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Abstract Let n > 1 be an integer, P ∗(n) be the unitary analogue of the gcd-sum function.

In this paper, we consider the mean value of P ∗(n) over square-full numbers, that is

∑
n≤x

n is square−full

P ∗(n) =
∑

n≤x

P ∗(n)f2(n),

where f2(n) is the characteristic function of square-full integers, i.e.

f2(n) =





1, n is square-full,

0, otherwise.

.

Keywords divisor problem, Dirichlet convolution method, mean value.

2010 Mathematics Subject Classification 11N37.

§1. Introduction and preliminaries

An integer n = pa1
1 pa2

2 · · · par
r is called k− full number if all the exponents a1 ≥ k, a2 ≥ k,

· · · , ar ≥ k. When k = 2, n is called square− full integer.
American-Romanian number theorist Florentin Smarandache introduced hundreds of in-

teresting sequences and arithmetical functions. In 1991, he published a book named ‘Only
problems, Not solutions!’ He presented 105 unsolved arithmetical problems and conjectures
about these functions and sequences in it. In the unsolved problem 32 (see [3]), Smarandache
introduced the irrational root sieve. We can get the irrational root sieve by taking off all k-
powers, k ≥ 2, of all square free numbers from the set of natural numbers (except 0 and 1).
In fact, the complementary set of the irrational root sieve in the set of natural numbers (ex-
cept 0 and 1) is the set of square − full numbers. Let f2(n) be the characteristic function of
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square− full integers, i.e.

f2(n) =





1, n is square-full,

0, otherwise.

In 1982, M. V. Subbarao [4] gave the definition of the exponential divisor, i.e. n > 1 is
an integer and n =

∏r
i=1 pai

i , d =
∏r

i=1 pci
i , if ci | ai, i = 1, 2, · · · , r, then d is an exponential

divisor of n. We denote d |e n. Two integers n, m > 1 have common exponential divisors if
they have the same prime factors. For n =

∏r
i=1 pai

i , m =
∏r

i=1 pbi
i , ai, bi ≥ 1(1 ≤ i ≤ r), the

greatest common exponential divisor of n and m is (n,m)e =
r∏

i=1

p
(ai,bi)
i . Here (1, 1)e = 1 by

convention and (1,m)e does not exist for m > 1.
The integers n, m > 1 are called exponentially coprime, if they have the same prime

factors and (ai, bi) = 1 for every 1 ≤ i ≤ r, with the notation of above. In this case, one gets
(n,m)e = Sr(n) = Sr(m). The function Sr(n) = P1 ∗ · · · ∗ Pr can be found in the unsolved
problem 63 (see [3]). 1 and m > 1 are not exponentially coprime. Let

P ∗(n) =
n∑

k=1

(k, n)∗,

where (k, n)∗ := max{d ∈ N : d|k, d‖n}, which was introduced by Tóth [5]. The function P ∗(n)
is also multiplicative and P ∗(pa) = 2pa − 1 for every prime power pa (a ≥ 1).

Many authors have investigated the properties of the function P ∗(n), see [6] and [1]. Re-
cently, L. Tóth [6] proved the following result:

∑

n≤x

P ∗(n) =
α

2ζ(2)
x2 log x + βx2 + O(x3/2 log x),

where α =
∏

p(1− 1/(p + 1)2) ≈ 0.775883, α, β are constants.
The aim of this paper is to establish the following asymptotic formula for the mean value

of the function P ∗(n) over square-full numbers.
Theorem 1.1. We have the asymptotic formula
∑
n≤x

n is square−full

P ∗(n) =
1
3
x3/2R1,1(log x)+

1
4
x4/3R1,2(log x)+O(x5/4 exp(−D(log x)3/5(log log x)−1/5)),

where R1,k(t), k = 1, 2 are polynomials of degree 1 in t, D > 0 is an absolute constant.
Notation. Throughout this paper, ε always denotes a fixed but sufficiently small positive

constant.

§2. Some lemmas

Lemmas 2.1. Let
d(2, 2, 3, 3; k) :=

∑

k=n2m3

d(n)d(m),

D(2, 2, 3, 3;x) :=
∑

1≤k≤x

d(2, 2, 3, 3; k),
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such that
D(2, 2, 3, 3;x) = x1/2P1,1(log x) + x1/3P1,2(log x) + O(x19/80+ε),

where P1,1(t), P1,2(t) are polynomials of degree 1 in t.

Proof. This is Lemma 6 of D. Zhang [7].

Lemmas 2.2. Let f(m), g(n) are arithmetical functions such that

∑

m≤x

f(m) =
J∑

j=1

xαj Pj(log x) + O(xα),

∑

n≤x

|g(n)| = O(xβ),

where α1 ≥ α2 ≥ · · · ≥ αJ > α > β > 0, Pj(t) are polynomials in t. If h(n) =
∑

n=md f(m)g(d)
then

∑

n≤x

h(n) =
J∑

j=1

xαj Qj(log x) + O(xα),

where Qj(t) are polynomials in t, (j = 1, · · ·J).

Proof. This is Theorem 14.1 of Ivić [2].

Lemmas 2.3. Let f(n) be an arithmetical function for which

∑

n≤x

f(n) =
l∑

j=1

xaj Pj(log x) + O(xa),

∑

n≤x

|f(n)| = O(xa1(log x)r),

where a1 ≥ a2 ≥ · · · ≥ al > 1/c > a ≥ 0, r ≥ 0, Pj(t) are polynomials in t of degrees not
exceeding r, (j = 1, · · ·J), and c ≥ 1, b ≥ 1 are fixed integers. Suppose for Rs > 1 that

∞∑
n=1

µd(n)
ns

=
1

ζb(s)
,

if
h(n) =

∑

dc|n
µb(d)f(n/dc),

then
∑

n≤x

h(n) =
l∑

j=1

xaj Rj(log x) + Ec(x),

where Rj(t) are polynomials in t of degrees not exceeding r, (j = 1, · · · l), and for some D > 0,

Ec(x) ¿ x1/c exp(−D(log x)3/5(log log x)−1/5).
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Proof. See Theorem 14.2 of Ivić [2].

Lemmas 2.4. Let P ′(n) = P∗(n)
n , Rs > 1, we have

∞∑
n=1

n is square−full

P ′(n)
ns

=
ζ2(2s)ζ2(3s)

ζ(4s)
G(s),

where the Dirichlet series G(s) :=
∑∞

n=1
g(n)
ns is absolutely convergent for Rs > 1/5.

Proof.

∞∑
n=1

n is square−full

P ′(n)
ns

=
∞∑

n=1

P ′(n)f2(n)
ns

=
∏
p

(
1 +

P ′(p2)f2(p2)
p2s

+
P ′(p3)f2(p3)

p3s
+

P ′(p4)f2(p4)
p4s

+ · · ·+ P ′(pr)f2(pr)
prs

)

=
∏
p

(
1 +

2
p2s

+
2

p3s
+

2
p4s

− 1
p2+2s

− 1
p3+3s

− 1
p4+4s

+ · · ·
)

= ζ(2s)
∏
p

(
1 +

1
p2s

+
2

p3s
− 1

p2+2s
+

1
p2+4s

+ · · ·
)

= ζ2(2s)
∏
p

(
1 +

2
p3s

− 1
p4s

− 2
p5s

+ · · ·
)

= ζ2(2s)ζ(3s)
∏
p

(
1 +

1
p3s

− 1
p4s

− 2
p5s

− 2
p6s

+ · · ·
)

= ζ2(2s)ζ2(3s)
∏
p

(
1− 1

p4s
− 2

p5s
− 3

p6s
+ · · ·

)

=
ζ2(2s)ζ2(3s)

ζ(4s)

∏
p

(
1− 2

p5s
− 3

p6s
+ · · ·

)

=
ζ2(2s)ζ2(3s)

ζ(4s)
G(s),

where G(s) :=
∑∞

n=1
g(n)
ns =

∏
p

(
1 − 2

p5s − 3
p6s + · · ·

)
, which is absolutely convergent for

Rs > 1/5, and
∑

n≤x

|g(n)| ¿ x1/5+ε.
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§3. Proof of Theorem 1.1

Let

ζ2(2s)ζ2(3s)G(s) =
∞∑

n=1

f(n)
ns

, Rs > 1,

ζ2(2s)ζ2(3s) =
∞∑

n=1

d(2, 2, 3, 3;n)
ns

,

such that

f(n) =
∑

n=md

d(2, 2, 3, 3;m)g(d). (1)

From Lemma 2.1 and the definition of d(2, 2, 3, 3;m) we get
∑

m≤x

d(2, 2, 3, 3;m) = x1/2P1,1(log x) + x1/3P1,2(log x) + O(x19/80+ε), (2)

where P1,k(t) are polynomials of degree 1 in t, k = 1, 2.
In addition we have

∑

n≤x

|g(n)| = O(x1/5+ε). (3)

Combining (1), (2) and (3), and applying Lemma 2.2, we have
∑

n≤x

f(n) = x1/2Q1,1(log x) + x1/3Q1,2(log x) + O(x19/80+ε), (4)

where Q1,1(t), Q1,2(t) are polynomials of degrees 1 in t, then we can get
∑

n≤x

|f(n)| ¿ x1/2 log x. (5)

Since 1
ζ(4s) =

∑∞
n=1

µ(n)
n4s , Rs > 1/4, from Lemma 2.4 and (1) we have the relation

P ′(n)f2(n) =
∑

n=md4

f(m)µ(d). (6)

From (4), (5) and (6), in view of Lemma 2.3, we can get
∑
n≤x

n is square−full

P ′(n) = x1/2R1,1(log x) + x1/3R1,2(log x) + O(x1/4 exp(−D(log x)3/5(log log x)−1/5). (7)

From the definition of P ′(n) and Abel’s summation formula, we can easily get
∑
n≤x

n is square−full

P ∗(n) =
∑
n≤x

n is square−full

P ′(n)n

=
∫ x

1

td
( ∑

n≤t
n is square−full

P ′(n)
)

=
1
3
x3/2R1,1(log x) +

1
4
x4/3R1,2(log x) + O(x5/4 exp(−D(log x)3/5(log log x)−1/5)),

where R1,k(t), k = 1, 2 are polynomials of degree 1 in t, D > 0 is an absolute constant.
Then, we complete the proof of Theorem 1.1.
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Abstract Let n > 1 be an integer. The integer d =
∏s

i=1 pbi
i is called an exponential divisor

of n =
∏s

i=1 pai
i , if bi|ai for every i ∈ {1, 2, . . . , s}. Let φ(e)(n) denote the number of divisors

d of n such that d and n have no common exponential divisors. In this paper, we study the

sum D(1, 3, . . . , 3︸ ︷︷ ︸
k

; x) =
∑

n≤x d(1, 3, . . . , 3︸ ︷︷ ︸
k

; n) and get the asymptotic formula for it, where

d(1, 3, . . . , 3︸ ︷︷ ︸
k

; n) =
∑

n=ab31···b3k
1. We get the mean value for the exponential divisor function,

which improves the previous result.

Keywords Dirichlet convolution; asymptotic formula; exponential divisor function.

2010 Mathematics Subject Classification 11N37.

§1. Introduction and preliminaries

Many scholars are interested in researching the divisor problem, and they have obtained
a large number of good results. However, there are many problems hasn’t been solved. For
example, F. Smarandache gave some unsolved problems in his book ONLY PROBLEMS, NOT
SOLUTIONS!, and one problem is that, a number n is called simple number if the product of its
proper divisors is less than or equal to n. Generally speaking, n = p, or n = p2, or n = p3, or pq,
where p and q are distinct primes. The properties of this simple number sequence hasn’t been
studied yet. And other problems are introduced in this book, such as proper divisor products
sequence and the largest exponent (of power p) which divides n, where p ≥ 2 is an integer.

In this paper, we study the exponential divisor function, which is a class of the divisor
problem. In 1982, Subbarao [3] firstly gave the definition of exponential divisor: suppose n > 1
is an integer, and n =

∏t
i pai

i . If d =
∏t

i pbi
i satisfies bi|ai, i = 1, 2, · · · , t, then d is called an

exponential divisor of n, notation d|en. By convention 1|e1.
For n =

∏t
i pai

i > 1, ai ≥ 1(1 ≤ i ≤ r), φ(e)(n) denotes the number of integers
∏t

i pci
i such

that 1 ≤ ci ≤ ai, and (ci, ai) = 1 for 1 ≤ i ≤ r, and let φ(e)(1) = 1. Thus φ(e)(n) counts the
number of divisors d of n such that d and n are exponentially coprime.
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It is easy to see that φ(e) is a prime independent multiplicative function and for n > 1,

φ(e)(n) =
r∏

i=1

φ(ai),

where φ is the Euler-function. Exponentially coprime integers and function φ(e) were introduced
by J.Sándor [2]. He showed that

lim
n→∞

sup
log φ(e)(n) log log n

log n
=

log 4
5

. (1)

In 2007, Tóth [5] obtained the asymptotic formula for the r−th power of the function
φ(e)(n), where for every integer r ≥ 1

∑

n≤x

(φ(e)(n))r = Brx + x1/3R2r−2(log x) + O(xtr+ε), (2)

for every ε > 0, where tr := 2r+1−1
3·2r+1 , R2r−2(x) is a polynomial of degree 2r − 2 and

Br :=
∏
p

(
1 +

∞∑
a=3

φr(a)− φr(a− 1)
pa

)
. (3)

In the case r = 1, formula (1.2) was proved in [4] with a better error term, that is
∑

n≤x

φ(e)(n) = C1x + C2x
1/3 + O(x1/5+ε), (4)

for every ε > 0, where C1, C2 are constants given by

C1 =
∏
p

(
1 +

∞∑
a=3

φ(a)− φ(a− 1)
pa

)
,

C2 = ζ(1/3)
∏
p

(
1 +

∞∑
a=5

φ(a)− φ(a− 1)− φ(a− 3) + φ(a− 4)
pa/3

)
.

In this paper, we will study the asymptotic formula for the mean value of the r-th power
of the function φ(e)(n), where r > 1 is an integer, which improves Tóth’s result.

Theorem 1.1. For every integer r > 1, then we have
∑

n≤x

(φ(e)(n))r = Brx + x1/3R2r−2(log x) + O(xb(r)+ε),

for every ε > 0, where b(r) := 1
4−α2r−1

, αk is as defined in Lemma 2.2, the O− term is related
to r, R2r−2(x) is a polynomial of degree 2r − 2 and

Br :=
∏
p

(
1 +

∞∑
a=3

φr(a)− φr(a− 1)
pa

)
.

