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§ 1. Sequences

[1] F.Smarandache, Only Problems, Not Solutions! Xiquan Publishing House,
Chicago, 1990.

[2] F.Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis,
Phoenix, Arizona, 2006.

[3] D.Deleanu, A Dictionary of Smarandache Mathematics, Buxton University
Press, London & New York, 2006.

(1) Consecutive sequence

1.12,123, 1234, 12345, 123456, 1234567, 12345678, - - -
(2) Digital sequence

L1, 11, ittt 1, et rerrtana, - -

(3) Circular sequence

1, 12,21, 123,231,312, 1234, 2341.3412. 4123, - - -



(4) Symmetric sequence

1,171,121, 1221, 12321, 123321, 1234321, 12344321, 123454321, 1234554321, - - -,
(5) Divisor product sequence

1,2,3,8,5,36,7,64,27,100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, - - -;

(6) Cube-free sieve

2,3,4,5,6,7,9,10, 11,12, 13,14, 15, 17, 18, 19,20, 21, 22, 23,25, 26, 28,29, 30, - - -.



First Symmetry

Ix8+1

12 x 8+ 2
123 x 8+ 3

1234 x 8+ 4
12345 x 8 +5
123456 x 8+ 6
1234567 x 847
12345678 x 8 + 8
123456789 x 8 4+ 9

9

98

987

9876
98765
987654
9876543
98765432
087654321



Second Symmetry

1 x9+2

12 x9+3

123 x 9+ 4

1234 x 9+ 5

12345 x 946
123456 x 947
1234567 x 9 + 8
12345678 x 9+ 9
123456789 x 9 + 10

11

111

1111

11111
111111
1111111
I1111111
111111111
IT11111111



Third Symmetry

I x1

11 x 11

111 x 111

1111 x 1111

11111 x 11111

111111 x 111111
1111111 x 1111111
ITIT11111T < 11111111
TTIT11111 x 111111111

1

121

12321

1234321

12345431
12345654321
1234567654321
13456787654321
12345678987654321



§ 2. Graphs with Labelings

A graph G is an ordered 3-tuple (V(G), E(G); I(G)), where V(G), E(G) are finite
sets, V(G) # 0 and I(G) : E(G) — V(G) x V(G).
V(G)-vertex set, E(G)-edge set, |V(G) —order, |E(G)|-size of a graph G.

A graph H = (V1. E: 1) is a subgraph of a graph G = (V. E,I)if V; C V,
Ei CFEand I : By — Vi x Vi, denoted by H C G.



Example

Fig. 2.1
V(G) = {vy1,v9,v3, 04}

E(C;) = {El. €9, €3, €4, €5, €. €7, €8, €0, Elg}

I(e;) = (vi,v3), 1 =0 < 4;1(es) = (v, v2) = (vg,v1), I(es) = (v3,v4) = (vg,v3), [(€6) =

I(e7) = (vo,v3) = (vs,v2), I(eg) = I(eg) = (vg,v1) = (v1,v4).



Graph Family.

Walk. A walk of a graph G 1s an alternating sequence of vertices and edges

Uy, €1,Up, €9, * s €, Uy, With €; = (U, u;4q) for 1 <1 < n.

Path and Circuit. A walk such that all the vertices are distinct and a circuit or
a cycle 1s such a walk uq,eq,u9.e9, - -+, €,,1,, With uy = u, and distinct vertices.
A graph G = (V, E; 1) 1s connected if there 1s a path connecting any two vertices in

this graph.

Tree. A tree 1s a connected graph without cycles.



n-Partite Graph. A graph G i1s n-partite for an integer n = 1, 1f 1t 18 possible
to partition V' (G) into n subsets Vi, Vy, .-+, V, such that every edge joints a vertex
of Vito a vertex of V;, 7 # 4, 1 < 4,5 < n. A complete n-partite graph G 1s such
an n-partite graph with edges uv € E(G) for Vu € V; and v € Vj for 1 < 4,7 < n,
denoted by K(pi.pa. - +,pn) if |Vi| = p; for integers 1 < i < n. Particularly, if
'Vi| = 1 for integers 1 < 7 < n, such a complete n-partite graph is called complete

graph and denoted by K.
Kg

K(4,4)

Fig.2.2



Cartesian Product. A Cartesian product GG x G of graphs GGy with G5 1s defined
by V(G1 x Gg) = V(G1) x V(Ga) and two vertices (uq,ug) and (vy,1v2) of Gi x Go
are adjacent if and only if either uy = vy and (uo,v2) € E(G3) or us = vy and
(u1,v1) € E(G1).

