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1 |Introduction 

Everything is relative to something fuzzy. L.A. Zadeh [22, 23] invented fuzzy sets in 1965. Zadeh only covered 

the membership function while introducing the fuzzy set notion, which evolved as a new tool for managing 

uncertainty in real-world problems. As a result of the fuzzy set theory's extensions, Atanassov [7] generalized 

this idea and created the intuitionistic fuzzy set (IFS) in 1986. IFS is defined as the non-membership grade 

plus the membership grade of an ambiguous event, with the caveat that the total of the rejection and 

acceptance degree grades cannot be greater than 1. In certain practical problems, the total of the membership 

and non-membership degrees to which a decision maker (DM) delivers an adequate satisfactory quality, may 

be larger than one. IFS was unable to handle the contradictory and unclear information in the belief system. 

In 1998, F. Smarandache [10-12] embarked on the beginning of the Neutrosophic era –which is characterized 

by the membership functions for truth (T), indeterminacy (I), and falsity (F). Nowadays, Neutrosophic sets 

become an effective way to handle insufficient, unpredictable, and incompatible data that exist in this world. 

F. Smarandache introduced the dependence degree of (also, the independence degree of) the fuzzy 

components, as well as the neutrosophic components, for the first time. Many extensions of neutrosophic 

sets were also developed so far, in its journey of success. Recently, Sarannya et.al, [17, 18]defined, n-cylindrical 

fuzzy neutrosophic sets, which can be considered as one of the greatest extensions of fuzzy neutrosophic 
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sets, in which I is an independent variable. Here, the degree of positive, neutral, and negative membership 

functions satisfy the condition, 0≤ βA(x) ≤1 and 0≤ αA
 n(x) + γA

n(x) ≤ 1, n>1, is an integer.   

Entropy can be viewed as a gauge of the degree of uncertainty present in a set, regardless of how fuzzy, 

intuitionistic, ambiguous, etc. the set may be. Since the n-CyFNSs in this case can also handle uncertain data, 

it follows naturally that we are also interested in determining the entropy of an n-CyFNS.In 1965, Zadeh [23] 

made the first reference to entropy as a fuzziness metric. More recently, De Luca-Termini [4] axiomatized the 

entropy that is not probabilistic. 

The concept of entropy has been studied by a few other writers. A measure of soft entropy based on distance 

was proposed by Kaufmann [6]; Yager [21] provided an alternative perspective on the degree of fuzziness of 

any fuzzy set, stating that it lacks differentiation from its complement. Kosko [14] looked at the fuzzy entropy 

in connection to a subset hood measure. The entropy of intuitionistic fuzzy sets was investigated by Szmidt 

& Kacprzyk [19]. The entropy of soft sets, etc., was studied by Majumdar and Samanta [15]. Numerous fields, 

including image processing and optimization, have made extensive use of fuzzy sets' entropy measure. 

The rest of the paper is structured as follows: The preliminary section includes some basic definitions, 

findings, and examples. Later, in section 3, we presented an entropy measure and its characteristics for n-

CyFNS. Two real-world scenarios where this entropy metric can be used are mentioned in section 4. The 

conclusion and potential directions for further research come next. 

2 |Preliminaries 

Throughout this paper [1-23], Ʋ denotes the universe of discourse. 

Definition 2.1: [22, 23] A fuzzy set A in Ʋ is defined by membership function µA: A→ [0, 1] whose 

membership value µA (x) shows the degree to which x∈ Ʋ includes in the fuzzy set A, for all x∈ Ʋ. 

Definition 2.2: [7] An intuitionistic fuzzy set A on Ʋ is an object of the form: 

A = {(x, αA (x), γA (x) |x ∈ Ʋ)} where αA (x) ∈ [0,1] is called the degree of membership of x in A, γA (x) ∈ 

[0,1] is called the degree of non-membership of x in A, and where αA and γA satisfy  (∀x ∈ Ʋ) (αA(x) + γA(x) 

≤ 1) IFS (Ʋ) denote the set of all the intuitionistic fuzzy sets (IFSs) on a universe Ʋ. 