Remark 1. Throughout this paper, the letter ε denotes a sufficiently small positive constant
but may not be the same at each occurrences. Divisor functions d(n) =

∑
n=ab 1, dk(n) =∑

n=m1···mk
1 and d(1, 3, . . . , 3︸ ︷︷ ︸

k

;n) =
∑

n=ab31···b3k 1. f(x) ¿ g(x) or f(x) = O (g(x)) denotes

that |f(x)| ≤ Cg(x), where C is a positive constant.
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§2. Some lemmas

In this section, we give some lemmas which will be used in the proof of our theorem.
Lemma 2.2 and 2.3 can be found in [1] and [6].

Lemma 2.1. For r ≥ 1, then we have

∞∑
n=1

(φ(e)(n))r

ns
= ζ(s)ζ2r−1(3s)V (s),

where the infinite series V (s) :=
∑∞

n=1
v(n)
ns is absolutely convergent for Rs > 1

5 .

Proof. Note that the function φ(e)(n) is multiplicative and for every prime power pa(a ≥ 1), we
have φ(e)(pa) = φ(a), where φ is the Euler-function. By Euler’s product formula, we can get

∞∑
n=1

(φ(e)(n))r

ns
=

∏
p

(
1 +

φr(1)
ps

+
φr(2)
p2s

+
φr(3)
p3s

+
φr(4)
p4s

+
φr(5)
p5s

+ · · ·
)

=
∏
p

(
1 +

1
ps

+
1

p2s
+

2r

p3s
+

2r

p4s
+

4r

p5s
+ · · ·

)

= ζ(s)
∏
p

(
1 +

2r − 1
p3s

+
4r − 2r

p5s
+ · · ·

)

= ζ(s)ζ2r−1(3s)
∏
p

(
1 +

4r − 2r

p5s
+ · · ·

)

= ζ(s)ζ2r−1(3s)V (s), (5)

where the infinite series V (s) :=
∑∞

n=1
v(n)
ns is absolutely convergent for Rs > 1

5 .

Lemma 2.2. Suppose k ≥ 2 is an integer. Then

Dk(x) =
∑

n≤x

dk(n) = x
k−1∑

j=0

cj(log x)j + O(xαk+ε),

where cj is a calculable constant, ε is a sufficiently small positive constant, αk is the infimum
of numbers ak, such that

∆k(x) =
∑

n≤x

dk(n)− xPk−1(log x) ¿ xak+ε, (6)

and

α2 ≤ 131
416

, α3 ≤ 43
94

,

αk ≤ 3k − 4
4k

, 4 ≤ k ≤ 8,

α9 ≤ 35
54

, α10 ≤ 41
61

α11 ≤ 7
10

,

αk ≤ k − 2
k + 2

, 12 ≤ k ≤ 25,

αk ≤ k − 1
k + 4

, 26 ≤ k ≤ 50,
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αk ≤ 31k − 98
32k

, 51 ≤ k ≤ 57,

αk ≤ 7k − 34
7k

, k ≥ 58.

Lemma 2.3. Suppose f(m), g(n) are arithmetical functions such that

∑

m≤x

f(m) =
J∑

j=1

xαj Pj(log x) + O(xα),
∑

n≤x

|g(n)| = O(xβ),

where α1 ≥ α2 ≥ · · · ≥ αJ > α > β > 0, Pj(t) is a polynomial in t. If h(n) =
∑

n=md f(m)g(d),
then

∑

n≤x

h(n) =
J∑

j=1

xαj Qj(log x) + O(xα),

where Qj(t){j = 1, . . . , J} is a polynomial in t.

§3. Estimate of D(1, 3, . . . , 3︸ ︷︷ ︸
k

; x)

Theorem 3.1. Suppose k ≥ 2 is an integer, then

D(1, 3, . . . , 3︸ ︷︷ ︸
k

;x) =
∑

n≤x

d(1, 3, . . . , 3︸ ︷︷ ︸
k

;n) = ζk(3)x + x
1
3 Qk−1(log x) + O(x

1
4−αk

+ε),

where Qk−1 is a polynomial of degree k − 1 in log x, αk is defined in Lemma 2.2.

Proof. Recall that d(1, 3, . . . , 3︸ ︷︷ ︸
k

, n) =
∑

n=ab31···b3k 1, by hyperbolic summation formula, we have

D(1, 3, . . . , 3︸ ︷︷ ︸
k

, x) =
∑

n≤x

d(1, 3, . . . , 3︸ ︷︷ ︸
k

;n) =
∑

m3l≤x

dk(m)

=
∑

m≤y

dk(m)
∑

m3l≤x

1 +
∑

l≤z

∑

m3l≤x

dk(m)−
∑

m≤y

dk(m)
∑

l≤z

1

:= S1 + S2 − S3, (7)

where y,z are parameters that will be determined later, and satisfy that y3z = x, 1 ≤ y ≤ x.
Now, we deal with S1, S2 and S3, separately.

S1 =
∑

m≤y

dk(m)
∑

m3l≤x

1 =
∑

m≤y

dk(m)
[ x

m3

]

= x
∑

m≤y

dk(m)
m3

+ O


∑

m≤y

dk(m)




= ζk(3)x− x
∑
m>y

dk(m)
m3

+ O(y1+ε). (8)
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Using Lemma 2.2 and partial summation formula, we have

∑
m>y

dk(m)
m3

=
∫ ∞

y+

1
t3

d


∑

m≤t

dk(m)


 =

∫ ∞

y+

1
t3

d


t

k−1∑

j=0

cj(log t)j + O(tαk+ε)




=
k−1∑

j=0

cj

∫ ∞

y+

1
t3

d
(
t(log t)j

)
+ O(y−3+αk+ε)

=
k−1∑

j=0

cjy
−2

[
1
2
(log y)j +

3
4
j(log y)j−1 +

3
8
j(j − 1)(log y)j−2 + · · ·+ 3

2j+1
j(j − 1) · · · 1

]

+ O(y−3+αk+ε).

Since y = 3
√

x
z , we have log y = 1

3 (log x− log z), inserting this into (8), we can get

S1 = ζk(3)x− S11 − S12 + O(y1+ε + xy−3+αk+ε), (9)

where

S11 =
1
2
x

1
3 z

2
3

k−1∑

j=1

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i(log z)i,

S12 =
3
2
x

1
3 z

2
3

k−1∑

j=1

cj

j−1∑

i=0

j!
i!2j−i3i

i∑
s=0

Cs
i (log x)i−s(−1)s(log z)s.

By Lemma 2.2, we get

S2 =
∑

l≤z

∑

m≤ 3
√

x
l

dk(m) =
∑

l≤z


 3

√
x

l

k−1∑

j=0

cj

(
log 3

√
x

l

)j

+ O

((
3

√
x

l

)αk+ε
)



= x
1
3

k−1∑

j=0

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i

∑

l≤z

l−
1
3 (log l)i + O(xy−3+αk+ε), (10)

where
∑

l≤z

l−
1
3 (log l)i =

∫ z

1−
t−

1
3 (log t)id[t] =

∫ z

1−
t−

1
3 (log t)idt +

∫ z

1−
t−

1
3 (log t)id∆(t). (11)

We can easily get that ∆(t) = O(1). Using partial integral formula, we have
∫ z

1−
t−

1
3 (log t)id∆(t) = wi + O(z−

1
3+ε), (12)

where wi is a constant. We can also obtain that
∫ z

1−
t−

1
3 (log t)idt =

3
2
z

2
3 (log z)i −

(
3
2

)2

iz
2
3 (log z)i−1 + · · ·+ (−1)i+1

(
3
2

)i+1

i!. (13)

Combing (10)-(13), we have

S2 = x
1
3 Q̃k−1(log x) + S21 + S22 + O(xy−3+αk+ε), (14)
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where

Q̃k−1(log x) =
k−1∑

j=0

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i

(
wi − (−1)i

(
3
2

)i+1

i!

)
,

S21 =
3
2
x

1
3 z

2
3

k−1∑

j=0

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i(log z)i,

S22 =
3
2
x

1
3 z

2
3

k−1∑

j=0

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i

i−1∑
s=0

(−1)s−i

(
3
2

)i−s
i!
s!

(log z)s.

For S3, we have

S3 =
∑

m≤y

dk(m)
∑

l≤z

1 = zy
k−1∑

j=0

cj(log y)j + O(yαk+εz) + O(y1+ε)

= yz
k−1∑

j=0

cj(log y)j + O(yαk+εz + y1+ε). (15)

Inserting y = 3
√

x
z , and log y = 1

3 (log x− log z) into (15), then

S3 = S31 + O(yαk+εz + y1+ε), (16)

where

S31 = x
1
3 z

2
3

k−1∑

j=0

cj

3j

j∑

i=0

Ci
j(log x)j−i(−1)i(log z)i.

Note that Ci
j = i!

j!(i−j)! . After some simplification we can easily get that S11 + S31 = S21,

S12 = S22. Taking y = x
1

4−αk , z = x
1−αk
4−αk , then Theorem 3.1 is proved.

§4. Proof of Theorem 1.1

For r ≥ 1, from Lemma 2.1, we have V (s) :=
∑∞

n=1
v(n)
ns is absolutely convergent for

Rs > 1
5 , and then

∑

n≤x

|v(n)| ¿ x
1
5+ε. (17)

Let F (s) = ζ(s)ζ2r−1(3s) :=
∑∞

n=1
f(n)
ns , where f(n) = d(1, 3, . . . , 3︸ ︷︷ ︸

2r−1

, n).

From Theorem 3.1, we have
∑

n≤x

f(n) =
∑

n≤x

d(1, 3, . . . , 3︸ ︷︷ ︸
2r−1

, n) = ζ2r−1(3)x + x
1
3 Q̃2r−2(log x) + O(x

1
4−α2r−1

+ε
), (18)

where Q̃2r−2(log x) is a polynomial in log x of degree 2r − 2, αk is as defined in Lemma 2.2.
From Lemma 2.1, we have

(φ(e)(n))r =
∑

n=kl

v(k)f(l), (19)

then, by Lemma 2.3 we can get the Theorem 1.1.
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§1. Introduction and preliminaries

The study of ideal topological space [8] has been started from 1933 and till, it is developing
by several mathematicians. Generalized closed sets [9] in topological space as well as in ideal
topological space [5,11] has been discussed at various research papers. We have introduced
the generalized closed sets in ideal generalized topological space (generalized topological space
(GTS) [2,3] with ideal), and characterized the same at different aspect. We also obtain the
relations with earlier generalized closed sets in topological space, generalized topological space
and ideal generalized topological space etc.

Definition 1.1.[8] An ideal I on a topological space (X, τ) is a nonempty collection of
subsets of X which satisfies the following conditions:

(i) A ∈ I and B ⊆ A implies B ∈ I;
(ii) A ∈ I and B ∈ I implies A ∪B ∈ I.
Given a topological space (X, τ) with an ideal I on X, if ℘(X) is the set of all subsets

of X, a set operator ()∗ : ℘(X) → ℘(X), is called a local function with respect to τ and I is
defined as follows: for A ⊆ X, (A)∗(I, τ) = {x ∈ X : U ∩ A /∈ I for every U ∈ τ(x) } where
τ(x) = {U ∈ τ : x ∈ U} [8].

A Kuratowski closure operator cl∗ for a topology τ∗(I, τ), called the *-topology, finer than
τ is defined by cl∗(A) = A∪A∗(I, τ) [16]. We will simply write A∗ for A∗(I, τ). If I is an ideal
on X, then (X, τ, I) is called an ideal topological space.

Definition 1.2. Let (X, τ, I) be an ideal topological space. A subset A of an ideal topo-
logical space (X, τ, I) is τ∗-closed [7] (resp. *-dense in itself [6], *-perfect [6]), if A∗ ⊆ A(resp.
A ⊆ A∗, A = A∗). Through the paper, we will use *-closed instead of τ∗-closed.
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Definition 1.3. Let (X, τ, I) be an ideal topological space. A subset A of an ideal topolog-
ical space (X, τ, I) is Ig-closed [5] if A∗ ⊆ U whenever U is open and A ⊆ U .

Definition 1.4. Let (X, τ) be a topological space. A subset A of a space (X, τ) is said to
be g-closed set [9] if cl(A) ⊆ U whenever A ⊆ U and U is open.

Remark 1.1.[5] Every g-closed set is an Ig-closed but not vice versa.
Remark 1.2.[16] Every closed set is g-closed.
Very interesting notion in literature has been introduced by Császár [1] in 1997. Using this

notion, topology has been constructed. The concept is:
A map γ : exp (X) → exp (X) possessing the property monotony (i.e. such that A ⊆ B

implies γ(A) ⊆ γ(B)). We denote by Γ(X) the collections of all mapping having this property.
One of the consequence of the above concept is generalized topological space (GTS) [2,3],

its formal definition is:
Definition 1.5. Let X be a non-empty set, and µ ⊆ exp(X). µ is called a generalized

topology (GT ) on X if ∅ ∈ µ and the union of elements of µ belongs to µ.
The member of µ is called µ-open set and the complement of µ-open set is called µ-closed

set. Again cµ is the notation of µ-closure [2,3,14,10].
Definition 1.6.[14] Let (X, µ) be a generalized topological space. Then the generalized

kernel of A ⊆ X is denoted by g-ker(A) and defined as g-ker(A) = ∩{G ∈ µ : A ⊆ G}.
Lemma 1.1.[14] Let (X, µ) be a generalized topological space and A ⊆ X. Then g-ker(A)

= {x ∈ X : cµ({x}) ∩A 6= ∅}.
If I be an ideal on X, then (X, µ, I) is called an ideal generalized topological space.

§2. Ideal generalized topological space

Definition 2.1. Let (X, µ, I) be an ideal generalized topological space. A mapping ()∗µ:
exp X → exp X is defined as follows:

(A)∗µ = (A)∗µ(I)= {x ∈ X : A ∩ U /∈ I}, where U ∈ ψ(x) [2].
The mapping is called the Local function associated with the ideal I and generalized

topology µ.
Properties:
Theorem 2.1. Let (X, µ, I) be an ideal generalized topological space. Then
(1) (∅)∗µ= ∅.
(2) for A,B ⊆ X and A ⊆ B, (A)∗µ ⊆ (B)∗µ.
(3) (A)∗µ ⊆ cµ(A).
(4) ((A)∗µ)∗µ ⊆ cµ(A).
(5) (A)∗µ is a µ-closed set.
(6) ((A)∗µ)∗µ ⊆ (A)∗µ.
(7) for I⊆ I1 implies (A)∗µ(I1) ⊆ (A)∗µ(I).
(8) for U ∈ µ, U ∩ (U ∩A)∗µ ⊆ U ∩ (A)∗µ.
(9) for I ∈ I, (A \ I)∗µ = (A)∗µ = (A ∪ I)∗µ.

