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Abstract 

This paper deals with the problem of estimating the finite population mean when some 

information on two auxiliary attributes are available. A class of estimators is defined which 

includes the estimators recently proposed by Malik and Singh (2012), Naik and Gupta (1996) 

and Singh et al. (2007) as particular cases. It is shown that the proposed estimator is more 

efficient than the usual mean estimator and other existing estimators. The study is also 

extended to two-phase sampling. The results have been illustrated numerically by taking 

empirical population considered in the literature. 

Keywords  Simple random sampling, two-phase sampling, auxiliary attribute, point bi-

serial correlation, phi correlation, efficiency. 

  

1.  Introduction 

There are some situations when in place of one auxiliary attribute, we have 

information on two qualitative variables. For illustration, to estimate the hourly wages we can 

use the information on marital status and region of residence (see Gujrati and Sangeetha 

(2007), page-311). Here we assume that both auxiliary attributes have significant point bi-

serial correlation with the study variable and there is significant phi-correlation (see Yule 

(1912)) between the auxiliary attributes. The use of auxiliary information can increase the 

precision of an estimator when study variable Y is highly correlated with auxiliary variables 

X. In survey sampling, auxiliary variables are present in form of ratio scale variables (e.g. 

income, output, prices, costs, height and temperature) but sometimes may present in the form 

of qualitative or nominal scale such as sex, race, color, religion, nationality and geographical 

region. For example, female workers are found to earn less than their male counterparts do or 

non-white workers are found to earn less than whites (see Gujrati and Sangeetha (2007), page 

304). Naik and Gupta (1996) introduced a ratio estimator when the study variable and the 

auxiliary attribute are positively correlated. Jhajj et al. (2006) suggested a family of 

estimators for the population mean in single and two-phase sampling when the study variable 

mailto:rsinghstat@gmail.com


Rajesh Singh ■ Florentin Smarandache (editors) 

10 

 

and auxiliary attribute are positively correlated. Shabbir and Gupta (2007), Singh et al. 

(2008), Singh et al. (2010) and Abd-Elfattah et al. (2010) have considered the problem of 

estimating population mean Y  taking into consideration the point biserial correlation 

between auxiliary attribute and study variable. 

2. Some Estimators in Literature 

In order to have an estimate of the study variable y, assuming the knowledge of the 

population proportion P, Naik and Gupta (1996) and Singh et al. (2007) respectively, 

proposed following estimators: 
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The Bias and MSE expression’s of the estimator’s it  (i=1, 2, 3, 4) up to the first order of 

approximation are, respectively, given by  
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Malik and Singh (2012) proposed estimators t5 and t6 as  
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where 121 ,,   and 2  are real constants. 

The Bias and MSE expression’s of the estimator’s 5t  and 6t  up to the first order of 

approximation are, respectively, given by 
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where  0,1,2iw i   denotes the constants used for reducing the bias in the class of 

estimators, H denotes the set of those estimators that can be constructed from  0,1,2it i   

and R denotes the set of real numbers (for detail see Singh et. al (2008)). Also, 

 1,2,...,8iLi   are either real numbers or the functions of the known parameters of the 

auxiliary attributes. 
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After expanding, Subtracting Y  from both sides of the equation (3.3) and neglecting the term 

having power greater than two, we have
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4. Empirical Study 

Data: (Source: Government of Pakistan (2004)) 

The population consists rice cultivation areas in 73 districts of Pakistan. The variables 

are defined as: 

Y= rice production (in 000’ tonnes, with one tonne = 0.984 ton) during 2003, 

1P = production of farms where rice production is more than 20 tonnes during the year 2002, and 

2P = proportion of farms with rice cultivation area more than 20 ha during the year 2003. 

For this data, we have 

N=73, Y =61.3, 1P =0.4247, 2P =0.3425,  2

yS =12371.4,  2

1
S =0.225490,  2

2
S =0.228311, 

1pb =0.621, 
2pb =0.673, 

 =0.889. 

Table 4.1: PRE of different estimators of Y  with respect to y . 

CHOICE OF SCALERS, when 0w 0  1w1  0w2   

1α  2α  1L  2L  3L  4L  
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1β  2β  5L  6L  7L  8L  
PRE’S 

1 0 1 0 1 0 141.81 

0 1 1 0 1 0 60.05 

1 -1 1 0 1 0 180.50 
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5.  Double Sampling 

It is assumed that the population proportion P1 for the first auxiliary attribute 1  is 

unknown but the same is known for the second auxiliary attribute 2 . When P1 is unknown, it 

is some times estimated from a preliminary large sample of size non which only the 

attribute 1 is measured. Then a second phase sample of size n (n< n ) is drawn and Y is 

observed. 
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The estimator’s t1, t2, t3 and t4 in two-phase sampling take the following form  
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The bias and MSE expressions of the estimators td1, td2, td3 and td4 up to first order of 
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The estimator’s t5 and t6, in two-phase sampling, takes the following form
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Where 1m , 2m , 21 n and n  are real constants. 
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approximation are, respectively, given by 
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6.  Estimator tpd in Two-Phase Sampling 

Using linear combination of  ,0,1,2it di   we define an estimator of the form 
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where  0,1,2ih i   denotes the constants used for reducing the bias in the class of estimators, 

H denotes the set of those estimators that can be constructed from  0,1,2it di   and R 
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denotes the set of real numbers (for detail see Singh et. al. (2008)). Also,  1,2,...,8iLi   are 

either real numbers or the functions of the known parameters of the auxiliary attributes. 