Let X and Y be ordinary non-empty sets.   

Definition 2.3:  [10, 11] A Neutrosophic set A on Ʋ is  A = < x, TA(x), IA(x), FA(x) >  ; x∈ Ʋ , where TA, , IA 

, FA: A→ ]-0,1+[ and -0 < TA(x) + IA(x) + FA(x)< 3+ 

Definition 2.4: [5] A fuzzy Neutrosophic set A on Ʋ is  A = < x, TA(x), IA(x), FA(x) > ; x∈ Ʋ, where TA, , IA 

, FA: A→ [0,1] and 0 ≤TA(x) + IA(x) + FA(x)≤ 3 

Definition 2.5: [10-12] A neutrosophic set A on Ʋ is an object of the form: 

𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴 (𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ Ʋ }, where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥) ∈ [0,1], 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴 (𝑥) ≤ 3, for 

all 𝑥 ∈ Ʋ. 𝑢𝐴(𝑥) is the degree of truth membership, 𝜁𝐴(𝑥) is the degree of indeterminacy, and 𝑣𝐴(𝑥) is the 

degree of non-membership. Here 𝑢𝐴 (𝑥) 𝑎𝑛𝑑 𝑣𝐴 (𝑥) are dependent components and 𝜁𝐴 (𝑥) is an independent 

component. 

Definition 2.6: [17, 18] An n- n-cylindrical fuzzy neutrosophic set (n-CyFNS) A on Ʋ is an object of the 

form: 

A= {  x, αA(x), βA(x), γA(x)   | x ∈ Ʋ} where αA(x) ∈ [0, 1], called the degree of positive membership of x in 

A, βA (x) ∈ [0,1], called the degree of neutral membership of x in A and γA (x) ∈ [0, 1], called the degree of 

negative membership of x in A, which satisfies the condition, (∀x∈ Ʋ) (0≤ βA(x) ≤1 and 0≤ αA
 n(x) + γA

n(x) 

≤ 1. , n>1,  is an integer. Here T and F are dependent Neutrosophic components and I is 100 % independent. 
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For convenience,  αA(x), βA(x), γA(x)  is called an n-Cylindrical fuzzy Neutrosophic Number (n-CyFNN) and 

is denoted as  A=  αA, βA, γA  and Let ꞆN (Ʋ) denote the family of all n- cylindrical fuzzy neutrosophic sets 

on Ʋ. 

Definition 2.7: [17, 18] The height of an n- CyFNS, A is denoted as H (A) and is defined as  

H (A) = max {βA(x) | x ∈ Ʋ}.  

Thus the height of an element x ∈ Ʋ is h(x) and is equal to the degree of neutral membership of x in Ʋ. 

Definition 2.8: [17, 18] The peak of an element, x∈A, where A={  x, αA(x), βA(x), γA(x)   | x∈ Ʋ} is  

℘𝐴(x) =max {αA(x), βA(x), γA(x)/ x∈A}  

Now we define the Peak of an n- CyFNS set. 

Definition 2.9: [17, 18] Let A={  x, αA(x), βA(x), γA(x)   | x∈ Ʋ}, then peak of A is defined as ℘(𝐴) =max 

{ ℘𝐴(x)/ x∈A}. 

Definition 2.10: [17,18]  

 Inclusion For every two A, B ∈ ꞆN (Ʋ), A ⊆ B iff (∀x ∈ Ʋ, αA(x)  ≤ αB(x) and βA(x) ≤ βB(x) and 

γA(x) ≥ γB (x)) and A = B iff   (A ⊆ B and B ⊆ A). 

 Union For every two A, B ∈ ꞆN (Ʋ), the union of two n-CyFNSs A and B is A⋃B(x) = {  x, max 

(αA(x), αB(x)), max (βA(x), βB(x)), min (γA(x), γB(x))  |x ∈ Ʋ}. 