Proof. (1) It is obvious from definition.
(2) It is done by the fact of A ∩ V /∈ I implies B ∩ V /∈ I.
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(3) Obvious from [13].
(4) ((A)∗µ)∗µ ⊆ cµ(cµ(A)) = cµ(A).[3]

(5) From [2], for G ∈ µ and x ∈ G, there exists V ∈ ψ(x) such that V ⊆ G. Now if
A∩G ∈ I then for A∩ V ⊆ A∩G, A∩ V ∈ I. It follows that X \ (A)∗µ is the union of µ-open
sets. We know that the arbitrary union of µ-open sets is an µ-open set. So X \ (A)∗µ is an
µ-open set and hence (A)∗µ is a µ-closed set.

(6) From above, ((A)∗µ)∗µ ⊆ cµ((A)∗µ) = (A)∗µ, since (A)∗µ is a µ-closed set.
(7) Obvious from the fact that A ∩ V /∈ I1 implies A ∩ V /∈ I.
(8) Since U ∩A ⊆ A, then (U ∩A)∗µ ⊆ (A)∗µ. So U ∩ (U ∩A)∗µ ⊆ U ∩ (A)∗µ.
(9) Let x ∈ (A)∗µ. If possible suppose that x /∈ (A \ I)∗µ. Then there is an V ∈ ψ(x),

V ∩ (A \ I) ∈ I. Therefore (V ∩ (A \ I)) ∪ I ∈ I, i.e., I ∪ (A ∩ V ) ∈ I. Then V ∩ A ∈ I, a
contradiction to the fact that x ∈ (A)∗µ. Hence (A \ I)∗µ = (A)∗µ.

Proof of 2nd part is similar.

It is obvious from (2), ()∗µ ∈ Γ(X) [1].
Definition 2.2. Let (X, µ) be a generalized topological space with an ideal I on X.
The set operator c∗µ is called a generalized *-closure and is defined as c∗µ(A) = A∪ (A)∗µ,

for A ⊆ X. We will denote by µ∗(µ; I) the generalized structure, generated by c∗µ, that is,
µ∗(µ; I)= {U ⊆ X : c∗µ(X \U) = (X \U)}. µ∗(µ; I) is called *-generalized structure which is
finer than µ.

The element of µ∗(µ; I) are called µ∗-open and the complement of an µ∗-open is called
µ∗-closed.

Theorem 2.2. The set operator c∗µ satisfy following conditions:
(a) A ⊆ c∗µ(A), for A ⊆ X.
(b) c∗µ(∅) = ∅ and c∗µ(X) = X.
(c) c∗µ(A) ⊆ c∗µ(B) if A ⊆ B ⊆ X.
(d) c∗µ(A) ∪ c∗µ(B)) ⊆ c∗µ(A ∪B).
(e) c∗µ ∈ Γ(X).

Proof. Proof is obvious from Theorem 2.1.

Although some results of the Theorem 2.1 and the Theorem 2.2 have been proved by Á.
Császár [4] in his paper ”Modification of generalized topologies via hereditary classes” published
in Acta Math. Hungar. in 2007 using Hereditary class.

Definition 2.3. Let (X, µ) be a generalized topological space. A subset A of X is said to
be gµ-closed [10] if cµ(A) ⊆ M whenever A ⊆ M and M ∈ µ.

Definition 2.4. A subset A of an ideal generalized topological space (X, µ, I) is µ∗-dense
in itself (resp. µ∗-perfect) if A ⊆ (A)∗µ (resp. (A)∗µ = A).

Definition 2.5. A subset A of an ideal generalized topological space (X, µ, I) is called µ

-I-generalized closed (briefly, µ-Ig-closed) if (A)∗µ ⊆ U whenever U is µ-open and A ⊆ U . A
subset A of an ideal generalized topological space (X, µ, I) is called µ -I-generalized open(briefly,
µ-Ig-open) if X \A is µ-Ig-closed.

Theorem 2.3. Let (X, µ, I) be an ideal generalized topological space. Every gµ-closed set
is µ-Ig-closed.
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Proof. Let U any µ-open set containing A. Since A is gµ-closed, then cµ(A) ⊆ U . By Theorem
2.1 (3), we have (A)∗µ ⊆ U .

Remark 2.1. Let (X, τ) be a topological space. If we take µ = τ , then gµ-closed sets
coincide with g-closed sets.

Proposition 2.1. Let (X, µ, I) be an ideal generalized topological space. Then
(a) Every µ∗-prefect set is µ∗-dense in itself.
(b) Every µ∗-perfect set is µ∗-closed.

Proof. The proof can be easily done.

Remark 2.2. Let (X, τ) be a topological space and I be an ideal on X. If we take µ = τ ,
then µ-Ig-closed (resp. µ∗-closed, µ∗-dense in itself) sets coincide with Ig-closed [5] (resp. *-
closed [7], *-dense in itself [7]).

Theorem 2.4. If (X, µ, I) is an ideal generalized topological space and A ⊆ X, then A is
µ-Ig-closed if and only if c∗µ(A) ⊆ U whenever A ⊆ U and U is µ-open in X.

Proof. Since A is µ-Ig-closed, we have (A)∗µ ⊆ U whenever A ⊆ U and U is µ-open in X.
c∗µ(A) = A ∪ (A)∗µ ⊆ U whenever A ⊆ U and U is µ-open in X.

Converse part: Let A ⊆ U and U be µ-open in X. By hypothesis c∗µ(A) ⊆ U . Since
c∗µ(A) = A ∪ (A)∗µ, we have (A)∗µ ⊆ U .

Theorem 2.5. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. Then
the following are equivalent:

(a) A is µ-Ig-closed.
(b) c∗µ(A) ⊆ U whenever A ⊆ U and U is µ-open in X.
(c) c∗µ(A) ⊆ g-ker(A).
(d) c∗µ(A) \A contains no nonempty µ-closed set.
(e) (A)∗µ \A contains no nonempty µ-closed set.

Proof. (a) ⇔ (b) It follows from Theorem 2.4.
(b) ⇒ (c) Suppose x ∈ c∗µ(A) and x /∈ g-ker(A). Then cµ({x}) ∩ A = ∅. Implies that

A ⊆ X \ (cµ({x})). Now from (b), c∗µ(A) ⊆ X \ cµ({x}). This implies c∗µ(A) ∩ {x} = ∅, a
contradiction. Hence the result.

(c) ⇒ (d) Suppose F ⊆ (c∗µ(A)) \ A, F is µ-closed and x ∈ F . Since F ⊆ (c∗µ(A)) \ A,
F ∩ A = ∅. We have cµ({x}) ∩ A = ∅ because F is µ-closed and x ∈ F . From (c), this is a
contradiction.

(d) ⇒ (e) This is obvious from the definition of c∗µ(A).
(e) ⇒ (a) Let U be an µ-open subset containing A. Since (A)∗µ is µ-closed by means of

Theorem 2.1 (5). Now (A)∗µ ∩ (X \ U) ⊆ (A)∗µ \ A. Since intersection of two µ-closed sets is
a µ-closed set, then (A)∗µ ∩ (X \ U) is an µ-closed set contained in (A)∗µ \A. By assumption,
(A)∗µ ∩ (X \ U) = ∅. Hence, we have (A)∗µ ⊆ U .
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Remark 2.3. Let (X, τ, I) be an ideal generalized topological space. If µ = τ then the
above theorem coincides with Theorem 2.1 in [12].

Proposition 2.2. Let (X, µ, I) be an ideal generalized topological space. Every µ∗-closed
set is µ-Ig-closed.

Proof. Let A be a subset of X and A be µ∗-closed. Assume that A ⊆ U and U is µ-open. Since
A is µ∗-closed, we have (A)∗µ ⊆ A and so A is µ-Ig-closed.

For the relationship related to several sets defined in the paper, we have the following
diagram:

µ∗-dense in itself ⇐= µ∗-perfect =⇒ µ∗-closed =⇒ µ-Ig-closed ⇐= gµ-closed ⇐= µ-closed.

The following examples show that the converse implications of the diagram are not satisfied.
Example 2.1. (i) Let X = {a, b, c, d}, µ = {X, ∅, {a}, {a, b}, {b, c, d}}, I= {∅, {c}, {b},

{b, c}} and A = {a, b}. It is obvious that the µ-open sets containing A are X and {a, b}.
(A)∗µ = {a} is also contained in X and {a, b}. Thus, A is µ-Ig-closed. But A is not gµ-closed,
since cµ(A) = X is not a subset of {a, b}.

(ii) In (i), let B = {a, c}. Note that the only µ-open set containing A is X. cµ(A) = X is
also contained in X. Therefore A is gµ-closed but not µ-closed.

(iii) In (i), B is µ∗-closed but not µ∗-perfect.
(iv) Let X = {a, b, c}, µ = {X, ∅, {a}, {a, b}, {b, c}}, I= {∅, {b}} and A = {a, c}. Notice

that only µ-open set containing A is X. (A)∗µ = X also contained in X. Hence, A is µ-Ig-closed
but not µ∗-closed.

(v) In (iv), A is µ∗-dense in itself but not µ∗-perfect.
Definition 2.6.[15] A space (X, µ) is called µ-T1 if any pair of distinct points x and y of

X, there exists a µ-open set U of X containing x but not y and a µ-open set V of X containing
y but not x.

It is obvious from definition that every singleton set is µ-closed if and only if the space is
µ-T1.

Remark 2.4. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. If (X, µ)
is a µ-T1 space, then A is µ∗-closed if and only if A is µ-Ig-closed.

Theorem 2.6. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. If A is
an µ-Ig-closed set, then the following are equivalent:

(a) A is a µ∗-closed set.
(b) c∗µ(A) \A is a µ-closed set.
(c) (A)∗µ \A is a µ-closed set.

Proof. (a)⇒(b) If A is µ∗-closed, then c∗µ(A) \A = ∅. c∗µ(A) \A is µ-closed.
(b)⇒(c) Since c∗µ(A) \A = (A)∗µ \A, it is clear.
(c)⇒(a) If (A)∗µ \A is µ-closed and A is µ-Ig-closed, from Theorem 2.5 (e), (A)∗µ \A = ∅

and so A is µ∗-closed.

Lemma 2.1. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. If A is
µ∗-dense in it self, then (A)∗µ = cµ((A)∗µ) = cµ(A) = c∗µ(A).
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Proof. Let A be µ∗-dense in itself. Then we have A ⊆ (A)∗µ and hence cµ(A) ⊆ cµ((A)∗µ). We
know that (A)∗µ = cµ((A)∗µ) ⊆ cµ(A) from Theorem 2.1 (3). In this case cµ(A) = cµ((A)∗µ) =
(A)∗µ. Since (A)∗µ = cµ(A), we have c∗µ(A) = cµ(A).

We obtained that every gµ-closed set is µ-Ig-closed in Theorem 2.3 but not vice versa. For
µ∗-dense in itself sets, gµ-closedness and µ-Ig-closedness are equivalent.

Theorem 2.7. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. If A is
µ∗-dense in itself and µ-Ig-closed, then A is gµ-closed.

Proof. Assume A is µ∗-dense in itself and µ-Ig-closed in X. If U is an µ-open set containing
A, then we have (A)∗µ ⊆ U . Since A is µ∗-dense it self, Lemma 2.1 implies cµ(A) ⊆ U and so
A is gµ-closed.

Theorem 2.8. Let (X, µ, I) be an ideal generalized topological space and A ⊆ X. If A is
µ-Ig-closed and µ-open then A is µ∗-closed.

Proof. Let A be an µ-open. Since A is µ-Ig-closed, we have (A)∗µ ⊆ A. Hence A is µ∗-
closed.
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Abstract Let G = (V, E) be a given non trivial and connected simple (p, q)-graph, and

M be an arbitrary nonempty subset of an edge set E(G) of G. For each e ∈ E(G), define

NM
j [e] = {f ∈ M : d2(e, f) = j}, where d2(e, f) denotes the distances of f from the edge e.

B.D. Acharya, defined the M -eccentricity of f as the largest j for which NM
j [f ] 6= ∅, d2(G)

as the largest M -eccentricity of edges in G and the nonnegative integer q × (d2(G)-matrix

DM
2 (G) = (|NM

j [ei]|) as the ‘Edge-M -distance neighborhood pattern’ (or, Edge-M − dnp)

matrix of G. The associated (0, 1)-matrix D∗M
2 (G) is obtained from DM

2 (G) by replacing each

nonzero entry in it by 1. Let fM (e) = {j : NM
j [e] 6= ∅} for each e ∈ E(G). If fM : e 7−→ fM (e)

is an injective function, then the set M is a ‘Edge-M -distance-pattern distinguishing set’ ( or,

a “Edge-DPD-set” in short) of G and G is a ‘Edge-DPD-graph’. If fM (e)\{0} is independent

of the choice of e in G then M is said to be a ‘Edge-open distance-pattern uniform’ (or,

‘Edge-ODPU’) set of G. A study of these sets is useful in a number of areas of application

such as facility location and design of indices of “quantitative structure activity relationships”

(QSAR) in chemistry. This paper is a study of Edge- M -dnp matrices of a Edge-dpd-graph

for a class of graphs.

Keywords distance(in graph), edge-to-edge-set distance-pattern distinguishing sets, edge-

distance neighborhood pattern matrix, edge-to-edge-set distance-pattern distinguishing graph.
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§1. Introduction

For all terminology which are not defined in this paper, we refer the reader to F.Harary
[5]. Unless mentioned otherwise, all the graphs considered in this paper are finite, connected,
simple non trivial. Distance between two elements( vertex to vertex, vertex to edge, edge to
vertex, and edge to edge) in graphs is already defined in the literature (refer [9]), but here
we are using Edge to edge-distance , and call it as Edge-distance. A formal definition is given
bellow.
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Definition 1.1. [9] For any connected graph G, the Edge-to-edge-distance d2(e, f) (in short
Edge-distance) between two edge e and f is the number of edges between (e− f) path. For any
edge e in a connected graph G, the Edge-eccentricity e2(e) of e is e2(e) = max {d(e, f) : f ∈ E(G)}.
Any edge e for which e2(e) is minimum is called an Edge-central edge of G and the set of all
Edge-central edges of G is the Edge-center C2G of G. Edge-diameter d2G = max {e2(e)} and
Edge-radius r2G = min {e2(e)}. Any edge f for which e2(e) = d2(e, f) = d2G is called an
Edge-eccentric edge of e.

The Edge-to-edge-eccentricities (or Edge-eccentricity) of the Figure 1 is shown in the Table
1.

bbbbbb

%
%

%
%%

u

u

u

uu

u

u
v1

v3 v5

v6

v7

v4
v2

e1

e2

e3

e4

e5

e6

e7

e9

e8

Figure 1: A Graph of Edge-diameter d2G = 2

e e1 e2 e3 e4 e5 e6 e7 e8 e9

e2(e) 2 2 1 1 1 1 2 2 2

Table 1: Showing an Edge-eccentricity of all the edges of Figure 1.

