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Abstract 

In this article, we introduce a novel approach by presenting separate ratio and regression 

estimators in the context of neutrosophic stratified sampling for the very first time, 

incorporating auxiliary variables. We have conducted a thorough analysis to estimate 

these newly proposed estimators' bias and mean square error (MSE) up to the first-order 

approximation. Theoretically using efficiency comparison criteria, our findings 

demonstrate the superior performance of these estimators compared to traditional 

unbiased estimators. Also, numerically based on real-life and artificial data, we have 

shown the supremacy of the neutrosophic stratified sampling over neutrosophic simple 

random sampling along with the supremacy of our proposed neutrosophic separate 

stratified estimators over neutrosophic stratified unbiased estimator. Moreover, our 

research highlights the enhanced reliability of neutrosophic stratified estimators when 

contrasted with classical stratified estimators. 
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1. Introduction 

 

The researchers' primary aim is to pinpoint the most efficient methods for 

estimating population parameters within sample surveys. This endeavour considers 
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various factors like time, cost management, and the reduction of sampling errors. 

Achieving these objectives relies on leveraging supplementary information to refine 

better estimators and minimize sampling errors. This additional data typically comprises 

secondary traits (auxiliary information) highly correlated with the study variables, usually 

accessible for each investigated unit. If not readily available, it can often be sourced from 

preceding surveys or historical records. For instance, to predict the students' current exam 

scores or performance, the previous year's scores or academic performance can be used as 

auxiliary information, and to predict current exam scores or performance, they can be 

considered study characteristics. In another example, to analyze the temperature trend of 

the current year, past year climate records can be used as auxiliary information, and 

current year temperature trends can be considered study characteristics. In essence, study 

and subsidiary characteristics are defined according to the specific context and research 

objectives to improve the accuracy of population parameter estimations while minimizing 

sampling errors. Cochran significantly contributed to the advancement of modern 

sampling theory by introducing the groundbreaking idea of integrating supplementary 

information. His pioneering work has profoundly impacted the sampling field, leading to 

the development of two renowned estimation methods. Specifically, Cochran's ratio 

estimator, presented in [1], and Murthy's product estimator in [2], stand out as well-

established techniques for characterizing and harnessing supplementary information in 

the estimation process. These methods have significantly contributed to enhancing 

statistical sampling methodologies using auxiliary information.  

The above concepts or studies are associated with simple random sampling under 

classical statistics, which traditionally deals with precise or single-valued data, assuming 

complete certainty in the data. However, classical statistics may prove inadequate when 

faced with vague or uncertain data. This uncertainty manifests when data comprises 

intervals or sets, and addressing such data requires a novel approach known as fuzzy 

statistics, grounded in fuzzy logic and set theory. The concept of fuzziness in data was 

first introduced by Zadeh [3] and further developed in [4] as the notion of a fuzzy set. 

Fuzzy statistics has undergone significant development, giving rise to various specialized 

branches. These include fuzzy regression analysis, fuzzy probability theory, fuzzy time 

series analysis and forecasting, estimation of confidence intervals from fuzzy data, fuzzy 

applications in operations research, hypothesis testing, and addressing issues related to 

fuzzy arrival/service rates. Also, numerous researchers extensively explored and applied 

fuzzy logic, which plays a crucial role in decision-making processes, especially in 

situations characterized by uncertainty or ambiguity, and it has some extensions, such as 

complex fuzzy logic and intuitionistic fuzzy logic.  

Our study specifically focuses on neutrosophic logic and statistics, particularly 

within the domain of neutrosophic statistics grounded in neutrosophic logic or sets. 

Neutrosophic logic and statistics come into play when fuzzy or intuitionistic statistics 

prove inadequate in quantifying the inherent indeterminacy present in fuzzy or vague 

data. While fuzzy statistics offers a means to handle variable values subject to 



 

 

uncertainty, it lacks the capability to quantify the extent of indeterminacy associated with 

the data precisely. On the other hand, neutrosophic statistics address this limitation by 

providing a framework to handle and measure indeterminacy independently in the data 

that exhibits uncertainty or fuzziness. 

The issue of neglecting indeterminacy in fuzzy statistics finds its solution in 

neutrosophic statistics. This broader framework not only extends fuzzy statistics or 

classical statistics but also enables the quantification of indeterminacy within uncertain or 

hazy data. Smarandache initially introduced the concept of neutrosophic sets, logic, and 

statistics and is further explored in various literature sources, including Smarandache's 

works in [5], [6], [7], [8], [9], [10], [11], [12]. Neutrosophic statistics stands as a 

broadening of classical statistics, fuzzy statistics, and intuitionistic statistics (a concept 

originally conceived by Atanassov [13] and further developed in [14]). The field has 

witnessed significant research endeavours over the years. In [11], Smarandache 

introduced the foundation of neutrosophic statistics, laying the groundwork for its 

application. Subsequent studies have explored various facets of neutrosophic statistics, 

including the representation of rock joint roughness coefficients using neutrosophic 

interval statistical numbers by [15], [16]. Furthermore, [17] delved into the realm of 

neutrosophic probability statistics, and several authors, such as [18], [19], [20], [21], [22], 

[23], have researched robust single-valued neutrosophic soft aggregation operators in the 

context of multi-criteria decision making. Additionally, studies have explored classifying 

trapezoidal bipolar neutrosophic numbers, de-bi-polarization techniques, and their 

application in solving multiple-criteria group decision-making problems based on cloud 

services, as presented by [24]. Indeterminacy in data often signifies the presence of 

neutrosophic data, which can be effectively managed through neutrosophic statistics due 

to its straightforward methods for handling such indeterminate data. Various research 

articles have applied neutrosophic data in different contexts, including the analysis of 

neutrosophic numbers for rock joint roughness coefficients by [15], [16], and the 

examination of wind speed data [25], [21], [22], [23], [26]. Some more novelty about the 

neutrosophic concept can be seen through [27], [28], [29], [30], [31], [32], [33], [45] [46], 

[47], [48], [49]. 

