld.removeFirst()).longValue();
primes.addElement (new Long(temp));

// generate all the recursive prime numbers from prime
for (int i = 0; i < lastDigit.length(); i++) |
long primeNext = prime * 10 + lastDigi(i];
if(this.testPrimality (primeNext))
queueNew.addLast (primeNext) ;

}

while (! queueNew.isEmpty()){
long nr = ((Long)queueNew.removeFirst()).longValue();
gueueOld.addLast (nr) ;

}

}

return primes;
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public Boolean testPrimality(long num) {

if (this.getLong()==2 || this.getlong({)==3)return isPrime:;
if (this.getLong(]%2==0 || this.getLlong()%3==0)return isComposite;
for (int i=5; i<{long) ath.floor (Math.sqrt (this.getLong())); i+=4)
{ Zf {this.getLong() % i == Q) return isComposite;
i+= 2; '
if (this.getLong() % i == 0) return isComposite;

}

return i1sPrime;

}

Figure 1. Java program to list all recursive prime numbers.
The following theorem establishes the correctness of our computation.

Theorem 1. The contents of queueOld before the n-th iteration of the loop for is
L™(a), therefore the contents of the vector primes is L{a).
Proof. Induction is used for this proof.
Since the queue queueOld initially contains only g, we find that the property holds for
n=1. Suppose that before the n-th iteration the contents of queueOld is L'(a). In the
loop for we generate queueNew as follows:

- for any element prime of queueOld= I."(g) and for any lastDigit{1]

- if prime*10-+lastDigit[i] is prime then add it to queueNew
Therefore, the contents of queueNew will be identical as 1™ (a). At the end of this
iteration the elements of queueNew are transferred to queueOld therefore before the
iteration (n++1)-th the contents of queueOld is L™ /(a).
*
The computation relieved that the sets L"(a) are empty for values n>8. Therefore, each
digit 2, 3, 5, 7 generates only a finite number of recursive primes. This is detailed in
the next section. -

2
/\
23 29
_,—”f”\\\\‘\\\ |
233 239 293
N |
2333 2339 2393 2399 2939
PN | | f
23333 23339 23399 23993 29399
" | | |
233993 239933 293999
| | l
2339933 2399333 2939999
l |
23399339 29399999

Figure 2. Recursively constructed prime numbers with starting digit 2.
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2. Series of Recursive Primes

In order to gain a better understanding of recursive prime numbers it is necessary to
view the results for each starting digit separately, beginning with 2. With 2 as a
starting digit there are only two possible extensions for each number; 3 or 9. This is
due to the fact that concatenating a 1 or 7 at any stage causes the number to become
divisible by 3. The results can be visualised as a tree as in Figure 2.

Since at any stage there are only two possible digits to add, this case results in a
binary tree. It is interesting to note that the right child of each of the nodes 29, 239
and 233 result in long “slender” branches. It is these branches that result in the longest
sequences for this case, two of which are eight digits long. In total there are 24 primes
in this tree. As it will be seen later this is the joint largest tree in terms of nodes, and
shares the same longest sequences with each of the other trees. It is interesting that
this case, despite its limitation of potential digits, is not limited in size at all. In fact,
this is the only tree that has two sequences of length 8.

Unlike the previous case, when the number begins with 3 there are 4 potential digits
to concatenate to the number at some stages. There are still some limitations. For
example 3 and 9 result in coraposite numbers at the first stage but otherwise are
options at subsequent step. Meanwhile, at the first concatenation 1 and 7 result in new
primes but following that any sequence can only have one more of these numbers
before they become divisible by 3. This tree is not a bmary tree, but it very nearly is.
Only one node, 31, has three children. As can be seen in the following i image.

3
/\
31 37
/R /\
311 313 317 379
. /\
31119 31|37 3733 3739 37@99

l | PN |

31193 31379 37337 37339 37397

l |

373379 37339

|

3733799
|

37337995
Figure 3. Recursively constructed prime numbers with starting digit 3.

This case results in 23 prime numbers, one less than the previous case and also shares
the eight digit longest sequence. One element that is found in this sequence that is
absent from the previous example is twin primes. In fact, there are two pairs of primes
found in this tree; (311, 313) and (37337, 37339).
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/N

23 59

N

583 599

5939

TN

59393 59399

593933 593993

5939333

59393339
Figure 4. Recursively constructed prime numbers with starting digit 5.

The case with 5 as the first digit produces the most unusual trees. While the other
cases result in reasonably broad trees, this case results in a slender tree. Also, the
other cases result in 23 or 24 primes, but this case results in just 12 primes. As well as
this, it shares the limitation of potential digits with the first case examined, again
allowing only 3 and 9 to be concatenated to the number at each stage. Yet
surprisingly, the longest sequence found is 8, equal to that of all the previous cases.

7

T N

71 73 79

719 ’ 733 738 797
| PN |

7193 7331 7333 7393
| l |
71933 73331 73939
|
719333 7398391 739303 739397 739399

] /\

7393913 7393931 7393933

73939133
Figure 5. Recursively constructed prime numbers with starting digit 7.

The final case to be examined is the tree rooted at 7. Again there are limitations on the
use of 1 and 7 for these numbers. In this case, since the numbers begin with a 7, every
sequence can contain just one of either 1 or 7 at any subsequent stage. As with each of
the trees seen previously, this also shows some interesting characteristics.

Firstly, it is not a binary tree with two nodes having too many children. The node 7
has three children while interestingly 73939 has four children, one for each possible
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digit. This is a unique occurrence in this search. This tree has 24 primes, making it as
large as the first example and also has a longest sequence of 8 digits. However,
possibly the most interesting feature of this tree is that it contains five pairs of twin
primes; (71, 73), (7331, 7333), (739391, 739393), (739397, 739399), and (7393931,
7393933).

Conclusions

This article has proposed a new class of prime numbers called “recursive primes”.
Using Java computation all the recursive prime numbers have been generated. It has
been identified only 83 numbers that are recursive primes. Among them 5 pairs of
twin primes have been found.
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Smarandache Sequence of Happy Cube Numbers

Muneer Jebreel, SS-Math-Hebron, UNRWA
Field Education Officer, Box 19149
Jerusalem, Israel

Abstract : I have studied the Smarandache Happy Cube Numbers and [ have got
some interesting results and facts . I have discovered some open problems a bout the
Happy Cube and Smarandache Happy Cube Numbers .

Keywords : Fixed Happy Cube Number (FHCN), Cyclic Happy Cube Number
(CHCN), Consecutive fixed happy cube numbers , General Happy Cube
Numbers(GHCN), Happy numbers , Fibonacci numbers , Lucas numbers , Pell
numbers , Smarandache Fixed Happy Cube Numbers (SFHCN), Reversed
Smarandache Fixed Happy Cube Numbers(RSFHCN), Smarandache Cyclic Happy
Cube Numbers (SCHCN), Reversed Smarandache Cyclic Happy Cube
Numbers(RSCHCN), Smarandache General Smarandache Happy Cube
Numbers(SGHCN), ), Reversed Smarandache General Smarandache Happy Cube
Numbers(RSGHCN)

Definitionl : A positive integer is called Fired Happy Cube Numbers (FHCN) in
case, if you are cubing its digits and adding them together one time you got the same
number .

For example , 370 =3° + 7° + 0%, and , 371 = 3%+ 7 + 13 _ it follows that 370
and 371 are both considered as Fixed Happy Cube Numbers (FHCN).

While it’s worth notably that any permutation of the digits of the(FHCN) doesn’t

end with the same.integer e.g. 730 # 3° - 7 + o° In this case , the integer called
unhappy cube .

S0 the proposed sequence of the FHCN, is FHCN= { 1,153,370,371,407, ... }.

Open Problems needing answers

Is the sequence of the proposed FHCN finite or infinite 2

If it is infinite, what is the next number of 407 ?

What is the density of FHCN ?