For an arbitrarily fixed edge e in G and for any nonnegative integer j, we let Nj [e] =
{f ∈ E(G) : d2(e, f) = j}, and Nj = E(G)− E(ξe) whenever j exceeds the eccentricity ε(e) of
e in the component ξe to which e belongs. Thus, if G is connected then, Nj [e] = φ if and only
if j > ε(e). If G is a connected graph then the vectors ē = (|N0[e]|, |N1[e]|, |N2[e]|, ..., |Nε(e)[e]|)
associated e ∈ E(G) can be arranged as a q×(d2G+1) nonnegative integer matrix D2G given by




|N0[e1]| |N1[e1]| |N2[e1]| ... |Nε1(e1)[e1]| 0 0 0

|N0[e2]| |N1[e2]| |N2[e2]| ... ... |Nε1(e2)[e2]| 0 0

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

|N0[eq]| |N1[eq]| |N2[eq]| ... ... ... ... |Nε1(eq)[eq]|




where d2G denotes the diameter of G; we call D2G edge-to-edge distance neighborhood pattern
(or, Edge–dnp-matrix) of G.

Example:

If we consider the above Figure 1 then the below matrix gives Edge–dnp-matrix
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D2G =




|N0[e1]| = 4 |N1[e1]| = 3 |N2[e1]| = 2

|N0[e2]| = 4 |N1[e2]| = 4 |N2[e2]| = 1

|N0[e3]| = 5 |N1[e3]| = 4 |N2[e3]| = 0

|N0[e4]| = 5 |N1[e4]| = 4 |N2[e4]| = 0

|N0[e5]| = 6 |N1[e5]| = 3 |N2[e5]| = 0

|N0[e6]| = 6 |N1[e6]| = 3 |N2[e6]| = 0

|N0[e7]| = 4 |N1[e7]| = 4 |N2[e7]| = 1

|N0[e8]| = 4 |N1[e8]| = 3 |N2[e8]| = 2

|N0[e9]| = 5 |N1[e9]| = 3 |N2[e9]| = 1




For a Edge–dnp-matrix the following observations are immediate.
Observation 1.2. Entries in the first column of D2G corresponds to the nonzero entries.
Observation 1.3. In each row of D2G, entry zero will be after the nonzero entries.
Proposition 1.4. For each e ∈ E(G) of a non-trivial connected graph G, {Nj [e] : Nj [e]

6= φ, 0 ≤ j ≤ d2G} gives a partition of E(G).

Proof. If possible, let Nj [e] ∩ Nk[e] = f , for some e, f ∈ E(G) which implies d2(e, f) = j and
d2(e, f) = k, and hence j = k. Therefore,Nj [e] ∩ Nk[e] = φ for any (j, k) with j 6= k. Now,
clearly,

⋃d2G

j=o Nj [e] ⊆ E(G). Also, for any f ∈ E(G), since G is connected, d2(e, f) = k, for
some k ∈ {0, 1, 2, ..., d2G}. That is, f ∈ Nk[e] for some k ∈ {0, 1, 2, ..., d2G} which implies
E(G) ⊆ ⋃d2G

j=o Nj [e]. Hence
⋃d2G

j=o Nj [e] = E(G).

Corollary 1.5. Each row of the Edge–dnp-matrix D2G of a graph G is the partition of
E(G). Hence, sum of the entries in each row of the Edge–dnp-matrix D2G of a graph G is equal
to the number of edges of G.

§2. M-distance Neighborhood Pattern Matrix of a Graph

Given an arbitrary nonempty subset M ⊆ E(G) of G and for each e, f ∈ E(G), de-
fine NM

j [e] =
{
f ∈ M : d(e, f) = j

}
; clearly then N

E(G)
j [e] = Nj [e]. One can define the M -

eccentricity of e as the largest integer for which NM
j [e] 6= φ and the q × (d2G + 1) nonnegative

integer matrix DM
2G = (|NM

j [e]|) is called the M -distance neighborhood pattern (or, M -Edge–
dnp) matrix D∗M

2G is obtained from DM
2G by replacing each nonzero entry by 1. B. D. Acarya

[1] defined Edge–dnp-matrix of any graph and in particular, M -Edge–dnp matrix of dpd-graph
as follows:

Definition 2.1. [4] Let G = (V, E) be a given non-trivial connected simple (p,q)-graph,
φ 6= M ⊆ E(G) and e ∈ E(G). Then the M -Edge–distance-pattern of e is the set fM (e) =
{d2(e, f) : f ∈ M}. Clearly, fM (e) =

{
j : NM

j [e] 6= φ
}
. Hence, in particular, if fM : e 7−→

fM (e) is an injective function, then the set M is a Edge–distance-pattern distinguishing set (
or, a “Edge–dpd-set” is short) of G and if fM (e)− {0} is independent of the choice of e in G

then M is an Edge–open distance-pattern uniform (or, Edge–odpu) set of G. A graph G with a
dpd-set(Edge–odpu-set) is called a Edge–dpd-(Edge–odpu)-graph.
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Following are some interesting results on M -Edge–dnp matrix of connected non-trivial
graph G.

Observation 2.2. Both DM
2G and D∗M

2G do not admit null rows.

Proposition 2.3. For each ei ∈ E(G), NM
0 [ei] =





N [ei] ifei ∈ M

∅ ifei /∈ M

Therefore, the entries in the first column of D∗M
2G will either be 0 or 1.

Corollary 2.4. If G ∼= Kn, P2,Km,n then NM
0 [ei] =





ei ifei ∈ M

∅ ifei /∈ M

i.e For all graph of diameter d2G = 1.

Remark 2.5. It should note that Observation is not true in the case of D∗M
2G .

Lemma 2.6 is similar to Proposition 1.4.

Lemma 2.6. For each e ∈ E(G) of a non-trivial connected graph G, {Nj [e] : Nj [e]
6= φ, 0 ≤ j ≤ d2G} gives a partition of E(G).

Proof. If possible, let Nj [e] ∩ Nk[e] = f , for some e, f ∈ E(G) which implies d2(e, f) = j and
d2(e, f) = k, and hence j = k. Therefore,Nj [e] ∩ Nk[e] = φ for any (j, k) with j 6= k. Now,
clearly,

⋃d2G

j=o Nj [e] ⊆ E(G). Also, for any f ∈ E(G), since G is connected, d2(e, f) = k, for
some k ∈ {0, 1, 2, ..., d2G}. That is, f ∈ Nk[e] for some k ∈ {0, 1, 2, ..., d2G} which implies
E(G) ⊆ ⋃d2G

j=o Nj [e]. Hence
⋃d2G

j=o Nj [e] = E(G).

Corollary 2.6. Each row of DM
2G is a partition of |M |.

Corollary 2.7. Sum of the entries in each row of DM
2G gives |M | and sum of the entries

in each row of D∗M
2G is less than or equal to |M |.

§3. M-Edge–distance Neighborhood Pattern Matrix of a

distance Neighborhood Pattern Graph.

In this section we find out some results of D∗M
2G of a Edge–dpd-graph. From the definition

of D∗M
2G , we have the following observations.

Observation 3.1. In any graph G, a nonempty M ⊆ E(G) is a Edge–dpd-set if and only
if no two rows of D∗M

2G are identical.

Observation 3.2. If any graph of d2G < 1 then, D2G, DM
2G, and D∗M

2G are all constant
matrix. For Example G ∼= Kn≤3 or K1,n−1.

Theorem 3.3. A Graph G ∼= Pm of size m ≥ 2 admits a Edge–dpd-set if and only if
m ≥ 5.

Proof. Case:1, Let G ∼= Pm and m ≥ 5.
Let Pn = (v1, e1, v2, e2, v3, e3, ..., em, vn, ) be a path on m edges.
Let M = {e1, e2, e5}. Then
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D∗M
2G =




1 0 0 1 0 0 · · · 0 0 0 0 0 0

1 0 1 0 0 0 · · · 0 0 0 0 0 0

1 1 0 0 0 0 · · · 0 0 0 0 0 0

1 1 1 0 0 0 · · · 0 0 0 0 0 0

1 0 1 1 0 0 · · · 0 0 0 0 0 0

1 0 0 1 1 0 · · · 0 0 0 0 0 0

0 1 0 0 1 1 · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0 1 1 0

0 0 0 0 0 0 · · · 0 1 0 0 1 1




.

Now, we can partition D∗M
2G in to two sub matrices say, A and B where A is a 5× (d2G +1)

submatrix of the form




1 0 0 1 0 0 0 0 · · · 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 · · · 0 0 0 0 0 0 0 0




.

Again we can find the 5× 4 sub-matrix A1 of A which is of the form




1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

1 0 1 1




.

The remaining entries of 5× (d2G − 3) submatrix A2 of A has all the entries zero.
And the sub matrix B of order (m−5)×(d2G +1) has entries 1 only in the(m)th, (m−1)th,

and (m − 4)th columns. Clearly we can observe that the rows of A and B of D∗M
2G are not

identical, and hence {e1, e2, e5} form a Edge–dpd-set.
Therefore, for any graph G ∼= Pm of size m ≥ 5 admits a Edge–dpd-set.

Now to complete the proof we need to show that the Pm is not a Edge–dpd-graph for
m ≤ 4.
Case: 2, Let G ∼= Pm and m ≤ 4.
Proof follows directly from Lemma 3.8.

Theorem 3.4. A cycle G ∼= Cn of order n admits a Edge–dpd-set if and only if n ≥ 10
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Proof. Let Cn = (v1, e1, v2, e2, v3, e3, ..., em, v1, ) be a cycle on n vertices.
Case 1: n, is an even integer and ≥ 8
Let M = {e1, e2, e5}. Then

D∗M
2G =




1 0 0 1 0 0 · · · 0 0 0 0 0 0

1 0 1 0 0 0 · · · 0 0 0 0 0 0

1 1 0 0 0 0 · · · 0 0 0 0 0 0

1 1 1 0 0 0 · · · 0 0 0 0 0 0

1 0 1 1 0 0 · · · 0 0 0 0 0 0

0 1 0 0 1 1 · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0 1 1 0

0 0 0 0 0 0 · · · 0 1 0 0 1 1

0 0 0 0 0 0 · · · 0 0 1 0 1 1

0 0 0 0 0 0 · · · 0 0 0 2 0 1

0 0 0 0 0 0 · · · 0 0 1 1 1 0

0 0 0 0 0 0 · · · 0 1 1 0 0 1

0 0 0 0 0 0 · · · 1 1 0 0 1 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 1 0 0 1 · · · 0 0 0 0 0 0

1 1 0 0 1 0 · · · 0 0 0 0 0 0




.

Now, we can partition D∗M
2G in to four sub matrices say, A,B,C and D where A is a

5× (d2G + 1) sub-matrix of the form




1 0 0 1 0 0 · · · 0 0 0 0 0 0

1 0 1 0 0 0 · · · 0 0 0 0 0 0

1 1 0 0 0 0 · · · 0 0 0 0 0 0

1 1 1 0 0 0 · · · 0 0 0 0 0 0

1 0 1 1 0 0 · · · 0 0 0 0 0 0




.

Again we can find the 5× 4 sub-matrix A1 in A which is of the form



1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

1 0 1 1




.
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Here the remaining entries of 4× (d2G − 3) sub-matrix A2 of A has all the entries zero
The sub matrix B of order [ (n−8)

2 ]× (d2G + 1) of the form




0 1 0 0 1 1 · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0 1 1 0

0 0 0 0 0 0 · · · 0 1 0 0 1 1




.

In this matrix B the entry 1 appears only in (m)th, (m− 1)th, (m− 4)th columns.

And we choose sub matrix C of order (n− 5− (n−8)
2 − [

n−8
2

]
)× (d2G + 1) of the form




0 0 0 0 0 0 · · · 0 0 0 0 1 1

0 0 0 0 0 0 · · · 0 0 0 1 0 1

0 0 0 0 0 0 · · · 0 0 1 1 1 0


.

Finally we can choose a submatrix D as (
[

n−8
2

]
) × (d2G + 1) of the form and its exactly

reverse matrix of B




0 0 0 0 0 0 · · · 0 1 1 0 0 1

0 0 0 0 0 0 · · · 1 1 0 0 1 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 1 0 0 1 · · · 0 0 0 0 0 0

1 1 0 0 1 0 · · · 0 0 0 0 0 0




.

Clearly we can observe that the rows of A,B,C and D of D∗M
2G are not identical.

Therefore, for any graph G ∼= Cn of order n ≥ 10 admits a Edge–dpd-set.

Case 2: n, an odd integer and ≥ 11

Let M = {e1, e2, e5}. Then
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D∗M
2G =




1 0 0 1 0 0 · · · 0 0 0 0 0 0

1 0 1 0 0 0 · · · 0 0 0 0 0 0

1 1 0 0 0 0 · · · 0 0 0 0 0 0

1 1 1 0 0 0 · · · 0 0 0 0 0 0

1 0 1 1 0 0 · · · 0 0 0 0 0 0

0 1 0 0 1 1 · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0 1 1 0

0 0 0 0 0 0 · · · 0 1 0 0 1 1

0 0 0 0 0 0 · · · 0 0 1 0 1 1

0 0 0 0 0 0 · · · 0 0 0 2 0 1

0 0 0 0 0 0 · · · 0 0 1 1 1 0

0 0 0 0 0 0 · · · 0 1 1 0 0 1

0 0 0 0 0 0 · · · 1 1 0 0 1 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 1 0 0 1 · · · 0 0 0 0 0 0

1 1 0 0 1 0 · · · 0 0 0 0 0 0




.

Now, we can partition D∗M
2G in to four sub matrices say, A,B,C and D where A is a

5× (d2G + 1) sub-matrix of the form




1 0 0 1 0 0 · · · 0 0 0 0 0 0

1 0 1 0 0 0 · · · 0 0 0 0 0 0

1 1 0 0 0 0 · · · 0 0 0 0 0 0

1 1 1 0 0 0 · · · 0 0 0 0 0 0

1 0 1 1 0 0 · · · 0 0 0 0 0 0




.

Again we can find the 5× 4 sub-matrix A1 in A which is of the form




1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

1 0 1 1




.

Here the remaining entries of 5× (d2G − 3) sub-matrix A2 of A has all the entries zero
The sub matrix B of order [ (n−9)

2 ]× (d2G + 1) of the form
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0 1 0 0 1 1 · · · 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0 1 1 0

0 0 0 0 0 0 · · · 0 1 0 0 1 1




.

