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Abstract. 

This paper is an extension of our previous work on α-Discounting 

Method for MCDM ([1], [2], [3]) from crisp numbers to intervals. 
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1. Introduction. 

In 2010 we have introduced a new method [3], called α-Discounting Method 

for Multi Criteria Decision Making, which is an alternative but also a 

generalization of Saaty’s Analytical Hierarchy Process (AHP).  α-Discounting 

Method works for any n-pairwise comparisons, n ≥ 2, that may be linear or 

non-linear, or may be equations or inequalities. It transforms all preferences 

into a system of equations and/or of inequalities, that is later solved 

algebraically.  

Since Saaty’s AHP is not the topic of this paper, we’ll not present over here. 
Neither our α-Discounting Method for Multi Criteria Decision Making is 
recalled.  The interested reader may get them in [7], and respectively [1], [2], 
and [3]. 
 

2. A consistent example 

Let have the set of criteria be 𝐶 = {𝐶1, 𝐶2, 𝐶3}, and the set of preferences 𝑃 be: 

a. 𝐶1 is twice or three times as important as 𝐶2; 
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b. 𝐶2 is one or one and half times as important as 𝐶3. 

Solution. 

Let 𝑥 represents the value of 𝐶, 𝑦 of 𝐶2, and 𝑧 of 𝐶3. 𝑥 > 0, 𝑦 > 0, 𝑧 > 0. 

We form the algebraic interval system: 

{
𝑥 = [2, 3]𝑦

𝑦 = [1, 1.5]𝑧,
 

where [2, 3] and [1, 1.5] are intervals. 

Replacing the second equation into the first, one gets: 

𝑥 = [2, 3]𝑦 = [2, 3] ∙ [1, 1.5]𝑧 = [2 ∙ 1, 3 ∙ 1.5]𝑧 = [2, 4.5]𝑧. 

The general solution of this system is: 

〈[2, 4.5]𝑧, [1, 1.5]𝑧, 𝑧〉 where 𝑧 > 0. 

We divide this vector components by 𝑧, and we get: 

〈[2, 4.5], [1, 1.5], 1〉
𝐶1         𝐶2       𝐶3

. 

We don’t know exactly what to mean by normalization when dealing with 

intervals, but it is clear that 𝐶1 > 𝐶2 > 𝐶3. 

 

 

 

3. A second consistent example 

Criteria: 𝐶 = {𝐶1, 𝐶2, 𝐶3}, and the set of preferences 𝑃, same as in the previous 

example, but adding one more: 

a. 𝐶1 is twice or three times as important as 𝐶2; 

b. 𝐶2 is one or one and half times as important as 𝐶3; 

c. 𝐶3 is 
1

4
 or 

1

2
 times as important as 𝐶1 . 
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Solution. 

With same notations 𝑥, 𝑧 and 𝑧 representing the values of 𝐶1, 𝐶2 and 

respectively 𝐶3, we form the algebraic system: 

{

𝑥 = [2, 3] ∙ 𝑦

𝑦 = [1, 1.5] ∙ 𝑧

𝑧 = [0.25, 0.50] ∙ 𝑥,

 

with 𝑥 > 0, 𝑦 > 0, 𝑧 > 0. 

The determinant of the system is: 

|

1 −[2, 3] 0
0 1 −[1, 1.5]

−[0.25, 0.50] 0 1
| = |

1 [−3, −2] 0
0 1 [−1,5, −1]

[−0.50, −0.25] 0 1
|

= 1— [−3, −2] ∙ [−0.50, −0.25]

= [1, 1]+][(−3) ∙ (−1.59) ∙ (−0.5), (2) ∙ (−1) ∙ (−0.25)]

= [1, 1] + [−2.25, −0.50] = [1 − 2.25, 1 − 0.50] = [−1.25, 0.50]

≠ [0, 0]. 

Let’s parameterize the system, using 𝛼1 > 0, 𝛼2 > 0, 𝛼3 > 0 in order to 

discount each interval coefficient. We get: 

{

𝑥 = 𝛼1[2, 3]𝑦

𝑦 = 𝛼2[1, 1.5]𝑧

𝑧 = 𝛼3[0.25, 0.50]𝑥.

 

The determinant of the parameterized system is: 

|

1 −𝛼1[2, 3] 0
0 1 −𝛼2[1, 1.5]

−𝛼3[0.25, 0.50] 0 1
| = 1 − 𝛼1𝛼2𝛼3[2, 3][1, 1.5][0.25, 0.50]

= [1, 1] − 𝛼1𝛼2𝛼3[0.50, 2.25] = [0,0]. 

Whence 𝛼1𝛼2𝛼3[0.50, 2.25] = [1, 1], hence 𝛼1𝛼2𝛼3 = [
1

2.25
,

1

0.50
] = [

4

9
, 2]. 

For equitable discount, let 𝛼1 = 𝛼2 = 𝛼3 = 𝛼 > 0. Then 
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𝛼3 = [
4

9
, 2], whence 𝛼 = [√4/9

3
, √2

3
] ≃ [0,76, 1.26]. 

