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Abstract

Neutrosophic Sets are conceptual frameworks designed to address uncertainty. A Neutrosophic TwoFold Alge-
bra is a hybrid algebraic structure defined over a neutrosophic set, combining classical algebraic operations with 
neutrosophic components. Concepts such as Hyperalgebra and Superhyperalgebra extend classical Algebra us-
ing Power Sets and 𝑛-th powersets. Additionally, structures such as NeutroAlgebra and AntiAlgebra have been 
defined in recent y ears. This paper explores several related concepts, including TwoFold SuperhyperAlgebra 
and Anti SuperhyperAlgebra.
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1 Preliminaries and Definitions

Some foundational concepts from set theory are applied in parts of this work.

1.1 𝑛-th Powerset

The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible subsets of 𝑆. The 𝑛-th Powerset is a 
recursive extension of the Powerset structure, where the powerset operation is applied repeatedly. The related 
definitions are provided below.

Definition 1.1 ( Set). [19] A set is a collection of distinct, well-defined objects, referred to as elements. For any 
object 𝑥, it can be determined whether 𝑥 is an element of a given set. If 𝑥 belongs to a set 𝐴, this is denoted as 
𝑥 ∈ 𝐴. Sets are often represented using curly braces. For example, the set 𝐴 = {1, 2, 3} contains the elements 
1, 2, and 3.

Definition 1.2 (Base S et). A base set 𝑆 is the foundational set from which complex structures such as powersets 
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 1 .3 ( Powerset). [9, 27] The p owerset of a  s et 𝑆 , d enoted P (𝑆), i s t he collection of a ll possible 
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 1.4 (𝑛-th P owerset). (cf. [8–10, 32, 39])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard p owerset. The 
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃 (𝐻), is defined recursively as:

𝑃 (𝐻) = 𝑃∗ (𝐻), 𝑃∗
𝑛+1 (𝐻) = 𝑃∗ (𝑃 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.



1.2 Superhyperalgebra

Algebra studies mathematical symbols, operations, and the rules for manipulating and solving equations
[4,20,21]. A Hyperalgebra is an algebraic structure that extends classical algebraic frameworks by incorporating
hyperoperations, where the result of operations is a set rather than a single element [6, 7, 15, 25, 26, 45, 46]. A
Superhyperalgebra further generalizes Hyperalgebra by allowing operations to map to higher-order powersets
(𝑛-th powersets) of the base set 𝐻 [17, 18, 22, 32, 38, 44]. The detailed definition is provided below .

Definition 1.5 (Hyperalgebra). [32] A Hyperalgebra is an algebraic structure that extends classical algebraic
structures by incorporating hyperoperations, which are generalized operations where the result of applying the
operation is a set rather than a single element. Formally, a Hyperalgebra is defined as:

H = (𝐻,★,A),

where:

1. 𝐻 is a non-empty set called the base set.

2. ★ : 𝐻𝑚 → P∗ (𝐻) is an 𝑚-ary Hyperoperation, such that:

★(𝑥1, 𝑥2, . . . , 𝑥𝑚) ⊆ P∗ (𝐻),

where P∗ (𝐻) = P(𝐻) \ {∅} is the powerset of 𝐻 excluding the empty set.

3. A is a set of Hyperaxioms, which are generalizations of classical axioms applied to hyperoperations.

Definition 1.6 (Superhyperalgebra). [32] A Superhyperalgebra generalizes Hyperalgebra by allowing opera-
tions to map to higher-order powersets (𝑛-th powersets) of the base set 𝐻. It is formally defined as:

SH (𝑚,𝑛) = (𝐻,★(𝑚,𝑛) ,A),

where:

1. 𝐻 is a non-empty set called the base set.

2. P∗
𝑛 (𝐻) is the 𝑛-th powerset of 𝐻 excluding the empty set, defined recursively as:

P∗
1 (𝐻) = P∗ (𝐻), P∗

𝑘+1 (𝐻) = P∗ (P∗
𝑘 (𝐻)) for 𝑘 ≥ 1.

3. ★(𝑚,𝑛) : 𝐻𝑚 → P∗
𝑛 (𝐻) is an (𝑚, 𝑛)-SuperHyperoperation, where 𝑚 is the arity of the operation and 𝑛 is

the order of the powerset. For each (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ 𝐻𝑚:

★(𝑚,𝑛) (𝑥1, 𝑥2, . . . , 𝑥𝑚) ⊆ P∗
𝑛 (𝐻).