The graph K5 x Fg 1s shown 1n Fig.2.3 following.
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Fig.2.3



Union.

The union G U H of graphs G and H 1s a graph (V(G U H),E(GUH),I[(GUH))

with

V(GUH) = V(G)UV(H), E(GUH)= E(G)UE(H) and I(GUH) = I(G)UI(H).



Labeling.

[4] J.A.Gallian, A dynamic survey of graph labeling, The Electronic J. Combinatorics,

4 DS6, 16(2009), 1-2109.

Let G be a graph and N € Z*. A labeling of G is a mapping I : V(G) U E(G) —
N with each labeling on an edge (u,v) is induced by a ruler r(lg(u),lo(v)) with

additional conditions.

Classical Labeling Ruler. The following rulers are usually found in hterature.

Ruler R1. r(lg(u),lg(v)) = lg(u) — lg(v)].

[ ]
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v
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Fig.2.4



Such a labeling I, is called to be a graceful labeling of G if I(V(G)) € {0,1, 2,
S V(G)[} and I6(E(G)) = {1,2,---, |E(G)
of F; and Sy 4 are shown m Fig.2.4.

}. For example, the graceful labelings

Graceful Tree Conjecture (A.Rose, 1966) Any tree is graceful.



Ruler R2. r(lg(u),ls(v)) =la(u) + la(v).

Such a labeling g on a graph & with ¢ edges 1s called to be harmonious
on G if [o(V(G)) © Z(modg) such that the resulting edge labels Io(E(G)) =
11,2,---, | E(G)|} by the induced labeling lo(u.v) = lg(u) + lg(v) (modg) for
V(u,v) € E(G). For example, ta harmonious labeling of Fs are shown in Fig.2.5

following.

Fig.2.5



Smarandachely Labeling.

Smarandachely k-Constrained Labeling. A Smarandachely k-constrained la-
beling of a graph G(V, E) is a bijjective mapping f : VUE — {1,2, .., |V|+|E|} with
the additional conditions that | f(u)— f(v)| = k whenever uv € E, |f(u)— f(uv)| = k
and |f(uv) — f(vw)| = k whenever u # w, for an integer k > 2. A graph G which
admits a such labeling 1s called a Smarandachely k-constraimmed total graph, abbre-

viated as k — C'T'G. An example for £ = 5 on F; 1s shown in Fig.2.6.

6 12 = 2 A 8 14 g4 Ay 10
O €Y e ) e (e ©) e O e e O

Fig.2.6



The minimum positive integer n such that the graph G U K, is a k — CTG is
called k-constrained number of the graph G and denoted by #1(G), the corresponding
labeling 1s called a minimum A-constrained total labeling of G.

[5] ShreedharK, B. Sooryanarayana and Raghunath P., Smarandachely k-Constrained
labeling of Graphs, International J Math. Combin. Vol.1 (2009), 50-60.

[6] P. Devadas Rao, B. Sooryanarayana and M. Jayalakshmi, Smarandachely k-
Constrained Number of Paths and Cycles, International J. Math. Combin. Vol.3
(2009), 48-60.

Update Results for #(G) are as follows:

(2 if n=2
(1) tE(JP:rl):< 1 'if -n.:3,
0 else.

(2) to(Cy) = 0if n > 4 and to(Cy) = 2

(3) to(K,) = 0if n > 4.

(2 if n=1 and m=1,
(4) to(K(m,n))=1 1 if n=1 and m > 2,

0 else.

\



(0 if k< k.

(5) te(Pr)=< 2(k—ko) —1 if k>ky and 2n = 0(mod 3),
\ 20k —ky) if k> ky and 2n =1 or 2(mod 3).
(0 if k<k

(6) te(Ch) =< 2(k—ko) if k> ko and 2n =0 (mod 3),
3k —ko) if k>ky and 2n =1 or 2(mod 3),

.

