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Abstract. In this paper, we extend the notion of LA-semihypergroups

(resp. Hv-LA-semigroups) to neutro-LA-semihypergroups (respectively,

neutro-Hv-LA-semigroups). Anti-LA-semihypergroups (respectively, anti-

Hv-LA-semigroups) are studied and investigated some of their properties.

We show that these new concepts are different from classical concepts

by several examples. These are particular cases of the classical alge-

braic structures generalized to neutroalgebraic structures and antialge-

braic structures (Smarandache, 2019).
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1. Introduction

Kazim and Naseeruddin [13] provided the concept of left almost semigroup

(abbreviated as LA-semigroup). They generalized some useful results of semi-

group theory. Later, Mushtaq [17] and others further investigated the struc-

ture and added many useful results to the theory of LA-semigroups; see also

[1, 3, 11, 14, 18, 19, 26].

A hypergroup as a generalization of the notion of a group, was introduced by

F. Marty [16] in 1934. Some valuable books in hyperstructures have published

[4, 5, 6, 7, 27]. In 1990, Vougiouklis introduced the concept of Hv-structures in

Fourth AHA Congress as a generalization of the well-known algebraic hyper-

structures. Two books on algebraic Hv-structure or weak hyperstructure have

been published [7, 27].

Hila and Dine [10] introduced the notion of LA-semihypergroups as a gener-

alization of semigroups, semihypergroups, and LA-semigroups. Yaqoob, Corsini

and Yousafzai [28] extended the work of Hila and Dine. Gulistan, Yaqoob and

Shahzad, [9] introduced the notion ofHv-LA-semigroups as LA-semihypergroups.

They showed that every LA-semihypergroup is an Hv-LA-semigroup and each

LA-semigroup endowed with an equivalence relation can induced an Hv-LA-

semigroup and they investigated isomorphism theorem with the help of regular

relations.

In 2019 and 2020, within the field of neutrosophy, Smarandache [21, 22, 23]

generalized the classical algebraic structures to neutroalgebraic structures (or

neutroalgebras) whose operations and axioms are partially true, partially in-

determinate, and partially false as extensions of partial algebra, and to antial-

gebraic structures (or antialgebras) {whose operations and axioms are totally

false}. And in general, he extended any classical structure, in no matter what

field of knowledge, to a neutrostructure and an antistructure. These are new

fields of research within neutrosophy.

Smarandache in [23] revisited the notions of neutroalgebras and antialge-

bras, where he studied partial algebras, Universal algebras, Effect algebras and

Boole′s partial algebras, and showed that neutroalgebras are generalization

of partial algebras. Further, he extended the classical hyperalgebra to n-ary

hyperalgebra and its alternatives n-ary neutrohyperalgebra and n-ary antihy-

peralgebra [25].

The notion of neutrogroup was defined and studied by A.A.A. Agboola in

[2]. A. Rezaei et al. introduced the notions of neutrosemihypergroup and

antisemihypergroup [20]. Recently, S. Mirvakili et al. extend the notion of Hv-

semigroups to neutro-Hv-semigroups and anti-Hv-semigroups and investigated

many of their properties [15].

In this paper, the concept of neutro-LA-semihypergroups(resp. neutro-Hv-

LA-semigroup) and anti-LA-semihypergroups (resp. anti-Hv-LA-semigroup) is
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formally presented. Moreover, We characterize LA-semihypergroups (resp. Hv-

LA-semigroup), neutro-LA-semihypergroups (resp. neutro-Hv-LA-semigroup)

and anti-LA-semihypergroups (resp. anti-Hv-LA-semigroup) of order 2.

2. Preliminaries

In this section we recall some basic notions and results regarding to LA-

semigroups, LA-semihypergroups and Hv-LA-semigroups.

A groupoid (H, ◦) is a non-empty set H together with a map ◦ : H×H → H

called (binary) operation. The structure (H, ◦) is called a groupoid.

Definition 2.1. [13] A groupoid (H, ◦) is called an LA-semigroup, if (a◦b)◦c =

(c ◦ b) ◦ a, for all a, b, c ∈ H.

Example 2.2. [17] Let (Z,+) denote the commutative group of integers under

addition. Define a binary operation ◦ in Z as follows:

a ◦ b = b− a, ∀a, b ∈ Z,

where − denotes the ordinary subtraction of integers. Then (Z, ◦) is an LA-

semigroup.

Definition 2.3. ([4, 6]) A hypergroupoid (H, ◦) is a non-empty set H together

with a map ◦ : H ×H → P ∗(H) called (binary) hyperoperation, where P ∗(H)

denotes the set of all non-empty subsets of H. The hyperstructure (H, ◦) is

called a hypergroupoid and image of the pair (x, y) is denoted by x ◦ y.

If A and B are non-empty subsets of H and x ∈ H, then by A ◦ B, A ◦ x,

and x ◦B we mean A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Definition 2.4. ([4, 6]) (1) A hypergroupoid (H, ◦) is called a semihypergroup

if it satisfies the following:

(A) (∀a, b, c ∈ H)(a ◦ (b ◦ c) = (a ◦ b) ◦ c).

(2) A hypergroupoid (H, ◦) is called anHv-semigroup if it satisfies the following:

(WA) (∀a, b, c ∈ H)(a ◦ (b ◦ c) ∩ (a ◦ b) ◦ c) ̸= ∅.

Definition 2.5. ([9, 10]) (1) A hypergroupoid (H, ◦) is called a Left Almost

semihypergroup or an LA-semihypergroup if it satisfies the following:

(LA) (∀a, b, c ∈ H)(a ◦ b) ◦ c = (c ◦ b) ◦ a.

(2) A hypergroupoid (H, ◦) is called a Left Almost Hv-semigroup or Hv-LA-

semigroup if it satisfies the following:

(WLA) (∀a, b, c ∈ H)(a ◦ b) ◦ c ∩ (c ◦ b) ◦ a ̸= ∅.

Example 2.6. ([4, 6]) Let H be a nonempty set and for all x, y ∈ H, we define

x ◦ y = H. Then (H, ◦) is a semihypergroup and an LA-semihypergroup.

We define the commutative law on (H, ◦) as follows:
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(C) (∀a, b ∈ H)(a ◦ b = b ◦ a).