4. A is a set of SuperHyperaxioms, which are extensions of Hyperaxioms adapted to (𝑚, 𝑛)-SuperHyperoperations.

1.3 Neutrosophic Set

Neutrosophic Sets are conceptual frameworks designed to handle uncertainty. Their definitions are provided
below.

Definition 1.7. [33–36,42,43] Let 𝑋 be a given set. A (single-valued) Neutrosophic Set 𝐴 on 𝑋 is characterized
by three membership functions:

𝑇𝐴 : 𝑋 → [0, 1], 𝐼𝐴 : 𝑋 → [0, 1], 𝐹𝐴 : 𝑋 → [0, 1],

where for each 𝑥 ∈ 𝑋 , the values 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent the degree of truth, indeterminacy, and
falsity, respectively. These values satisfy the following condition:

0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.
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1.4 Neutrosophic Twofold algebra

A Neutrosophic TwoFold Algebra is a hybrid algebraic structure defined over a neutrosophic set [40], incor-
porating classical algebraic operations alongside neutrosophic components. It consists of two interrelated
algebras:

1. Classical Algebra, defined on the elements of a base set.

2. Neutrosophic Algebra, defined on the neutrosophic components (𝑇, 𝐼, 𝐹) of the elements [2,5,11,16,24].

Definition 1.8 (Neutrosophic TwoFold Algebra). [40] Let 𝑈 be a universe of discourse, and let 𝐴 be a
non-empty neutrosophic set:

𝐴(𝑇, 𝐼, 𝐹) = {𝑥(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) | (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) ∈ [0, 1]3, 𝑥 ∈ 𝑈},

where:

• 𝑇𝐴(𝑥): Degree of truth-membership of 𝑥 in 𝐴,

• 𝐼𝐴(𝑥): Degree of indeterminacy-membership of 𝑥 in 𝐴,

• 𝐹𝐴(𝑥): Degree of falsehood-membership of 𝑥 in 𝐴.

Let ★ : 𝐴 × 𝐴 → 𝐴 be a binary operation defined as:

𝑥1 (𝑇1, 𝐼1, 𝐹1) ★ 𝑥2 (𝑇2, 𝐼2, 𝐹2) =
(
𝑥1#𝑥2

) (
𝑇1 ⊙ 𝑇2, 𝐼1 ⊙ 𝐼2, 𝐹1 ⊙ 𝐹2

)
,

where:

• # : 𝑈 ×𝑈 → 𝑈 is a classical operation on the elements,

• ⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3 is an operation on the neutrosophic components.

The Neutrosophic TwoFold Law extends the algebraic interaction of two neutrosophic elements by applying a
pair of sub-laws.

Definition 1.9 (Neutrosophic TwoFold Law). Let Δ : 𝐴(𝑇, 𝐼, 𝐹) × 𝐴(𝑇, 𝐼, 𝐹) → 𝐴(𝑇, 𝐼, 𝐹) represent the
Neutrosophic TwoFold Law, defined as:

𝑥1 (𝑇1, 𝐼1, 𝐹1)Δ𝑥2 (𝑇2, 𝐼2, 𝐹2) =
(
𝑥1#𝑥2, (𝑇1 ⊙ 𝑇2), (𝐼1 ⊙ 𝐼2), (𝐹1 ⊙ 𝐹2)

)
,

where:

• Δ is composed of two sub-laws:

# : 𝑈 ×𝑈 → 𝑈 (classical component),

⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3 (neutrosophic component).

• The sub-laws # and ⊙ can be:

– Totally Dependent: ⊙ is entirely governed by #,
– Partially Dependent: ⊙ is influenced but not fully determined by #,
– Independent: ⊙ operates independently of #.

Example 1.10. Let 𝑈 = {𝑎, 𝑏, 𝑐} and define a neutrosophic set 𝐴(𝑇, 𝐼, 𝐹):

𝐴(𝑇, 𝐼, 𝐹) = {𝑎(0.8, 0.1, 0.1), 𝑏(0.6, 0.3, 0.1), 𝑐(0.4, 0.4, 0.2)}.

3



1. Classical Operation: Define # : {𝑎, 𝑏, 𝑐} × {𝑎, 𝑏, 𝑐} → {𝑎, 𝑏, 𝑐} as:

𝑎#𝑏 = 𝑐, 𝑏#𝑐 = 𝑎, 𝑐#𝑎 = 𝑏.

2. Neutrosophic Operation: Define ⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3 as:

(𝑇1, 𝐼1, 𝐹1) ⊙ (𝑇2, 𝐼2, 𝐹2) = (𝑇1 · 𝑇2, 𝐼1 + 𝐼2 − 𝐼1 · 𝐼2, 𝐹1 + 𝐹2 − 𝐹1 · 𝐹2).