[s there any sequence of FHCN following a definite mathematical patterns?
How many primes are there in FHCN 2

Is there FHCN and Happy Number at the same time ?
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7. Is there relations between FHCN and the following numbers :Happy Numbers,
Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

8. What about other bases or higher powers of FHCN?
9. We have 370 , and 371 consecutive FHCN, are there other consecutive
FHCN?
Smarandache Fixed Happy Cube Number ( SFHCN )
Detinition2 : Smarandache Fixed Happy Cube Number ( SFHCN ) is the number
formed from FHCN , as a result :
SFHCN = { 1, 1153, 1153370, 1153370371, 1153370371407 s eee Je

Note the following observations :

1. 1153 is a prime number.
2. 1153370 is happy number ( Because 12 +12 +5% +32 +37 +72+02 > 92 442
> 947 217437 107 > 12407 > 1
3. 1153370371407 . if we are squaring the digits and adding them together we

get the number 153 i.e. FHCN.

Open Problems needing answers

1) How many prime numbers are there in SFHCN 2
2) How many SFHCN and Happy Numbers are there at the same time ?
3) Is there a relationship between SFHCN and FHCN numbers ?
4) Are there consecutive SFHCN?
Reversed Smarandache Fixed Happy Cube Number (RSFHCN)
Definition3 : Reversed Smaraﬁdache Fixed Happy Cube Number (RSFHCN ) is the
number formed from SFHCN , as a result -

RSFHCN = { 1, 1531, 3701531, 3713701531 , 4073713701531, ... }.

Note the following observations :
1. 1531, and 3713701531 are bothe prime- RSFHCN .

2.3701531 is happy - RSFHCN .

Open Problems needing answers

1) How many prime numbers are there in RSFHCN ?

2) How many RSFHCN and Happy Number are there at the same time ?
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3)

4)

1y
2)
3)
4)
5)
6)

7

8)

9)

3.

Is there a relationship between RSFHCN and SFHCN ?

Are there consecutive RSFHCN?

Definition4 : A positive integer is called Cyclic Happy Cube Numbers (CHCN), in
case , if you are cubing its digits and adding them together many times you got the
same number .

Forexample , 160 > 1’ +6°+ 0> 2172+ 13+ 7 >
352 >3+ 57 +2% > 160. So 160 is cyclic happy cube numbers .

Consequently the proposed CHCN,is CHCN= {55, 133, 136 ,160,217 ,244,
250,352,919,1459, ... }.

Note that the numbers 919, and 1459 are prime numbers ,and the number 55 is
Fibonacci number.

Open Problems needing answers

Is the sequence of the proposed CHCN finite or infinite ?

What is the next number of 1459 ? If exist !

What is the density of CHCN 9

Are there any sequence of CHCN following a definite mathematical patterns?
How many primes are there in CHCN 9

Is there CHCN and Happy Number at the same time ?

Is there a relations between CHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers | and Pell Numbers ?

What about other bases or higher powers of CHCN?

Are there CHCN, 2,3,4,5 ,... etc , conseeutive CHCN?
Smarandache Cyclic Happy Cube Number ( SCHCN)

Definition5 : Smarandache Cyclic Happy Cube Number ( SCHCN ) is the number
formed from CHCN , :
hence SCHCN = { 55, 55133, 55133136, 55133136160, ... }.

Open Problems needing answers

How many prime numbers are there in SCHCN 2
How many SCHCN and Happy Number are there at the same time ?

Is there a relation between SCHCN and CHCN ?
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4. Are there consecutive SCHCN?

S. What is the density of SCHCN ?

6. Is there any sequence of SCHCN following a definite mathematical patterns?
7. How many prime numbers are there in SCHCN 2
8. Is there SCHCN and Happy Number at the same time ?

9. Is there a relation between SCHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

10. What about other bases or higher powers of SCHCN?
11. Are there SCHCN, 2, 3,4,5,... etc , consecutive SCHCN?
Reversed Smarandache Cyclic Happy Cube Number (RSCHCN)
Definition6 : Reversed Smarandache Cyclic Happy Cube Number ( RSCHCN ) is the
number formed from SCHCN ,
Consequently, RSCHCN = { 5513355, 13613355 ,16013613355, ... }.

Open Problems needing answers

1. How many prime numbers are there in RSCHCN ?

2, How many RSCHCN and Happy Number are there at the same time ?
3. Is there a relation between RSCHCN and CHCN 2

4. Are there consecutive RSCHCN?

3. What is the density of RSCHCN ?

6. Is there any sequence of RSCHCN following a definite mathematical
patterns?
7. How many prime numbers are there in RSCHCN 2

8. Are there RSCHCN and Happy Number at the same time ?

9. Is there a relation between RSCHCN and the following numbers : Happy
Numbers , Fibonacci Numbers , Lucas Numbers , and Pell Numbers ?

10. What about other bases or higher powers of RSCHCN?

11. Are there RSCHCN, 2,3,4,5,... etc , consecutive RSCHCN?
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2)

Definition 7 : If there are union between the set of the (FHCN) and (CHCN) , We
will get the General Happy Cube Numbers (GHCN), namely ;
GHCN={1, 55,133,136,153,160,217,244,250,352,370,371,407,919,1459,. )
Definition 8 :Smarandache General Happy Cube Numbers Jformed from GHCN ie.
SGHCN={1,155,155133,155133136,155133136153,...}.
Definition 9 : Reversed Smarandache General Happy Cube Numbers , which formed
from SGHCN ,
RSGHCN={1, 531 ,133551,136133551,160153136133551,...}.
All the above opened questions need answers .

Curious notes :

The digit 8 doesn’t appear . So is there happy cube number has in its digits the
digit 8?, or as I think it is impossible !

The sum of the digits of any General Happy Cube Number follows the
pattern { 1, 10,7,10,9,7,10,10,7,10,10,11,9,19,19,...}.

Acknowledgment: The author is grateful for Mr. Akram Jawabreh.
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ON THE DIVISOR PRODUCT SEQUENCES

ZHU WEIYI

College of Mathematics, Physics and Information
Science, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property of
the divisor product sequences, and obtain two interesting asymptotic formulas.

1. INTRODUCTION AND RESULTS

A natural number a is called a divisor product of 7 if it is the product of all
d(n

positive divisors of n. We write it as Py(n), it is easily to prove that Pyn)=n"2",

where d(n) is the divisor function. We can also define the proper divisor product

of n as the product of all positive divisors of n but n, we denote it by py(n), and
(
pa(n) =n

d{n)
2

~h. Tt is clear that the P;(n) sequences is
1,2,3,8,5,36,7,64,27,100,11, 1728, 13, 106, 225, - - - -
The p4(n) sequences is |
1,1,1,2,1,6,1,8,3,10,1,144,1, 14, 15,64, 1,324, 1, 1, 400,21, - - - .

In reference (1}, Professor F. Smarandache asked us to study the properties
of these two sequences. About these problems, it seems that none had studied
them before. In this paper, we use the analytic methods to study the asymptotic
properties of these sequences, and obtain two interesting asymptotic formulas. That
is, we shall prove the following two Theorems.

Theorem 1. For any real number z > 1, we have the asymptotic formula

1 1
Z Pd(’n,) =Inlnz+ Cl + O(Eﬂ-’,‘-)-

n<z
where Cy is a constant.
Theorem 2. For any real number z > 1, we have the asymptotic formula

)

Inln z

1

> =7(z) + (Inlnz)? + Blnlnz + Cy + O(
pa(n) , Inz

n<z:

where 7(z) is the number of all primes <z, B and Cy are constants.

Key words und phrases. Divisor products of n; Proper divisor products of n ; Asymptotic
formula..
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2. SOME LEMMAS

To complete the proof of the theorems, we need following several lemmas.

Lemma 1. For any real number x > 2, there is a constant A such that

1 1
Y~ =lnlnz+A+0(—).
orad Inz

Proof. See Theorem 4.12 of reference [2].