As neutrosophic statistics replace classical statistics, neutrosophic simple random 

sampling (NeSRS) replaces classical simple random sampling. A recent and first study 

utilizing the neutrosophic simple random sampling is given by [34] as neutrosophic ratio-

type estimators for population mean. Readers can refer to the article by [34] for a more 

comprehensive understanding of neutrosophic data. Further, [35], [36], [37] [38], [39], 

[40] have given different estimation procedures in neutrosophic simple random sampling 

and neutrosophic ranked set sampling for estimating neutrosophic parameters. All these 

studies are done under NeSRS for the homogeneous neutrosophic data or population and 

not for heterogeneous. As if the population is heterogeneous, it is better to use stratified 

sampling than simple random sampling in which we divide the whole population into 

some homogeneous strata for better efficacy of the estimators used in estimating 



 

 

population parameters, see [41], [42], [43]. So, inspired by the studies done so far under 

NeSRS, and like classical stratified sampling, we are giving neutrosophic stratified 

sampling and estimators under it.  

The presentation of this manuscript starts with the introduction section, then 

followed by the research gap and contribution in section 2; proposed methods of 

estimation in sections 3, 3.1, and 3.2; efficiency comparisons, simulation study, and 

empirical study in sections 4, 4.1, and 4.2, respectively. A discussion is given in section 

5, followed by concluding remarks with future studies in section 6.     

 

2. Research gap and contribution 

In the realm of our sample survey, our exploration has been dedicated solely to 

well-defined data points that are crisp-type data. We've leaned heavily on conventional 

sampling techniques to extract precise outcomes using crisp-type data. However, 

navigating classical methods for undefined values or indeterminacy-type data will pose 

significant challenges, and dealing with such types of data will be difficult. There is a 

variety of such data types, such as experimental and equipment-related, water levels, 

melting points, humidity, wind speed, and day-wise temperature data, that routinely 

manifest as range values or tend towards ambiguity. The prevalence of interval data in 

real-world scenarios surpasses the presence of clearly defined or crisp-type data. 

Procuring information on these ambiguous data types incurs substantial expenses. 

Consequently, applying traditional (classical) methods for computing precise values 

of unknown parameters becomes a high-cost, high-risk endeavour when confronted with 

indeterminate or vague data. So, the neutrosophic estimation method takes over the old 

classical method for the neutrosophic (vague or indeterminate) data types. Notably, [34] 

addressed this gap in sampling theory by introducing neutrosophic ratio-type estimators 

for population means in simple random sampling. Inspired by their innovative work and 

aiming to bridge the gap between traditional and neutrosophic statistical approaches, 

further, [35], [36], [37] [38], [39], [40] have given different estimation procedures in 

neutrosophic simple random sampling and neutrosophic ranked set sampling for 

estimating neutrosophic parameters.  

All these studies are done under NeSRS for the homogeneous neutrosophic data or 

population only and not for heterogeneous. As if the population is heterogeneous, it is 

better to use stratified sampling than simple random sampling, in which we divide the 

whole population into some homogeneous strata for better efficacy (precision) of the 

estimators used in estimating population parameters. When the population has distinct 

subgroups with varying characteristics, stratified sampling allows you to capture these 

differences more accurately. For instance, if you're studying a city's population with 

different income brackets and know income influences spending habits, stratified 

sampling ensures each income group is represented proportionally in the sample. This 



 

 

increases the precision of estimates within each subgroup compared to simple random 

sampling, where certain groups might be underrepresented or overrepresented by chance. 

Still, overall precision will be increased compared to simple random sampling. In another 

example, suppose a household survey is conducted in different regions according to 

language. If a Hindi-speaking surveyor visits a Tamil-speaking region, then both the 

surveyor and respondent will definitely face difficulty, which will lead to non-sampling 

errors, and consequently will cost time and money. This problem can be removed by 

stratification, that is, by applying stratified sampling. In which, we divide the whole 

population into homogeneous strata in language-wise regions and apply the language-

wise surveyor in the respective regions for separate estimation. The combined results 

obtained according to stratified sampling will be better (in terms of precision, time, and 

money) than a simple random method. For more detail, see [41], [42], [43]. 

So, inspired by the studies done so far under NeSRS, and like classical stratified 

sampling, we estimate the population mean under neutrosophic stratified sampling for the 

first time. For example, a company conducts a job satisfaction survey among employees, 

separately stratified into office-based and remote workers, with a proportional allocation 

based on workforce composition. Upon review, it's found that a few employees have 

hybrid work arrangements, blurring the distinction between the two strata. To 

accommodate this ambiguity, the survey shifts to stratified random neutrosophic 

sampling. If we use classical statistics or the classical stratified random method here, it 

will cause information loss. In addressing this issue, we employ neutrosophic statistics to 

obtain interval-type results while minimizing the Mean Squared Errors (MSEs). In this 

manuscript, we first give neutrosophic stratified random sampling, then ratio and 

regression estimators under it. Neutrosophic random sampling can be useful in medical 

research or diagnostics; there might be cases where symptoms or test results are 

ambiguous or contradictory, leading to uncertainty in classification. Neutrosophic 

stratified sampling could be applied to ensure that samples are representative across 

various subsets of patients with uncertain or overlapping symptoms for more accurate 

diagnostic models or treatment assessments. It can be useful in dealing with risk 

assessment in various domains such as finance, environmental studies, or cybersecurity; 

there could be scenarios where the available data is imprecise or conflicting. 