3. For 𝑥1 = 𝑎(0.8, 0.1, 0.1) and 𝑥2 = 𝑏(0.6, 0.3, 0.1):
𝑥1Δ𝑥2 =

(
𝑐, (0.8 · 0.6, 0.1 + 0.3 − 0.03, 0.1 + 0.1 − 0.01)

)
,

resulting in:
𝑥1Δ𝑥2 = 𝑐(0.48, 0.37, 0.19).

In addition, related concepts to Neutrosophic Twofold Algebra include Fuzzy Twofold Algebra and Fuzzy-
Extensions Twofold Algebra(cf. [1, 3, 12–14, 23, 28–30, 47]). This refers to the definition of Twofold Algebra
using Fuzzy Sets [48–51,51–53], which can also be generalized within the framework of Neutrosophic Twofold
Algebra.

1.5 AntiAlgebra and NeutroAlgebra

A NeutroAlgebra is a generalization of classical algebra that introduces the concepts of NeutroOperations
and NeutroAxioms [31, 31, 37, 41]. It allows operations and axioms to be partially well-defined, partially
indeterminate, or partially outer-defined, corresponding to the degrees of truth (𝑇), indeterminacy (𝐼), and
falsehood (𝐹).
Definition 1.11 (NeutroAlgebra). [31, 31, 37, 41] Let 𝑁𝐴 be a non-empty set equipped with:

• At least one NeutroOperation 𝜔 : 𝑁𝐴𝑛 → 𝑈, where 𝑛 ≥ 1, such that:

– For some 𝑛-tuples (𝑥1, . . . , 𝑥𝑛) ∈ 𝑁𝐴𝑛, 𝜔(𝑥1, . . . , 𝑥𝑛) ∈ 𝑁𝐴 (well-defined, degree of truth 𝑇).
– For other 𝑛-tuples, 𝜔(𝑥1, . . . , 𝑥𝑛) ∉ 𝑈 − 𝑁𝐴 (outer-defined, degree of falsehood 𝐹).
– For other 𝑛-tuples, 𝜔(𝑥1, . . . , 𝑥𝑛) is indeterminate (degree of indeterminacy 𝐼).

• or at least one NeutroAxiom, which is true for some elements of 𝑁𝐴, false for others, and indeterminate
for the rest.

The structure (𝑁𝐴, {𝜔}, {NeutroAxioms}) is called a NeutroAlgebra.
Example 1.12. Let 𝑁𝐴 = {𝑎, 𝑏, 𝑐} and define a binary operation:

𝜔(𝑥, 𝑦) =

𝑎 if 𝑥 = 𝑎, 𝑦 = 𝑏, (true)
undefined if 𝑥 = 𝑏, 𝑦 = 𝑐, (indeterminate)
𝑑 ∉ 𝑁𝐴 if 𝑥 = 𝑐, 𝑦 = 𝑎. (outer-defined)

The operation 𝜔 is a NeutroOperation because it exhibits all three behaviors (truth, indeterminacy, and
falsehood), and 𝑁𝐴 forms a NeutroAlgebra under 𝜔.

An AntiAlgebra is an algebraic structure that extends classical algebra by incorporating at least one operation
or axiom that is entirely outer-defined (false for all elements of the set) or by including elements that obey an
AntiAxiom [31, 31, 37, 41]. The formal definition is provided below.
Definition 1.13 (AntiAlgebra). [31, 31, 37, 41] Let 𝐴𝐴 be a non-empty set equipped with:

• At least one AntiOperation 𝜔 : 𝐴𝐴𝑛 → 𝑈 − 𝐴𝐴, where 𝑈 is the universal set and 𝑛 ≥ 1,

• or at least one AntiAxiom, which is a condition that is false for all elements of 𝐴𝐴.

The structure (𝐴𝐴, {𝜔}, {AntiAxioms}) is called an AntiAlgebra.
Example 1.14. Consider the set 𝐴𝐴 = {1, 2, 3} and the universal set 𝑈 = {1, 2, 3, 4, 5}. Define the binary
operation:

𝜔(𝑥, 𝑦) = 𝑥 + 𝑦 (mod 4), for 𝑥, 𝑦 ∈ 𝐴𝐴.

If 𝜔(𝑥, 𝑦) ∉ 𝐴𝐴 for all 𝑥, 𝑦 ∈ 𝐴𝐴, then 𝜔 is an AntiOperation, and 𝐴𝐴 forms an AntiAlgebra under 𝜔.
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2 Results of This Paper

This section highlights the main contributions of this paper.