Lemma 2. Let z > 2, then we have

1 1
S22 ezt o0
< P Inz

where C is constant.

Proof. See reference [4].

Lemma 3. Letx > 4, p and q are primes. Then we have the asymptotic formula

1
Z (lnlnq:)z-i—Alnln:c-l—C'g—i—O(lnlnlnx),
q<qu T
where A and Cy are constants.
Proof. From Lemma'1 and Lemma 2 we have
2
1
Siloyivl (sl
pa<z ¥ p<¢‘ q<1 PEVE
Inp 1
=2 1 - Sl
> = (nlnx+1n(1 m)+A+0(m))
P<\/—
1 \2
(lnlnx+A—-ln2+O( ))
Inz
Inp 1 1Inp, 1,lnp 1. lnp
_2 nl | =& il Sl [ Sanad 0%
Z (n nE (lnx+ 2(1111-) * 3(111:1;) * n(lnfb) -
p<f
lnln:c 1 :
+24 Z ) — (1nlnm+A—ln2+O(——))
Inz Inz
p<\/“
= (lnlnz)? +2A1nln$+C'3+O(1n1nI)
Inz

This proves Lemma 3. 145



3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 2. Note that the definition of pa(n), we can separate n into four parts
according to d(n) = 2,3,4 or d(n) > 5.

2, ifn=p, pi(n)=1;
3, if n=p? py(n) =p;
dln) = 4, if n=p;p; or n = p*; py(n) = p;p; or p*;
din) 4

> 5, others, py(n) =n"7"
Then by Lemma 1, 2 and 3 we have
1 1 1 1 1
DEFEDNEID DL SE IS DE R UL SR
n<a ©4 p<z pips<z T picy pi<z n<z,d(n)>s M 2

= 7(z) +(lnlnm)g:—2Ah11n;r+C3+O(lnlnx

)+ Inlnz + A~
Inz

1 1 1
1n2+0(m)+04+0<x—%> +C5+O(ﬁ)

=m(z)+ (lnlnz)? + Blulnz + C, +O(1I]1nh;$).

This completes the proof of Theorem 2.

Similarly, we can also prove Theorem 1. Note that the definition of Pi(n), we
have

1 1 1 1
2R T2 G o L

1 1
—_— + -

p<e pip; <z Pz pP<z n<a,d{ny>s ™ 7
=Inlnz+C;+ 0(1—:;).
This completes the proof of Theorem 1.
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ON THE CUBIC RESIDUES NUMBERS
AND k-POWER COMPLEMENT NUMBERS

ZHANG TIANPING

Department of Mathematics, Northwest University
Xi’an,Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property of
the the cubic residues and k-power complement numbers {where k > 2 is a fixed
integer), and obtain some interesting asymptotic formulas,

1. INTRODUCTION AND RESULTS

Let a natural number n = p$* - py? - - --p2" | then az(n) = pfl -pﬂ? - --pP is called
a cubic-power residues number, where 3; = min(2, q;),1 <i<r; Also let k > 2 is
a fixed integer, if b (n) is the smallest integer that makes nby(n) a perfect k-power,
we call bg(n) as a k-power complement number. In problem 64 and 29 of reference
[1], Professor F. Smarandache asked us to study the properties of the cubic residues
numbers and k-power complement numbers sequences. By them we can define a
new number sequences az(n)bx(n). In this paper, we use the analytic method to
study the asymptotic properties of this new sequences, and obtain some interesting
asymptotic formulas. That is, we shall prove the following four Theorems.

Theorem 1. For any real number x > 1, we have the asymptotic formula
6$k+1
(k+1)m2

> aa(n)bg(n) =

n<r

R(k+1)+ 0 (gh+i+),

where € denotes any fized positive number, and

R%+&)=II(L+—~£iigm—>

- Pr+pf—p—1

if k=2 and

k—j+3 k k—j+3
_ : p p . -
lﬂk+1%—tl 1+2§@;:ﬁ;€ﬁn*f: (p+ 1) (pF+D0+3) = pleFi)

if k> 3.

Key words and phrases. cubic residues numbers; k-power complement numbers; Asymptotic
formula; Arithmetic function .
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Theorem 2. Let p(n) is the Buler function. Then for any real number z > 1, we
have the asymptotic formula

6$k+1 * k+i+te

n<z

where

R k+1)= 1+ -
( ) 1;[( PP+ 2p5 +2pt +2p3 +2p2 + 2p+ 1 p24p
if k=2, and

1 k prits k=2 pEiHE _ pheit
R*(k+1) = 1-— — + . .
l;I PPtp ; (p+ 1)ph+ls ; (p+ 1) (plE+LE+7) — plh+1)7)
if k> 3.
Theorem 3. Let a >0, 04(n) = Y d*. Then for any real number z > 1, we have
dln
the asymptotic formula
b . 6Zka+l k O ka+i+s
2 oalastmbu(n) = s Rk 1) + 0 (h i),
where :
(] 1 3a_1 2a+1 4(1_1
Rika+1)=]] (1 p2+ L )P+ p
p + 1 atl T (p32atl) _patly(pa 1)
P
ifk=2, and
phatl k (k—j+3)a+1
P - P
R(ka +1 H, 1 + ( ]ca+1 + p I 1 _ l)p(ka+l)j
p F=2
k 84
+Z (k —j+3)a+1 —p
— k) (ka+1) _ plkatl
= p+ 1 p 1)(1)( Fket1) p( a+ )J)

ifk>3.

Theorem 4. Let d(n) denotes Dirichlet divisor function. Then for any real number
z > 1, we have the asymptotic formula

Bx 1
Z d(az(n)bk(n)) = 2R(l) - fllogz) 4+ O (:ci-i—a) ’
n<z
where f(y) 15 a polynomial of y with degree k. and

R =] (14 (pfl)a e 5))

p+p p p

r
k=2, and
k o _ (k+1 feo g1
R =] 1+Z<k 3= (7))ot “Y S
; = (p+ 1)k+1 b (p+ )L (pi—L — k1) ~ (p £ [)F+1

if k> 3. 148



2. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. Let

[e-0]

=3 03(”)[%(”)‘

ns
n=1

From the Euler product formula [2] and the definition of asz{n) and by (n) we have

6 =] (1 N as(pgsk(p) . aa(pz)sic(pz)) +)

> P

1 9, 1 b4 1
= (1+ps-—2 +p (pQ.s + F;)(l __p—ZS))

_ C(s—k) P’ +p
- C@2(s— k) I;I (1 v 1)(p? — 1))

if k=2, and
a3(P)be(p) | aa(p®)bi(p?) |
f(S)MH(l_i_ ps p2.9 —
P.
ko k—j k—j-+2
— 2\~ P 1 P
"_H(l—*— 3—k+p ZZ pjs +(1 pia)zp(k-ﬂ)s)
P J=
1 pa-k k pk—j+2 k pk j+2
= H(l + ps-k + 1 +pa—k Z pja - Z p(k+y)s - pIs
. k . k .
C(s = k) p°mIt? p* It
=l 1+ g+ - -
et -0y L 2 G L ) )
if k£ > 3.
Obviously, we have inequality
— be(n) 1
b < 2 I am(n) k
em(moml <nts 1) RS < oy

where ¢ > k + 1 is the real part of 5. So by Perron formula (3]

am ()bi(n) 1 T xs 2 B(b + o)
Z—(T-L—————“/ f(s+so)—ds+0(h)
b 3

5 i -
n<z n°o . 29 —iT T

1
+0 (xl_”"H(?w) min(1, %‘i)) +0 (a:""“H(N) min(1, ﬁ)) :
T
where N is the nearest integer to «, ||z|| = |z — N|. Taking sq =0, b=k + 2,’
T =z%, H(z) = 2*, B(o) = —+—, we have

3 1 k+2+:T C(S _ k) ® ’ 1a.
S omin) =g [ TG Ty s + Ot
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where

P’ +p .