Also, we define the weak commutative law on (H, ◦) as follows:

(WC) (∀a, b ∈ H)(a ◦ b ∩ b ◦ a ̸= ∅).

Theorem 2.7. Let (H, ◦) be a commutative hypergroupoid. Then (H, ◦) is an

LA-semihypergroup if and only if (H, ◦) is a semihypergroup.

Proof. Let x, y, z ∈ H. Then by commutativity we have

(x ◦ y) ◦ z = x ◦ (y ◦ z) ⇔ (x ◦ y) ◦ z = (z ◦ y) ◦ x.

□

Example 2.8. Let H = {a, b}. Define the hyperoperation ◦ on H with the

following Cayley table.
◦ a b

a H a

b H b

Then (H, ◦) is a semihypergroup, but is not an LA-semihypergroup.

Example 2.9. Let H = {a, b}. Define the hyperoperation ◦ on H with the

following Cayley table.
◦ a b

a H H

b a a

Then (H, ◦) is an LA-semihypergroup, but is not a semihypergroup.

Theorem 2.10. Let (H, ◦) be a commutative hypergroupoid. Then (H, ◦) is

an Hv-LA-semigroup if and only if (H, ◦) is an Hv-semigroup

Proof. Let x, y, z ∈ H. Then by commutativity we have

(x ◦ y) ◦ z ∩ x ◦ (y ◦ z) ̸= ∅ ⇔ (x ◦ y) ◦ z ∩ (z ◦ y) ◦ x ̸= ∅.

□

Example 2.11. Let H = {a, b}. Define the hyperoperation ◦ on H with the

following Cayley table.
◦ a b

a a a

b b H

Then (H, ◦) is an Hv-semigroup, but is not an Hv-LA-semigroup.

Example 2.12. Let H = {a, b}. Define the hyperoperation ◦ on H with the

following Cayley table.
◦ a b

a a b

b H a

Then (H, ◦) is an Hv-LA-semigroup, but is not an Hv-semigroup.
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3. On Neutro-LA-semihypergroups, Neutro-Hv-LA-semigroups,

Anti-LA-semihypergroups and Anti-Hv-LA-semigroups

F. Smarandache generalized the classical algebraic structures to the neu-

troalgebraic structures and antialgebraic structures. neutro-sophication of

an item C (that may be a concept, a space, an idea, an operation, an axiom,

a theorem, a theory, etc.) means to split C into three parts (two parts opposite

to each other, and another part which is the neutral / indeterminacy between

the opposites), as pertinent to neutrosophy {(< A >,< neutA >,< antiA >),

or with other notation (T, I, F )}, meaning cases where C is partially true (T ),

partially indeterminate (I), and partially false (F ). While anti-sophication

of C means to totally deny C (meaning that C is made false on its whole

domain) (for detail see Smarandache [21, 22, 24, 25]).

Neutro-sophication of an axiom on a given set X, means to split the set

X into three regions such that: on one region the axiom is true (we say degree

of truth T of the axiom), on another region the axiom is indeterminate (we say

degree of indeterminacy I of the axiom), and on the third region the axiom

is false (we say degree of falsehood F of the axiom), such that the union of

the regions covers the whole set, while the regions may or may not be disjoint,

where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1). Anti-sophication of

an axiom on a given set X, means to have the axiom false on the whole set X

(we say total degree of falsehood F of the axiom), or (0, 0, 1).

Similarly for the neutro-sophication of an operation defined on a given

set X, means to split the set X into three regions such that on one region the

operation is well-defined (or inner-defined) (we say degree of truth T of the

operation), on another region the operation is indeterminate (we say degree

of indeterminacy I of the operation), and on the third region the operation is

outer-defined (we say degree of falsehood F of the operation), such that the

union of the regions covers the whole set, while the regions may or may not be

disjoint, where (T, I, F ) is different from (1, 0, 0) and from (0, 0, 1).

Anti-sophication of an operation on a given set X, means to have the

operation outer-defined on the whole set X (we say total degree of falsehood

F of the axiom), or (0, 0, 1).

In this section we will define the neutro-LA-semihypergroups and anti-

LA-semihypergroups.

Definition 3.1. Neutrohyperoperation (Neutrohyperlaw) A neutrohy-

peroperation is a map ◦ : H ×H → P (U) where U is a universe of discourse

that contains H that satisfies the below neutro-sophication process.

The neutro-sophication (degree of well-defined, degree of indeterminacy, de-

gree of outer-defined) of the hyperoperation is the following neutrohyperoper-

ation:
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(NHA) (∃x, y ∈ H)(x ◦ y ∈ P ∗(H)) and (∃x, y ∈ H)(x ◦ y is an indetermi-

nate subset, or x ◦ y ̸∈ P ∗(H)).

The neutro-sophication (degree of truth, degree of indeterminacy, degree of

falsehood) of the LA-semihypergroup axiom is the following neutrohyperLA-

semihypergroup:

(NLA) (∃a, b, c ∈ H such that (a, b, c) ̸= (x, x, x) or (a, b, c) ̸= (x, y, x))

((a ◦ b) ◦ c = (c ◦ b) ◦ a) and (∃d, e, f ∈ H such that (d, e, f) ̸= (x, x, x) or

(d, e, f) ̸= (x, y, x))((d ◦ e) ◦ f ̸= (f ◦ e) ◦ d or (d ◦ e) ◦ f = indeterminate, or

(f ◦ e) ◦ d = indeterminate).

Also, The neutro-sophication (degree of truth, degree of indeterminacy, degree

of falsehood) of the Hv-LA-semigroup axiom is the following neutrohyperHv-

LA-semigroup:

(NWLA) (∃a, b, c ∈ H such that (a, b, c) ̸= (x, x, x) or (a, b, c) ̸= (x, y, x))

((a ◦ b) ◦ c ∩ (c ◦ b) ◦ a ̸= ∅) and (∃d, e, f ∈ H such that (d, e, f) ̸= (x, x, x) or

(d, e, f) ̸= (x, y, x))((d ◦ e) ◦ f ∩ (f ◦ e) ◦ d = ∅ or (d ◦ e) ◦ f = indeterminate,

or (f ◦ e) ◦ d = indeterminate).

We define the neutrohypercommutativity (NC) on (H, ◦) as follows:

(NC) (∃a, b ∈ H)(a ◦ b = b ◦ a) and (∃c, d ∈ H)(c ◦ d ̸= d ◦ c, or c ◦ d =

indeterminate, or d ◦ c = indeterminate).