 Intersection For every two A, B ∈ ꞆN (Ʋ), the intersection of two n- CyFNSs A and B is A∩B(x) = 

{  x, min (αA(x), αB(x)), min (βA(x), βB(x)), max (γA(x), γB(x))  |x ∈ Ʋ}. 

 Complementation  For every A ∈ ꞆN (Ʋ), the complement of an n-CyFNS A is  A𝓒 = {  x, γA(x), 

βA(x), αA(x)  |x ∈ Ʋ}. 

3 |n-Cylindrical Fuzzy Neutrosophic Entropy 

Entropy as a measure of fuzziness was first proposed by Zadeh [23]. Later many mathematicians defined 

several entropy measures. In this section, we focus on defining an entropy measure for n-CyFNSs that 

connects the degree of membership, non-membership, and neutral membership. As an example, we have 

applied the proposed entropy measure in the field of shopping and evaluation criteria of teacher educators. 

Definition 3.1: Let A=  αA, βA, γA  be an n-CyFNS in Ʋ. The new entropy measure for A denoted by 

ℰ𝐶𝑦𝑁(A), is a function,  ℰ𝐶𝑦𝑁: ꞆN (Ʋ)⟶[0,1] and is  defined as ℰ𝐶𝑦𝑁(A) = 1 − 
1

𝑛
∑ (α𝐴 − γ𝐴)2𝑛

𝑖=1 (1 −

β𝐴); for every 𝒙𝒊 ∈A  

Proposition 3.2: The entropy measure ℰ𝐶𝑦𝑁 satisfies the following properties 

ℰ𝐶𝑦𝑁(A)=0 ⟺ A is a crisp set 

ℰ𝐶𝑦𝑁(A)=1 ⟺ α𝐴(𝒙𝒊) = γ𝐴(𝒙𝒊)  or β𝐴= 1 for all i 

ℰ𝐶𝑦𝑁(A)= ℰ𝐶𝑦𝑁(Ac) 

ℰ𝐶𝑦𝑁(A) ≤ ℰ𝐶𝑦𝑁(B) , if A is less fuzzy than B or B is more uncertain than A 

ie, if (α𝐴 − γ𝐴)2 ≥ (α𝐵 − γ𝐵)2 and β𝐴   ≤ β𝐵 

Proof: 
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ℰ𝐶𝑦𝑁(A)=0 ⟺ A is a crisp set with β𝐴=0   

⟺ α𝐴=1, γ𝐴=0 and β𝐴=0  or α𝐴=0, γ𝐴=1 and β𝐴=0  

ℰ𝐶𝑦𝑁(A)=1 ⟺ α𝐴(𝒙𝒊) = γ𝐴(𝒙𝒊)  or β𝐴= 1 for all i 

ℰ𝐶𝑦𝑁(A)=1  

⟺ 1 −  
1

𝑛
∑ (α𝐴 − γ𝐴)2𝑛

𝑖=1 (1 − β𝐴)  = 1  

⟺
1

𝑛
∑ (α𝐴 − γ𝐴)2𝑛

𝑖=1 (1 − β𝐴)  =0 

⟺ ∑ (α𝐴 − γ𝐴)2𝑛
𝑖=1 (1 − β𝐴)=0 

⟺ (α𝐴 − γ𝐴)2(1 − β𝐴)=0 

⟺ (α𝐴 − γ𝐴) = 0  or (1 − β𝐴)=0 or both terms equal to 0 

⟺ α𝐴 = γ𝐴 or β𝐴= 1  

⟺ α𝐴(𝒙𝒊) = γ𝐴(𝒙𝒊)  or β𝐴= 1 for all i 

ℰ𝐶𝑦𝑁(A) = ℰ𝐶𝑦𝑁(Ac) 

From the definition of Ac, the result follows. 