ﬂn—IJ.

where ky = | =5



Smarandachely Super m-Mean Labeling. Let G be a graph and f: V(G) —
{1,2,3,---,|V| + |E(G)|} be an injection. For each edge e = uv and an integer
m > 2, the induced Smarandachely edge m-labeling f& 1s defined by

fi(e) = [f(u) + f(-v)} |

m
Then f is called a Smarandachely super m-mean labeling if f(V(G)) U {f*(e) :
e € F(G)} =11,2,3,---,|V| + |E(G)|}. A graph that admits a Smarandachely

super mean m-labeling i1s called Smarandachely super m-mean graph. Particularly,

if m = 2, we know that

f(u)+f(v) ; ) is even:
Fle) = 2 - 1 if f(u)+ f(v) 1s even;
f{qu{LH if f(u)+ f(v)1s odd.




A Smarandache super 2-mean labeling on Pf_ﬂ 1s shown 1 Fig.2.7.

12 3 5 7 8 9 11 13 14 15

Fig.2.7

Now we have know graphs P, C,, K, K(2,n), (n > 4), K(1,n) for 1 <n < 4,

C., x P, forn = 1, m = 3,5 have Smarandachely super 2-mean labeling. More

results on Smarandachely super m-mean labeling of graphs can be found in references
following.
[7] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International
J.Math. Combin. Vol.3 (2009), 82-96.
[8] R. Vasuki and A. Nagarajan, Some results on super mean graphs, International
J.Math. Combin. Vol.3 (2009), 82-96.

[9] Selvam Avadayappan and R. Vasuki, New families of mean graphs, Interna-
tional J.Math. Combin. Vol.2 (2010). 68-80.

[10] A. Nagarajan, A.Nellai Murugan and S.Navaneetha Krishnan, On near mean
eraphs, International J.Math. Combin. Vol.4 (2010), 94-99.



§ 3. Smarandache Sequences on Symmetric Graphs

Let 12 : V(G) — {1,11,111,1111, 11111, 111111, 1111111, 11111111, 111111111} be
a vertex labeling of a graph G with edge labeling I2,(u, v) induced by I2(u)I2(v) for
(u,v) € E(G) such that [2(E(GQ)) = {1,121,12321, 1234321, 123454321, 12345654321,
1234567654321, 123456 787654321, 123456 78987654321}, 1.e., I2(V(G) U E(G)) con-
tains all numbers appeared in the Smarandachely third symmetry. Denote all graphs

with [2, labeling by .#°. We know the following result.

Theorem 3.1 Let G € £°. Then G = U Hi for an integer n > 9, where each H;
i=1
is a connected graph. Furthermore, if G is vertex-transitive graph, then G = nH for

an integer n = 9, where H 1s a vertex-transitive graph.



Proof Let C(i) be the connected component with a label ¢ for a vertex u,
where 7 € {1,11,111,1111,11111,111111,1111111,11111111,111111111}. Then all
vertices v in C'() must be with label [2(v) = 7. Otherwise, if there is a vertex v with
12(v) =7 € {1,11,111, 1111, 11111, 111111, 1111111, 11111111, 111111111\ {a}, let
P(u,v) be a path connecting vertices v and v. Then there must be an edge (z,v)
on P(u,v) such that [2(z) = i, [2(y) = j. By definition, i x j ¢ I2(E(GQ)), a
contradiction. So there are at least 9 components i G.

Now 1f (& 1s vertex-transitive, we are easily know that each connected component

C'(i) must be vertex-transitive and all components are 1somorphic. [l



The smallest graph in .2 is the graph 9K5, shown in Fig.3.1 following.

: 10345678 765432 :
11111%1111111111 123456 78987654391 11‘%% %%%%111

Fig.3.1



We construct a graph @k following on the digital sequence

111,111, 1111, 11111, -+ 11 - - - 1 .
R —

k
by
E(@k) - ‘Hlélv_l,) (z,2), (z,y)|z,y € V((:j) differ in precisely one 1}.

k
Now label z € V(Q) by la(z) = la(z') = z and (u,v) € E(Q) by la(u)lg(v). Then

we have the following result for the graph (:?L



Theorem 3.2 For any integer m > 3, the graph Q,, is a connected vertezr-transitive

graph of order 2m with edge labels

Io(E(Q)) = {1,11,121, 1221, 12321, 123321, 1234321, 12344321, 12345431, - - -}

¥

1.e., the Smarandache symmetric sequence.



Proof Clearly, (),, 15 connected. We prove 1t 1s a vertex-transitive graph.