Also, we define the neutrohyperweakcommutativity (NWC) on (H, ◦) as fol-

lows:

(NWC) (∃a, b ∈ H)(a ◦ b ∩ b ◦ a ̸= ∅) and (∃c, d ∈ H)(c ◦ d ∩ d ◦ c = ∅, or

c ◦ d = indeterminate, or d ◦ c = indeterminate).

Now, we define a neutrohyperalgebraic system S =< H,F,A >, where H is

a set or neutrosophic set, F is a set of the hyperoperations (hyperlaws), and A is

the set of hyperaxioms, such that there exists at least one neutrohyperoperation

(neutrohyperlaw) or at least one neutrohyperaxiom, and no antihyperoperation

(antihyperlaw) and no antihyperaxiom.

Definition 3.2. Antihyperoperation {Antihyperlaw (AHL)}

The antihyper-sophication (totally outer-defined) of the hyperoperation (hy-

perlaw) gives the definition of antihyperoperation antihyperlaw (AHL):

(AHL) (∀x, y ∈ H)(x ◦ y ̸∈ P ∗(H)).

The antihyper-sophication (totally false) of the LA-semihypergroup:

(ALA) (∀a, b, c ∈ H such that (a, b, c) ̸= (x, x, x) or (a, b, c) ̸= (x, y, x))((a◦

b) ◦ c) ̸= (c ◦ b) ◦ a).

Also, the antihyper-sophication (totally false) of the Hv-LA-semigroup:

(AWLA) (∀a, b, c ∈ H such that (a, b, c) ̸= (x, x, x) or (a, b, c) ̸= (x, y, x))((a◦

b) ◦ c) ∩ (c ◦ b) ◦ a = ∅).

We define the anticommutativity (AC) on (H, ◦) as follows:

(AC) (∀a, b ∈ H with a ̸= b)(a ◦ b ̸= b ◦ a).

Also, we define the antiweakcommutativity (AWC) on (H, ◦) as follows:

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



On [Neutro](Anti)LA-semihypergroups and [Neutro](Anti)Hv-LA-semigroups 7

(AWC) (∀a, b ∈ H with a ̸= b)(a ◦ b ∩ b ◦ a = ∅).

Definition 3.3. (1) A neutro-LA-semihypergroup is an alternative of LA-

semihypergroup that has at least one (NLA), with no antihyperoperation.

(2) A neutro-Hv-LA-semigroup is an alternative of Hv-LA-semigroup that

has at least one (WNLA), with no antihyperoperation.

(3) An anti-LA-semihypergroup is an alternative of LA-semihypergroup that

has at least one (ALA) or an (AHL) axiom.

(4) An anti-Hv-LA-semigroup is an alternative of Hv-LA-semigroup that

has at least one (WALA) or an (AHL) axiom.

Remark 3.4. If hyperoperation ◦ in Definition 3.3 is operation, then we have

neutro-LA-semigroup and anti-LA-semigroup.

Example 3.5. (i) Let H = {a, b, c} and U = {a, b, c, d} a universe of discourse

that contains H. Define the neutrohyperoperation ◦ on H with the following

Cayley table.
◦ a b c

a a a a

b a a {a, b, d}

c c ? H

Then (H, ◦) is a neutrosemihypergroup.

Example 3.6. (i) Let N be the set of natural numbers except 0. Define hyper-

Low ◦ on N by x ◦ y = { x2

x2+1 , y}. Then (N, ◦) is an anti-LA-semihypergroup.

(AHL) is valid, since for all x, y ∈ N, x ◦ y ̸∈ P ∗(N). Thus, (AHL) holds.

(ii) Let H = {a, b}. Define the hyperoperation ◦ on H with the following

Cayley table.
◦ a b

a b a

b a a

Then (H, ◦) is a commutative anti-LA-semihypergroup.

(iii) Let H = {a, b}. Define the hyperoperation ◦ on H with the following

Cayley table.
◦ a b

a a a

b b b

Then (H, ◦) is an anticommutative anti-LA-semihypergroup.

Theorem 3.7. (1) Every LA-semihypergroup is an Hv-LA-semigroup.

(2) Every anti-Hv-LA-semigroup is an anti-LA-semihypergroup.

(3) Every neutro-Hv-LA-semigroup is a neutro-LA-semihypergroup or an

anti-LA-semihypergroup.

(4) Every Hv-LA-semigroup is an LA-semihypergroup or a neutro-LA-

semihypergroup or an anti-LA-semihypergroup.
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Example 3.8. [9] The Converse of part (1) of Theorem 3.7 is not true. Consider

H = {x, y, z} and define a hyperoperation ◦ on H by the following table:

◦ x y z

x x {x, z} H

y {x, z} x x

z {x, y} x {x, z}

Then (H, ◦) is an Hv-LA-semigroup which is not an LA-semihypergroup and

not an Hv-semigroup. Indeed, we have

{x, y} = z ◦ (y ◦ y) & (z ◦ y) ◦ y = {z}.

Thus, z ◦ (y ◦ y) ∩ (z ◦ y) ◦ y ̸= ∅. Therefore (H, ◦) is not an Hv-semigroup.

Also,

{x, y, z} = (x ◦ y) ◦ z ̸= (z ◦ y) ◦ x = {x, y}

Thus, (H, ◦) is not an LA-semihypergroup.

Example 3.9. The Converse of part (2) of Theorem 3.7 is not true. Consider

H = {x, y, z} and define a hyperoperation ◦ on H by the following table:

◦ a b

a a H

b a a

Then (H, ◦) is a commutative anti-LA-semihypergroup and is not anti-Hv-LA-

semigroup.

Let (H, ◦) is a hypergroupoid. Then the hyperoperation ∗ defined as follows:

x ∗ y = y ◦ x, ∀x, y ∈ H.

(H, ∗) in is called dual hypergroupoid of (H, ◦). It is easy to see that:

Theorem 3.10. (H, ◦) is a semihypergroup if and only if (H, ◦) is a semihy-

pergroup.

Theorem 3.10 for LA-semihypergroups is not true.

Example 3.11. Let (H = {a, b}, ◦) be an LA-semihypergroup of order 2 when

the hyperoperation ◦ defined on H with the following Cayley table.