ℰ𝐶𝑦𝑁(A) ≤ ℰ𝐶𝑦𝑁(B) ,  

if A is less fuzzy than B or B is more uncertain than A 

ie, if (α𝐴 − γ𝐴)2 ≥ (α𝐵 − γ𝐵)2 and β𝐴   ≤ β𝐵 

Proof 

ℰ𝐶𝑦𝑁(A) ≤ ℰ𝐶𝑦𝑁(B) 

⟹ 1 −  
1

𝑛
∑ (α𝐴 − γ𝐴)2𝑛

𝑖=1 (1 − β𝐴)   ≤ 1 −  
1

𝑛
∑ (α𝐵 − γ𝐵)2𝑛

𝑖=1 (1 − β𝐵)    

⟹ − 
1

𝑛
∑ (α𝐴 − γ𝐴)2𝑛

𝑖=1 (1 − β𝐴) ≤ −
1

𝑛
∑ (α𝐵 − γ𝐵)2𝑛

𝑖=1 (1 − β𝐵) 

⟹  ∑(α𝐴 − γ𝐴)2

𝑛

𝑖=1

(1 − β𝐴) ≥ ∑(α𝐵 − γ𝐵)2

𝑛

𝑖=1

(1 − β𝐵) 

⟹ (α𝐴 − γ𝐴)2 ≥ (α𝐵 − γ𝐵)2 and (1 − β𝐴) ≥ (1 − β𝐵) 

⟹ (α𝐴 − γ𝐴)2 ≥ (α𝐵 − γ𝐵)2 and β𝐴   ≤ β𝐵 

Thus ℰ𝐶𝑦𝑁 is an entropy function defined on ꞆN 

Example 3.3:  Let X= {a, b} and let A= {<a; 0.5, 0.5, 0.7>, <b; 0.2,05, 0.4>} and B= {<a; 0.6, 0.5, 0.5>, 

<b; 0.5, 0.5, 0.5>} are two n-CyFNS on X then,  ℰ𝐶𝑦𝑁(A)= 0.98 and ℰ𝐶𝑦𝑁(B)= 0.9975 

Here ℰ𝐶𝑦𝑁(A) < ℰ𝐶𝑦𝑁(B). 

Hence we can say  

A is less fuzzy than B. 
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4 |Application 

4.1 |Example 1 

Consider an example of a shopping experience with different items. The pandemic situation of COVID-19 

has broadened the doors of our shopping experience more than the direct one, before. Nowadays we depend 

on different methods of shopping like e-commerce, and e-business other than direct purchases. Based on the 

reviews and ratings, we will find out the most reliable method of shopping for a specific item using the n-

CyFN entropy measure. 

Table 1. Ratings of products based on the different shopping ways. 

 
Precious 

Ornaments(a) 

Electronic 

Gadgets(b) 

Grocery(c) Textiles(d) 

Direct (1)  a,1;0.8,0.3,0.03    b,1;0.4,0.7,0.6    c,1;0.6,0.3,0.5    d,1;0.8,0.3,0.4   

e-business(2)  a,2;0.7,0.7,0.4    b,2;0.5,0.2,0.02    c,2;0.8,0.3,0.2    d,2;0.9,0.4,0.2   

e-commerce(3)  a,3;0.6,0.3,0.5    b,3;0.9,0.5,0.5    c,3;0.6,0.4,0.5    d,3;0.6,0.3,0.4   

 

Clearly, all values in the Table 1 are n-CyFNSs. Now we calculate the ℰ𝐶𝑦𝑁 of each value. 

Table 2. Entropy measure of each item through different shopping ways. 