Neutrosophic stratified sampling might assist in creating samples that account for this 

uncertainty, aiding in better risk evaluation and decision-making processes. Also, it can 

be useful in market research, consumer behaviour, opinion polls, social experiments, and 

so on in many fields where it can be useful.  

The neutrosophic observations can be represented in various formats, with the 

neutrosophic numbers potentially encompassing an unknown interval [a, b]. Here, we are 

illustrating neutrosophic values as 
N L U NZ Z Z I= +  with  ,N L UI I I , the symbol 'N' is 

used to represent a neutrosophic number. Consequently, our neutrosophic observations 



 

 

will fall within an interval  ,NZ a b , where 'a' and 'b' denote the lower and upper values 

of the neutrosophic data. 

 

3. Proposed neutrosophic stratified sampling and estimators under it 

Neutrosophic stratified sampling is a statistical sampling technique that combines 

stratified sampling and neutrosophic set theory elements. It is used to collect data from a 

population to ensure that different subgroups or strata within the population are 

represented adequately while also accounting for uncertainty, vagueness, and 

indeterminacy in the data. For examples:  

(i)  Two distinct strata, consisting of men and women, are considered within the city 

of Gallup, New Mexico. However, in light of the population's demographic 

breakdown, with women constituting 51% and men 49%, a random sample 

consisting of 51 women and 49 men is initially drawn. Subsequently, it is 

discovered that one individual identified as a man and two individuals identified 

as women are, in fact, transgender. This revelation introduces an element of 

indeterminacy involving three individuals. As a result, the sampling method 

shifts to stratified random neutrosophic sampling, acknowledging the inherent 

uncertainty in the gender identities of these individuals and reflecting the 

complexities of the population composition more accurately.  

(ii)   A university surveys student satisfaction with two strata: undergraduate and 

graduate students. Given that 70% are undergraduates and 30% are graduate 

students, an initial sample comprises 70 undergraduates and 30 graduate 

students. Later, it is discovered that some students are pursuing dual degrees, 

making their educational status indeterminate. Therefore, the survey adopts 

stratified random neutrosophic sampling to account for these ambiguous cases. 

(iii)  A market research study stratifies respondents into two groups: those who prefer 

Product A and Product B, with an equal allocation of 50 respondents to each 

group. After collecting data, it becomes apparent that a few respondents are 

uncertain or neutral in their preferences. Consequently, the study shifts to 

stratified random neutrosophic sampling to accommodate this indeterminacy.   

(iv)   A healthcare provider assesses service utilization among residents in District X 

and District Y, with 60% of respondents from District X and 40% from District 

Y. Subsequently, it's revealed that some respondents have dual residency, 

making it unclear which district they primarily belong to. The study adopts 

stratified random neutrosophic sampling to address this uncertainty.  

These examples demonstrate how the transition from conventional stratified sampling to 

neutrosophic stratified random sampling can occur when dealing with situations where 

certain individuals or cases exhibit indeterminate characteristics or affiliations, requiring 

a more nuanced sampling approach.  



 

 

 

 

 

3.1 Proposed neutrosophic stratified sampling method 

As a classical stratified sampling method, this sampling method also consists of dividing 

the whole neutrosophic heterogeneous population into neutrosophic homogeneous 

subgroups/subpopulations such that units within each subgroup are homogeneous and 

between subgroups/subpopulations are heterogeneous concerning characteristics under 

study or study variables. Such subgroups/subpopulations are known as strata, and each 

subgroup is a stratum. Then, we apply the neutrosophic simple random sampling method 

to each stratum to obtain neutrosophic separate stratified samples. Let 

 , ,N L U N N L UN N N I I I I= +   be the finite neutrosophic heterogeneous population and 

divided into non-overlapping neutrosophic homogeneous L  strata of each size of 

 , ,hN hL hU hN hN hL hUN N N I I I I= +   such that 
1

,
L

hN Nh
N N

=
= 1, 2, ..., .h L=  Then, we 

apply neutrosophic simple random sampling method to each stratum and draw separate 

stratified samples  , ,hN hL hU hN hN hL hUn n n I I I I= +   from each stratum population of size 

hNN  such that we have total separate stratified sample  , , ,N L U N N L Un n n I I I I= +   

1
,

L

N hNh
n n

=
= 1, 2, ..., ,h L=  see in below Fig. 1 placed in this section. Also, let NY  be 

the neutrosophic study characteristics and hjNY  be the population value of the study 

character NY  and hjNy  be the sample value of the thj unit ( )1,2,..., hj N=  in the 

thh stratum. Then, 

Population means of  thh  stratum =  
1

1
, , .

hNN

hN hL hU hN hjN hN hL hU

jhN

Y Y Y I Y I I I
N =

= + =    

Population mean =  
1 1

1
, ,

hNNL

N N N N hjN N L U

h jhN

Y Y Y I Y I I I
N = =

= + =   

                                                                   
1

, .
L

hN
hN hN hN hL hU hN

h N

N
w Y w w w I

N=

= = = +  

Population mean square of  thh  stratum = ( )
2

2 2 2

1

1
.

1

hNN

hN hL hU hN hjN hN

jhN

S S S I Y Y
N =

= + = −
−
   



 

 

Population mean square = ( )  
2

2 2 2

1 1

1
, , .