◦ a b

a H H

b a a

But (H, ∗) is not an LA-semihypergroup.

Proposition 3.12. Let (H, ◦H) and (G, ◦G) be two neutro-LA-semihypergroups

(resp. anti-LA-semihypergroups). Then (H×G, ∗) is a neutro-LA-semihypergroup

(resp. anti-LA-semihypergroups), where ∗ is defined on H × G by: for any
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(x1, y1), (x2, y2) ∈ H ×G

(x1, y1) ∗ (x2, y2) = (x1 ◦H x2, y1 ◦G y2).

Note that if (H, ◦) is a neutro-LA-semihypergroup, then if there is a non-

empty set H1 ⊆ H, such that (H1, ◦) is an LA-semihypergroup, we call it

Smarandache LA-semihypergroup.

Suppose (H, ◦H) and (G, ◦G) be two hypergroupoids. A function f : H → G

is called a homomorphism if, for all a, b ∈ H, f(a ◦H b) = f(a) ◦G f(b).

Proposition 3.13. Let (H, ◦H) be an LA-semihypergroup(Hv-LA-semigroup),

(G, ◦G) be a neutro-LA-semihypergroup (neutro-Hv-LA-semigroup) and f :

H → G be a homomorphism. Then (f(H), ◦G) is an LA-semihypergroup (Hv-

LA-semigroup), where f(H) = {f(h) : h ∈ H}.

Proof. Assume that (H, ◦H) is an LA-semihypergroup (Hv-LA-semigroup) and

x, y, z ∈ f(H). Then there exist h1, h2, h3 ∈ f(H) such that f(h1) = x, f(h2) =

y and f(h3) = z, and so we have

(x ◦G y) ◦G z) = (f(h1) ◦G f(h2)) ◦G f(h3)

= f(h1 ◦G h2) ◦H f(h3)

= f((h1 ◦H h2) ◦H h3)

= f((h3 ◦H h2) ◦H h1)

= f(h3 ◦H h2) ◦G f(h1)

= (f(h3) ◦G f(h2)) ◦G f(h1)

= (x ◦G y) ◦G z.

□

Definition 3.14. Let (H, ◦H) and (G, ◦G) be two hypergroupoids. A bijection

f : H → G is an isomorphism if it conserves the multiplication (i.e. f(a◦H b) =

f(a) ◦G f(b)) and write H ∼= G. A bijection f : H → G is an antiIsomorphism

if for all a, b ∈ H, f(a ◦H b) ̸= f(b) ◦G f(a). A bijection f : H → G is a

neutroIsomorphism if there exist a, b ∈ H, f(a ◦H b) = f(b) ◦G f(a), i.e. degree

of truth (T ), there exist c, d ∈ H, f(c◦H d) or f(c)◦Gf(d) are indeterminate, i.e.

degree of Indeterminacy (I), and there exist e, h ∈ H, f(e◦H h) ̸= f(e)◦G f(h),

i.e. degree of falsehood (F ), where (T, I, F ) are different from (1, 0, 0) and

(0, 0, 1), and T, I, F ∈ [0, 1].

Proposition 3.15. Let (Hi, ◦), where i ∈ Λ, be a family of neutro-LA-semihypergroups

(neutro-Hv-LA-semigroups). Then (
⋂

i∈Λ

Hi, ◦) is a neutro-LA-semihypergroup

(neutro-Hv-LA-semigroup) or an anti-LA-semihyperGgroup (anti-Hv-LA-semigroup)

or an LA-semihypergroups (Hv-LA-semigroup).

Proof. It is trivial. □
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Proposition 3.16. Let (Hi, ◦) be a family of anti-LA-semihypergroupsn (anti-

Hv-LA-semigroups), where i ∈ Λ. Then (
⋂

i∈Λ

Hi, ◦) is an anti-LA-semihypergroup

(anti-Hv-LA-semigroup).

Proof. It is trivial. □

Note that if (H, ◦) is a neutro-LA-semihypergroup (neutro-Hv-LA-semigroup)

and (G, ◦) is an anti-LA-semihypergroup (anti-Hv-LA-semigroup), then (H ∩

G, ◦) is an anti-LA-semihypergroupb (anti-Hv-LA-semigroup). Also, let (H, ◦H)

be a neutro-LA-semihypergroup (neutro-Hv-LA-semigroup) and (G, ◦G) be an

anti-LA-semihypergroup (anti-Hv-LA-semigroup) and H ∩ G = ∅. Define hy-

peroperation ◦ on H
⊎

G by:

x ◦ y =







x ◦H y if x, y ∈ H;

x ◦G y if x, y ∈ G;

{x, y} otherwise.

Then (H
⊎

G, ◦) is a neutro-LA-semihypergroup (neutro-Hv-LA-semigroup),

but it is not an anti-LA-semihypergroup (anti-Hv-LA-semigroup).

Proposition 3.17. Let (H, ◦) be an anti-LA-semihypergroup (anti-Hv-LA-

semigroup) and e ∈ H. Then (H ∪ {e}, ∗) is a neutro-LA-semihypergroup

(neutro-Hv-LA-semigroup), where ∗ is defined on H ∪ {e} by:

x ∗ y =

{

x ◦H y if x, y ∈ H;

{e, x, y} otherwise.

Proof. It is straightforward. □

4. Characterization of groupoids of order 2

In the next results we use the operation ◦ : H ×H → H.

In this section, let ◦ be an operation on H = {a, b} and (A11, A12, A21, A22)

inside of the below Cayley table:

◦ a b

a A11 A12

b A21 A22

Lemma 4.1. Let (H = {a, b}, ◦H) and (G = {a′, b′}, ◦G) be two groupoids with

the Cayley tables (h11, h12, h21, h22) and (g11, g12, g21, g22) respectively. Then

H ∼= G if and only if for all i, j ∈ {1, 2},

gij = h′

ij

or

gij = G \ k′ij ,

where k12 = h21, k21 = h12, k11 = h22 and k22 = h11.
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Lemma 4.2. Any commutative semigroup of order 2 is an LA-semiGrouop.

Theorem 4.3. Every LA-semigroup of order 2 is commutative.

Proof. Let (H = {a, b}, ◦) be an LA-semigroup. We have

(1) (a ◦ b) ◦ b = (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b = (b ◦ a) ◦ a.