1 fhk=2;
H( T GE=T) ThEE
ps—]+2 ps—]—{-Q .

+ - . if k> 3.
— o F G gy | HE2

(p*=F + 1)ps* £

=
&,
!
Lo
/‘;\
+
I

To estimate the main term

L/‘k+2+iT C(s = k)

:I,'S 1
_ "= R(s) —ds + O(z*T2+%),
207 Jpaoir S5 =R =)

we move the integral line from s = k+ 2+ T to 5 = k + % +17". This time, the
function
(s ~ k)z*
C(2(s ~ k))s
have a simple pole point at s == k + 1 with residue (—,ﬁg;—(Q—)R(k +1). So we have
1 k+2+iT k+5+iT k+3—iT k+-2—4T A
P / +/ -l-/ +/ MR(S)ds
2\ Jgyamir k42447 kLT k+i—ir ) C(2(s —&))s
pk+1

We can easy get the estimate

1 PR3 HET k42—iT R A
— / + / L=k R(s)ds
211\ Jrpopir k+loiT C(2(s —k))s

< /’““ ((o =k +4T) 2
k+1

(Rlo —kray) ST
1, /"‘%‘” (s — k)a?

218 Jiryir C(2(s = k))s

f(s) = R(s)

$k+2

do <

and

C(1/2 + it) zP+3

Als)ds C(L-+2at) ¢

dt <« zk+its,

T
«f
40

Note that {(2) = %2, from the above we have

6Ik+1

Z G.3(TL)bk('ﬂ) = m

n<x

Rk+1)+0 (mk+%+s) _

This completes the proof of Theorem 1.
Let

fl(S)ZZMMﬂ, f2(3)=zg°ﬁt(:3b_’“(”)~), fals)
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From the Euler product formula [2] and the definition of w(n),oa(n) and d(n), we
also have

-] (1 . w<a3<§>sbk<p>> N w(aa(ppz)fk@ D, )

_ <1+pé:p+%p”—p+p3—ﬁ)@_i__ﬂ

. D p2s p3s 1— p—2s
1 1 -p)p° +
= (1 + ps—2 B ps——l + (p pSf)Epps p))
p

g )

P —p pot

2,

Pt p(lc+j)s _pjs

fl(s):H(l+psl—k DS k+1 +Zp

k—j+2 k‘l ko k—j+2 k—j-+1
—Ji+ i+ pH'—p J+)

3—5+2 —-p s—j+1

_ C(s—k) 1 p
—WEI(I P g Z 7 F 1)

k —j—’—2 ps—j+1
Z (p k+7)s _ ij)

j=2 ]=1
if k> 3.
Mﬂ=qhm)ﬂ( 3h(f+uw“4m+ﬁ~w)
2(s — 2a)) pr2e L1\ pe (p% —p)(p> — 1)
if k=2, and

— pika k p(S-j)a+s — po—ka

(s — ko)
fals) = 2(s—ka) IPI <1+ - ka+1)(pa—1)p ; (p*=*e + 1) (p™ — 1)pi=

k .
+Z p(3 J)OH-S,_pS ka
= @R (e - 1 (pkEDs — pis)

ifk>3.
(3(3) ( p33 ( 3p® +4 3 1 ))
= 1+ — T, Ty
fa(S) §3(25) I;‘[ (ps + 1)3 p33 + ps pzs p33
ifk =2 and
k+1 £ (& -4 k+1 p(k—j+l)s
fa( i-‘rl S)H 1+ ( (Jk))l
(R L o (p° + )%

k

k—j+3 1

+; (p* + 1)*+1(p—1s _ pl—F= Is) - (ps+1)k+1)
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if k> 3.

By Perron formula [3] and the method of proving Theorem 1, we can obtain
the other results. Generally we can use the same method to study the asymptotic
properties of the number sequences am (n)br(n) (where m, & > 2 are fixed integers),
and obtain some interesting asymptotic formulas. ‘
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A CONJECTURE CONCERNING THE
SMARANDACHE DUAL FUNCTION

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
PR.China

Abstract: In this paper we verify a conjecture concerning the
Smarandache dual function.

Key words: Smarandache dual function; factorial; gap of primes

For any positive integers n, let S'(n) denote the greatest positive
integer m such that n=0 (mod m!). Then S'(n) is called the
Smarandache dual function. In (2], Sandos conjectured that

Sk 2 1) )=g-1, (i)
Where k is a positive integer, q 1s the first prime following 2k+1. In this
paper we prove the following result. |

Theorem. (1) holds for any positive integér k.

Proof. Since g is a pri-me with ¢ > 24+1, we have

(26~ 1) (2k + 1120 (mod ¢). (2)

Supported by the National Natural Science Foundation of China
(No.10271 1()4..), the Guangdong Provincial Natural Science Foundation
(No.011781) and the Natural Science Foundation of the Education

Department of Guangdong Province (No.0161).
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It implies that S*((2/f~1)! Ck+1))<g-1. Further, since ¢ is the least

prime with ¢ >24+1, by Bertrand Postulate (see [1, Theorem 418]), we

have

qg=>2(2k+1). (3)
Hence, by (3), any prime divisor p of ¢-1 satisfies

p<2k-1. (4)

For any positive integer a and any prime p, let ord,a denote the
order of p in a. It is a well known fact that
ord n! = fi[-?;J, ()
r=1 P
where [x] s the Gauss function of x. We now suppose that
S*((2k ~ 1) (2k + 1))<<g—1. Then there exists a prime p sucn that
ord,(24-1)!+ord ,(2k+ 1)1 < ord,(g-1)!. _ (6)
Hence, by (5) and (6), we get

[2k:1J+[2kjl}<[q71J
P L P p

tor a suitable positive integer 7. From (7), we get

L e
{ukr11+{2kle+lg[gi | ®

plLr p

=~
=~
R

whence we obtain
- 4k<<q-1. (8)
It foilows that g=>4k+2, a contradiction with (3). Thus, we get

*

S((2k - 1) (2% + 1))=g~1. The theorem is proved.
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A NOTE ON THE 29-TH SMARANDACHE’S PROBLEM*

Liv HONGYAN! AND LoU YUANBING2

1 Department of Mathematics, Xi’an University of Technology
Xi'an, Shaanxi, P.R.China
2 Department of Mathematics and Physics, Tibet University
Lasa, Tibet, P.R.China

ABSTRACT. Let n be a positive integer, ax(n) be the k-th complement number of n.
In this paper, we study the mean value properties of the k-th complement number
sequences, and give an interesting asymptotic formula.

Classification Number: 11B37 11B39

1. INTRODUCTION

For any positive integer n to find the smallest integer ax(n) such that nag(n) is
a perfect k-power(k > 2), we define that ax(n) is the k-th complement number of
n. Let n. = p{*p3® - p2», then ag(n) = pPp ... oy Where a; + 3; = 0(modk)
and 3; < k,i=1,2,---,m. In problem 29 of [1], Professor F.Smarandach asked us
to study the properties of the k-th complement number sequences. In this paper,
we use the analytic methods to study the mean value properties of this sequences,
and give an interesting asymptotic formula, That is, we shall prove the following:

Theorem. For any positive number z > 1, we have the asymptotic formula

S den(m) ot oy v 0 (a%7).
n<

dlar(n))
k k=1 2
where g(k)‘= H [1 + T 0 + p%+k—3(p gy 4t m} ; d(n)

is the Dirichlet divisor functzon, ¢(n) is Euler function, £ is any fized positive
number.