In this matrix B the entry 1 appears only in (m)th, (m− 1)th, (m− 4)th columns.
And we choose sub matrix C of order (n− 5− (n−9)

2 − [
n−9

2

]
)× (d2G + 1) of the form




0 0 0 0 0 0 · · · 0 0 1 0 0 1

0 0 0 0 0 0 · · · 0 0 0 1 1 1

0 0 0 0 0 0 · · · 0 0 1 1 0 0

0 0 0 0 0 0 · · · 0 0 0 1 1 1




.

Finally we can choose a submatrix D as (
[

n−9
2

]
) × (d2G + 1) of the form and its exactly

reverse matrix of B



0 0 0 0 0 0 · · · 0 1 1 0 0 1

0 0 0 0 0 0 · · · 1 1 0 0 1 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 1 1 0 0 1 · · · 0 0 0 0 0 0

1 1 0 0 1 0 · · · 0 0 0 0 0 0




.

Clearly we can observe that the rows of A,B,C and D of D∗M
2G are not identical.

Therefore, for any graph G ∼= Cn of order n ≥ 11 admits a Edge–dpd-set.

Theorem 3.6. For any graph G = (V, G) there exists no Edge–dpd-set M of cardinality
2.

Proof. Suppose there exists a Edge–dpd-graph with |M | = 2, say e and f .
If these e and f are adjacent then d2(e, f) = 0 = d2(f, e), then D∗M

2G contains a sub matrix
[2× (d2G + 1)] so that the rows of submatrix represents the M -Edge–dnp of the edges e and f

in D∗M
2G that is entry 1 is at the first column of submatrix and the rows are as shown in below


 1 0 0 · · · 0

1 0 0 · · · 0


.

If these two edges are independent edges then the rows of the submatrix D∗M
2G is as shown below

and here the entry 1 appears only at the first and (d2(e, f) + 1)th columns, and the rows will
be of the following form


 1 0 0 · · · 1 0 0 · · · 0

1 0 0 · · · 1 0 0 · · · 0


.

Hence, D∗M
2G contains identical rows and so M is not a Edge–dpd-set.
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Lemma 3.6. If G ∼= Pm of size m ≥ 2 admits a Edge–dpd set then 3 ≤ |M | ≤ m− 2.

Proof. we need to prove that the result is not true for |M | = 2 and |M | ≥ m− 1
Case;-1. If |M | = 2 the proof fallows from theorem

Case;-2.1, If |M | = m, consider path on size 3 and let M = {e1, e2, e3} = m, then

D∗M
2G =




2 1

3 0

2 1


.

It is clear that two rows are identical.
Case;-2.2, If |M | = m− 1 consider path on size 4 and for any choice of |M | = 3 = m− 1,

let M1 = {e1, e2, e3}, M2 = {e1, e2, e4}, M3 = {e2, e3, e4}, M4 = {e1, e3, e4} Edge–dnp-matrix
D∗M

2G shown bellow respectively,

D∗M1
2G =




1 1 0

1 0 1

1 1 0

1 1 1




. D∗M2
2G =




1 0 1

1 1 0

1 1 0

1 1 1




.

D∗M3
2G =




1 1 1

1 1 0

1 1 0

1 0 1




. D∗M4
2G =




1 1 1

1 1 0

1 0 0

1 1 0




.

It is observe that two of its rows are identical for any choice of |M | = m− 1.

Theorem 3.7. If G is a Edge–dpd-graph with |M | = 3 then the edges should be at distinct
distances from each other.

Proof. Let G be a Edge–dpd-graph with Edge–dpd-set |M | = {e1, e2, e3}. Consider d2(e1, e2) =
k1, d2(e2, e3) = k2, d2(e1, e3) = k3.
Case:-1-

If d2(e1, e2) = d2(e2, e3) = d2(e1, e3) = k.
The sub matrices 3× (d2G +1) represented by edges e1, e2 and e3 respectively of D∗M

2G will have
the entry 1 at first and (k + 1)th column,
i.e

D∗M
2G =




1 0 · · · 0 1 0 · · · 0

1 0 · · · 0 1 0 · · · 0

1 0 · · · 0 1 0 · · · 0


.
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It is observe that D∗M
2G contains identical rows and hence M is not Edge–dpd-set

Case:-2- If k1 6= k2 = k3 Here also the submatrix (2 × d2G + 1) represented by e1 and e2

respectively have the entry 1 at the first, (k1 + 1)th and (k3 + 1)th column, then

D∗M
2G =


 1 0 · · · 0 1 0 · · · 0 1 0 · · · 0

1 0 · · · 0 1 0 · · · 0 1 0 · · · 0


 .

Case:-3- If k1 6= k2 6= k3

The sub matrices 3× (d2G +1) represented by edges e1, e2 and e3 respectively in D∗M
2G have

the entry 1 at first, and (k1 + 1)th, (k2 + 1)th, and (k3 + 1)th columns,

D∗M
2G =




1 0 · · · 0 1 0 · · · 0 0 0 · · · 0 1 0 · · · 0

1 0 · · · 0 1 0 · · · 0 1 0 · · · 0 0 0 · · · 0

1 0 · · · 0 0 0 · · · 0 1 0 · · · 0 1 0 · · · 0


 .

It is possible to form a Edge–dpd-set M with |M | = 3.

Here these is not a sufficient condition for M to be a Edge–dpd-set.
For Example Consider path on size 5 i.e {v1e1v2e2v3e3v4e4v5e5v6} and M = {e1, e2, e4}.

Lemma 3.8. If G of size m ≥ 2 admits a Edge–dpd set then 3 ≤ |M | ≤ m− 2.

Proof. we need to prove that the result is not true for |M | = 2 and |M | ≥ m− 1
Case;-1. If |M | = 2.
The proof fallows from Theorem 3.5.
Case;-2. If |M | ≥ m− 1.
We know that for any graph G of size m ≥ 2 has at least two diametral edge, then for any
choice of |M | ≥ m− 1 in D∗M

2G the sub matrix of these diametral edges have the same entry in
each column. Because N0(e) ≥ 2.

Theorem For any graph E(G) is a Edge–dpd set if and only if G ∼= K2.

Proof. If G ∼= K2, then Edge–dpd-set of k2 = e1 and e(k2) = {e}.
For Converse. If M = E(G) in D∗M

2G is a square matrix its row and column have same
element and G has exactly one row and column hence G ∼= K2.

Corollary The complete graph Kn posses a Edge–dpd set if and only if n = 2.
Corollary Complete bipartite graph Km,n posses a Edge–dpd-set if and only if m = n = 1.
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§1. Introduction and preliminaries

Let

f(s1, s2) =
∞∑

m,n=1

am,n e(λms1+µns2), (sj = σj + itj , j = 1, 2) (1)

be a Dirichlet series of two complex variables s1 and s2. Let E be a commutative Banach
Algebra such that am,n

′s ∈ E. Also λm
′s, µn

′s ∈ R satisfying

0 < λ1 < λ2 < . . . < λm →∞ as m →∞
and 0 < µ1 < µ2 < . . . < µn →∞ as n →∞.

If
lim sup
m+n→∞

log(m + n)
λm + µn

= L < ∞ (2)

and
lim sup
m+n→∞

log ‖am,n‖
λm + µn

= −∞ (3)
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Then from [2], the series (1) represents an entire function. Let K be a class of entire functions
represented by series (1) for which

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖

is bounded where c1, c2 ≥ 0 and c1, c2 are simultaneously not zero. It is also clear that K

defines a linear space over C2. Let

f(s1, s2) =
∞∑

m,n=1

am,n e(λms1+µns2)

and g(s1, s2) =
∞∑

m,n=1

bm,n e(λms1+µns2)

then the binary operations in K are defined as follows

f(s1, s2) + g(s1, s2) =
∞∑

m,n=1

(am,n + bm,n) e(λms1+µns2)

ξ.f(s1, s2) =
∞∑

m,n=1

(ξ.am,n) e(λms1+µns2)

f(s1, s2).g(s1, s2) =
∞∑

m,n=1

{(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) am,n bm,n} e(λms1+µns2).

The norm in K is defined as

‖f‖ =
∞∑

m,n=1

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖ (4)

During the last two decades a lot of research has been done in the field of Dirichlet series
and many important results have been proved wherein a result showed that every entire function
can be represented in the form of Dirichlet series but this representation is not unique. Daoud
in his papers [2]- [3] considered a function of two variables represented by Dirichlet series and
proved results which could be easily extended to finite number of variables. Kamthan in [5]
considered different classes of entire functions represented by Dirichlet series in several variables
and gave different characterizations of continuous linear functionals.

Hussein and Srivastava in their paper [4] discussed bornological properties of the space of
entire functions of several complex variables. Behnam and Srivastava in [1] equipped the space
of several complex variables with natural locally convex topology and proved it to be Frechet
space. Also they gave different representations of continuous linear functionals.

So far many authors considered set of entire functions with weighted norms and studied
results on it. Kumar and Manocha in [6] generalized the condition of weighted norm for a
Dirichlet series of one variable and thus established some results. Present work is an extension
of [6] to a Dirichlet series of two complex variables defined by (1). The purpose of this paper is
to give a broader view to the study of Dirichlet series in two variables.
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§2. Main Results

In this section main results are proved. For the definitions of terms used refer [7]- [8].
Theorem 2.1. K is a commutative Banach algebra with identity.

Proof. In order to prove this theorem we need to show that K is complete under the norm
defined in (4). Let {fr1} be any cauchy sequence in K where

fr1(s1, s2) =
∞∑

m,n=1

a(r1)
m,n e(λms1+µns2)

Then for a given ε > 0 we can find a constant r ≥ 1 such that

‖fr1 − fr2‖ < ε ∀ r1, r2 ≥ r

that is
∞∑

m,n=1

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖a(r1)
m,n − a(r2)

m,n‖ < ε ∀ r1, r2 ≥ r.

This shows that {a(r1)
m,n} forms a cauchy sequence in a Banach space E for all values of m,n ≥ 1.

Hence
lim

r1→∞
a(r1)

m,n = am,n ∀ m,n ≥ 1.

Letting r2 →∞,
∞∑

m,n=1

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖a(r1)
m,n − am,n‖ < ε ∀ r1 ≥ r.

Thus fr1 → f as r1 →∞. Also
∞∑

m,n=1

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)‖am,n‖ ≤

∞∑
m,n=1

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)‖a(r1)
m,n − am,n‖ +

∞∑
m,n=1

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖a(r1)
m,n‖ < ∞.

The identity element in K is

e(s1, s2) =
∞∑

m,n=1

em,n(λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn) e(λms1+µns2).

Now if f, g ∈ K then

‖f.g‖ =
∞∑

m,n=1

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn).

‖(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)am,n bm,n‖ ≤ ‖f‖.‖g‖

This proves the theorem.



36 Niraj Kumar, Lakshika Chutani and Garima Manocha No. 2

Theorem 2.2. The function f(s1, s2) =
∞∑

m,n=1

am,n e(λms1+µns2) is invertible in K if and

only if
{‖dm,n (λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn)‖}

is a bounded sequence where dm,n is the inverse of am,n.

Proof. Let f(s1, s2) ∈ K be invertible and g(s1, s2) =
∞∑

m,n=1

bm,n e(λms1+µns2) be its inverse.

Then f(s1, s2).g(s1, s2) = e(s1, s2). Therefore

(λm+µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn) am,n bm,n = em,n(λm+µn)−c1(λm+µn)e{c1−c2(m+n)}(λm+µn)

which implies

(λm+µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)bm,n = em,n{(λm+µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)am,n}−1.

This further implies

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)‖bm,n‖ =

‖em,n{(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)am,n}−1‖
which is equivalent to

‖dm,n(λm + µn)−c1(λm+µn)e{c1−c2(m+n)}(λm+µn)‖

and is a bounded sequence since g(s1, s2) ∈ K.
Conversely suppose {‖dm,n (λm +µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn)‖} be a bounded se-

quence. Define g(s1, s2) such that

g(s1, s2) =
∞∑

m,n=1

em,n(λm + µn)−2c1(λm+µn)e{2c1−2c2(m+n)}(λm+µn)a−1
m,n e(λms1+µns2)

Clearly g(s1, s2) ∈ K. Further

f(s1, s2).g(s1, s2) =
∞∑

m,n=1

{(am,nem,n(λm + µn)−2c1(λm+µn)e{2c1−2c2(m+n)}(λm+µn)a−1
m,n)

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)}e(λms1+µns2) = e(s1, s2)

Hence the theorem.

Theorem 2.3. A necessary and a sufficient condition that an element f(s1, s2) ∈ K be a
topological zero divisor is

lim
m,n→∞

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖ = 0.
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Proof. Let the given condition holds. Construct a sequence {gm,n} such that

gm,n(s1, s2) =
∞∑

m,n=1

(λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn)e(λms1+µns2)

Thus for all m,n ≥ 1, gm,n ∈ K and ‖gm,n‖ = 1. Now

f(s1, s2).gm,n(s1, s2) = gm,n(s1, s2).f(s1, s2)

=
∞∑

m,n=1

am,ne(λms1+µns2)

Therefore

‖f.gm,n‖ = ‖gm,n.f‖ =
∞∑

m,n=1

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖

As m,n →∞,
‖f.gm,n‖ = ‖gm,n.f‖ → 0

Thus f(s1, s2) is a topological zero divisor.
Conversely suppose the given condition is not true that is

lim
m,n→∞

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖ = β > 0

Then given γ with 0 < γ < β we can find integers n0 ≥ 1 , m0 ≥ 1 such that for all n ≥ n0 ,
m ≥ m0

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn) ‖am,n‖ ≥ β − γ

hold true. Also since f(s1, s2) is a topological zero divisor therefore there exists an arbitrary
sequence {gh1,h2} of elements in K with unit norm such that for all
h1, h2 ≥ 1 one has

gh1,h2(s1, s2) =
∞∑

h1,h2=1

bh1,h2 e(λh1s1+µh2s2)

which implies

∞∑

h1,h2=1

(λh1 + µh2)
c1(λh1+µh2 ) e{c2(h1+h2)−c1}(λh1+µh2 ) ‖bh1,h2‖ = 1.

Next, for ε such that 0 < ε < 1 there exists integers Nh1,h2 ,Mh1,h2 and subsequences {ni} of
sequence of indices {n} and {mi} of sequence of indices {m} such that

(λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)‖bmh1 ,nh2
‖ > 1− ε

for all n = ni ≥ Nh1,h2 , m = mi ≥ Mh1,h2 .

This implies

(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn){(λm + µn)c1(λm+µn)e{c2(m+n)−c1}(λm+µn)}.
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‖am,n.bmh1 ,nh2
‖ > c > 0 for all ni ≥ Nh1,h2 , mi ≥ Mh1,h2 .

Therefore
‖f(s1, s2).gh1,h2(s1, s2)‖ 9 0

which is a contradiction. Hence the theorem.

Theorem 2.4. K is not a Division Algebra.