Let a ◦ b = a. Then by (1), a = (b ◦ b) ◦ a. If b ◦ b = b, then we obtain b ◦ a = a,

and so (H, ◦) is commutative. So we have b◦ b = a. Hence a◦a = a and by (2),

a = (b ◦ a) ◦ a. If b ◦ a = b, then we obtain a = b. and this is a contradiction.

Thus, b ◦ a = a, and so (H, ◦) is commutative.

Now, let a◦b = a. Then by the similar way we obtain (H, ◦) is commutative. □

Corollary 4.4. Any LA-semigroup of order 2 is commutative.

Corollary 4.5. Any LA-semigroup of order 2 is a semigroup.

Corollary 4.6. There is no Non-commutative LA-semigroup of order 2.

Theorem 4.7. [8] There exist 5 semigroups (H = {a, b}, ◦i), i = 1, · · · , 5, of

order 2 by the following Cayley table (up to isomorphism).

◦1 a b

a a a

b a a

◦2 a b

a a a

b a b

◦3 a b

a b a

b a b

◦4 a b

a a a

b b b

◦5 a b

a a b

b a b

Theorem 4.8. There exist 3 LA-semigroups of order 2 (up to isomorphism).

Proof. By Corollary 5.2, the only LA-semigroups of order 2 are commutative

semigroups of order 2, and so (H, ◦i), for i = 1, · · · , 3, from Theorem 4.7 are

LA-semigroups of order 2 (up to isomorphism). □

Theorem 4.9. There exist 5 anti-LA-semigroups of order 2 (up to isomor-

phism).

Proof. Let (H = {a, b}, ◦) be an anti-LA-semigroup. Then We have

(1) (a ◦ b) ◦ b ̸= (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b ̸= (b ◦ a) ◦ a.

Also, Then we have one of the following Cases:

(3) (a ◦ b = a & b ◦ a = a),

(4) (a ◦ b = a & b ◦ a = b),

(5) (a ◦ b = b & b ◦ a = a),

(6) (a ◦ b = b & b ◦ a = b).

Case 3: By (1) and (2) we have

(7) a ̸= (b ◦ b) ◦ a,

(8) (a ◦ a) ◦ b ̸= a ◦ a.
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If a◦a = a, then (8) implies that a◦b ̸= a, which is a contradiction. If a◦a = b,

then (8) implies that b ◦ b ̸= b, and so b ◦ b = a. We set ◦1 := ◦ and therefore

we we have an anti-LA-semigroup as follows:

◦1 a b

a b a

b a a

Case 4: By (1) and (2) we have

(9) a ̸= (b ◦ b) ◦ a,

(10) (a ◦ a) ◦ b ̸= b.

If a ◦ a = b, then (8) implies that b ◦ b ̸= b, and so b ◦ b = a. We set ◦2 := ◦

and therefore we we have an anti-LA-semigroup as follows:

◦2 a b

a b a

b b a

If a ◦ a = a, then by (9) b ◦ b ̸= a so b ◦ b = b. We set ◦3 := ◦ and therefore we

we have an anti-LA-semigroup as follows:

◦3 a b

a a a

b b b

Case 5: By (1) and (2) we have

(11) b ◦ b ̸= (b ◦ b) ◦ a,

(12) (a ◦ a) ◦ b ̸= a ◦ a.

If a ◦ a = a, then b ◦ b = a or b ◦ b = b. Let b ◦ b = a. Then by (11) a ◦ a = b

and this is a contradiction. If b ◦ b = b, then we set ◦4 := ◦ and therefore we

have an anti-LA-semigroup as follows:

◦4 a b

a a b

b a b

If a ◦ a = b, then (12) implies that b ◦ b = a. We set ◦5 := ◦ and therefore we

have an anti-LA-semigroup as follows:

◦5 a b

a b b

b a a

Case 6: By (1) and (2) we have

(13) b ◦ b ̸= (b ◦ b) ◦ a,

(14) (a ◦ a) ◦ b ̸= b.
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If a ◦ a = b, then (14) implies that b ◦ b = a. We set ◦6 := ◦ and therefore we

have an anti-LA-semigroup as follows:

◦6 a b

a b b

b b a

If a◦a = a, then (14) implies that a◦b = a, which is a contradiction. (H, ◦1) ∼=
(H, ◦6), and so we have anti-LA-semigroups (H, ◦i), for i = 1, · · · , 5, of order

2. □

Corollary 4.10. There exists 1 commutative anti-LA-semigroup of order 2

(up to isomorphism).

Corollary 4.11. There exist 4 Non-commutative anti-LA-semigroups of order

2 (up to isomorphism).

Theorem 4.12. Every neutro-LA-semigroup of order 2 is Non-commutative.

Proof. Let (H = {a, b}, ◦) be a commutative neutro-LA-semigroup. Then We

have

(1) (a ◦ b) ◦ b ̸= (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b = (b ◦ a) ◦ a,

(3) a ◦ b = b ◦ a,

or

(4) (a ◦ b) ◦ b = (b ◦ b) ◦ a,

(5) (a ◦ a) ◦ b ̸= (b ◦ a) ◦ a,

(6) a ◦ b = b ◦ a.

Case 2: If a ◦ b = a = b ◦ a, then we have

(7) a ̸= (b ◦ b) ◦ a,

(8) (a ◦ a) ◦ b = a ◦ a,

or

(9) a = (b ◦ b) ◦ a,

(10) (a ◦ a) ◦ b ̸= a ◦ a.

Now, (7) implies that b ◦ b = a and a ◦ a = b, which is a contradiction with (8).

Also, (10) implies that a ◦ a = b and b ◦ b = a and this is a contradiction with

(9).

Case 2: If a ◦ b = b = b ◦ a, then by the similar way of Case 2 we prove that

there is no commutative neutro-LA-semigroup of order 2. □

Theorem 4.13. There exist 2 neutro-LA-semigroups of order 2 (up to iso-

morphism).

Proof. Let (H = {a, b}, ◦) be a neutro-LA-semigroup. Then by Theorem 4.12

(H = {a, b}, ◦) is a Non-commutative neutro-LA-semigroup. Now, we have
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(1) (a ◦ b) ◦ b ̸= (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b = (b ◦ a) ◦ a,

or

(3) (a ◦ b) ◦ b = (b ◦ b) ◦ a,

(4) (a ◦ a) ◦ b ̸= (b ◦ a) ◦ a.