1

NNL

N L U N hjN N N L U

h jN

S S S I Y Y I I I
N = =

= + = − 
−
   

Sample mean of  thh  stratum =  
1

1
, , .

hNn

hN hL hU hN hjN hN hL hU

jhN

y y y I y I I I
n =

= + =    

Sample mean =  
1

, ,
L

stN stL stU N hN hN N L U

h

y y y I w y I I I
=

= + =   where .hN
hN

N

N
w

N
=  

Like in classical stratified sampling, neutrosophic unbiased estimator and its variance is 

given by as: 

         
1

, , ,
L

stN hN hN hN hL hU hN hN hL hU

h

y w y w w w I I I I
=

= = +                                        (1) 

      ( ) ( )2 2 2

1 1

1 1L L

stN hN hN hN hN

h h hN hN

V y w V y w S
n N= =

 
= = − 

 
                                          (2) 

 

Below here in Fig. 1, we are given a neutrosophic stratified sampling structure: 

Fig 1: 
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NESRSWOR: Neutrosophic Simple Random Sampling without Replacement  

 

 

Every neutrosophic value in this section is represented like this  N L U NZ Z Z I= +  with 

 ,N L UI I I  and stratified neutrosophic value is represented as  hN hL hU hNZ Z Z I= +  with 



 

 

 , .hN hL hUI I I  The symbol 'N' used to represent a neutrosophic number and 'h' for each 

stratum. Consequently, our neutrosophic value will fall within an interval that is 

 ,NZ a b  and stratified neutrosophic value as  , .hN h hZ a b  

3.2 Proposed separate ratio and regression estimator under neutrosophic stratified 

sampling  

To estimate the neutrosophic separate stratified population mean using neutrosophic 

auxiliary characteristics. We examine a finite, diverse population with a total size of 
NN , 

and we partition it into L homogeneous and non-overlapping strata, with each stratum 

having a size of 
hNN , 1, 2, ...,h L= ,

1

L

hN Nh
N N

=
= . Let ( ),hjN hjNy x represent the paired 

values associated with the study character 
Ny  and the auxiliary character 

Nx , 

respectively of the thj unit ( )1,2,..., hNj N=  in the thh stratum. Also, let ( ),hjN hjNy x  be the 

pair of values on ( ),y x  drawn from the thh stratum ( )1,2,..., ; 1, 2,...,hNj n h L= = . Let 

 
1

1
,

hNn

hN hjN hL hU

jhN

y y y y
n =

=  and  
1

1
,

hNn

hN hjN hL hU

jhN

x x x x
n =

=   be the stratum sample 

means,  
1

,
hN

L

stN hN n stL stU

h

y w y y y
=

=  and  
1

,
hN

L

stN hN n stL stU

h

x w x x x
=

=  be the total sample 

means of the strata for the neutrosophic study and ancillary variables are represented, 

respectively. Also, 
1

1
,

hNN

hN hjN hL hU

jhN

Y Y Y Y
N =

 =    and 
1

1
,

hNN

hN hjN hL hU

jhN

X X X X
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 =    be 

the stratum population means, 
1

,
L

N hN hN L U

h

Y w Y Y Y
=

 =    and 
1

L

N hN hN

h

X w X
=

=  

,L UX X   be the population means of the neutrosophic study variable  ,N L UY Y Y  and 

ancillary  ,N L UX X X  characteristics, respectively. The stratum correlation coefficient 

between both neutrosophic study and subsidiary variables is  ,yxhN yxhL yxhU     , 

 ,xhN xhL xhUC C C  and ,yhN yhL yhUC C C    be the stratum coefficient of variation of 

neutrosophic variables 
NY  and 

NX . The parameter 
( ) ( ) ( )2 2 2

,
x hN x hL x hU

   
 

is the 

neutrosophic stratum coefficient of kurtosis of a neutrosophic subsidiary variable 
NX . 

Let the neutrosophic stratum mean error terms are  0 0 0,h N h L h Ue e e  and 

 1 1 1,h N h L h Ue e e , where ( )0 /h N hN hN hNe y Y Y= −  and ( )1 /h N hN hN hNe x X X= −  are such 



 

 

that ( )1 0,h NE e =  ( )1 0h NE e = , ( )2

0h N hN yyhNE e f C= , ( )2

1h N hN xxhNE e f C=  and 

( )0 1h N h N hN yxhNE e e f C= ,  

where,  

1 1
hN

hN hN

f
n N

 
= − 
 

,  ,xxhN xxhL xxhUS S S ; ,yyhN yyhL yyhUS S S   ; , .xyhN xyhL xyhUS S S    ,hN hL hUf f f

; 2 2 2

0 0 0,h N h L h Ue e e   ; 2 2 2

1 1 1,h N h L h Ue e e   ;   0 1 0 1 0 1,h N h N h L h L h U h Ue e e e e e ; ,yyhN yyhL yyhUC C C   ;  

 , ;xxhN xxhL xxhUC C C  , ;yxhN yxhL yxhU yxhN yhN xhNC C C C C  =    , ;xhN xhL xhUS S S  

,yhN yhL yhUS S S   ;    ,yxhN yxhL yxhU     . 

 

To ascertain population means amidst uncertainty, we define established separate 

stratified ratios and regression estimators into neutrosophic separate stratified estimators. 

So, inspired by [1], [34], [35], [43]. We propose a neutrosophic separate stratified ratio 

and regression estimator for population means by utilizing neutrosophic subsidiary 

information. The neutrosophic separate stratified ratio and regression estimator are given, 

respectively  

 , ,hN hL hU
RhN hN hL hU hN hN hL hU

hN hL hU

X X X
y y y y I I I I

x x x

        
= = +            

        
                  (3)

                                                       

( ) ( )( )

( )( )  , ,

reghN hN hN hN hN hL hL hL hL

hU hU hU hU hN hN hL hU

y y b X x y b X x

y b X x I I I I

= + − = + −

+ + − 
  (4)

 

So, total neutrosophic separate stratified ratio and regression estimators are given as 

1 1

L L
hN

RN hN RhN hN hN

h h hN

X
y w y w y

x= =

 
= =  

 
                                            (5)

                                                       

( )( )
1 1

L L

regN hN reghN hN hN hN hN hN

h h

y w y w y b X x
= =

= = + −                                  (6)
 

 