Proof. Let

h(s1, s2) =
∞∑

m,n=1

{(m + n)−1 (λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn) e(λms1+µns2)

Clearly h(s1, s2) ∈ K and does not possess inverse in K. Let if possible

z′(s1, s2) =
∞∑

m,n=1

zm,n e(λms1+µns2)

be its inverse. Hence h(s1, s2).z′(s1, s2) = e(s1, s2). This implies

zm,n = em,n (m + n) (λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn) does not belong to K.

This completes the proof of the theorem.

Theorem 2.5. Every continuous linear functional θ : K → E is of the form

θ(f) =
∞∑

m,n=1

am,n lm,n (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)

where

f(s1, s2) =
∞∑

m,n=1

am,n e(λms1+µns2)

and {lm,n} is a bounded sequence in E.

Proof. Let us first assume that θ : K → E be a continuous linear functional. Since θ is
continuous,

θ(f) = θ( lim
M,N→∞

f (M,N))

where

f (M,N)(s1, s2) =
M,N∑

m,n=1

am,n e(λms1+µns2).

Let us define a sequence {fm,n} ⊆ K as

fm,n(s1, s2) = (λm + µn)−c1(λm+µn) e{c1−c2(m+n)}(λm+µn)e(λms1+µns2)

Therefore

θ(f) = θ( lim
M,N→∞

M,N∑
m,n=1

am,n (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)fm,n)
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= lim
M,N→∞

M,N∑
m,n=1

am,n (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)θ(fm,n).

Since θ is a linear functional therefore

θ(fm,n) = lm,n.

This implies

θ(f) = lim
M,N→∞

M,N∑
m,n=1

am,n lm,n (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn).

We now show that {lm,n} is a bounded sequence in E.

‖lm,n‖ = ‖θ(fm,n)‖ ≤ τ‖fm,n‖

and ‖fm,n‖ = 1 which further implies

‖lm,n‖ ≤ τ.

Thus {lm,n} is a bounded sequence in E.
Conversely let {lm,n} be a bounded sequence in E satisfying

θ(f) =
∞∑

m,n=1

am,n lm,n (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn).

Then, θ is well defined and linear. Now

‖θ(f)‖ =
∞∑

m,n=1

‖am,n lm,n‖ (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)

≤
∞∑

m,n=1

‖am,n‖ ‖lm,n‖ (λm + µn)c1(λm+µn) e{c2(m+n)−c1}(λm+µn)

≤ τ ‖f‖.

Thus θ is a continuous linear functional which proves the theorem.
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Abstract Let f(z) = 2
√

y
∑

n6=0

af (n)Kir(2π|n|y)e(nx) be a Maass cusp form for SL(2,Z)
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4

+ r2, where Kir denotes the K-Bessel function. In this paper, we
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§1. Introduction

Let f(z) be a primitive holomorphic cusp form of even integral weight k ≥ 2 for the full
modular group SL(2,Z). The Fourier series expansion of f(z) at infinity is

f(z) =
∞∑

n=1

af (n)n
k−1
2 e(nz)

for <s > 0. Moreover, we assume that f(z) is a normalized Hecke eigenform such that af (1) = 1.

It is known that af (n) satisfies the Ramanujan-Petersson conjecture, proved by Deligne [2]:

|af (n)| ≤ d(n),

where d(n) is the divisor function. If f(z) is a Maass cusp form for SL(2,Z) with Laplace
eigenvalue 1

4 + r2, then its Fourier expansion at infinity is

f(z) = 2
√

y
∑

n 6=0

af (n)Kir(2π|n|y)e(nx),

where Kir denotes the K-Bessel function and af (1) = 1. In contrast with holomorphic cusp
form, the Ramanujan-Petersson conjecture for Maass cusp form, has not been proved yet. The
best record till now is af (n) ¿ n

7
64+ε, which is due to Kim and Sarnak [7].

For σ = <s > 1, let L(f, s) be the corresponding Hecke L-function associated to f(z), then

L(f, s) =
∞∑

n=1

af (n)n−s =
∏
p

(1− αf (p)p−s)−1(1− βf (p)p−s)−1, (1.1)
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where αf (p) and βf (p) are local roots at p, and

αf (p) + βf (p) = af (p), αf (p)βf (p) = 1.

Taking logarithmic differentiation in (1.1), we have

−L′

L
(f, s) =

∞∑
n=1

Λ(n, f)n−s,

where

Λ(n, f) =





(αf (pk) + βf (pk)) log p, n = pk;

0, otherwise.

With an additive character e(α
√

n), α > 0, we have

Sf (x) =
∑

x<n≤2x

Λ(n, f)e(α
√

n),

where x ≥ 2. Note that

Sf (x) =
∑

x<p≤2x

af (p) log p e(α
√

p) + O(x
1
2 log x).

It should be mentioned that Lao [8] has studied the exponential sums over primes connected
with the coefficients of holomorphic cusp forms. She showed that

Sf (x) =
∑

x<n≤2x

Λ(n, f)e(α
√

n) ¿ x
5
6+ε.

In this paper we want to study the mean value estimate for the coefficients of Maass cusp
forms in exponential sums over primes.

Another reason we study the problem is from Vinogradov’s exponential sums over primes.
Vinogradov [13] is the first person to study the following sum

S(x) =
∑

x<n≤2x

Λ(n)e(α
√

n),

where Λ(n) refers to the Mangoldt function. And it was shown that

S(x) ¿ x
7
8+ε.

Later, Iwaniec and Kowalski [6] obtained a better result

S(x) ¿ x
5
6+ε.

Ren [9] made a further study with a new method and found that

S(x) ¿ x
4
5+ε.

The main aim of this paper is to prove
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Theorem 1.1. Let f(z) be a Maass cusp form for the group SL(2,Z), and assume that it
satisfies the Ramanujan-Petersson conjecture. For any α > 0 and any sufficiently small ε > 0,

we have
Sf (x) =

∑

x<n≤2x

Λ(n, f)e(α
√

n) ¿ x
5
6+ε,

where the implied constant depends on α and f(z).

§2. Preliminaries

First we recall some basic notations and knowledge. We use L(f, s) to denote any nor-
malized L-function. It is well-known that when σ = <s > 1, all its nontrivial zeros are in the
critical strip 0 ≤ σ = <s ≤ 1. However the Grand Riemann Hypothesis asserts that they all lie
on the critical line <s = 1

2 .
In the absence of a proof of the Grand Riemann Hypothesis, it is natural to ask how many

zeros of a given L-function can lie off the critical line σ = 1
2 . Therefore we define

NL(T ) := #{ρ = β + iγ : L(ρ, f) = 0, |γ| ≤ T} (2.1)

NL(σ, T ) := #{ρ = β + iγ : L(ρ, f) = 0, σ ≤ β ≤ 1, |γ| ≤ T} (2.2)

where 1
2 ≤ σ ≤ 1 and T ≥ 3. As we all know, zero-density theorems for L-functions to the right

of the critical line are objects of intensive studies in analytic number theory. These results have
been established by many mathematicians for various L-functions.

For the Riemann zeta-function ζ(s), Ingham [5] showed that

Nζ(σ, T ) ¿ T
3(1−σ)
2−σ (log T )5,

this result was further refined as

Nζ(σ, T ) ¿ T
12(1−σ)

5 (log T )100.

See [3] for details.
For the Dirichlet L-function, Bombieri [1] stated that when T ≤ Q,

∑

q≤Q

∗∑
χ

Nχ(σ, T ) ¿ TQ
8(1−σ)
3−2σ (log Q)10,

where
∗∑
χ

means that the sum is over primitive characters.

If f(z) is a holomorphic cusp form, we quote Ivic’s result [4], which stated that

NL(σ, T ) ¿ T
4(1−σ)
3−2σ +ε, for

1
2
≤ σ ≤ 3

4
;

NL(σ, T ) ¿ T
2−2σ

σ +ε, for
3
4
≤ σ ≤ 1.

If f(z) is a primitive Maass cusp form for SL(2,Z) with Laplace eigenvalue 1
4 +r2, we have

known that
NL(σ, T ) ¿ T log T, for

1
2
≤ σ ≤ 1

2
+

1
log T

. (2.3)
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Sankaranarayanan and Sengupta [10] obtained a result for Maass cusp form for SL(2,Z),
which showed that

NL(σ, T ) ¿ T
4(1−σ)
3−2σ +ε, for

1
2

+
1

log T
≤ σ ≤ 1. (2.4)

Later, Xu [14] improved the previous result (2.4) when σ ∈ [ 34 , 1),

NL(σ, T ) ¿ T
(1−σ)(8σ−5)
−2σ2+6σ−3

+ε
, for

3
4
≤ σ ≤ 1. (2.5)

On the basis of Xu, Tang [12] obtained a better estimate for NL(σ, T ),

NL(σ, T ) ¿ T
2−2σ

σ +ε, for
3
4
≤ σ ≤ 1− ε0, (2.6)

for arbitrarily small ε0 > 0.
In order to get the results we want, we assume f(z) satisfies the Ramanujan-Petersson

conjecture. Derive (using Perron’s formula) the following approximate expansion

Ψf (x) =
∑

n≤x

Λ(n, f) = −
∑

|γ|≤T

xρ

ρ
+ R(x, T ), (2.7)

where R(x, T ) = O( x
T log2 x) and ρ = β + iγ runs over the zeros of L(f, s) in the critical strip

of height up to T , with 1 ≤ T ≤ x, and the implied constant is absolute. See [6] for details.
We also need the following result.
Lemma 2.1. Let F (x) and G(x) be real functions in [a, b] with G(x) and 1/F ′(x) mono-

tonic. Suppose that |G(x)| ≤ M.

(i)If F ′(x) ≥ u > 0 or F ′(x) ≤ −u < 0, then

∫ b

a

G(x)e(F (x))dx ¿ M

u
. (2.8)

(ii)If F ′′(x) ≥ v > 0 or F ′′(x) ≤ −v < 0, then

∫ b

a

G(x)e(F (x))dx ¿ M√
v
. (2.9)

See [11] for details.

§3. Proof of Theorem 1.1.

Integrating by parts, we have

Sf (x) =
∑

x<n≤2x

Λ(n, f)e(α
√

n) =
∫ 2x

x

e(α
√

u)d
∑

n≤u

Λ(n, f),

then applying the explicit formula in (2.7), we get

Sf (x) = −
∑

|γ|≤T

∫ 2x

x

uρ−1e(α
√

u)du +
∫ 2x

x

e(α
√

u)dR(u, T ). (3.1)
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The error term above is bounded by
∫ 2x

x

e(α
√

u)dR(u, T ) ¿ (1 + π|α|x 1
2 )

x

T
log2 x.

On taking
T = (1 + π|α|x 1

2 )x
1
4 , (3.2)

we find that the error term in (3.1) is O(x
3
4 log2 x), which is obviously acceptable.

To prove the Theorem, it suffices to show that

∑

|γ|≤T

∫ 2x

x

uρ−1e(α
√

u)du ¿ x
5
6+ε. (3.3)

Making change of variable
√

u = v in (3.3), we have

∫ 2x

x

uβ+iγ−1e(α
√

u)du = 2
∫ (2x)

1
2

x
1
2

v2β−1e(αv +
γ log v

π
)dv.

By Lemma 2.1, the last integral satisfies

¿ xβ min{1,
1

min
x

1
2 <v≤(2x)

1
2

|γ + παv| ,
1√
|γ| }

¿ xβ





1

(1+|α|x 1
2 )

1
2
, |γ| ≤ 2π|α|(2x)

1
2 ;

1
1+|γ| , 2π|α|(2x)

1
2 < |γ| ≤ T.

Thus,
∑

|γ|≤T

∫ 2x

x

uρ−1e(α
√

u)du (3.4)

¿ 1
(1 + |α|x 1

2 )
1
2

∑

|γ|≤2π|α|(2x)
1
2

xβ +
∑

2π|α|(2x)
1
2 <|γ|≤T

xβ

1 + |γ|

= S1 + S2.

Now, we define a new function

F (u, β) =





1, 0 ≤ u ≤ β;

0, β ≤ u ≤ 1.

By (2.1), we have
∑

|γ|≤t

xβ =
∑

|γ|≤t

(log x

∫ β

0

xudu + 1)

= NL(t) + log x
∑

|γ|≤t

∫ 1

0

xuF (u, β)du.

From the definitions of F (u, β) and NL(u, t), we have
∑

|γ|≤t

F (u, β) = NL(u, t).
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Therefore we get

∑

|γ|≤t

xβ = NL(t) + log x

∫ 1

0

xuNL(u, t)du

= NL(t) + log x

∫ 1
2

0

xuNL(u, t)du + log x

∫ 1

1
2

xuNL(u, t)du

¿ x
1
2 t log t + log x

∫ 1

1
2

xuNL(u, t)du,

where we have used the fact that, for 0 ≤ u ≤ 1
2 ,

NL(u, t) ¿ NL(t) ¿ t log t.

From (2.5) and (2.6), we can get

NL(u, t) ¿ t
8
3 (1−u)+ε, for

3
4
≤ u ≤ 1− ε0; (3.5)

NL(u, t) ¿ t3(1−u)+ε, for 1− ε0 ≤ u ≤ 1, (3.6)

for arbitrarily small ε0 > 0.

Using (2.3), (2.4), (3.5) and (3.6), we find that

∑

|γ|≤t

xβ ¿ x
1
2 t log t + log x

∫ 1
2+ 1

log t

1
2

xut log t du + log x

∫ 3
4

1
2+ 1

log t

xut
4(1−u)
3−2u +εdu

+ log x

∫ 1−ε0

3
4

xut
8
3 (1−u)+εdu + log x

∫ 1

1−ε0

xut3(1−u)+εdu

¿ x
1
2+ 1

log t t log t + log x

∫ 3
4

1
2+ 1

log t

xut
4(1−u)
3−2u +εdu + log x

∫ 1−ε0

3
4

xut
8
3 (1−u)+εdu

+ log x

∫ 1

1−ε0

xut3(1−u)+εdu

¿ x
1
2+ 1

log t t log t + log x max
1
2+ 1

log t≤u≤ 3
4

xut
4(1−u)
3−2u +ε + log x max

3
4≤u≤1−ε0

xut
8
3 (1−u)+ε

+ log x max
1−ε0≤u<1

xut3(1−u)+ε. (3.7)

Now we estimate S1. Taking t = 2π|α|(2x)
1
2 in (3.7), we have

S1 =
1

(1 + |α|x 1
2 )

1
2

∑

|γ|≤2π|α|(2x)
1
2

xβ

¿ x
3
4+ε + log x max

1
2+ 1

log t≤u≤ 3
4

xu+
2(1−u)
3−2u − 1

4+ε + log x max
3
4≤u≤1−ε0

xu+ 4
3 (1−u)− 1

4+ε

+ log x max
1−ε0≤u<1

xu+ 3
2 (1−u)− 1

4+ε.