Especially taking ¥ = 2, we have
Corollary. For any positive number > 1, we have the asymptotic formula

d(az 1te
Zqo(azn))”"" H( J/Blp —1>)+O(‘“+>‘

n<z

Key words and phrases. complement number; mean value properties; asymptotic formula.
* This work s supported by the N.S.F. and the P.S.F. of P.R. China.
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2. PROOF OF THE THEOREM

In this section, we shall complete the proof of the Theorem. Let

_ = d(ag(n))
i) = Z d(ak(n))ns’

n=1

From the Fuler product formula [2] and the definition of ay (n) we have

)= 3 eelr))

i1 ¢lak(n))ne
T et )
I e e )
-
=11 [ o (1)—? +"'+¢<p>p(k~5(5él-pt)}
~ T g kkllz)f Tt g
)l} [1 T 2(p— Oy " p‘“*éfp——ll)pi’s L m}

1

where {(s) is Riemann-zeta function. Taking b = %4— ﬁ;, T = x2%, then by Perron
formula [3] we have

v

dlak(n)) 1 btil z* m_b z*logz
> Soctd) = 5 o 1O B0 () o=

n&T

1 b1 s

xr 1
- il spte
2 b—3iT f(S) 3 ds + O (-T ) )

. 1 1
Taking a = 5 + Togz» We have

b+1iT a+T g—iT b1 T 2% 1
27” /— / »/a+iT +/a—::T = fles [f(s)_;’z]

H[ PR Sut S }
» prTR- 2( ~1)  prtk=3(p_1) P (p—1)

Note that the estimate

1 a+iT xs
%/ﬂ_ﬂ f(s)?

1
& p3E +s;
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i L
o 10| < T e
and it .
5% a+i; f(S)ESs— < x;j-s < xﬁ‘*‘E’
we have
) d(ax(n))
2 Bla ()
L k k—1 2
Bl Y = = T TR T R )

This completes the proof of the Theorem.
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ON THE -FULL NUMBER SEQUENCES

XU ZHEFENG

Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

ABSTRACT. The main purpose of this paper is to study the asymptotic property
of the k-full numbers (where k& > 2 is a fixed integer), and obtain some interesting
asymptotic formulas.

1. INTRODUCTION AND RESULTS

Let k > 2is a fixed integer, a natural number n is called a k-power free number
if p* { n for any prime p. If p | n implies p* | n, we call n as a k-full number.
In problem 31 of reference [1], Professor F. Smarandache asked us to study the
properties of the k-power free number sequences. It is clear that there are some
close relations between k-power free number sequences and k-full number sequences.
In this paper, we use the analytic method to study the asymptotic properties of
k-full number sequences, and obtain some interesting asymptotic formulas. That
is, we shall prove the following six Theorems.

Theorem 1. For any real number z > 1, we have the asymptotic formula
6k - 21 +% 1

Zn:_L_%H(H : )w(xlﬁw),
G+ LT G -

ncA
n<T

-

where € denotes any fized positive number.

Theorem 2. Let ¢(n) is the Euler function. Then for any real number z > 1, we
have the asymptotic formula

Gk: :L'H'k p—p 1ol
—;ﬂ'+5) .

-

Key words and phrases. k-full number; Asymptotic formula; Arithmetic function.This
work is supported by the N.S.F.(10271093) and P.N.S.F of P.R.China.
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Theorem 3. Let a >0, ou(n) = 5" d*®. Then for any real number z > 1, we have
din
the asymptotic formula

Theorem 4. Letd(n) denotes Dirichlet divisor function. Then for any real numnber
T 2 1, we have the asymptotic formula

_ 6k-g¥ (2pF — 1) 5 (MY pri-i — gphti
;d( " 1;[( i (p+ 1)k+1(ph — 1)2 - f(logz)

n<z

+ 0 (zfl‘?+€) .
where f(y) is a polynomial of y with degree k.

Theorem 5. For any real number z > 1, we have the asymptotic formula

2 eallmm) = 5T (14 ﬁ(l;;—-ﬁ) I (1)

neAd ptm p+1 w8 |m p(p’“ - 1)
n<z B<k
I[ (1435t S 2T ) (2
X 14+ Y p~ P4 == ( )+O( k+5).
1
PP 1=k p(p* -1 plm P
B>k

where m is any fized integer, (m,n) denotes greatest common divisor of m and n.

Theorem 6. For any real number > 1, we have the asymptotic formula

To((m,n)) 6k - <t ! (pﬁ P l)p")
2 rellmn = E(H@Jﬂxp%—n)ﬂn( Po¥ — 1)
n<z . B<k
y i P =P 08\ 1 (2N | (e

pg[m( ;c BRh plpx — 1) )yn(p+l)+o( )

B>k

2. PROOF OF THE THEQREMS

In this section, we shall complete the proof of the Theorems. For convenlently
we define a new number theory function a(n) as follows:
1, ifn=1;
a(n)= ¢ n, ifnisa k-full number

0, if nis not a k-full number
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It is clear that

Zn = Za(n).

neA n<w
n<r

Let

sl =340

From the Euler product formula [2] and the definition of a(n) we have

k alpktl
f(S) - H (l + apks) + p((f-l-l)s) - )

1 1
T i)
1 1
= L1 (1 50 TL {1+ e )
_ S(E(s 1) L 1
" C(2k(s - 1)) H (1 N CRESFo 1)) -

where ((s) is Riemann zeta function. Obviously, we have inequality

i a(n)

n=1

1

la(n)| <mn, <

where o > 1 — % is the real part of s. So by Perron formula [3]

b41T s
yam_ L f(3+30)%dsTO(M)

nez nSe 2171' b—iT T

+0 (1‘1_”°H(2z) min(1, %—I ) +0 (w”“OH(N) min(1, ﬁ)) ,

where N is the nearest integer to =, ||z = |z - N|. Taking s9 = 0, b = 2 + -3

T =z'*%, H(z) = z, B(o) = ——, we have
k

urw +E—iT C(Qk(s—l))

n<xe

Z a(n) = _1_ /2+7;+iT MR(S)?(ZS + O(xl"'?li"'*'a),

where

1
7= 1 (1+ gy

P

To estimate the main term

;/2+%+iTM
247 24 L—iT C(2k(s - 1))s
161

R(s)ds,



we move the integral line from s = 2 + % LiiTtos=1+ % £ 7. This time, the

function
C(k(s ~ 1))z

C(2k(s —1))s

have a simple pole point at s = 1 + % with residue

f(s) = R(s)

kzlT 1
Gine B(1+ £)- So we have

1 24 £ +iT I+ o +iT 1 —iT 2+1—iT (s — R
1 VAR A B ACCRIN
20\ Jay 1 ir 241 4T Lo +iT 1+ it | C(2k(s —1))s
ol (o)
G e U e
We can easy get the estimate
1 4+ 55 +iT 2+1 T E(s — 1))z
[ Clk(s ~1)s b
2t \ o g 144 —ir ) C(2k(s — 1))s

25| C(k(o =1 +4T ¥
< [ S 1)
1+
and

C(2k(o =141 O 7

1 14 4 —iT .

[T et [

i, 1+ ok T C(2k(s — )) 0

Note that ((2) = %, from the above we have
6k -$1+7} 1 1+ +e

Zn—_*—(k+l)7r21](l+ T >+O(a: 7% )

neA (p+.1)(p" _1)

n<z

24+ L
T k 1+517€

do <

=T

C(1/2 + ikt) z1* 7

B(s)ds C(1F 2ikt) ¢

dt < gltaete.

This completes the proof of Theorem 1.
Let oo

MB

!!

n=1 n=1 n=1

neA neA ncA

f4(3) — Z UQ((;T;,TZ)), | fS(S) — Z (p((::l: ﬂ))
nea neA

From the Euler product formula [2] and the definition of w(n),o4(n) and d(n), we
also have

k k+1 o 1
fl(s):H(l""(ﬁ;ﬁ)+i§f+1)s)+'”) H(l+ 153)(1-— L ))

P P po!