For simplicity, denote 11---1 11---1’ by i and ?, respectively. Then V (Qm) =

{1,2,---,m}. We define an operation + on V(@k] by

E+l=11---1 and k+1l =k+1, k =k
k+l(modk)

for integers 1 < k. < m. Then an element 7 naturally induces a mapping

i T —x+1i, for TE V(Q,,).

It should be noted that ¢* 1s an automorphism of (jm because tuples T and 7 differ

in precisely one 1 if and only if  + 7 and y + ¢ differ 1in precisely one 1 by definition.



On the other hand, the mapping 7 : T — T for VT € is clearly an automorphism of

ém, Whence,

G = (1,7 |1<i<m)=AutQ,,

which acts transitively on V(@) because (y — z)"(z) = ¥ for 7,7 € V(Q,) and

T:T—TT.

Calculation shows easily that
Eg(E(ém)) ={1,11,121,1221,12321, 123321, 1234321, 12344321, 12345431, - - -},

1.e., the Smarandache symmetric sequence. This completes the proof. []

Corollary 3.3 For any integer m = 3, ij ~ (C,, < P,.



The smallest graph contaimming the third symmetry 1s C_jg shown m Fig.3.2 fol-

lowing,

1,1
7/ 121 e,
e 12321 ooy
s 1934321 &ﬁ} .
123454321 o
12345654321
1234567654321
11111114 £ 123456787654321
111111111 &5 19345678987654321

Fig.3.2

where ¢ = 11, o = 1221, cg = 123321, ¢4 = 12344321, 5 = 12344321, 5 =
1234554321, cg = 123456654321, ¢ = 12345677654321, cg = 1234567887654321,
cg = 123456789987654321.



§ 4. Groups on Symmetric Graphs

Problem 4.1 Let (I';0) be a group generated by x1,x9, -, x,. Thus I' = (zy, 19,
o xn[Wh, -+ 4). Find connected vertex-transitive graphs G with generalized labeling
lg : V(G) — {1p, 1,29, -+, 25} and induced edge labeling lg(u,v) = lg(u) o lg(v)
for (u,v) € E(G) such that

lc(E(G)) = ‘{’11"31':%11'1 o i?:z?if%fi‘-z O3, ", Tp_1 0 Iy, Sﬂi}



Theorem 4.2 Let (I';0) be a group generated by xy,x9,---,x, for an integer
n > 1. Then there are vertex-transitive graphs G with a labeling lo : V(G) —
{1r, 21,29, -+, x,} such that the induced edge labeling by lo(u,v) = lg(u) o lg(v)
with

IG(E(G)) - {]'P‘JI%}‘J'T]. o 1'21: mg'p IQ o -T3'.~ T In—l o Tn: I?},}

Proof For any mteger m = 1, define a graph @m:,l?k by

@ = (Ueom) U (Uwow) U U(Uron)

where |[{U®[z],v0[y], -, WO} =k, UD[2] = {7, xﬁ},xéh '}, VO] =
{(yﬂ)h}uy§}vy2 ’ -:yn}} K LV{ }[z] — {(zﬂ)h}az;:ﬂ;zé}}j‘ : ‘,Hn } for lﬂtEgEI'S 0

1< m — 1 and



an EIUE2 UEE-.u

(zg,:r!)wffffn—l 0 <i<m-—1}, Ey =

where Fy = {(CE; s Y })

{(Iz(}nfﬂul) (yg}jyffﬂ ({!.H¢+1)|U [<n—1, 0<i<m—1, wherel +1 =

(modn)} and Bz = {(z;”,z"""), (", u," ). - (RJMWUEJER—LOJ

i <m — 1, where i +1 = (modm)}. Then is clear that Qm?mk 1s connected.

We prove this graph 1s vertex-transitive. In fact, by defining three mappings

0: 0" — i)y, u” — it — A
raa® gy L 0 )
o - T}z} . :Eg +1}] yf} y§t+1}=_“?z§z’} ()

where 1 <[ <n, 1 <i<m, i+ 1(modm), [ + 1(modn). Then it 1s easily to check

that #, 7 and ¢ are automorphisms of the graph @m,n,k and the subgroup (0, 7,0)
acts transitively on V(@m,n?k).