Note that
max

1
2+ 1

log t≤u≤ 3
4

(u +
2(1− u)
3− 2u

− 1
4
) =

5
6
,



Vol. 11 Exponential sums over primes formed with coefficients of primitive Maass forms 47

max
3
4≤u≤1−ε0

(u +
4
3
(1− u)− 1

4
) =

5
6
,

max
1−ε0≤u≤1

(u +
3
2
(1− u)− 1

4
) =

3
4

+
ε0

2
.

Taking ε0 = 1
6 , which is obviously acceptable, then we obtain

S1 ¿ x
5
6+ε. (3.8)

Now we estimate S2, we have

∑

2π|α|(2x)
1
2 <|γ|≤T

xβ

1 + |γ| ¿ log x max
2π|α|(2x)

1
2 <t≤T

t−1
∑

|γ|∼t

xβ .

Using the same method, we obtain

S2 =
∑

2π|α|(2x)
1
2 <|γ|≤T

xβ

1 + |γ|

¿ x
1
2+ε + log x max

2π|α|(2x)
1
2 <t≤T

max
1
2+ 1

log t≤u≤ 3
4

xut
4(1−u)
3−2u −1+ε

+ log x max
2π|α|(2x)

1
2 <t≤T

max
3
4≤u≤1−ε0

xut
8(1−u)

3 −1+ε

+ log x max
2π|α|(2x)

1
2 <t≤T

max
1−ε0≤u<1

xut3(1−u)−1+ε.

According to 



4(1−u)
3−2u − 1 ≤ 0, 1

2 + 1
log t ≤ u ≤ 3

4 ;
8(1−u)

3 − 1 < 0, 3
4 ≤ u ≤ 1− ε0;

3(1− u)− 1 < 0, 1− ε0 ≤ u ≤ 1,

we have

S2 =
∑

2π|α|(2x)
1
2 <|γ|≤T

xβ

1 + |γ|

¿ x
1
2+ε + log x max

1
2+ 1

log t≤u≤ 3
4

xu+
2(1−u)
3−2u − 1

2+ε + log x max
3
4≤u≤1−ε0

xu+
4(1−u)

3 − 1
2+ε

+ log x max
1−ε0≤u<1

xu+ 3
2 (1−u)− 1

2+ε.

Note that
max

1
2+ 1

log t≤u≤ 3
4

(u +
2(1− u)
3− 2u

− 1
2
) =

7
12

,

max
3
4≤u≤1−ε0

(u +
4
3
(1− u)− 1

2
) =

7
12

,

max
1−ε0≤u≤1

(u +
3
2
(1− u)− 1

2
) =

1
2

+
ε0

2
.

Taking ε0 = 1
6 , then we obtain

S2 ¿ x
7
12+ε. (3.9)

From (3.4), (3.8) and (3.9), we complete the proof of Theorem 1.1.
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§1. Introduction and preliminaries

Lucas polynomials

The sequence of Lucas polynomials is a sequence of polynomials defined by the recurrence
relation

Ln(x) =





2x0 = 2 , if n = 0

1x1 = x , if n = 1

x1Ln−1(x) + x0Ln−2(x) , if n ≥ 2

(1.1)

The first few Lucas polynomials are:

L0(x) = 2

L1(x) = x

L2(x) = x2 + 2

L3(x) = x3 + 3x

L4(x) = x4 + 4x2 + 2

The ordinary generating function of the Lucas polynomials is

G{Ln(x)}(t) =
∞∑

n=0

Ln(x)tn =
2− xt

1− t(x + t)
. (1.2)
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Polylogarithm

The polylogarithm is a special function Lis(z) that is defined by the infinite sum, or power
series:

Lis(z) =
∞∑

k=1

zk

ks
(1.3)

It is in general not an elementary function, unlike the related logarithm function. The above
definition is valid for all complex values of the order s and the argument z where| z |< 1. The
polylogarithm is defined over a larger range of z than the above definition allows by the process
of analytic continuation.
The special case s = 1 involves the ordinary natural logarithm (Li1(z) = −ln(1 − z)) while
the special cases s = 2 and s = 3 are called the dilogarithm (also referred to as Spence’s
function) and trilogarithm respectively. The name of the function comes from the fact that it
may alternatively be defined as the repeated integral of itself, namely that

Lis+1(z) =
∫ z

0

Lis(t)
t

dt (1.4)

Thus the dilogarithm is an integral of the logarithm, and so on. For nonpositive integer orders
s, the polylogarithm is a rational function.
The polylogarithm also arises in the closed form of the integral of the Fermi-Derac distribu-
tion and the Bose-Einstein distribution and is sometimes known as the Fermi-Derac integral or
Bose-Einstein integral. Polylogarithms should not be confused with polylogarithmic functions
nor with the offset logarithmic integral which has a similar notation.

Generalized Hypergeometric Functtions

A generalized hypergeometric function pFq(a1, ...ap; b1, ...bq; z) is a function which can be
defined in the form of a hypergeometric series, i.e., a series for which the ratio of successive
terms can be written

ck+1

ck
=

P (k)
Q(k)

=
(k + a1)(k + a2)...(k + ap)

(k + b1)(K + b2)...(k + bq)(k + 1)
z. (1.5)

Where k + 1 in the denominator is present for historical reasons of notation, and the resulting
generalized hypergeometric function is written

pFq




a1, a2, · · · , ap ;

z

b1, b2, · · · , bq ;


 =

∞∑

k=0

(a1)k(a2)k · · · (ap)kzk

(b1)k(b2)k · · · (bq)kk!
(1.6)

or

pFq




(ap) ;

z

(bq) ;


 ≡ pFq




(aj)
p
j=1 ;

z

(bj)
q
j=1 ;


 =

∞∑

k=0

((ap))kzk

((bq))kk!
(1.7)
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where the parameters b1, b2, · · · , bq are neither zero nor negative integers and p, q are non-
negative integers.
The pFq series converges for all finite z if p ≤ q, converges for | z |< 1 if p 6= q + 1, diverges for
all z , z 6= 0 if p > q + 1.

The pFq series absolutely converges for | z |= 1 if R(ζ) < 0 , conditionally converges for

| z |= 1, z 6= 0 if 0 ≤ R(ζ) < 1 , diverges for | z |= 1 , if 1 ≤ R(ζ) , ζ =
p∑

i=1

ai −
q∑

i=0

bi.

The function 2F1(a, b; c; z) corresponding to p = 2, q = 1, is the first hypergeometric function
to be studied (and, in general, arises the most frequently in physical problems), and so is fre-
quently known as ”the” hypergeometric equation or, more explicitly, Gauss’s hypergeometric
function (Gauss 1812, Barnes 1908). To confuse matters even more, the term ”hypergeometric
function” is less commonly used to mean closed form, and ”hypergeometric series” is sometimes
used to mean hypergeometric function.
The hypergeometric functions are solutions of Gaussian hypergeometric linear differential equa-
tion of second order

z(1− z)y′′ + [c− (a + b + 1)z]y′ − aby = 0 (1.8)

The solution of this equation is

y = A0

[
1 +

ab

1! c
z +

a(a + 1)b(b + 1)
2! c(c + 1)

z2 + · · · · · ·
]

(1.9)

This is the so-called regular solution,denoted

2F1(a, b; c; z) =
[
1 +

ab

1! c
z +

a(a + 1)b(b + 1)
2! c(c + 1)

z2 + · · · · · ·
]

=
∞∑

k=0

(a)k (b)kzk

(c)kk!
(1.10)

which converges if c is not a negative integer for all of | z |< 1 and on the unit circle | z |= 1 if
R(c− a− b) > 0.

It is known as Gauss hypergeometric function in terms of Pochhammer symbol (a)k or
generalized factorial function.

Many of the common mathematical functions can be expressed in terms of the hypergeo-
metric function, or as limiting cases of it. Some typical examples are

(1− z)−a = z 2F1(1, 1; 2;−z) (1.11)

sin−1 z = z 2F1(
1
2
,
1
2
;
3
2
; z2) (1.12)

The special case of (1.3.4) when a = c and b = 1, or a = 1 and b = c, yields the elementary
geometric series

∞∑
n=0

zn = 1 + z + z2 + z3 + · · ·+ zn + · · · (1.13)

Hence the term “Hypergeometric” is given. The term hypergeometric was first used by Wallis
in his work “Arithmetrica Infinitorum”. Hypergeometric series or more precisely Gauss series
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is due to Carl Friedrich Gauss(1777-1855) who in year 1812 introduced and studied this series
in his thesis presented at Gottingen and gave the F -notation for it. Here z is a real or complex
variable. If c is zero or negative integer, the series (1.10) does not exist and hence the function

2F1(a, b; c; z) is not defined unless one of the parameters a or b is also a negative integer such
that −c < −a. If either of the parameters a or b is a negative integer, say −m then in this case
(1.10) reduce to the hypergeometric polynomial defined as

2F1(−m, b; c; z) =
m∑

n=0

(−m)n(b)n zn

(c)n n!
(1.14)

Hypergeometric Function of Second Kind

G(a, b; c; z) =
Γ(1− c)

Γ(a− c + 1)Γ(b− c + 1)
× 2F1




a, b ;

z

c ;


+

+
Γ(c− 1) z(1−c)

Γ(a) Γ(b)
× 2F1




1 + a− c, 1 + b− c ;

z

2− c ;


 (1.15)

where c 6= 0,±1,±2, . . .

G(a, b; c; z) = z(1−c) G(1 + a− c, 1 + b− c; 2− c; z) (1.16)

Each of the following functions is a solution of differential equation (1.8). A system of two
linearly independent solutions of differential equation (1.8) in

the vicinity of the singular point z = 0, 1 and ∞ are given by

w
(0)
1 (z) = 2F1




a, b ;

z

c ;




w
(1)
1 (z) = 2F1




a, b ;

1− z

1 + a + b− c ;


 (1.17)

w
(0)
2 (z) = z(1−c)

2F1




1 + a− c, 1 + b− c ;

z

2− c ;




w
(1)
2 (z) = (1− z)(c−a−b)

2F1




c− a, c− b ;

1− z

1 + c− a− b ;


 (1.18)
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w
(∞)
1 (z) = (−z)−a

2F1




a, 1 + a− c ;
1
z

1 + a− b ;




w
(∞)
2 (z) = (−z)−b

2F1




1 + b− c, b ;
1
z

1 + b− a ;


 (1.19)

where c 6= 0,±1,±2, . . . ; (c− a− b) and (a− b) are not integers.

The equation (1.8) is also denoted by

2F1




a, b ;

z

c ;


 =

∞∑
m=0

(a)m(b)m zm

(c)m m!

= 1 +
a b z

c
+

a (a + 1) b (b + 1) z2

c (c + 1) 2!
+

+
a (a + 1) (a + 2) b (b + 1) (b + 2) z3

c (c + 1) (c + 2) 3!
+ · · ·+ ad inf. (1.20)

It is convergent for |z| < 1.

Note:

2F1




a, b ;

0

c ;


 = 2F1




0, b ;

z

c ;


 = 1 (1.21)

(1− z)−a =
∞∑

r=0

(a)r zr

r!
= 1F0




a ;

z

;


 ; |z| < 1 (1.22)

Generalized Ordinary Hypergeometric Function of One Variable

The generalized Gaussian hypergeometric function of one variable is defined as follows

AFB




a1, a2, a3, . . . , aA ;

z

b1, b2, b3, . . . , bB ;


 =

∞∑
n=0

(a1)n (a2)n (a3)n · · · (aA)n zn

(b1)n (b2)n (b3)n · · · (bB)n n!
(1.23)

or, AFB




(aA) ;

z

(bB) ;


 =

∞∑
n=0

[(aA)]n zn

[(bB)]n n!
(1.24)



54 Salahuddin and R. K. khola No. 2

where for the sake of convenience (in the contracted notation), (aA) denotes thearray of “A”
number of parameters given by a1, a2, a3, . . . , aA. The denominatorparameters are neither
zero nor negative integers. The numerator parameters may be zero and negative integers. A

and B are positive integers or zero. Empty sum is to be interpreted as zero and empty product
as unity.

b∑
n=a

and
b∏

n=a

are empty if b < a.

[(aA)]−n =
(−1)nA

[1− (aA)]n
(1.25)

[(aA)]n = (a1)n(a2)n(a3)n · · · (aA)n =
A∏

m=1

(am)n =
A∏

m=1

Γ(am + n)
Γ(am)

(1.26)

where a1, a2, a3, . . . , aA; b1, b2, b3, . . . , bB and z may be real and complex numbers.

3F2




a, b, 1 ;

z

c, 2 ;


 =

(c− 1)
(a− 1)(b− 1) z

×

×
{

2F1




a− 1, b− 1 ;

z

c− 1 ;


− 1

}
(1.27)

The convergence conditions of AFB are given below

Suppose that numerator parameters are neither zero nor negative integers (otherwise ques-
tion of convergence will not arise).

(i) If A ≤ B, then series AFB is always convergent for all finite values of z(real or complex)
i.e., |z| < ∞.

(ii) If A = B + 1 and |z| < 1, then series AFB is convergent.

(iii) If A = B + 1 and |z| > 1, then series AFB is divergent.

(iv) If A = B + 1 and |z| = 1, then series AFB is absolutely convergent, when

Re
{ B∑

m=1

bm −
A∑

n=1

an

}
> 0

(v) If A = B + 1 and z = 1, then series AFB is convergent, when
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Re
{ B∑

m=1

bm −
A∑

n=1

an

}
> 0

(vi) If A = B + 1 and z = 1, then series AFB is divergent, when

Re
{ B∑

m=1

bm −
A∑

n=1

an

}
≤ 0

(vii) If A = B + 1 and z = −1, then series AFB is convergent, when

Re
{ B∑

m=1

bm −
A∑

n=1

an

}
> −1

(viii) If A = B + 1 and |z| = 1, but z 6= 1, then series AFB is conditionally

convergent, when

−1 < Re
{ B∑

m=1

bm −
A∑

n=1

an

}
≤ 0

(ix) If A > B + 1, then series AFB is convergent, when z = 0.

(x) If A = B + 1 and |z| ≥ 1, then it is defined as an analytic continuation

of this series.

(xi) If A = B + 1 and |z| = 1, then series AFB is divergent, when

Re
{ B∑

m=1

bm −
A∑

n=1

an

}
≤ −1

(xii) If A > B + 1, then a meaningful independent attempts were made to define

MacRobert’s E-function, Meijer’s G-function, Fox’s H-function and its

related functions.

(xiii) If one or more of the numerator parameters are zero or negative integers,

then series AFB terminates for all finite values of z i.e., AFB will be a hypergeometric
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polynomial and the question of convergence does not enter the discussion.