To calculate the Bias and MSE, we extend the neutrosophic separate stratified ratio 

estimator from Eq. (5) by breaking it down into neutrosophic separate stratified mean 

error terms as follows: 

    ( )
( )0

1 1 1

1
1

L L
hN

RN hN RhN hN hN h N

h h hN h N

X
y w y w Y e

X e= =
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           ( ) 
1

0 1

1

1 1
L

hN hN h N h N

h

w Y e e
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=

 + +  



 

 

              ( )2

0 1 1 1 0

1

1
L

RN hN hN h N h N h N h N h N

h

y w Y e e e e e
=

 + − + −  

 ( ) ( )2

0 1 1 1 0

1

L

RN N hN hN h N h N h N h N h N

h

y Y w Y e e e e e
=

−  − + −                                       (7) 

By taking expectations on both sides of Eq. (7), we get the Bias of neutrosophic separate 

stratified ratio estimator as 

    ( ) ( )
1

L

RN hN hN hN xxhN yxhN

h

Bias y w Y f C C
=

= −                                                    (8) 

By squaring and taking expectations on both sides of Eq. (7), with a degree no greater 

than 2, we determine the Mean Squared Error (MSE) of the neutrosophic separate 

stratified ratio estimator as: 

         ( ) ( )2 2

1

2
hN

L

RN hN hN yyhN xxhN yxhN

h

MSE y w Y f C C C
=

= + −                                       (9) 

To obtain Bias and MSE, we opened the neutrosophic separate stratified estimator from 

Eq. (6) by breaking it down into the first-order approximation of neutrosophic separate 

stratified mean error terms as: 

 ( ) ( )( )( )0 1

1 1

1 1
L L

regN hN reghN hN hN h N hN hN hN h N

h h

y w y w Y e b X X e
= =

= = + + − +  ;  

                   ( )0 1

1

1
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w Y e b X e
=

 + −  

                         ( ) ( )0 1

1
N

L

regN N hN hN h N hN hN h N

h

y Y w Y e b X e
=

−  −                                         (10) 

By taking expectations on both sides of Eq. (10), we get the Bias of neutrosophic separate 

stratified regression estimator as 

              ( ) 0regNBias y =                                                                             (11) 

By squaring and taking expectations on both sides of Eq. (10), with a degree no greater 

than 2, we determine the Mean Squared Error (MSE) of the neutrosophic separate 

stratified ratio estimator as: 

( ) ( )2 2 2 2

1

2
L

regN hN hN hN yyhN hN hN xxhN hN hN hN yxhN

h

MSE y w f Y C b X C b Y X C
=

= + −                (12) 

where the constant term 
hNb  is such that minimized the MSE of regNy  and for this, we 

differentiate the MSE in Eq. (12) with respect to hNb  and by equating it to 0, we get   

                         
( )( )

0
regN

hN YXhN
hN

hN hN xxhN

MSE y Y C
b

b X C

  
=  =  

  
                                      (13)  

Replacing  
hNb  from Eq. (13) into Eq. (12), we get the MSE of regNy  as 



 

 

                              ( ) ( )2 2 2

1

1
L

regN hN hN hN yyhN YXhN

h

MSE y w f Y C 
=

= −                                      (14) 

Now, again, to show Bias and MSE, we opened the neutrosophic stratified unbiased 

estimator from Eq. (1) in neutrosophic separate stratified mean error terms as 

         ( )0

1 1

1
L L

stN hN hN hN hN h N

h h

y w y w Y e
= =

= = +                                              (15) 

To the 1st order approximation, the Bias and MSE of the neutrosophic separate stratified 

unbiased estimator are given respectively by Eq. (16) and (17) 

                   ( ) 0stNBias y =                                                                         (16) 

                  ( ) 2 2

1

L

stN hN hN hN yyhN

h

MSE y w f Y C
=

=                                                         (17) 

Further, for the comparison with NeSRS and by [34], we are giving an unbiased estimator 

under NeSRS corresponding to a neutrosophic separate stratified unbiased estimator as  

                      
1

1 Nn

N iN

iN

y y
n =

=                                                                      (18) 

To the 1st order approximation, the Bias and MSE of the neutrosophic unbiased estimator 

under NeSRS are given respectively by Eq. (19) and (20) 

( ) 0NBias y =                                                                         (19)  

      ( ) ( ) ( )
2

2 2

1 1

1 1 1
, , .

1

NNL

N N N N N N hjN N

h jN N N

MSE y Var y f S f S Y Y
n N N = =

 
= = = − = − 

− 
    (20) 

 

 , ;RN RL RUy y y , ;regN regL regUy y y    , ;stN stL stUy y y  , ;N L Uy y y  ,N L Uf f f

( ) ( ) ( ), ;RN RL RUBias y Bias y Bias y   ( ) ( ) ( ), ;RN RL RUMSE y MSE y MSE y     

( ) ( ) ( ), ;regN regL regUBias y Bias y Bias y 
  ( ) ( ) ( ), ;regN regL regUMSE y MSE y MSE y 

 

( ) ( ) ( ), ;stN stL stUBias y Bias y Bias y   ( ) ( ) ( ), ;stN stL stUMSE y MSE y MSE y     

( ) ( ) ( ), ;N L UBias y Bias y Bias y   ( ) ( ) ( ), ;N L UMSE y MSE y MSE y      , .N L Ub b b  

Every neutrosophic value in this section is represented like this  N L U NZ Z Z I= +  with 

 ,N L UI I I  and stratified neutrosophic value is represented as  hN hL hU hNZ Z Z I= +  with 

 , .hN hL hUI I I  The symbol 'N' used to represent a neutrosophic number and 'h' for each 

stratum. Consequently, our neutrosophic value will fall within an interval that is 

 ,NZ a b  and stratified neutrosophic value as  , .hN h hZ a b  



 

 

4. Efficiency Comparisons 

Efficiency comparisons of the neutrosophic separate stratified ratio and regression 

estimators over neutrosophic separate stratified unbiased estimator 

(i)     RNy  will be efficient to stNy , iff 

      ( ) ( )RN stNMSE y MSE y i.e.  ( )( ) ( ) 0stN RNMSE y MSE y−                  

from Eq. (9) and (17), we have  

       ( )2 2

1 1

2 0
L L

hN hN hN hN hN hN yyhN xxhN yxhN

h h

w Y f w Y f C C C
= =

 
− + −  

 
   i.e. 