2.1 Neutrosophic Twofold Superhyperalgebra

The Neutrosophic Twofold Algebra is extended using the concept of Superhyperalgebra. Relevant theorems
and definitions are presented below.

A Neutrosophic Twofold Hyperalgebra generalizes a Neutrosophic Twofold Algebra by replacing the classical
binary operation # with a hyperoperation, which can yield subsets (rather than single elements). It also
preserves the neutrosophic operation on the triple (𝑇, 𝐼, 𝐹).

Definition 2.1 (Neutrosophic Twofold Hyperalgebra). Let

𝐴(𝑇, 𝐼, 𝐹) = { 𝑥(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) | 𝑥 ∈ 𝑈, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) ∈ [0, 1]3}

be a non-empty Neutrosophic Set. We assume that:

1. ⊡ : 𝑈×𝑈 → P∗ (𝑈) is a binary hyperoperation on the underlying classical set𝑈. (P∗ (𝑈) is the powerset
of 𝑈 excluding the empty set, or in some definitions the entire powerset P(𝑈).)

2. ⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3 is the neutrosophic component.

A Neutrosophic Twofold Hyperalgebra is the structure(
𝐴(𝑇, 𝐼, 𝐹), ★

)
,

where for any
𝑥1 (𝑇1, 𝐼1, 𝐹1), 𝑥2 (𝑇2, 𝐼2, 𝐹2) ∈ 𝐴(𝑇, 𝐼, 𝐹),

we define:
𝑥1 (𝑇1, 𝐼1, 𝐹1) ★ 𝑥2 (𝑇2, 𝐼2, 𝐹2) =

(
𝑥1 ⊡ 𝑥2, (𝑇1, 𝐼1, 𝐹1) ⊙ (𝑇2, 𝐼2, 𝐹2)

)
,

with the understanding that 𝑥1 ⊡ 𝑥2 ⊆ 𝑈 is a subset of 𝑈.

Theorem 2.2. (Neutrosophic Twofold Hyperalgebra generalizes Neutrosophic Twofold Algebra.)
Any Neutrosophic Twofold Hyperalgebra reduces to a Neutrosophic Twofold Algebra precisely when the hyper-
operation ⊡ always yields singleton subsets. Formally,

∀𝑥1, 𝑥2 ∈ 𝑈, ⊡(𝑥1, 𝑥2) =
{
𝑥1 # 𝑥2

}
,

where # is a standard (single-valued) binary operation on 𝑈.

Proof. It can be proven step by step as follows:

• Let
(
𝐴(𝑇, 𝐼, 𝐹), ★

)
be a Neutrosophic Twofold Hyperalgebra. By definition, 𝐴(𝑇, 𝐼, 𝐹) is a non-empty

neutrosophic set:

𝐴(𝑇, 𝐼, 𝐹) =

{
𝑥
(
𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)

) ��� 𝑥 ∈ 𝑈, (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) ∈ [0, 1]3
}
.

• On the classical side, we have a hyperoperation

⊡ : 𝑈 ×𝑈 −→ P∗ (𝑈),

meaning that for any 𝑥1, 𝑥2 ∈ 𝑈, the image ⊡(𝑥1, 𝑥2) is a subset of 𝑈, excluding possibly the empty set.

• On the neutrosophic side, we have a binary operation

⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3.
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• The combined operation ★ on 𝐴(𝑇, 𝐼, 𝐹) is given by:

★

(
𝑥1 (𝑇1, 𝐼1, 𝐹1), 𝑥2 (𝑇2, 𝐼2, 𝐹2)

)
=

(
𝑥1 ⊡ 𝑥2, (𝑇1, 𝐼1, 𝐹1) ⊙ (𝑇2, 𝐼2, 𝐹2)

)
.

Assume that
∀𝑥1, 𝑥2 ∈ 𝑈, ⊡(𝑥1, 𝑥2) = { 𝑥1#𝑥2},

for some single-valued operation # : 𝑈×𝑈 → 𝑈. We wish to show that the Neutrosophic Twofold Hyperalgebra
reduces to a Neutrosophic Twofold Algebra.

1. Since ⊡ always yields exactly one element 𝑥1#𝑥2, we can treat ⊡ as a classical binary operation:

⊡(𝑥1, 𝑥2) =
{
𝑥1#𝑥2

}
.