_ Clk(s—1)) p—pt .
- ((2k(s - 1)) I;I (1 * (p*s=1D + 1)(pe —p)) ’
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C(k(s — ) L (p*~= ~1)p* 5, (517)& bt pro 1) |
T k(s —a)) ]‘;‘[ L (pk(s—a) + 1)(ps«a — 1)(198 - 1) ) ’

B C;H_l(ks) (2ps _ 1) Zf;"zl (kjl)pk(k+l—i)s - kp(k2+1)s .
fa(s) = CFFI{3ks) 1;[ (1 + ;

(pFs = 1)*+I(ps = 1)2

co((m, p* oo l(m, pFtt
=T (14 202D 2allmmty

| 1
11 1+ e =
7o (%) S oar) | calp?)
X H (1+pka(1_.l.)> H (1+Z i +p’”(1—;};)>

2 i 2/ /) p0m =k P
B<k B>k
and
((ks) p* ) 1
1
f5(s) ((2ks) H P41 pgn * Pk + 1 (p* - 1)
p? ~ph-t ) Sp—pl P pp
x H (1 5 ks 1 H 1 +Z 18 + ks 1 N
wim A PO S P Prt= )
A<k B>k

By Perron formula [3] and the method of proving Theorem 1, we can obtain the
other results.
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A NOTE ON THE 57-TH SMARANDACHE’S PROBLEM
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ABSTRACT. For any positive integer n, let v} be the positive integer such thai: the
set {1,2,--- »71} can be partitioned into n classes such that no class contairs integers
Z, ¥, = with 2¥ = z, let 7y be the positive integer such that: the set {1,2,--- T2}
can be partitioned into n classes such that no class contains integers z, v, z with
T +y = & In this paper, we use the elementary methods to give two sharp lower
bound estimates for r; and ro.

1. INTRODUCTION

For any positive integer n, let 7, be a positive integer such that: the set
{1,2,--. , 71} can be partitioned into n classes such that no class contains integers
T, Y, z with z¥ = z. In [1], Schur asks us to find the maximum rq, and there is the
same question when no integer can be the sum of another integer of its class. About
these problems, it appears that no one had studied them yet, at least, we have not
seen such a paper before. These problems are interesting because it can help us
to study some important partition problem. In this paper, we use the elementary
methods to study Schur’s problem and give two sharp lower bound estimates for r,
and 7. That is, we shall prove the following:

Theorem 1. For sufficiently large integer n, let r be a positive integer such that:
the set {1,2,--- | r1} can be partitioned into classes such that no class contains
integers x, y, z with z¥ = z. For any tnteger m with m < n + 1, we have the
estimate )

ry > n™rh

Theorem 2. For sufficiently large integer n withn > 3, let T be a positive integer
such that: the set {1,2, ... .72} can be partitioned into n classes such that no class
contains integers x, 1y, z with z + y=2z. We have the estimate

re > 277.{—1‘

Key words and phroses. Smarandache'’s problem; Partition; Lower bound..
* This work is supported by N.5.F.(10271093) and P.N.S.F. of P.R.China
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2. PrROOF OF THE THEOREMS

In this section, we complete the proof of the Theorems.

First let ry = ™! and partition the set {1,2,---, 7} into n classes as follows:
P

Class 1: 1, n+1, n+2 cee o™

Class 2: 2, n™+1, nm™+ 2, cee o 2nm

Class 3: 3, 2n™ 41, 2n™ 4+ 9, s, 3n™.

Classk: &k, (bA-Dnm+1, (k=1n™+2, -, ko™

\ Classn: 7, (n—-1)n™+1, (n—Unm™+2, ..., n¢p7Fl

It is clear that Class k contains no integers x, y, z with z¥ =z for k = 2,3,4,- - , n.
In fact for any integers «,y,z € Class k, k = 2,3,4,--- ,n, we have

2V > (k- 1™+ 1) > k(k— DF i s g s

or
z¥ > pE-UeTHl o ppm s
On the other hand, whenn > m —1, we have (n+2)™*D > n™ and (n+1)(*+2 >
n'™. So Class 1 contains no integers z, i, z with z¥ = z, if n > m — 1.
This completes the proof of the Theorem 1.

Then let 5 = 2% and partition the set {1,2,--- ,ry} into n classes as follows:
( Class 1: 1, 2, on g on—l L2,
Class 2:  2+1, 22, 22 4+ 1, 22 4+ 2, on+l
Class 3: 22 +2+1, 23 23 41, , 28242242
Class 4: 23 =22 4241, 24 24 41, , 24234929
Class k:  2F=h 4 2k=2 4 o041, 2k 9k , 2k pokmlg 92
Classn: 20149724+ 4941, 927 2741 ... 9na9n-l . 192.9

It is clear that Class k contains no integers z, y, z with z+y =z for k = 3,4, - - -

, 7.
In fact for any integers z,y,z € Class k, k = 3,4,--- ,n, we have
AR Lt I S A LSS LR Lt N Eag§

On the other hand, when n > 3, we have (22 + 1) + (22 +2) < 2 and 1 + 2 <
2" 4271 4.+ 24 1. So Class 1 and Class 2 contain no integers z, y, = with
z+y=2zifn>3

This completes the proof of the Theorem 2.
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Diverse Algorithms To Obtain Prime numbers Based
on the Prime Function of Smarandache

Sebastian Martin Ruiz
Avda. de Regla 43, Chipiona 11550
Spain
E-mail: smrutz@telefomicanet

Abstract: In this article one gives seven formulas, six of the author S. M.
Ruiz, and one of Azmy Ariff. One also gives their corresponding algorithms
programmed in MATHEMATICA.

In the first four formulas all the divisions are integer divisions.

FORMULA 1: Formula to obtain the nth prime [1], [3]:

2({niogn fu) sc Ji
plmy=1+ > 1= > 11+ 242> ((G-D/s—j/s) | [j|] /m

k=1 J=2 s=|

ALGORITHM 1: (G is the Smarandache Prime Function in all Algorithms)

DDIi_}:=Sum[Quotientfi,k}-Quotient{(i-1),k],{k,1,Floor[Sqrt{i]}}]
G[n_}:=Sum|1+Quotient[(2-2*DD{j]).jl.{j.2,n}]
P[n_):=1+Sum[1-Quotient{G[k],n],{k.1,2*(Floor[n*Log[n]]+1)}]
Do[Print[P{n]," ",Prime([n]],{n,1,50}]

FORMULA 2: Formula to obtain the next prime [2], [3].

wilp)=1+p+ 3 T ||| 202301 )|/

k=p+l j=p+l

ALGORITHM 2:

p=input["input a positive integer number:"]
DD[i_]:=Sum[Quotient[i j]-Quotient([(i-1),j], {.1.Floor[Sqri[il]}]
Gli_]-=-Quoatient[(2-2*DDIi]),i}

FIm_}:=Product{G[i]{i,p+1,m}]
S{n_}:=Sum[F[m],{m,n+1,2"n}]

Print{"nxt(",p,")=",p+1+3[p]]
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FORMULA 3: Formula to obtain the next prime in an arithmetic progression a+dn [4]:

k Jarjd
nxt(a,d)(py=p+d+d. i H {~[(2+2 Z((a+jd—1)/s—(a+jd)/5)}/(a+jd)ﬂ

k=lH{p-a)(d j=l+{p-a)id

ALGORITHM 3: Example for the arithmetic progression 5+4n

a=5

5

dd=4

4

M=20

20

=5

5
DD[i_]:=Sum[Quotient[(a+i*dd),j]—Quotient[a+i*dd—1,j],
{j,1,Sqrtlat+i*dd]}]
G[i_]:=—Quotient[(2~2*DD[i]),(a+i*dd)]
F[m_]:=Product[G[i],{i,(p—a)/dd+1,m}]

S{n_]1:=Sum[F[m], {m, (p~a)/dd+1,M}]

While[p<a+ (M-1) *dd+1,Print["nxt(",p,")=",p+dd+dd*S[p]] -,
p=p+dd+dd*s [p]]

nxt (5)=13

nxt (13)=17
nxt (17)=29
nxt (29)=37
nxt (37)=41
nxt (41)=53
nxt (53) =61
nxt (61)=73
nxt (73)=89

FORMULA 4: Formula to obtain the next prime in all positive increasing integer
sequence g, |, ={/(m)},..