2

xxhN
yxhN

C
C                                                                    (18) 

(ii) The estimator regNy  will be efficient to rsswey , iff 

      ( ) ( )regN stNMSE y MSE y i.e.  ( )( ) ( ) 0stN regNMSE y MSE y−                  

from Eq. (20) and (46), we have  

           ( )2 2 2

1 1

1 0
L L

hN hN hN yyhN hN hN hN yyhN YXhN

h h

w f Y C w f Y C 
= =

 
− −  

 
   i.e.  

2 2

1

0
L

hN hN hN yyhN YXhN

h

w f Y C 
=

                                                         (19) 

which is always true. 

4.1 Empirical study  

To numerically elucidate the characteristics of neutrosophic stratified estimators, we have 

compiled real-life indeterminate climate data of the USA state. We have taken two states, 

Alabama and Georgia, as strata, and then November month is taken for the data from 

both states. There are many variables, but we are considering Dew Point Temperature vs 

Relative Humidity variables only here. The Dew Point Temperature variable is taken as 

the auxiliary variable  ,hN hL hUX X X=  , and the Relative Humidity variable as the study 

variable  , .hN hL hUY Y Y Along with indeterminate data, classical data is also taken by 

averaging lower and upper values of the indeterminate data. The parameter descriptions 

are given in Table 1 below, and the data is available in Tables 6 and 7 of Appendix A. 

Also, one can visit for the data on this link: https://mrcc.purdue.edu.  

https://mrcc.purdue.edu/


 

 

 

Table 1: Description of real data parameters for estimating means in the context of 

neutrosophic stratified random sampling. 

Parameters Neutrosophic Classical Parameters Neutrosophic Classical 

1st Stratum 

1NN  [19, 19] 19 
1y NS  [13.55, 23.30] 12.12 

1Nn  [6, 6] 6 
1x NC  [0.2295, 0.5549] 0.5549 

1NX  [19.58, 61.95] 19.58 
1y NC  [0.1405, 0.8261] 0.1944 

1NY  [28.21, 96.47] 62.34 
( )2 1x N

  [6.4058, 6.0892] 6.0892 

1x NS  [10.86, 14.22] 10.86 
1yx N  [0.946, 0.941] 0.889 

2nd Stratum 

2 NN  [22, 22] 22 
2y NS  [11.78, 21.88] 9.457 

2Nn  [7, 7] 7 
2x NC  [0.1393, 0.5794] 0.1622 

2NX  [22.55, 62.23] 42.39 
2y NC  [0.1255, 0.6887] 0.1506 

2NY  [31.77, 93.86] 62.82 
( )2 2x N

  [2.5435, 8.5923] 3.2652 

2x NS  [8.67, 13.06] 6.873 
2yx N  [0.8854, 0.9481] 0.8588 

Further, we have taken 
1 6Nn =  samples from the 1st strata of size 19 and 2 7Nn = from 

the strata of size 22 for both neutrosophic and classical using simple random form the 

both strata. The calculated results of the MSEs and REs obtained using the proposed 

neutrosophic separate stratified estimators along with classical separate stratified 

estimators are presented in Tables 5 and 6.   

4.2 Monte-Carlo Simulation  

Again, to numerically elucidate the characteristics of neutrosophic estimators, we 

conducted a Monte-Carlo simulation utilizing the methodology proposed by [35], [44]. 

This simulation was specifically conducted within the framework of neutrosophic 

analysis. Our population is separately stratified into two distinct categories, denoted as 

h=1 and h=2. It is important to note that within this context, neutrosophic stratified 

random variables (NSRV) naturally adhere to a neutrosophic separate stratified normal 

distribution (NSND), i.e.,  



 

 

( ) ( ) ( )2 2, , , ,hN hN xhN xhN yhN yhNX Y NN     
 

,  ,hN hL hUX X X ;  ,hN hL hUY Y Y ; 

 ,xhN xhL xhU   ; ,yhN yhL yhU     ; 2 2 2,xhN xhL xhU      ; 2 2 2,xhN xhL xhU      . The 

neutrosophic data is generated from a 4-variate multivariate stratified normal distribution 

with means ( ), , ,xhL yhL xhU yhU     and covariance matrix  

   

2

2

2

2

0 0

0 0

0 0

0 0

xhL yxhL xhL yhL

yxhL xhL yhL yhL

xhU yxhU xhU xhU

yxhU xhU yhU yhU

   

   

   

   

 
 
 
 
 
  
 

.  

The essential parameters for simulating neutrosophic separate stratified data are detailed 

in the following Table 2. 

 

Table 2: Description of simulated data parameters for estimating means in the 

context of neutrosophic stratified random sampling. 