Case 1: If a ◦ b = a and b ◦ a = b, then by (1), (2), (3) and (4) we obtain

(5) a ̸= (b ◦ b) ◦ a,

(6) (a ◦ a) ◦ b = b,

or

(7) a = (b ◦ b) ◦ a,

(8) (a ◦ a) ◦ b ̸= b.

Let (5) and (6) be true. If a ◦ a = a, then a ◦ b = a and this is a contradiction.

If a ◦ a = b, then using (6), b ◦ b = b. We set ◦1 := ◦ and therefore we have a

neutro-LA-semigroup as follows:

◦1 a b

a b a

b b b

Let (7) and (8) be true. If b ◦ b = b, then b ◦ a = a and this is a contradiction.

If b ◦ b = a by (7), a ◦ a = a. We set ◦2 := ◦ and therefore we have a neutro-

LA-semigroup as follows:

◦2 a b

a a a

b b a

Case 2: If a ◦ b = b and b ◦ a = a, then by (1), (2), (3) and (4) we obtain

(9) b ◦ b ̸= (b ◦ b) ◦ a,

(10) (a ◦ a) ◦ b = a ◦ a,

or

(11) b ◦ b = (b ◦ b) ◦ a,

(12) (a ◦ a) ◦ b ̸= a ◦ a.

Let (9) and (10) be true. If a◦a = a, then a◦ b = a and this is a contradiction.

If a ◦ a = b by (10), b ◦ b = b. We set ◦3 := ◦ and therefore we have a

neutro-LA-semigroup as follows:

◦3 a b

a b b

b a b

Let (11) and (12) be true. If b◦ b = b, then b◦a = b and this is a contradiction.

If b ◦ b = a by (11), a ◦ a = a. We set ◦4 := ◦ and therefore we have a
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neutroLA-semigroup as follows:

◦4 a b

a a b

b a a

It is not to difficult to see that (H, ◦1) ∼= (H, ◦2) and (H, ◦3) ∼= (H, ◦4). There-

fore there exist 2 neutro-LA-semigroups of order 2 up to isomorphism. □

Now, by the above results in this section, we obtain the number of anti-LA-

semigroups, neutro-LA-semigroups and LA-semigroups of order 2 (classes up

to isomorphism).

Table 1. Classification of the groupoids of order 2

C AC

LA-semigroups 3 0
neutro-LA-semigroups 0 2
Anti-LA-semigroup 1 4

5. Characterization of hypergroupoids of order 2

In the next results we use the hyperoperation instead of neutrohyperopera-

tion.

In this section, let ◦ be a hyperoperation onH = {a, b} and (A11, A12, A21, A22)

inside of the below Cayley table:

◦ a b

a A11 A12

b A21 A22

Lemma 5.1. Let (H = {a, b}, ◦H) and (G = {a′, b′}, ◦G) be two hypergroupoids

with the Cayley tables (H11, H12, H21, H22) and (G11, G12, G21, G22) respec-

tively. Then H ∼= G if and only if for all i, j ∈ {1, 2}, Gij = H ′

ij or

Gij =

{

K ′

ij if Kij = H;

G \K ′

ij if Kij ̸= H.

where K11 = H22, K12 = H12, K21 = H21 and K22 = H11.

Proof. It is straightforward. □

Lemma 5.2. Let (H, ◦) be a groupoid of order 2. (H, ◦) is an LA-semihypergroup

if and only if it is a commutative semigroup.

Theorem 5.3. If (H, ◦) is an anti-Hv-LA-semigroup of order 2, then ◦ is an

operation and (H, ◦) is anti-LA-semigroup.
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Theorem 5.4. There exists one antiweakcommutative LA-semihypergroup of

order 2, up to isomorphism.

Proof. Let (H = {a, b}, ◦) be an antiweakcommutative LA-semihypergroup.

Then we have (a◦ b = a & b◦a = b) or (a◦ b = b & b◦a = a). Suppose a◦ b = a

and b ◦ a = b. Since (H = {a, b}, ◦) is an LA-semihypergroup, we get

(1) (a ◦ b) ◦ b = (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b = (b ◦ a) ◦ a.

Thus, by (1) and (2) we obtain

(3) a = (b ◦ b) ◦ a,

(4) (a ◦ a) ◦ b = b.

Now, if b ◦ b = a, then (3) implies that a ◦ a = a. So (4) implies that a ◦ b = b

and this is a contradiction. If b ◦ b = b, then (3) implies that b ◦ a = a and this

is a contradiction. Finally, if b ◦ b = H, then (3) implies that a = H and this

is a contradiction.

Let a ◦ b = b and b ◦ a = a. Then using (1) and (2) we have

(5) b ◦ b = (b ◦ b) ◦ a,

(6) (a ◦ a) ◦ b = a ◦ a.

If a ◦ b = b and b ◦ a = a, then using (5) and (6), we get b ◦ b ̸= a, b ◦ b ̸= b,

a ◦ a ̸= a or a ◦ a ̸= a. Therefore b ◦ b = H = a ◦ a. □

Theorem 5.5. There exist 3 anticommutative LA-semihypergroups of order 2,

up to isomorphism.

Proof. Let (H = {a, b}, ◦) be an antiweakcommutative LA-semihypergroup.

Then we have (a ◦ b ̸= b ◦ a. Then we have

(1) (a ◦ b = a & b ◦ a = b),

(2) (a ◦ b = b & b ◦ a = a),

(3) (a ◦ b = a & b ◦ a = H),

(4) (a ◦ b = b & b ◦ a = H),

(5) (a ◦ b = H & b ◦ a = a),

(6) (a ◦ b = H & b ◦ a = b).

By proof of Theorem 5.4, case (1) can not admitting an LA-semihypergroup.

By proof of Theorem5.4, case (2) admitting a LA-semihypergroup (H, ◦1) with

the following Cayley table:

◦1 a b

a H b

b a H

Case 3: Let a ◦ b = a and b ◦ a = H. Since (H = {a, b}, ◦) is an LA-

semihypergroup, so

(7) (a ◦ b) ◦ b = (b ◦ b) ◦ a,

(8) (a ◦ a) ◦ b = (b ◦ a) ◦ a.
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Thus, by (3), (7) and (8) we obtain

(9) a = (b ◦ b) ◦ a,

(10) (a ◦ a) ◦ b = H.