There, the system is altered with the same proportion 𝛼 = [0,76, 1.26] each 

equation, and it becomes: 

{

𝑥 = [2, 3] ∙ 𝛼 ⋅ 𝑦 = [2, 3] ∙ [0.76, 1.26]𝑦 = [1.52, 3.78]𝑦

𝑦 = [1, 1.5] ∙ 𝛼 ⋅ 𝑧 = [1, 1.5] ∙ [0.76, 1.26]𝑧 = [0.76, 1.89]𝑧

𝑧 = [0.25, 0.50] ∙ 𝛼 ⋅ 𝑥 = [0.25, 0.50] ∙ [0.76, 1.26]𝑥 = [0.19, 0.63]𝑥

 

From the first two equations we get: 

{
𝑥 = [1.52, 3.78]𝑦 = [1.52, 3.78] ∙ [0.76, 1.89]𝑧 = [1.16, 7.14]𝑧

𝑦 = [0.76, 1.89]𝑧
 

The third equation 

1 ∙ 𝑧 = [0.19, 0.63]𝑥 

is equivalent to  

𝑥 =
1

[0.19, 0.63]
𝑧 = [

1

0.63
,

1

0.19
] 𝑧 = [1.59, 5.26]𝑧. 

Therefore we got the following approximation that we can call reconciliation 

of the first equations together, that give us: 

𝑥 = [1.16, 7.14]𝑧 

with respect to the third equation that gives us: 

𝑥 = [1.59, 5.26]𝑧. 

We see that the intervals [1.16, 7.14] and [1.59, 5.26] are close to each other. 

The solution vector of the parameterized system, for 𝛼 = [0.76, 1.26] is 

〈[1.16, 7.14]𝑧 or[1.59, 5.26]𝑧, [0.76, 1.89]𝑧, 𝑧〉. 

We divide by 𝑧 > 0 and we get: 

〈[1.16, 7.14] or [1.59, 5.26], [0.76, 1.89], 1〉.
  𝐶1                                                          𝐶2   𝐶3
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It’s not necessary to normalize. We can see that: 

𝐶1 > 𝐶2 and 𝐶1 > 𝐶3. 

To compare 𝐶2 with 𝐶3, we see that in general 

𝐶2 > 𝐶3, 

since the interval [0.76, 1.89] has a bigger part which is 

(1, 1.89] > 1 when 𝐶2 > 𝐶3, 

and a smaller part [0.76, 1) when 𝐶2 > 𝐶3, 

while a single case [1, 1] = 1 when 𝐶2 = 𝐶3. 

 

4. Inconsistent example 

Same criteria and the first two preferences. Only the third preference is 

changed as in the below third equation. 

{

𝑥 = [2, 3]𝑦

𝑦 = [1, 1.5]𝑧

𝑧 = [3, 3.5]𝑥.

 

From first and second equations, we get 

𝑥 = [2, 3]𝑦 = [2, 3], [1, 1.5]𝑧 = [2, 4.5]𝑧. 

From the last equation: 

𝑥 =
1

[3, 3.5]
= [

1

3.5
,
1

3
] ≃ [0.29, 0.33]𝑧 

which is different from [2, 4.5]𝑧. 

Parameterized in the same way as before: 

{

𝑥 = 𝛼1[2, 3]𝑦

𝑦 = 𝛼2[1, 1.5]𝑧

𝑧 = 𝛼3[3, 3.5]𝑥.
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We similarly get from the first two equations: 

𝑥 = 𝑐[2, 4.5]𝑧 

and from the last equation: 

𝑥 =
1

[3, 3.5]
∙

1

𝛼3
≃

1

𝛼3

[0.29, 0.33]𝑧. 

Whence: 

𝛼1𝛼2[2, 4.5]𝑧 =
1

𝛼3

[0.29, 0.33]𝑧 

or 

𝛼1𝛼2𝛼3[2, 4.5] = [0.29, 0.33], 

hence 

𝛼1𝛼2𝛼3 =
[0.29, 0.33]

2, 4.5]
= [

0.29

4.5
,
0.33

2
] ≃ [0.064, 0.165]. 

Considering an equitable discount we set 𝛼1 = 𝛼2 = 𝛼3 = 𝛼 > 0. 

Hence 𝛼1𝛼2𝛼3 = [0.064, 0.165] becomes 𝛼3 = [0.064, 0.165], 

whence 𝛼 = [√0.064
3

, √0.165
3

] ≃ [0.400, 0.548]. 

Whence we get: 

𝑥 = 𝛼1𝛼2[2, 4.5]𝑧 = [0.400, 0.548][0.400, 0.548][2, 4.5]𝑧 = [0.32, 1.55]𝑧 

or 

𝑥 =
1

𝛼3

[0.29, 0.33]𝑧 =
1

[0.400, 0.548]
∙ [0.29, 0.33]𝑧 = [

0.24

0.548
,

0.33

0.400
] 𝑧

= [0.529, 0.825]𝑧 

and 

𝑦 = 𝛼2[1, 1.5]𝑧 = [0.400, 0.548][1, 1.5]𝑧 = [0.400, 0.822]𝑧. 
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The solution of the parameterized system is: 

〈[0.32, 1.55]𝑧 or [0.529, 0.825]𝑧, [0.400, 0.822]𝑧, 𝑧〉. 

We divide by 𝑧 > 0 and we get: 

〈[0.32, 1.55]or [0.529, 0.825], [0.400, 0.822], 1〉
                              𝐶1                                        𝐶2 𝐶3

. 

Clearly 𝐶2 < 𝐶3. 

Then 𝐶1 < 𝐶3 for most part of its values, i.e. 

for [0.32, 1) or [0.529, 0.825] 

and 𝐶1 > 𝐶3for (1, 1.55) 

while 𝐶1 = 𝐶3 for [1, 1]. 

To compare 𝐶1 and 𝐶2 it is more complicated. 

 

Conclusion. 

In this paper we have constructed two consistent examples and one 

inconsistent example of decision making problems, where the preferences use 

intervals instead of crisp numbers in comparisons of preferences. The results 

are, of course, more complicated. 
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