Parameters Neutrosophic Classical Parameters Neutrosophic Classical 

1st Stratum 

1NN  [80, 80] 80 
1y NS  [9.34, 12.72] 9.88 

1Nn  [25, 25] 25 
1x NC  [0.2501, 0.2652] 0.2343 

1NX  [39.16, 50.35] 45.46 
1y NC  [0.2502, 0.2386] 0.2163 

1NY  [39.13, 50.85] 45.70 
( )2 1x N

  [2.5189, 3.2019] 2.7548 

1x NS  [9.79, 13.35] 10.65 
1yx N  [(0.5, 0.7, 0.9), 

(0.5, 0.7, 0.9] 

0.5, 0.7, 

0.9 

2nd Stratum 

2 NN  [120, 120] 120 
2y NS  [4.61, 5.56] 5.82 

2Nn  [40, 40] 40 
2x NC  [0.1811, 0.2362] 0.2341 

2NX  [19.54, 30.31] 25.25 
2y NC  [0.1837, 0.2324] 0.2339 

2NY  [19.84, 30.28] 24.86 
( )2 2x N

  [2.6657, 3.2219] 3.3548 

2x NS  [4.62, 5.48] 5.91 
2yx N  [(0.5, 0.7, 0.9), 

(0.5, 0.7, 0.9] 

0.5, 0.7, 

0.9 

 

We conducted a study in which we divided a total population of size 200 into two 

neutrosophic strata of sizes 80 and 120. Further, neutrosophic stratum samples of sizes 25 

and 40, respectively, are drawn using the neutrosophic simple random sampling method. 

So, we have a total of 65 neutrosophic separate stratified samples, and we utilize these 



 

 

samples to calculate the mean square errors (MSEs) and relative efficiencies (REs) for the 

proposed neutrosophic ratio and regression estimators. This entire process of obtaining 

MSEs and REs for the separate neutrosophic stratified estimators via the neutrosophic 

stratified sampling method was repeated 7000 times. The same process is also done for 

classical stratified sampling along with neutrosophic stratified sampling. The results of 

the MSEs and REs obtained using the proposed neutrosophic separate stratified estimators 

along with classical separate stratified estimators are presented in Tables 3 and 4.  

 

Table 3: MSEs of the proposed estimators under neutrosophic stratified sampling. 
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MSEs  

1 [.5,.5]yx N =

 

2 [.9,.9]yx N =

 

1 .5yx =  

2 .9yx =

 

1 [.7,.7]yx N =

 

2 [.9,.9]yx N =

 

1 .7yx =

 

2 .9yx =

 

1 [.5,.5]yx N =

 

2 [.7,.7]yx N =

 

1 .5yx =
 

2 .7yx =

 

Ny  [16.1, 19.8] 17.2 [17.2, 21.6] 20.6 [18.1, 22.7] 19.1 

stNy  [1.04, 1.85] 1.46 [1.27, 2.30] 1.53 [1.13, 2.05] 1.41 

RNT  [0.84, 1.27] 1.19 [0.62, 0.71] 0.79 [1.06, 1.57] 1.36 

regNT  [0.56, 0.93] 0.92 [0.563, 0.68] 0.73 [0.74, 1.25] 1.01 

 

Table 4: REs of the proposed estimators over neutrosophic stratified unbiased. 
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MSEs  

1 [.5,.5]yx N =

 

2 [.9,.9]yx N =

 

1 .5yx =  

2 .9yx =

 

1 [.7,.7]yx N =

 

2 [.9,.9]yx N =

 

1 .7yx =

 

2 .9yx =

 

1 [.5,.5]yx N =

 

2 [.7,.7]yx N =

 

1 .5yx =  

2 .7yx =

 

stNy  [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 

RNT  [1.24, 1.45] 1.23 [2.04, 3.23] 1.95 [1.07, 1.30] 1.03 

regNT  [1.85, 1.97] 1.59 [2.26, 3.37] 2.10 [1.53, 1.64] 1.39 

 

Table 5: MSEs of the proposed estimators under neutrosophic stratified sampling. 

 E s ti m a t o r s MSEs  



 

 

Neutrosophic 
 

Classical
 

Ny  [8.26, 26.2] 5.94 

stNy  [3.61, 11.02] 2.57 

RNT  [2.03, 2.07] 1.01 

regNT  [0.58, 1.01] 0.86 

 

Table 6: REs of the proposed estimators over neutrosophic stratified unbiased. 
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 MSEs  

Neutrosophic 
 

Classical
 

stNy  [1.00, 1.00] 1.00 

RNT  [1.75, 5.42] 2.53 

regNT  [3.58, 18.9] 2.98 

 

5. Results and Discussion 

We have derived the mathematical expressions for the proposed neutrosophic separate 

stratified ratio and regression estimators, limited to the first-order approximation. To gain 

a deeper understanding of the properties of these neutrosophic separate stratified 

estimators, we conducted a real-life neutrosophic data-based empirical study and a 

Monte-Carlo simulation study using artificial neutrosophic data, specifically targeting the 

correlation coefficients [(0.5, 0.7, 0.9), (0.5, 0.7, 0.9)]. We then computed the Mean 

Squared Errors (MSEs) and Relative Efficiencies (REs) for the proposed neutrosophic 

separate stratified ratio and regression estimators. These numerical results are presented 

in Tables 3, 4, 5, and 6. 

In Table 3, the MSEs of the proposed neutrosophic separate stratified ratio and 

regression estimators, neutrosophic stratified unbiased and neutrosophic unbiased 

estimators, along with classical separate stratified estimators, are given through Monte-

Carlo simulation on artificial neutrosophic data for the combination values of the 

correlation coefficient. The highlighted bold font shows the least MSE of the proposed 

neutrosophic stratified estimators. We see the MSEs of the proposed neutrosophic 

separate regression estimator for different sets of correlation coefficients are least along 



 

 

with the classical stratified separate regression estimator but better than the classical 

separate regression estimator. Also, we see that the unbiased estimator under NeSRS is 

greater than the unbiased estimator under neutrosophic stratified sampling, proving that 

neutrosophic stratified is better than NeSRS. 

Again, in Table 4, we see that the REs of the proposed separate regression estimator 

are higher than other estimators along with the classical separate regression estimator but 

better than the classical separate regression estimator.  