Now, if b◦ b = a, then (9) implies that a◦a = a. So (10) implies that a◦ b = H,

which is a contradiction. If b ◦ b = b, then (9) implies that b ◦ a = a and this is

a contradiction. Finally, if b ◦ b = H, then (9) implies that a = H, which is a

contradiction.

Case 4: Let a ◦ b = b and b ◦ a = H. Thus by (4), (7) and (8) we obtain

(11) b ◦ b = (b ◦ b) ◦ a,

(12) (a ◦ a) ◦ b = H.

Now, if b◦b = a, then (11) implies that a◦a = a. So (12) implies that a◦b = H,

which is a contradiction. If b ◦ b = b, then (11) implies that b ◦ a = b and this

is a contradiction. So we have b ◦ b = H. By (4) and (12) we obtain a ◦ a = b

or a ◦ a = H. Therefore we obtain two hyperoperations and we call these two

hyperoperation ◦2 and ◦3, respectively as follows:

◦2 a b

a H b

b H H

◦3 a b

a b b

b H H

Case 5: Let a ◦ b = H and b ◦ a = a. Thus, by (4), (7) and (8) we obtain

(13) H = (b ◦ b) ◦ a,

(14) (a ◦ a) ◦ b = a ◦ a.

Now, if a◦a = b, then (14) implies that b◦b = b. So (13) implies that b◦a = H,

which is a contradiction. If a ◦ a = a, then (14) implies that a ◦ b = a and this

is a contradiction. So we have a ◦ a = H. By (5) and (13) we obtain (b ◦ b = a

or b ◦ b = H. Therefore we obtain two hyperoperations and we call these two

hyperoperation ◦4 and ◦5, respectively as follows:

◦4 a b

a H H

b a H

◦5 a b

a H H

b a a

Case 6: Let a ◦ b = H & b ◦ a = b. Thus by (4), (7) and (8) we obtain

(15) H = (b ◦ b) ◦ a,

(16) (a ◦ a) ◦ b = b.

Now, if a◦a = b, then (16) implies that b◦ b = b. So (15) implies that b◦a = H

and this is a contradiction. If a◦a = a, then (16) implies that a◦b = a and this

is a contradiction. So we have a ◦ a = H. By (5) and (16) we obtain H = b,

which is a contradiction.

It is easy to see that (H, ◦2) ∼= (H, ◦4) and (H, ◦3) ∼= (H, ◦5). Therefore

(H, ◦1), (H, ◦2) and (H, ◦4) are anticommutative LA-semihypergroups of order

2. □
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Corollary 5.6. There is no anticommutative LA-semigroup of order 2.

Theorem 5.7. There is no proper anti-Hv-LA-semigroup of order 2.

Proof. Let (H = {a, b}, ◦) be a proper anti-Hv-LA-semigroup. Then We have

(1) (a ◦ b) ◦ b ∩ (b ◦ b) ◦ a = ∅,

(2) (a ◦ a) ◦ b ∩ (b ◦ a) ◦ a = ∅.

Since anti-Hv-LA-semigroup (H = {a, b}, ◦) is proper, we have one of the

following cases:

(3) a ◦ a = H,

(4) a ◦ b = H,

(5) b ◦ a = H,

(6) b ◦ b = H.

Case 3: If b◦a = a or b◦a = H, then (b◦a)◦a = H and this is a contradiction

with (2). If b ◦ a = b, then (b ◦ a) ◦ a = b and (a ◦ a) ◦ b = H ◦ b. Thus, by (2)

we have a ◦ b = a and b ◦ b = a. Then (a ◦ b) ◦ b = a and (b ◦ b) ◦ a = H, which

is a contradiction with (1).

Case 4: Then (a ◦ b) ◦ b = H and this is a contradiction with (1).

Case 5: Then (b ◦ a) ◦ a = H, which is a contradiction with (2).

Case 6: If a◦b = b or a◦b = H, then (a◦b)◦b = H and this is a contradiction

with (2). If a ◦ b = a, then (a ◦ b) ◦ b = a and (b ◦ b) ◦ a = H ◦ a. So by (1) we

have a ◦ a = b and b ◦ a = b. Then (b ◦ a) ◦ a = b and (a ◦ a) ◦ b = H, which is

a contradiction with (2). □

Theorem 5.8. There exist 4 commutative anti-LA-semihypergroups of order

2.

Proof. Let (H = {a, b}, ◦) be a commutative anti-LA-semihypergroup. Then

We have

(1) (a ◦ b) ◦ b ̸= (b ◦ b) ◦ a,

(2) (a ◦ a) ◦ b ̸= (b ◦ a) ◦ a,

(3) a ◦ b = b ◦ a.

Now, we have 3 Cases:

Case 1: Let a ◦ b = a = b ◦ a. then

(4) (a ̸= (b ◦ b) ◦ a,

(5) (a ◦ a) ◦ b ̸= a ◦ a.

If a ◦ a = a, then (3) and (5) implies that a ̸= a and this is contradiction. If

a ◦ a = b, then (5) implies that b ̸∈ b ◦ b and so a ∈ b ◦ b. Then b ◦ b = a

or b ◦ b = H. Therefore we obtain two commutative anti-LA-semihypergroups

with two hyperoperations ◦1 and ◦2 as follows:

◦1 a b

a b a

b a H

◦2 a b

a b a

b a a
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If a ◦ a = H, then by (5) we have

(6) H ◦ b ̸= H,

since a ◦ b = a, using (6), we have H ◦ b = a. Thus, b ◦ b = b. Then we have a

commutative anti-LA-semihypergroup with the following Cayley table.

◦3 a b

a H a

b a b

Case 2: Let a ◦ b = b = b ◦ a. In the similar way we obtain 3 commutative

anti-LA-semihypergroups isomorphism with anti-LA-semihypergroups in Case

1.

Case 3: Let a ◦ b = H = b ◦ a, by (1) and (2) we have

(7) H ̸= (b ◦ b) ◦ a,

(8) (a ◦ a) ◦ b ̸= H.

Thus, (7) and (8) imply that a◦a ̸= H ̸= b◦b, a◦a ̸= a and b◦b ̸= b. So a◦a = b

and b ◦ b = a. Therefore we have a commutative anti-LA-semihypergroup with

the following Cayley table.