2. In that scenario, for every pair of elements
(
𝑥1 (𝑇1, 𝐼1, 𝐹1), 𝑥2 (𝑇2, 𝐼2, 𝐹2)

)
∈ 𝐴(𝑇, 𝐼, 𝐹), the classical part

is no longer multi-valued, but strictly single-valued.

3. Hence, the structure
(
𝐴(𝑇, 𝐼, 𝐹), ★

)
behaves exactly like a Neutrosophic Twofold Algebra: on the classical

side, we have the single-valued operation #; on the neutrosophic side, we have ⊙.

4. Concretely,

𝑥1 (𝑇1, 𝐼1, 𝐹1) ★ 𝑥2 (𝑇2, 𝐼2, 𝐹2) =
(
{ 𝑥1#𝑥2},

(
𝑇1, 𝐼1, 𝐹1

)
⊙
(
𝑇2, 𝐼2, 𝐹2

) )
.

But since {𝑥1#𝑥2} is effectively just one element, we identify { 𝑥1#𝑥2} with 𝑥1#𝑥2 in the usual algebraic
sense. Therefore, the structure is isomorphic to a Neutrosophic Twofold Algebra where # is the classical
operation.

Conversely, suppose we start with a Neutrosophic Twofold Algebra(
𝐴(𝑇, 𝐼, 𝐹), ★

)
,

where the classical side is a single-valued operation #: 𝑈 ×𝑈 → 𝑈. We embed it into a Neutrosophic Twofold
Hyperalgebra by defining

⊡(𝑥1, 𝑥2) := {#(𝑥1, 𝑥2)}.

Clearly, ⊡ yields singleton sets as images. The neutrosophic side remains the same operation ⊙. This defines a
hyperoperation ⊡ that reproduces the original single-valued algebraic result in singleton form. Consequently,
every pair (𝑥1, 𝑥2) yields exactly one element inside a set, preserving all original algebraic properties.

Combining both directions:

• “If”: When ⊡ yields singletons, we revert to a classical single-valued #.

• “Only If”: Starting with a single-valued #, we can trivially interpret it as a degenerate hyperoperation
producing singleton images.

Hence, the Neutrosophic Twofold Hyperalgebra
(
𝐴(𝑇, 𝐼, 𝐹), ★

)
restricts exactly to a Neutrosophic Twofold

Algebra if and only if the hyperoperation⊡ always yields singletons. This completes the rigorous argument. □

To further generalize, we allow the operation on the classical side to map into higher-order powersets (𝑛-th
powersets), creating a Superhyperalgebra. We keep the neutrosophic (𝑇, 𝐼, 𝐹) operation.
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Definition 2.3 (Neutrosophic Twofold Superhyperalgebra). Let 𝐴(𝑇, 𝐼, 𝐹) be a non-empty Neutrosophic Set
over 𝑈. Let

★(𝑚,𝑛) : 𝑈𝑚 −→ P∗
𝑛 (𝑈)

be an (𝑚, 𝑛)-SuperHyperoperation (i.e., it maps 𝑚-tuples of𝑈 into the 𝑛-th powerset P∗
𝑛 (𝑈), possibly excluding

the empty set). Also, let
⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3

be the neutrosophic part. A Neutrosophic Twofold Superhyperalgebra is the structure(
𝐴(𝑇, 𝐼, 𝐹), ★(𝑚,𝑛) , ⊙

)
,

where the combined operation for any

𝑥1 (𝑇1, 𝐼1, 𝐹1), . . . , 𝑥𝑚 (𝑇𝑚, 𝐼𝑚, 𝐹𝑚) ∈ 𝐴(𝑇, 𝐼, 𝐹)

yields
★(𝑚,𝑛) (𝑥1, . . . , 𝑥𝑚

)
=
(
𝑥1 ⊕ · · · ⊕ 𝑥𝑚, (𝑇1, 𝐼1, 𝐹1) ⊙ . . . ⊙ (𝑇𝑚, 𝐼𝑚, 𝐹𝑚)

)
,

with 𝑥1 ⊕ · · · ⊕ 𝑥𝑚 ⊆ P∗
𝑛 (𝑈).

Theorem 2.4. (Neutrosophic Twofold Superhyperalgebra generalizes Neutrosophic Twofold Hyperalgebra.)
If an (𝑚, 𝑛)-SuperHyperoperation ★(𝑚,𝑛) maps 𝑚-tuples of 𝑈 into P∗

𝑛 (𝑈), then setting 𝑛 = 1 recovers a
Neutrosophic Twofold Hyperalgebra. Equivalently, restricting ★(𝑚,𝑛) to the first-order powerset P∗

1 (𝑈) yields
the hyperalgebraic level.