Also, we see the MSE and RE of the neutrosophic stratified separate regression 

estimator, along with the classical stratified separate regression estimator, are the lowest 

and highest, respectively, for the correlation coefficient value 

1 2[.7,.7], [.9,.9]yx N yx N = = . So, the neutrosophic stratified estimators are better than 

classical stratified estimators when the 'uncertain or vague' heterogeneous 'data or 

population' exist.  

In Table 5, similar to Table 3, the MSEs of the proposed neutrosophic separate 

stratified ratio and regression estimators, neutrosophic stratified unbiased and 

neutrosophic unbiased estimators, along with classical separate stratified estimators are 

given through real-life neutrosophic climate data. The highlighted bold font shows the 

least MSE of the proposed neutrosophic stratified estimators. We see the MSEs of the 

proposed neutrosophic separate regression estimator are least along with the classical 

stratified separate regression estimator but better than the classical separate regression 

estimator. Also, we see that the unbiased estimator under NeSRS is greater than the 

unbiased estimator under neutrosophic stratified sampling, proving that neutrosophic 

stratified is better than NeSRS.  

Again, in Table 6, similar to Table 4, we see that the RE of the proposed separate 

regression estimator is higher than other estimators along with the classical separate 

regression estimator but better than the classical separate regression estimator.  

 

6. Conclusion 

Motivated by the work of [34] and [35] and with the help of neutrosophic subsidiary 

variables in our research, we have introduced novel concepts in dealing with 

neutrosophic heterogeneous data or populations. Specifically, we have put forth the 

concept of neutrosophic stratified sampling and then separate ratio and regression 

estimators under this sampling method. The Biases and MSEs of the proposed estimators 

are derived up to the 1st-order approximation. The neutrosophic stratified sampling and 

proposed estimators are examined theoretically and numerically very well through 

efficiency criteria. Numerical comparisons show that the neutrosophic stratified sampling 

is better than neutrosophic simple random sampling, and the neutrosophic separate 



 

 

regression estimator is better than the neutrosophic separate ratio and unbiased 

estimators. Also, comparisons with classical estimators and neutrosophic estimators show 

that neutrosophic estimators or neutrosophic methods are better and more reliable than 

classical estimation methods when there is indeterminacy in data.  

These findings open the door for further investigations in various directions, such 

as modifying estimation procedures, exploring alternative estimators, or experimenting 

with different sampling methodologies. The current study can also be done further using 

combined stratified estimators instead of separate ones. Motivated by the neutrosophic 

ranked set sampling method given in [35], a neutrosophic stratified ranked set sampling 

can be defined, and further neutrosophic stratified median ranked set, extreme ranked set, 

unbalanced ranked set, etc., can be defined.  
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Appendix A 

 

 The data in Table 6 is taken as 1st strata, and the data in Table 7 is taken as 2nd strata.  

 

 

Table 6: The climate data is taken for November month from the Alabama state of 

USA 

Station Name Min Dew Point 

Temp (F) 

Max Dew Point 

Temp (F) 

Min RH 

(%) 

Max RH 

(%) 

ANNISTON METRO AP 10 66 17 100 

MOBILE DWTN AP 12 69 12 94 

BIRMINGHAM AP 14 64 16 94 

DECATUR PRYOR FLD 15 62 18 100 

DOTHAN RGNL AP 17 69 20 100 

ALABASTER SHELBY CO 

AP 16 66 18 100 

EVERGREEN 

MIDDLETON FLD 18 68 22 100 

MONTGOMERY AP 19 67 19 100 

MOBILE RGNL AP 15 70 14 100 

MUSCLE SHOALS RGNL 

AP 13 61 14 100 

MAXWELL AFB 50 64 94 100 

CAIRNS FLD FT RUCKER 48 64 82 100 

CRAIG AFB 14 68 17 108 

TUSCALOOSA MUNI AP 15 64 16 100 

TROY MUNI AP 18 66 18 94 

FAIRHOPE 3 NE 25 27 41 60 

GADSDEN 19 N 17 20 52 63 

HUNTSVILLE INTL AP 

JONES FIELD 16 62 18 100 

ANNISTON METRO AP 20 80 28 120 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 7: The climate data is taken for November month from Georgia state of USA 

Station Name Min Dew Point 

Temp (F) 

Max Dew Point 

Temp (F) 

Min RH 

(%) 

Max RH 

(%) 

ALBANY SW GA 

RGNL AP 19 68 22 100 

AUGUSTA BUSH FLD 

AP 13 66 16 100 

ATHENS BEN EPPS AP 11 64 16 100 

ALMA BACON CO AP 21 67 21 100 

ATLANTA 

HARTSFIELD INTL AP 14 64 22 94 

COLUMBUS METRO 

AP 16 66 18 100 

AUGUSTA DANIEL 

FLD AP 13 65 16 100 

PEACHTREE CITY 

FALCON FLD 10 65 17 100 

ATLANTA FULTON 

CO AP 14 64 22 100 

GAINESVILLE 

GILMER AP 12 61 19 100 

FT BENNING 

LAWSON FLD 23 66 28 100 

MACON MIDDLE GA 

RGNL AP 16 67 19 100 

MARIETTA DOBBINS 

AFB 36 47 59 87 

ATLANTA 

PEACHTREE AP 10 64 20 100 

ROME R B RUSSELL 

AP 13 63 19 94 

SAVANNAH INTL AP 22 67 15 100 

BRUNSWICK 

MALCOLM 

MCKINNON AP 47 56 59 73 

VALDOSTA MOODY 

AFB 50 66 88 94 

VALDOSTA RGNL AP 24 71 26 100 

WARNER ROBINS' 

AFB 43 66 72 94 

BRUNSWICK 23 S 46 55 67 74 

NEWTON 8 W 23 31 38 55 
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