◦4 a b

a b H

b H a

Then we have 4 commutative anti-LA-semihypergroups of order 2 up to iso-

morphism. □

Now, we have a generalization of Theorem 4.12.

Theorem 5.9. There is no commutative neutro-Hv-LA-semigroups of order

2.

Proof. Let (H = {a, b}, ◦) be a weakcommutative neutro-Hv-LA-semigroup.

Then we have

(1) (a ◦ b) ◦ b ∩ (b ◦ b) ◦ a = ∅,

(2) (a ◦ a) ◦ b ∩ (b ◦ a) ◦ a ̸= ∅,

(3) a ◦ b = b ◦ a.

Or

(4) (a ◦ b) ◦ b ∩ (b ◦ b) ◦ a ̸= ∅,

(5) (a ◦ a) ◦ b ∩ (b ◦ a) ◦ a = ∅.

(6) a ◦ b = b ◦ a.

Case 1: If a ◦ b = H = b ◦ a, then it is a contradiction with (1) and (5).

Case 2: If a ◦ b = a = b ◦ a, then we have

(7) a ∩ (b ◦ b) ◦ a = ∅,

(8) (a ◦ a) ◦ b ∩ a ◦ a ̸= ∅,

or
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(9) a ∩ (b ◦ b) ◦ a ̸= ∅,

(10) (a ◦ a) ◦ b ∩ a ◦ a = ∅.

Now, (7) implies that b ◦ b = a and a ◦ a = b and this is a contradiction with

(8). Also, (10) implies that a ◦ a = b and b ◦ b = a, which is a contradiction

with (9).

Case 3: If a ◦ b = b = b ◦ a, then by the similar way of Case 2 we can prove

that there is no a weakcommutative neutro-Hv-LA-semigroup of order 2. □

Theorem 5.10. There exist 2 weakcommutative neutro-Hv-LA-semigroups of

order 2.

Proof. Let (H = {a, b}, ◦) be a weakcommutative neutro-Hv-LA-semigroup.

Then we have

(1) (a ◦ b) ◦ b ∩ (b ◦ b) ◦ a = ∅,

(2) (a ◦ a) ◦ b ∩ (b ◦ a) ◦ a ̸= ∅,

or

(3) (a ◦ b) ◦ b ∩ (b ◦ b) ◦ a ̸= ∅,

(4) (a ◦ a) ◦ b ∩ (b ◦ a) ◦ a = ∅.

Theorem 5.9 and weakcommutativity imply that

(5) b ◦ a ̸= a ◦ b = H,

or

(6) a ◦ b ̸= b ◦ a = H.

Now, we have the following Cases:

Case 1: Let (1), (2) and (5) be true. Then H ∩ (b ◦ b) ◦ a = ∅ and this is a

contradiction.

Case 2: Let (1), (2) and (6) be true. By (6) and (1) we have b ◦ b = a.

Using (6) we have a ◦ b = a or a ◦ b = b. If a ◦ b = a, then by (1) we obtain

a ◦ a = b. Thus, we have a weakcommutative neutro-Hv-LA-semigroup with

the following Cayley table.

◦ a b

a b a

b H a

If a ◦ b = b, then by (1) we obtain a ◦ a = b. So we have a weakcommutative

neutro-Hv-LA-semigroup with the following Cayley table.

◦ a b

a b b

b H a

Case 3: Let (3), (4) and (5) are true. By (5) and (4) we have a ◦ a = b. by (5)

we have b◦a = a or b◦a = b. If b◦a = a, then by (4) we obtain b◦b = a. So we
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have a weakcommutative neutro-Hv-LA-semigroup with the following Cayley

table.

◦ a b

a b H

b a a

If b ◦ a = b, then by (4) we obtain b ◦ b = a. Then we have a weakcommutative

neutro-Hv-LA-semigroup with the following Cayley table.

◦ a b

a b H

b a a

Case 1: Let (3), (4) and (6) are true. Then (a ◦ a) ◦ H ◦ a = ∅. This is a

contradiction. □

Theorem 5.11. There exists one antiweakcommutative LA-semihypergroup of

order 2, up to isomorphism.

Proof. Let (H = {a, b}, ◦) be an antiweakcommutative LA-semihypergroup.

Then We have

(1) (a ◦ b) ◦ b = (b ◦ b) ◦a, or (2) (a ◦a) ◦ b = (b ◦a) ◦a, or (3) a ◦ b∩ b ◦a = ∅,

Using (3) we get a ◦ b ̸= H and b ◦ a ̸= H. Then

(4) a ◦ b = a, b ◦ a = b,

or

(5) a ◦ b = b, b ◦ a = a.

If (4) is true, then

(6) a = (b ◦ b) ◦ a,

(7) (a ◦ a) ◦ b = b.

If b ◦ b = a or b ◦ b = b or b ◦ b = H, then we have a contradiction.

So, let (5) be true. Then

(8) b ◦ b = (b ◦ b) ◦ a,

(9) (a ◦ a) ◦ b = a ◦ a.

So, if b◦b = a, then a◦a = b. By (9) we have b = a, which is a contradiction. If

b ◦ b = b, then b ◦a = b this is a contradiction with (5). If a ◦a = b or a ◦a = a,

then by the similar way we have a contradiction. Thus, b ◦ b = H, and so

a ◦ a = H. Therefore we have an antiweakcommutative LA-semihypergroup

with the following Cayley table.

◦ a b

a H b

b a H

□
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Using the above results in the sections 4 and 5, we can characterize 45

non-isomorphic classes hypergroupoids of the order 2. We obtain anti-LA-

semihypergroups, neutro-LA-semihypergroups, LA-semihypergroups, anti-Hv-

LA-semigroups, neutro-Hv-LA-semigroups,Hv-LA-semigroups of order 2 (classes

up to isomorphism).

Table 2. Classification of the hypergroupoids of order 2

C WC AC AWC

LA-semihypergroups 9 11 3 1
Hv-LA-semigroups 13 30 20 3
Neutro-LA-semihypergroup 2 9 10 3
Neutro-Hv-LA-semigroup 0 2 7 5
Anti-LA-semihypergroup 3 13 18 8
Anti-Hv-LA-semigroup 1 1 4 4
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