NXT,(p) = f[f"l p+1+ > [T

k27 (p)l =7 ()

(G is the same of the previous algorithm 2)
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ALGORITHM 4:
Example 1: For a, =n" +4

M=40

40

f{n_]:=n"3+4

f1lp_l=(p-H"(1/3)

Glx_[:=Quotient[(2+2*Sum|Quotient[(x-1) , s]-Quotient[x , s}, {5, 1, Sqrt[x]}]), x]
NXT[p_]:=fIf 1[p]+1+Sum|[Product{G[f[jil.{j . f L{p]+1 , k}], {k, f 1{p]+1,M}]]
p=il1]

3

While[p < f[M], (Print[ NXT[p},”“, PrimeQ[NXT{p]l]; p=NXTIpDI

31 True
347 True
733 True
6863 True
15629 True
19687 True

(It is necessary that f{M) > NXT(p) so that the result is correct.)

Example 2: For a, =n* +1

M=125

125

fin_]:=n"2+1

f 1[p_}:=Sqrt[p-1]

G{x_|:=Quotient[(2+2*Sum|Quotient[(x-1) , s}-Quotient[x , s], {s, 1, Sqrt[x]}}), x}
NXT{p_]:=fIf 1[p]+1+Sum[Product{G[f(j]],{j , f 1{p]+1 , K}], {k , f H{p]+1,M}]]
g=f[11 ’

White[p <1{M], (Print[ NXT[p},” “, PrimeQ[NXT]{p||]; p=NXT[pD]

5 True

17 True

37 True

101 True

197 True

257 True

401 True

577 True

677 True

1297 True

1601 True

FORMULA 5: Algorithm to obtain the prime numbers based on Newton’s method
applied to the function gamma [3].
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(*NEWTON'S METHOD APPLIED TO THE CALCULATION OF PRIME
NUMBERS *)

ndiezfs_]:=N[s,10]

$Post=ndiez

ndiez

P={3

%

er=10.~(-3)

0.00001

Blx_i_j_l=(-1YP}}

EB{x_,i ,j ]=Floor{B[x1,j]+er]

LL{x ,i }=Log[P[{ill,x-1.}

EE[x i J=Floor{LL[x,i]+er]
Sx_i_1=SumfEB[x,i,jl,{, LEE[x,il}]
F[x_,n_J:=Gamma[x]-Product{(P[[i]])"S[x,i],{i,1,n-1}]
xx=0.

0.

Dol {xx=xx+25.,

Dolxe=xx-Flxx,i)/ (Gamma[xx]*PolyGammaf0. xx])
{175} ,P=Join[P, {xx} ], Print[xx," ", Primelil]},{i,1,50}]

FORMULA 6: Formula to obtain twin primes:

For odd n > 7, the pair (n, n+2)} of integers are twin primes if and only if

) -

where the summation is over odd values of i through j = ]_%J

‘

AGORITHM 6: Algorithm to check if a given number is part of a

couple of twin primes (Ruiz-Ariff):

Infl]:= n=2000081; If[Sum[Floor[(n+2)/i]-Floor[{(n+l) /il
+ Floor{n/i]=~ Floor{(n-1)/i},{i,1,FlooxrIn/3],2}]

== 2, “True”, “False’]

Qut{1j= True

FORMULA 7: (Azmy Ariff): Ifa >0, ¢y=0 and {e,, e,, ..., ex} is an admissible set of
positive integers in the open interval (0, n—2), then (n, n+e,, ntes, ... , nter) is a sequence of

S g

j=0
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ALGORITHM 7:

The following example is a non-optimum implementation with a = 3 to search for prime
quadruplets (n, n+2, n+6, n+8) below 10000.

Inf2]:= a=3; n=10000; e={0, 2,6, 8};

Do[If[Sum[i*a Floor[(j+el[k]1)/i]l, {k, Lengthlell}, {1,

]}]== Length[e] + 3*a+ Sum[i*a Floor[{j+e[[k]] -1)/i},
{k, Length[el},{i, J}]1, Print(Table[j+e[[k]],
{k, Length[e]l }111,{3, n}]

{5, 7, 11, 13}

{11, 13, 17, 19}

{101, 103, 107, 109}

{191, 193, 197, 199}

{821, 823, 827, 829}

{1481, 1483, 1487, 1489}

{1871, 1873, 1877, 1879}

{2081, 2083, 2087, 2089}

{3251, 3253, 3257, 3259}

{3461, 3463, 3467, 3469}

{5651, 5653, 5657, 5659}

{9431, 2433, 9437, 9439}
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ON THE SIMPLE NUMBERS AND
THE MEAN VALUE PROPERTIES*

Liv HONGYAN = AND ZHANG WENPENG

1. Department of Mathematics, Northwest University
Xi’an, Shaanxi, P.R.China
2. Department of Mathematics, Xi’an University of Technology
Xi’an, Shaanxi, P.R.China
Email: lhysms@sina.com

ABSTRACT. A number n is called simple number if the product of its proper divisors
is less than or equal to n. In this paper, we study the mean value properties of the
sequence of the simple numbers, and give several interesting asymptotic formulae.

1. INTRODUCTION

A number 7 is called simple number if the product of its proper divisors is less
than or equal to n. For example: 2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,---.
In problem 23 of [1], Professor F.Smarandach asked us to study the properties
of the sequence of the simple numbers. Let A is a set of simple numbers, that
is, A = {2,3,4,5,6,7,8,9,10,11,13,14,15,17,19,21,---}. In this paper, we use
the elementary methods to study the properties of this sequence, and give several
interesting asymptotic formulae. That is, we shall prove the following:

Theorem 1. For any positive number > 1, we have the asymptotic formula

v ! (nlnz)?+ Byinlns+ By +0 (lnln"") ,
eyl | Inz
n<z

where By, By are the constants.

Theoreni 2. For any positive number = > 1, we have the asymptotic formula

> = (@) + CiInlnz + Gy + 0 (1“1”) .
! o(n) Inz

n<r

where Cy, Cy are the constants, ¢(n) is Euler function.

Key words and phrases. The simple numbers ; Mean value properties; Asymptotic formula.
* This work is supported by the N.S.F. and the P.S.F. of P.R.China.
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Theorem 3. For any positive number > 1, we have the asymptotic formula

Inl
3 e~ (alng)®+ Dilalug + Dy + 0 ( = ”) ,
=4 a(n) Inx

n<x
where Dy, Dy are the constants, o{n) is divisor function.

2. SOME LEMMAS

To complete the proof of the Theorems, we need the following two Lermmas:
First Let n be a positive integer, pa(n) is the product of all positive divisors of n,

that is, py(n) = H d. g4(n) is the product of all positive divisors of n but n, that
din

is, gq{n H d. Then we have
din,d<n

Lemma 1. Let n € A, then we have n =p, orn = p?, orn = p°, or n = pq four
cases.

Proof. From the definition of pg(n) we know that

:Hd:H%.

din din

So from this formula we have

(1) pg(n):deHg:Hn:nd(").

d|n din din

where d(n Z 1. From (1) we immediately get pg(n) = n “# and

din

IJE
(2) . Qd(ﬂ) _ H d = d]:L _ nd(;) 1.

din,d<n

By the definition of the simple numbers and (2), we get n %5 -1 < n. Therefor we
have

d(n) < 4.

This inequality holds only for n = p, or n = p? or n = p®, or n = pg four cases.
This completes the proof of Lemma 1.

Lemma 2. For any positive number z > 1, we have the asymptotic formula

1 1
Z i Z= (Inlnz)? + ByInlnz + By + O (1? nx) ,
pevi p 172 1z



where B, Ba are the constants.