Proof. It can be proven step by step as follows.

Consider a Neutrosophic Twofold Superhyperalgebra:(
𝐴(𝑇, 𝐼, 𝐹), ★(𝑚,𝑛) , ⊙

)
,

where:

• 𝐴(𝑇, 𝐼, 𝐹) is a neutrosophic set of elements 𝑥 ∈ 𝑈 each with triple
(
𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)

)
.

• ★(𝑚,𝑛) : 𝑈𝑚 → P∗
𝑛 (𝑈) is an (𝑚, 𝑛)-SuperHyperoperation, meaning for any

(
𝑥1, 𝑥2, . . . , 𝑥𝑚

)
∈ 𝑈𝑚, we

have ★(𝑚,𝑛) (𝑥1, . . . , 𝑥𝑚) ⊆ P∗
𝑛 (𝑈).

• ⊙ : [0, 1]3 × [0, 1]3 → [0, 1]3 is the neutrosophic composition on (𝑇, 𝐼, 𝐹).

The combined operation is:

★(𝑚,𝑛)
(
𝑥1 (𝑇1, 𝐼1, 𝐹1), . . . , 𝑥𝑚 (𝑇𝑚, 𝐼𝑚, 𝐹𝑚)

)
=

(
𝑥1 ⊕ · · · ⊕ 𝑥𝑚, (𝑇1, 𝐼1, 𝐹1) ⊙ · · · ⊙ (𝑇𝑚, 𝐼𝑚, 𝐹𝑚)

)
,

where 𝑥1 ⊕ · · · ⊕ 𝑥𝑚 ∈ P∗
𝑛 (𝑈) is a subset in the 𝑛-th powerset.

1. If we fix 𝑛 = 1, then P∗
𝑛 (𝑈) = P∗

1 (𝑈). This is precisely the (non-empty) first-order powerset of 𝑈.

2. By definition of hyperalgebra, a binary hyperoperation or an 𝑚-ary hyperoperation must yield subsets in
P∗ (𝑈). Now, if★(𝑚,1) only outputs subsets in P∗

1 (𝑈), we exactly match the definition of a Neutrosophic
Twofold Hyperalgebra: (

𝐴(𝑇, 𝐼, 𝐹), ★(𝑚,1) , ⊙
)
.

3. The neutrosophic composition ⊙ remains identical. Thus, the only difference between an (𝑚, 𝑛)-
SuperHyperoperation and a standard 𝑚-ary hyperoperation is whether the image lies in P∗

𝑛 (𝑈) (for the
superhyper case) or in P∗

1 (𝑈) (for the normal hyper case). Setting 𝑛 = 1 collapses the superhyper
structure onto the hyper structure.
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Alternatively, if we start from a Neutrosophic Twofold Hyperalgebra (with an 𝑚-ary hyperoperation ⊡ into
P∗

1 (𝑈)), we can embed it into a superhyperalgebra context by letting ★(𝑚,𝑛) (𝑥1, . . . , 𝑥𝑚) = ⊡(𝑥1, . . . , 𝑥𝑚) ∈
P∗

1 (𝑈) ⊆ P∗
𝑛 (𝑈) for any integer 𝑛 ≥ 1. Thus, we see that the superhyper version generalizes the hyper version

by allowing higher-order powerset images.

Hence, restricting the target from P∗
𝑛 (𝑈) down to P∗

1 (𝑈) recovers the standard hyperalgebraic structure. The
neutrosophic part ⊙ is unaffected by this restriction, so the net effect is precisely a Neutrosophic Twofold
Hyperalgebra. Therefore, Neutrosophic Twofold Superhyperalgebra strictly generalizes Neutrosophic Twofold
Hyperalgebra, completing the proof. □

2.2 NeutroHyperalgebra

To extend these ideas to the hyperoperation context, we generalize AntiAlgebra and NeutroAlgebra using
hyperoperations. In a Hyperalgebra, the operation on the base set outputs subsets rather than single elements.

Definition 2.5 (NeutroHyperalgebra). Let 𝑁𝐻 be a non-empty set. A NeutroHyperalgebra is an algebraic
structure of the form (

𝑁𝐻, {Ω}, {NeutroAxioms}
)
,

where:

• There is at least one NeutroHyperoperation Ω : 𝑁𝐻𝑚 → P(𝑈), for some 𝑚 ≥ 1, such that for some
tuples Ω is well-defined in 𝑁𝐻, for others it is entirely outside 𝑁𝐻, and for others it is indeterminate
(including partially undefined).