Now we define a labeling [ o on vertices of @m?n,k by

Ic(E(G)) = {1p, 27,21 0 79, 23, 2y 0 T3, -, Tpp_1 O Ty, T }. O
Corollary 4.3 For integers m,n = 1, @m,n,k ~ C, x C, x Cy.

Corollary 4.4

N5, .. z]| = mk forVz € {1r,z1,- -, 2n} and integers m,n, k = 1.



For example, the graph @5,3,9 1s shown 1 Fig.4.1 following.

Fig.4.1

Particularly, let I' be a subgroup of (Zy11111111. X) generated by
{1,11,111, 1111, 11111, 111111, 1111111, 11111111, 111111111}

and m = 1. We get the Symmetric sequence on the symmetric graph shown in

Fig.3.2 again.



§ 5. Speculation

[11] F.Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119,
10/2000.

[12] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Ge-
ometries, American Research Press, 2005.

[13] Linfan Mao, Smarandache Multi-Space Theory, Hexis, Phoenix, USA, 2006.

[14] Linfan Mao, Selected Papers on Mathematical Combinatorics, World Academic
Union, 2006.

[15] Linfan Mao, Combinatorial speculation and combinatorial conjecture for math-
ematics, International J.Math. Combin. Vol.1(2007), No.1, 1-19.

[16] Linfan Mao, An introduction to Smarandache multi-spaces and mathematical
combinatorics, Scientia Magna, Vol.3, No.1(2007), 54-80.

[17] Linfan Mao, Combinatorial Geometry with Applications to Field Theory, In-
forQuest, USA, 2009.

[18] R.Sridevi, S.Navaneethakrishnan and K.Nagarajan, Super Fibonacci graceful

labeling, International J.Math. Combin. Vol.3(2010), 22-40.



Recently, Sridevi et al consider the Fibonacci sequence on graphs. Let G be
a graph and {Fy, F1, Fy, -+, F,,-- -} be the Fibonacci sequence, where F} is the ¢
Fibonacci number. An injective labeling I : V(G) — { Fby, Fi, F, - - -, F; } is called to
be super Fibonacci graceful if the induced edge labeling by lg(u, v) = |lg(u) — la(v)]
is a bijection onto the set {Fi, Fy,---, F,} with initial values Fy = Fy = 1. They
proved a few graphs, such as those of ), © F,,, C,, & Ky ,, have super Fibonacci
labelings in [18]. For example, a super Fibonacci labeling of C & Py is shown in
Fig.5.1.

Fig Fy

Fy £, Fe By  F3 Fy _F, B
Fg F) Fy F3 1 Fy

Fy Fig



Problem 5.1 Construct classical mathematical systems combinatorially and char-
acterize them. For erample, classical algebraic systems, such as those of groups,

rings and fields by combinatorial principle.

Generally, we have the following Smarandache multi-spaces following.

Definition 5.2([11],[13]) For an integerm > 2, let (X1; Rq), (X9; Ra), -+, (Em; Ron)

be m mathematical systems different two by two. A Smarandache multi-space is a

pair (3; R) with

Y = CJEI-, and R = Lj??.
i=1 i=1

Definition 5.3([17]) A combinatorial system € is a union of mathematical systems

(El; RJ):(EQ; R*E): T (Em; Rm) fGT an intege:f‘ m, EI'E"

bo = (U Yi; URE')
i=1 i=1

with an underlying connected graph structure G, where

V(G) ={Z1, 5, -, T}, EG)={ (T5,%;) | %[ )% #0,1<4,5 <m}.



CC Conjecture(Mao, 2005) Any mathematical system (X;R) is a combinatorial

system €c(lij, 1 < 1,5 < m).

In fact, it indeed means a combinatorial notion on mathematical objects following
for researchers:

(1) There is a combinatorial structure and finite rules for a classical math-
ematical system, which means one can make combinatorialization for all classical
mathematical subjects.

(2) One can generalizes a classical mathematical system by this combinatorial
notion such that it 1s a particular case in this generalization.

(3) One can make one combination of different branches in mathematics and
find new results after then.

(4) One can understand our WORLD by this combinatorial notion, establish
combinatorial models for it and then find its behavior, for example,

what is true colors of the Universe, for instance its dimension?

and - - -. For its application to geometry and physics, the reader 1s refereed to books

[13]-[14] and [17] of mine.



Sincerely Thanks!
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