Expressing tpd in terms of e’s, we have 
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    (6.3) 

After expanding, subtracting Y  from both sides of the equation (6.3) and neglecting the 

terms having power greater than two, we have
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         (6.4) 

Squaring both sides of (6.4) and then taking expectations, we get MSE of the estimator pt up 

to the first order of approximation, as 
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(6.7) 

Data: (Source: Singh and Chaudhary (1986), p. 177). 

The population consists of 34 wheat farms in 34 villages in certain region of India. The 

variables are defined as: 

y = area under wheat crop (in acres) during 1974. 

1p = proportion of farms under wheat crop which have more than 500 acres land during 1971. 

and 
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2p = proportion of farms under wheat crop which have more than 100 acres land during 1973. 

For this data, we have 

N=34, Y =199.4, 1P =0.6765, 2P =0.7353, 2

yS =22564.6, 2

1
S =0.225490, 2

2
S =0.200535, 

1pb =0599, 
2pb =0.559, 

 =0.725. 

Table 6.1:  PRE of different estimators of Y  with respect to y  

CHOICE OF SCALERS, when 0h 0  1h1  0h2   

1m  2m  1L  2L  3L  4L  
PRE’S 

0 1   1 0 108.16 

1 0 1 0   121.59 

1 1 1 1 1 1 142.19 

1 1 1 0 1 0 133.40 

1 1 
1pC  1pb  2pC  2pb  

144.78 

1 1 
1NP  

1pbK
 2NP

 2pbK
 

136.90 

1 1 
1NP  f 

2NP  f 133.30 

1 1 N 
1pbK
 

N 
2pbK  135.73 

1 1 
1NP  1P

 2NP  2P  137.09 

1 1 n 
1P  n 

2P  138.23 

1 1 N 
1pb  N 

2pb  135.49 

1 1 n 
1P
 

n 
2P
 

138.97 

1 1 N 
1P  N 

2P  135.86 

 When, 0h 0  0h1  1h2   

1n  2n  5L  6L  7L  8L  
PRE’S 

1 0 1 0 1 0 130.89 

0 -1 1 0 1 0 108.93 

1 -1 1 0 1 0 146.63 

1 -1 1 1 1 1 121.68 

1 -1 1 1 1 0 127.24 

1 -1 
1pC  1pb  2pC  2pb  

123.43 

1 -1 
1NP  

1pbK
 2NP

 2pbK
 

145.49 

1 -1 
1NP  f 

2NP  f 146.57 

1 -1 N 
1pbK
 

N 
2pbK  145.84 

1 -1 
1NP  1P

 2NP  2P  145.43 

1 -1 n 
1P  n 

2P  145.03 
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1 -1 N 
1pb  N 

2pb  145.92 

1 -1 n 
1P
 

n 
2P
 

144.85 

1 -1 N 
1P  N 

2P  145.80 

 When, 0h 0  0h1  1h2     also   11,2,...,8iLi   

1m 2m 1n 1n 2                                                   
pdtPRE =154.28 

7.  Conclusion 

In this paper, we have suggested a class of estimators in single and two-phase 

sampling by using point bi serial correlation and phi correlation coefficient. From Table 4.1 

and Table 6.1, we observe that the proposed estimator tp and tpd performs better than other 

estimators considered in this paper. 

References 

1. Abd-Elfattah, A.M. El-Sherpieny, E.A. Mohamed, S.M. Abdou, O. F., 2010,  Improvement 

in estimating the population mean in simple random sampling using information on auxiliary 

attribute. Appl. Mathe. and Compt. doi:10.1016/j.amc.2009.12.041 

2. Government of Pakistan, 2004, Crops Area Production by Districts (Ministry of Food, 

Agriculture and Livestock Division, Economic Wing, Pakistan). 

3. Gujarati, D. N. and Sangeetha,  2007, Basic  econometrics. Tata McGraw – Hill. 

4. Jhajj, H.S., Sharma, M.K. and Grover, L.K., 2006 , A family of estimators of population 

mean using information on auxiliary attribute. Pak. Journ. of Stat., 22(1), 43-50. 

5. Malik, S. And Singh, R. ,2012,  A Family Of Estimators Of Population Mean Using 

Information On Point Bi-Serial And Phi-Correlation Coefficient. Intern. Jour. Stat. And Econ. 

(accepted). 

6. Naik,V.D and Gupta, P.C., 1996,  A note on estimation of mean with known population 

proportion of an auxiliary character. Jour. Ind. Soc. Agri. Stat., 48(2), 151-158. 

7. Shabbir, J. and Gupta, S., 2007, On estimating the finite population mean with known 

population proportion of an auxiliary variable. Pak. Journ. of Stat., 23 (1), 1-9. 

8. Singh, D. and Chaudhary, F. S., 1986, Theory and Analysis of Sample Survey Designs 

(John Wiley and Sons, NewYork). 

9. Singh, R., Cauhan, P., Sawan, N. and Smarandache, F., 2007, Auxiliary information and a 

priori values in construction of improved estimators. Renaissance High press. 

10. Singh, R. Chauhan, P. Sawan, N. Smarandache, F., 2008, Ratio estimators in simple 

random sampling using information on auxiliary attribute. Pak. J. Stat. Oper. Res. 4(1) 47–53. 

11. Singh, R., Kumar, M. and Smarandache, F., 2010, Ratio estimators in simple random 

sampling when study variable is an attribute. WASJ 11(5): 586-589. 

12. Yule, G. U., 1912, On the methods of measuring association between two attributes. Jour. 

of The Royal Soc. 75, 579-642.    

 