• Or there is at least one NeutroAxiom that is partially true, partially indeterminate, and partially false
within 𝑁𝐻.

Theorem 2.6. A NeutroHyperalgebra reduces to a NeutroAlgebra precisely when each hyperoperation Ω is
single-valued (returns exactly one element) for all tuples.

Proof. Let
(
𝑁𝐻, {Ω}, {NeutroAxioms}

)
be a NeutroHyperalgebra. If for every (𝑥1, . . . , 𝑥𝑚) ∈ 𝑁𝐻𝑚,

Ω(𝑥1, . . . , 𝑥𝑚) = {𝜔(𝑥1, . . . , 𝑥𝑚)},

where 𝜔(𝑥1, . . . , 𝑥𝑚) ∈ 𝑈 can be well-defined in 𝑁𝐻, outer-defined in 𝑈 − 𝑁𝐻, or partially/entirely indeter-
minate. In other words, Ω is effectively a single-valued NeutroOperation. Then all partial truths, falsities, and
indeterminacies remain consistent but mapped via singletons. The result is a NeutroAlgebra.

If we have a NeutroAlgebra
(
𝑁𝐴, {𝜔}, {NeutroAxioms}

)
with a single-valued NeutroOperation 𝜔, we can

define a hyperoperation Ω by
Ω(𝑥1, . . . , 𝑥𝑚) = {𝜔(𝑥1, . . . , 𝑥𝑚)},

where the operation 𝜔 can produce well-defined, outer-defined, or indeterminate results. This embedding
shows that any NeutroAlgebra is a special case of a NeutroHyperalgebra with singleton outputs. Thus, the two
structures are equivalent in the single-valued limit. □

Definition 2.7 (AntiHyperalgebra). Let 𝐴𝐻 be a non-empty set. An AntiHyperalgebra is an algebraic structure
of the form (

𝐴𝐻, {Ω}, {AntiAxioms}
)
,

where:

• There is at least one AntiHyperoperation Ω : 𝐴𝐻𝑚 → P(𝑈) \ P(𝐴𝐻) (i.e., it is outer-defined for all
elements of 𝐴𝐻). More explicitly, for every (𝑥1, . . . , 𝑥𝑚) ∈ 𝐴𝐻𝑚,

Ω(𝑥1, . . . , 𝑥𝑚) ∩ 𝐴𝐻 = ∅,

or equivalently, Ω(𝑥1, . . . , 𝑥𝑚) ⊆ 𝑈 \ 𝐴𝐻.
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• Or there is at least one AntiAxiom that is false for every element/tuple in 𝐴𝐻.

Theorem 2.8. An AntiHyperalgebra reduces to a classical AntiAlgebra precisely when each hyperoperation
Ω yields a single element (singleton set) rather than multiple or zero elements for all inputs.

Proof. Suppose we have an AntiHyperalgebra
(
𝐴𝐻, {Ω}, {AntiAxioms}

)
. If for every tuple (𝑥1, . . . , 𝑥𝑚) ∈

𝐴𝐻𝑚,
Ω(𝑥1, . . . , 𝑥𝑚) = {𝜔(𝑥1, . . . , 𝑥𝑚)},

with 𝜔(𝑥1, . . . , 𝑥𝑚) ∉ 𝐴𝐻 (outer-defined) for all tuples, then effectively we have a single-valued AntiOperation
𝜔 from 𝐴𝐻𝑚 to 𝑈 − 𝐴𝐻. This recovers the structure of an AntiAlgebra, since the hyperoperation is no longer
multi-valued. The AntiAxioms remain the same.

Conversely, if we start with an AntiAlgebra
(
𝐴𝐴, {𝜔}, {AntiAxioms}

)
—where𝜔 is a single-valued AntiOperation—

we can embed it into an AntiHyperalgebra by interpreting the single output

𝜔(𝑥1, . . . , 𝑥𝑚) ∉ 𝐴𝐴

as a singleton set
Ω(𝑥1, . . . , 𝑥𝑚) = {𝜔(𝑥1, . . . , 𝑥𝑚)} ⊆ 𝑈 \ 𝐴𝐴.

Hence any AntiAlgebra can be seen as a degenerate AntiHyperalgebra (with singletons). This proves the
equivalence. □

2.3 AntiSuperhyperalgebra and NeutroSuperhyperalgebra

We now move to Superhyperalgebra structures, where the operations map into higher-order powersets (i.e.
P∗
𝑛 (𝑈)). Incorporating the Anti- or Neutro- perspective, we obtain AntiSuperhyperalgebra and NeutroSuper-

hyperalgebra.