 
Precious 

Ornaments 

Electronic 

Gadgets 

Grocery Textiles 

Direct (1) 0.825 0.988 0.993 0.888 

e-business(2) 0.973 0.928 0.748 0.706 

e-commerce(3) 0.993 0.92 0.994 0.972 

 

From Table 2, it is clear that ℰ𝐶𝑦𝑁(𝑎, 1) < ℰ𝐶𝑦𝑁(𝑎, 2) < ℰ𝐶𝑦𝑁(𝑎, 3). Hence purchasing precious ornaments 

through direct method is more recommended. Similarlyℰ𝐶𝑦𝑁(𝑏, 3) < ℰ𝐶𝑦𝑁(𝑏, 2) < ℰ𝐶𝑦𝑁(𝑏, 1). Thus 

purchasing electronic gadgets through the e-commerce method is more reliable. Also, ℰ𝐶𝑦𝑁(𝑐, 2) <

ℰ𝐶𝑦𝑁(𝑐, 1) < ℰ𝐶𝑦𝑁(𝑐, 3)& ℰ𝐶𝑦𝑁(𝑑, 2) < ℰ𝐶𝑦𝑁(𝑑, 1) < ℰ𝐶𝑦𝑁(𝑑, 3). E-business is the best option for 

purchasing groceries and textiles. 

 

Figure 1. Showing the best option for buying items. 
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4.2 |Example 2 

Educational evaluation plays a vital role in the teaching-learning process because it accomplishes a shared 

objective. Assessment is a comprehensive, continuous procedure. It helps educators recognize issues and 

work with pupils to find solutions to those issues. An effective teacher is a keen observer and a good evaluator. 

In a teacher interview, the recruiters give five answer scripts to the 3 teacher candidates to evaluate the 

student’s learning outcome (LO) and are asked to fill in the rubrics. The evaluation done by the teacher 

candidates is in the form of n-CyFN linguistic terms as in Tables 4-9. To find which teacher candidate is the 

best evaluator, we use the n-CyFN entropy measure. 

Table 3. Linguistic terms [18]. 

Linguistic Terms < α , β , γ > 

Outstanding (O) < 0.9, 0.7,0.1> 

Excellent(E) <0.8,0.6,0.1> 

Very good (V) <0.7,0.5,0.2> 

Good (G) <0.6,0.5,0.2> 

Average (Av) <0.5,0.5,0.5> 

Satisfactory (S) <0.4,0.4,0.6> 

Poor (P) <0.2,0.3,0.7> 

Pathetic (Pa) <0.1,0.2,0.9> 

 

Teacher 1: 

Table 4. Evaluation made by Teacher1. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 V V E V 

Student-2 G G G Av 

Student-3 S S S P 

Student-4 E E E V 

Student-5 S S P P 

 

Teacher 2: 

Table 5. Evaluation made by Teacher2. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 G G G G 

Student-2 Av G Av Av 

Student-3 Av Av S Av 

Student-4 E G G V 

Student-5 P S P P 

 

Teacher 3: 

Table 6. Evaluation made by Teacher3. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 V G G V 

Student-2 G G G V 

Student-3 Av S Av S 

Student-4 E E E V 

Student-5 p S P P 
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Teacher 1: 

Table 7. n-CyFN values of evaluation made by Teacher1. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 <1I;0.7,0.5,0.2> <2,II;0.7,0.5,0.2> <3,III;0.8,0.6,0.1> <4,IV;0.7,0.5,0.2> 

Student-2 <2,I;0.6,0.5,0.2> <2,II;0.6,0.5,0.2> <3,III;0.6,0.5,0.2> <4,IV;0.5,0.5,0.5> 

Student-3 <3,I;0.4,0.4,0.6> <3,II;0.4,0.4,0.6> <3,III;0.4,0.4,0.6> <4,IV;0.2,0.3,0.7> 

Student-4 <4,I;0.8,0.6,0.1> <4,II;0.8,0.6,0.1> <3,III;0.8,0.6,0.1> <4,IV;0.7,0.5,0.2> 

Student-5 <5,I;0.4,0.4,0.6> <5,II;0.4,0.4,0.6> <3,III;0.2,0.3,0.7> <4,IV;0.2,0.3,0.7> 

 

Teacher 2: 