Proof. 1t is clear that

(3)

Applying

(4)

we obtain

(5)

Z llnln—m

p<VT

Y

Inlnz Z

T
r

p<T

pS\/_p

If m > 2, note that «(z) =

Zln

p<VE

From (6) and note that Z ;
m v

"p
p

= (Inlnz)®+ Bylnlnz + O (

Z lln(ln:v — Inp)

Zl—lnlnm-i-C’l—f—O( ! )
Inz

=Inlnz (lnln\/_-l-Cl +0 (l 1$))

Inz

lnlnx)

+—g——1—0( ) then we have

/zﬁmzydw(w

m:”/_f (Vz) + O(1) /Qf () 1y2 L
(W (mzﬂ—))

/235 i_y_ (ln:gy)) S iy

Y

0 In™ 2y In™z In™!
+ 2m~2 + mom om—1

y..m 1 m—2

is convergent, we have

173




_ 2:_£(¥£Z+ mi?_+'”+‘lfif,+'”>
ps\/_p nr 2n“x min"x
2 1 m
TLZ?Y) ')lnlegp—ij“‘erlnmmZmpp_‘_”.
<VE p<vE R eVE
1
Inz

1 1. In"™" g
( ln$+0(1>>+“‘+m1nm$ (mzm 111 £+O<m)>+

Inz
lnp

1
where we have used the asymptotic formula E = glnx + O(1) and the
P &
p<VE

power series expansion In(l — z) = —(z + -""2—9 + -+ “"m +---). From (3), (5) and
(7) we immediately get

1 l
Z Zlln’ = (Inlnz)? + Bylnlnz 4+ By + O (ln n:z:) .
P P Inx

SV

This proves Lemma 2.

3. PROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. From Lemma 1 we
have

IEEDIED I ED I DI

nEA p<a: p«<z q<Jy: q<m
n<x P7#q
(8) =Y+ Z Z -
p<m 3<.c pq<a:

Applying (4) and Lemma 2 we get

1 1
siayiyi(sl)(s!
pq<z p<\/" q<x/p p<VT ESVER S

T 1
=2 - 11—+C+O<—--—
Zp(nnp 1

p<V

=2§:%mmg—%n§:;+o(i—§:1

p<VE p<VT

— ((lnlnsﬂ)2 + Celnlnz+C3+ 0 (1?111:6))

(9) (111111J:)2+O4ln1nx+05+0(lnhm).
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1 . CoL
Combining (4), (8) and (9) and note that Z — 18 convergent, we immediately

pisz
obtain Il
1 ;
Z e (lnln;v)z +ByInlnz+ By +0 ( o na‘) )
n Inz
ncA
n<T

This completes the proof of Theorem 1.
Now we complete the proof of Theorem 2 and Theorem 3. From the definitions

and the properties of Euler function and divisor function, and applying Lemma 1
we have

1 1 1 1 B
2w LTIt N et L ot L Ty

P P

neAa p*<a pP<z pg<x
n<z P#q
and
1 1 1 1 1
D R I R DR I el
2 3 2 !
o) ol ep e A g TP AP+l pq§$(p+1)(q—rl)
n<x P#q
1 1 1 1 : .
Note that = — F ————— and Z ——— 18 convergent, then using the

p=l  p plp=1) > pp+1)
methods of proving Theorem 1 we can easily deduce that

S L (nnz)? 4 Cylnlnz 4 Oy + O (ml”>
= é(n) Inz

nxT

and

1 | Inl
3 = (Inlnz)?+ Dy lnlnz + Dy + O ( = ”) .
= o(n) Inz

n<z

This completes the proof of the Theorems.
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THE DIVISIBILITY OF THE SMARANDACHE
COMBINATORIAL SEQUENCE OF BEGREE TWO

Maohua Le

Department of Mathematics
Zhanjiang Normal College
29 Cunjin Road, Chikan
Zhanjlang, Guangdong

PR.China

Abstract: In this paper we prove that there has only the consecutive
terms of the Smarandache combinatorial sequence of degree two are
pairwise coprime.

Key words: Smarandache combinatorial sequences; consecutive

terms; divisibility

Let r bea positive integer with »r>1. Let SCS(r)= {a(r,n)}f:l be
the Smarandache combinatoriall sequence of degree r. Then we hz}v’e
a(r,)=n(n=1,2,+r) and a(r,7)(n>r) is the sum of all the products of
the previous terms of the sequence taking r terms at a time. In [2],
Murthy asked that how many of the consecutive terms of SCS(r) are
pairwise coprime.

T . +1- % -~ e e R 1. IS S R Iy -~ r o
111 Llub‘ p'd.p(:l' We S0lve tis plUUlC‘I[l [0 r—4. Yve PI'UVC LI1e
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Theorem. For any positive integer n, we have a(2, n+1)=0 (mod
a (2,n)).

By the above mentioned theorem, we obtain the following
corollary immediately.

Corollary. There has only the consecutive terms 1,2 of SCS(2) are
pairwise coprime.

Proof of Theorem. Let b(n)=a(2,n) for any n. Then we have
b(1)=1 and b(2)=2. It implies that the theorem holds for n=1.

By the define of SCS(2), it n=>1, then we have

b(n)=b(1)b(2)+ -+ bln—=2)b(n = 1)

B et S
b(n) = b(1)6(2)++-+bln = 2)b(n ~1) |
(60) -+ b 1) (a)F () 4520 )

from (1) and (2)1that
bl +1)= -12—((b(1)+ g b(n =) = (B ()40 - 1})}
= b(r) = O(mod b(r)).

Thus, the theorem is proved.
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THE SMARANDACHE ¢ -SSEQUENCE

Maohua Le
Department of Mathematics

Zhanjiang Normal College
29 Cunjin Road, Chikan
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Abstract: In this paper we completely determine the Smarandache

@ -sequence.

Key words: Smarandache @ -sequence; Euler totient function;

diophantine equation

For any positive integer #, let »(n) be the Euler totient function of

n. Further, let the set

A={nln=kp (n), where £ is a positive Integer}. (1)

Then, all elemerits n of 4 form the Smarandache @ -sequence (see [2]).
I this paper we completely determine this sequence as follows.

Theorem. Let {a(x)}?:l be the Smarandache ¢ -sequence. Then

we have

al(x)

1, if x=1
2, if x=2,

Y (2)
ple+i)iz. if x>1 and x is odd, s
pF/2=i if x>1 and x is even.
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(No.011781) ‘and the Natural Science Foundation of the Education
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Proof. We first consider the elements of 4. We see from (1) that
these elements are solutions of the equation
n=ke (n). (3)
Clearly, (n,k)=(1,1) 1s a positive integer of (3). [f n>>1, let

n=ppsopy (4)
be the factorization of n. By [1, Theorem 62], we have
()= p " o3 pE o = 1oy = 1) (p, - 1), (5)
Substitute (4) and (5) into (3), we get
PPy Ps :k(Pl“I)(Pz_I)“'(PQ_I) (6)

If nis even, then pi=2 and ps,--,ps; are odd primes. Since p-1
(i=2,+--,s) are even integer, we find fron (6) that either s=1 and =2 or
s=2, p,=3 and &=3. It follows that (3) has positive integer solutions
(n,k)y=(2",2) and (2".3,3), where r is a positive integer.

If n is odd, then (6) is impossible, since pj=1,2,--+,5) are odd
primes and p-1(;=1,2,--,5) are even integers.

Thus, by the above analysis, we obtain (2) imunediately.
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TWO FUNCTIONAL EQUATIONS

Maohua Le

Department of Mathematics
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Abstract: In this paper we solve two problems concerning the
pseqdo Smarandache function.
Key words: pseudo Smarandache function, sum of distinct

divisors; divisors function

For any positive integer »n, let Z(n), b(n) and d(n) denote the

pseudo Smarandache function, the sum of distinct divisors and the

Y

divisors function of » respectively. In [1], Ashbacher proposed the
following two problems.

Problem 1, [s there infinite many positive integers n of the
equation |

Z(n)=5(n)

SN
[y
S’

with-n#2', where r is a nonnegative integer.
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Problem 2. How many positive integer solutions n are there to the

e