Definition 2.9 (NeutroSuperhyperalgebra). Let 𝑁𝑆𝐻 be a non-empty set. A NeutroSuperhyperalgebra is
defined as the structure

(𝑁𝑆𝐻, {Ω(𝑚,𝑛) }, {NeutroAxioms}),

where:

• There is at least one (𝑚, 𝑛)-NeutroSuperHyperoperation Ω(𝑚,𝑛) : 𝑁𝑆𝐻𝑚 → P𝑛 (𝑈), meaning for some
tuples it is well-defined inside P𝑛 (𝑁𝑆𝐻), for others outside P𝑛 (𝑁𝑆𝐻), and for the remaining it is
indeterminate, possibly including partial or total undefinedness at the (𝑚, 𝑛)-th power set level.

• Or there is at least one NeutroAxiom that is partially true, partially false, and partially indeterminate
across the elements of 𝑁𝑆𝐻.

Theorem 2.10. If in a NeutroSuperhyperalgebra we set 𝑛 = 1, the superhyperoperation is simply a hyperop-
eration on the base set, reducing the structure to a NeutroHyperalgebra.

Proof. Let
(
𝑁𝑆𝐻, {Ω(𝑚,𝑛) }, {NeutroAxioms}

)
be a NeutroSuperhyperalgebra. The operation Ω(𝑚,𝑛) maps

(𝑥1, . . . , 𝑥𝑚) ∈ 𝑁𝑆𝐻𝑚 ↦→ P𝑛 (𝑈),

where subsets can be partially in P𝑛 (𝑁𝑆𝐻) (true), partially outside P𝑛 (𝑁𝑆𝐻) (false), or partially un-
known/indeterminate.

If 𝑛 = 1:
Ω(𝑚,1) (𝑥1, . . . , 𝑥𝑚) ⊆ P1 (𝑈) = P(𝑈),

with partial in/out/indeterminate relative to P(𝑁𝑆𝐻). This is precisely a NeutroHyperoperation on 𝑁𝑆𝐻. The
partial true/false/indeterminate axiom status remains. Therefore, we revert to a NeutroHyperalgebra. □
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Definition 2.11 (AntiSuperhyperalgebra). Let 𝐴𝑆𝐻 be a non-empty set. An AntiSuperhyperalgebra is defined
as a structure

(𝐴𝑆𝐻, {Ω(𝑚,𝑛) }, {AntiAxioms}),

where:

• There exists at least one (𝑚, 𝑛)-AntiSuperHyperoperation Ω(𝑚,𝑛) : 𝐴𝑆𝐻𝑚 → P𝑛 (𝑈) such that for every
(𝑥1, . . . , 𝑥𝑚) ∈ 𝐴𝑆𝐻𝑚,

Ω(𝑚,𝑛) (𝑥1, . . . , 𝑥𝑚) ⊆ P𝑛 (𝑈) \ P𝑛 (𝐴𝑆𝐻).

In other words, the output lies entirely outside P𝑛 (𝐴𝑆𝐻), capturing total falsehood or outer-definedness
at the (𝑚, 𝑛)-th power set level.

• Or there is at least one AntiAxiom which is false for all elements of 𝐴𝑆𝐻.

Theorem 2.12. If in an AntiSuperhyperalgebra we restrict the (𝑚, 𝑛)-superhyperoperation to the first-order
powerset P1 (𝑈), we recover the structure of an AntiHyperalgebra.

Proof. Consider an AntiSuperhyperalgebra
(
𝐴𝑆𝐻, {Ω(𝑚,𝑛) }, {AntiAxioms}

)
. The (𝑚, 𝑛)-superhyperoperation

Ω(𝑚,𝑛) : 𝐴𝑆𝐻𝑚 → P𝑛 (𝑈) \ P𝑛 (𝐴𝑆𝐻) outputs subsets lying entirely outside P𝑛 (𝐴𝑆𝐻).

Case 𝑛 = 1:
Ω(𝑚,1) (𝑥1, . . . , 𝑥𝑚) ⊆ P1 (𝑈) \ P1 (𝐴𝑆𝐻) = P(𝑈) \ P(𝐴𝑆𝐻).

But P1 (𝑈) = P(𝑈). Hence we revert to an AntiHyperoperation Ω(𝑚,1) that is outer-defined at level 1. The
structure is precisely an AntiHyperalgebra, with the same AntiAxioms. This completes the proof. □
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