Table 8. n-CyFN values of evaluation made by Teacher2. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 <0.6,0.5,0.2> <0.6,0.5,0.2> <0.6,0.5,0.2> <0.6,0.5,0.2> 

Student-2 <0.5,0.5,0.5> <0.6,0.5,0.2> <0.5,0.5,0.5> <0.5,0.5,0.5> 

Student-3 <0.5,0.5,0.5> <0.5,0.5,0.5> <0.4,0.4,0.6> <0.5,0.5,0.5> 

Student-4 <0.8,0.6,0.1> <0.6,0.5,0.2> <0.6,0.5,0.2> <0.7,0.5,0.2> 

Student-5 <0.2,0.3,0.7> <0.4,0.4,0.6> <0.2,0.3,0.7> <0.2,0.3,0.7> 

 

Teacher 3: 

Table 9. n-CyFN values of evaluation made by Teacher3. 

Students LO-1( I) LO-2(II) LO-3(III) LO-4(IV) 

Student-1 <0.7,0.5,0.2> <0.7,0.5,0.2> <0.8,0.6,0.1> <0.7,0.5,0.2> 

Student-2 <0.6,0.5,0.2> <0.6,0.5,0.2> <0.6,0.5,0.2> <0.7,0.5,0.2> 

Student-3 <0.5,0.5,0.5> <0.4,0.4,0.6> <0.5,0.5,0.5> <0.4,0.4,0.6> 

Student-4 <0.8,0.6,0.1> <0.8,0.6,0.1> <0.8,0.6,0.1> <0.7,0.5,0.2> 

Student-5 <0.2,0.3,0.7> <0.4,0.4,0.6> <0.2,0.3,0.7> <0.2,0.3,0.7> 

 

Clearly, all values in the table are n-CyFNSs. Now we calculate the ℰ𝐶𝑦𝑁of each value as in Tables 10-12. 

Teacher 1: 

Table 10. ℰ𝐶𝑦𝑁  values of Teacher 1. 

Students 𝓔𝑪𝒚𝑵 

Student-1 0.857 

Student-2 0.94 

Student-3 0.896 

Student-4 0.82 

Student-5 0.90 

 

Teacher 2: 

Table 11. ℰ𝐶𝑦𝑁  values of Teacher 2. 

Students 𝓔𝑪𝒚𝑵 

Student-1 0.92 

Student-2 0.98 

Student-3 0.994 

Student-4 0.879 

Student-5 0.944 
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Teacher 3: 

Table 12. ℰ𝐶𝑦𝑁  values of Teacher 3. 

Students 𝓔𝑪𝒚𝑵 

Student-1 0.8975 

Student-2 0.98 

Student-3 0.994 

Student-4 0.822 

Student-5 0.92 

 

Here we can see that all the ℰ𝐶𝑦𝑁 values of Teacher 1 are less than that of other teachers. Thus evaluation 

done by Teacher 1 is more certain. 

Hence the ranking given to the values selection process is given below as in Table 13: 

Table 13. Ranking based on ℰ𝐶𝑦𝑁 . 

Teacher Rank 

Teacher-1 I 

Teacher-3 II 

Teacher-2 III 

 

5 |Conclusions 

Neutrosophic sets are a general formal framework that has been suggested to explore uncertainty resulting 

from "indeterminacy" issues. It has been demonstrated from a philosophical perspective that a neutrosophic 

set generalizes an interval-valued fuzzy set, fuzzy set, classical set, fuzzy set with intuition, etc. One type of 

neutrosophic set that has practical uses in science and engineering is the n-cylindrical fuzzy neutrosophic set. 

Consequently, the study of n-cylindrical fuzzy neutrosophic sets and their attributes is important for both 

understanding the principles of uncertainty and for applications. We present a new measure of entropy and 

two applications related to it. This measure is consistent with similar considerations for other sets like fuzzy 

sets and intuitionistic fuzzy sets etc. Hence the proposed entropy measure can be used to measure the 

uncertainty factor in related problems. 
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