§2. Main Indefinite Integrals

∫
cosh x L1(x)√

1− cos x
dx =

= − 1√
1− cos x

( 8
25
− 6ι

25

)
e(−1− ι

2 )x sin
x

2

[
2e2x

3F2

(
− 1

2
− ι,−1

2
− ι, 1;

1
2
− ι,

1
2
− ι; eιx

)
+

+2eιx
3F2

(1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι; eιx
)
− (2− ι)xe2x

2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
+

+(2− ι)xeιx
2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)

+ (2− ι)xe2x − 2e2x
]

+ Constant (2.1)
∫

sinhx L1(x)√
1− cos x

dx =

= − 1√
1− cos x

( 8
25
− 6ι

25

)
e(−1− ι

2 )x sin
x

2

[
2e2x

3F2

(
− 1

2
− ι,−1

2
− ι, 1;

1
2
− ι,

1
2
− ι; eιx

)
−

−2eιx
3F2

(1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι; eιx
)
− (2− ι)xe2x

2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
−

−(2− ι)xeιx
2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)

+ (2− ι)xe2x − 2e2x
]

+ Constant (2.2)
∫

cos x L2(x)√
1− cos x

dx =
2√

1− cos x
sin

x

2

[
4ιxLi2(−e

ιx
2 )− 4ιxLi2(e

ιx
2 )− 8Li3(−e

ιx
2 ) + 8Li3(e

ιx
2 )+

+x2 log(1−e
ιx
2 )−x2 log(1+e

ιx
2 )+2x2 cos

x

2
−8x sin

x

2
−12 cos

x

2
+2 log(tan

x

4
)
]
+Constant (2.3)

∫
cos x L1(x)√

1− cos x
dx =

2√
1− cos x

sin
x

2

[
2ιLi2(−e

ιx
2 )−2ιLi2(e

ιx
2 )+x log(1−e

ιx
2 )−x log(1+e

ιx
2 )−

−4 sin
x

2
+ 2x cos

x

2

]
+ Constant (2.4)

∫
cos x L1(x)√

1− cosh x
dx = − 1

25
√

1− cosh x
e−ιx(ex−1)

[
(6−8ι)3F2

(1
2
− ι,

1
2
− ι, 1;

3
2
− ι,

3
2
− ι; ex

)
+

+(6+8ι)e2ιx
3F2

(1
2

+ι,
1
2

+ι, 1;
3
2

+ι,
3
2

+ι; cosh x+sinhx
)

+5x
{

(1+2ι)2F1

(1
2
−ι, 1;

3
2
−ι; ex

)
+

+(1− 2ι)e2ιx
2F1

(1
2

+ ι, 1;
3
2

+ ι; cosh x + sinhx
)}]

+ Constant (2.5)
∫

sinx L1(x)√
1− cosh x

dx =
1

25
√

1− cosh x
e−ιx(ex−1)

[
− (8+6ι)3F2

(1
2
− ι,

1
2
− ι, 1;

3
2
− ι,

3
2
− ι; ex

)
−

−(8−6ι)e2ιx
3F2

(1
2

+ι,
1
2

+ι, 1;
3
2

+ι,
3
2

+ι; cosh x+sinhx
)

+5x
{

(2−ι)2F1

(1
2
−ι, 1;

3
2
−ι; ex

)
+

+(2 + ι)e2ιx
2F1

(1
2

+ ι, 1;
3
2

+ ι; cosh x + sinhx
)}]

+ Constant (2.6)
∫

cos x L2(x)√
1− cosh x

dx =
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=
2

125
√

1− cosh x
e(−ι+ 1

2 )x sinh
x

2

[
(2+11ι)e2ιx

{
−(8−4ι)x 3F2

(1
2

+ι,
1
2

+ι, 1;
3
2

+ι,
3
2

+ι; ex
)
−

−8ι 4F3

(1
2

+ ι,
1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι,
3
2

+ ι; ex
)

+(4+3ι)(x2 +2) 2F1

(1
2

+ ι, 1;
3
2

+ ι; ex
)}
−

−(11 + 2ι)
{

(4− 8ι)x 3F2

(1
2
− ι,

1
2
− ι, 1;

3
2
− ι,

3
2
− ι; ex

)
−

−8 4F3

(1
2
−ι,

1
2
−ι,

1
2
−ι, 1;

3
2
−ι,

3
2
−ι,

3
2
−ι; ex

)
+(3+4ι)(x2+2)2F1

(1
2
−ι, 1;

3
2
−ι; ex

)}]
+Constant

(2.7)∫
sinx L3(x)√

1− sinx
dx =

1√
1− sinx

(1+ ι)
(

cos
x

2
− sin

x

2

)[
(−1)

3
4

{
− 6ι(x2 +1)Li2

(
− (−1)

3
4 e

ιx
2

)
+

+6ι(x2+1)Li2

(
(−1)

3
4 e

ιx
2

)
+24xLi3

(
−(−1)

3
4 e

ιx
2

)
−24xLi3

(
(−1)

3
4 e

ιx
2

)
+48ιLi4

(
−(−1)

3
4 e

ιx
2

)
−

−48ιLi4

(
(−1)

3
4 e

ιx
2

)
+ x3

(
− log

(
1− (−1)

3
4 e

ιx
2

))
+ x3

(
log

(
1 + (−1)

3
4 e

ιx
2

))
−

−3x
(

log
(
1− (−1)

3
4 e

ιx
2

))
+ 3x

(
log

(
1 + (−1)

3
4 e

ιx
2

))}
− (1− ι)(x3 − 6x2 − 21x + 42) sin

x

2
+

+(−1 + ι)(x3 + 6x2 − 21x− 42) cos
x

2

]
+ Constant (2.8)

∫
sinx L2(x)√
1− cosh x

dx =

=
2

125
√

1− cosh x
e(−ι+ 1

2 )x sinh
x

2

[
(2− 11ι)

{
(4− 8ι)x 3F2

(1
2
− ι,

1
2
− ι, 1;

3
2
− ι,

3
2
− ι; ex

)
−

−8 4F3

(1
2
− ι,

1
2
− ι,

1
2
− ι, 1;

3
2
− ι,

3
2

+ ι,
3
2
− ι; ex

)
+(3+4ι)(x2 +2) 2F1

(1
2
− ι, 1;

3
2
− ι; ex

)}
+

+(2 + 11ι)e2ιx
{

(4 + 8ι)x 3F2

(1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι; ex
)
−

−8 4F3

(1
2
+ι,

1
2
+ι,

1
2
+ι, 1;

3
2
+ι,

3
2
+ι,

3
2
+ι; ex

)
+(3−4ι)(x2+2)2F1

(1
2
+ι, 1;

3
2
+ι; ex

)}]
+Constant

(2.9)∫
cosh x L2(x)√

1− cos x
dx =

=
1√

1− cos x

( 4
125

+
22ι

125
)e(−ι− 1

2 )x sin
x

2

[
(4+8ι)xe2x

3F2

(
− 1

2
− ι,−1

2
− ι, 1;

1
2
− ι,

1
2
− ι; eιx

)
+

+(4 + 8ι)xeιx
3F2

(1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι; eιx
)
−

−8ιe2x
4F3

(
− 1

2
− ι,−1

2
− ι,−1

2
− ι, 1;

1
2
− ι,

1
2
− ι,

1
2
− ι, ; eιx

)
+

+8ιeιx
4F3

(1
2

+ ι,
1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι,
3
2

+ ι, ; eιx
)
−

−(4 + 3ι)x2e2x
2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
+ (4 + 3ι)x2eιx

2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)
−

−(8 + 6ι)e2x
2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
+ (8 + 6ι)eιx

2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)
+

+(4 + 3ι)x2e2x − (4 + 8ι)xe2x + (8 + 14ι)e2x
]

+ Constant (2.10)
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∫
sinhx L2(x)√

1− cos x
dx =

= − 1√
1− cos x

( 4
125

+
22ι

125
)e(−ι− 1

2 )x sin
x

2

[
−(4+8ι)xe2x

3F2

(
−1

2
−ι,−1

2
−ι, 1;

1
2
−ι,

1
2
−ι; eιx

)
+

+(4 + 8ι)xeιx
3F2

(1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι; eιx
)
+

+8ιe2x
4F3

(
− 1

2
− ι,−1

2
− ι,−1

2
− ι, 1;

1
2
− ι,

1
2
− ι,

1
2
− ι, ; eιx

)
+

+8ιeιx
4F3

(1
2

+ ι,
1
2

+ ι,
1
2

+ ι, 1;
3
2

+ ι,
3
2

+ ι,
3
2

+ ι, ; eιx
)
+

+(4 + 3ι)x2e2x
2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
+ (4 + 3ι)x2eιx

2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)
−

+(8 + 6ι)e2x
2F1

(
− 1

2
− ι, 1;

1
2
− ι; eιx

)
+ (8 + 6ι)eιx

2F1

(1
2

+ ι, 1;
3
2

+ ι; eιx
)
+

+(−4− 3ι)x2e2x + (4 + 8ι)xe2x − (8 + 14ι)e2x
]

+ Constant (2.11)
∫

sinx L4(x)√
1− sinx

dx =

=
1√

1− sinx
(1 + ι)

(
cos

x

2
− sin

x

2

)[
(−1)

3
4

{
48x2Li3

(
− (−1)

3
4 e

ιx
2

)
− 48x2Li3

(
(−1)

3
4 e

ιx
2

)
−

−8ι(x2 + 2)xLi2

(
− (−1)

3
4 e

ιx
2

)
+ 8ι(x2 + 2)xLi2

(
(−1)

3
4 e

ιx
2

)
+ 192ιxLi4

(
− (−1)

3
4 e

ιx
2

)
−

−192ιxLi4

(
(−1)

3
4 e

ιx
2

)
+ 32Li3

(
− (−1)

3
4 e

ιx
2

)
− 32Li3

(
(−1)

3
4 e

ιx
2

)
− 384Li5

(
− (−1)

3
4 e

ιx
2

)
+

+384Li5

(
(−1)

3
4 e

ιx
2

)
+x4

(
−log

(
1−(−1)

3
4 e

ιx
2

))
+x4 log

(
1+(−1)

3
4 e

ιx
2

)
−4x2 log

(
1−(−1)

3
4 e

ιx
2

)
+

+4x2 log
(
1+(−1)

3
4 e

ιx
2

)
+4ι tan−1

(
(−1)

1
4 e

ιx
2

)}
− (1− ι)(x4−8x3−44x2 +176x+354) sin

x

2
+

+(−1 + ι)(x4 + 8x3 − 44x2 − 176x + 354) cos
x

2

]
+ Constant (2.12)

∫
cos x L5(x)√

1− cos x
dx =

=
1

12
√

1− cos x
sin

x

2

[
1920x3Li3

(
e−

ιx
2

)
− 1920x3Li3

(
− e

ιx
2

)
+ 240ι(x2 + 3)x2Li2

(
e−

ιx
2

)
−

−11520ιx2Li4

(
e−

ιx
2

)
−11520ιx2Li4

(
−e

ιx
2

)
+240ι(x4+3x2+1)Li2

(
−e

ιx
2

)
+2880xLi3

(
e−

ιx
2

)
−

−2880xLi3

(
− e

ιx
2

)
− 46080xLi5

(
e−

ιx
2

)
+ 46080xLi5

(
− e

ιx
2

)
− 240ιLi2

(
e

ιx
2

)
−

−5760ιLi4

(
e−

ιx
2

)
− 5760ιLi4

(
− e

ιx
2

)
+ 92160ιLi6

(
e−

ιx
2

)
+ 92160ιLi6

(
− e

ιx
2

)
+

+2ιx6 + 24x5 log
(
1− e−

ιx
2

)
− 24x5 log

(
1 + e

ιx
2

)
+ 48x5 cos

x

2
+ 15ιx4 − 480x4 sin

x

2
+

+120x3 log
(
1−e−

ιx
2

)
−120x3 log

(
1+e

ιx
2

)
−3600x3 cos

x

2
+21600x2 sin

x

2
+120x log

(
1−e

ιx
2

)
−

−120x log
(
1 + e

ιx
2

)
− 173280 sin

x

2
+ 86640x cos

x

2
− 64ιπ6 − 120ιπ4

]
+ Constant (2.13)
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§3.Derivation of the Integrals

Applying the method which is used in ref[11] , one can derive the integrals.

Conclusion

In our work we have established certain indefinite integrals involving Lucas Polynomials
and Hypergeometric function. However, one can establish such type of integrals which are
very useful for different field of engineering and sciences by involving these integrals. Thus we
can only hope that the development presented in this work will stimulate further interest and
research in this important area of classical special functions.
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§1. Introduction and preliminaries

Elliptical Integral

IIn integral calculus, elliptic integrals originally arose in connection with the problem of
giving the arc length of an ellipse. They were first studied by Giulio Fagnano and Leonhard
Euler. Modern mathematics defines an ”elliptic integral” as any function f which can be
expressed in the form

f(x) =
∫ x

c

R
(
t,

√
P (t)

)
dt (1.1)

where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no
repeated roots, and c is a constant.

In general, elliptic integrals cannot be expressed in terms of elementary functions. Excep-
tions to this general rule are when P has repeated roots, or when R(x, y) contains no odd powers
of y. However, with the appropriate reduction formula, every elliptic integral can be brought
into a form that involves integrals over rational functions and the three Legendre canonical
forms (i.e. the elliptic integrals of the first, second and third kind).

Besides the Legendre form , the elliptic integrals may also be expressed in Carlson sym-
metric form. Additional insight into the theory of the elliptic integral may be gained through
the study of the Schwarz-Christoffel mapping. Historically, elliptic functions were discovered
as inverse functions of elliptic integrals.

Incomplete elliptic integrals are functions of two arguments; complete elliptic integrals are
functions of a single argument.

The incomplete elliptic integral of the first kind F is defined as

F (ψ, k) = F (ψ | k2) = F (sinψ; k) =
∫ ψ

0

dθ√
1− k2 sin2 θ

(1.2)

This is the trigonometric form of the integral; substituting t = sin θ, x = sin ψ,one obtains
Jacobi’s form:

F (x; k) =
∫ x

0

dt√
(1− t2)(1− k2t2)

(1.3)
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Equivalently, in terms of the amplitude and modular angle one has:

F (ψ\α) = F (ψ, sinα) =
∫ ψ

0

dθ√
1− (sin θ sinα)2

(1.4)

In this notation, the use of a vertical bar as delimiter indicates that the argument following it is
the ”parameter” (as defined above), while the backslash indicates that it is the modular angle.
The use of a semicolon implies that the argument preceding it is the sine of the amplitude:

F (ψ, sinα) = F (ψ | sin2 α) = F (ψ\α) = F (sinψ; sin α) (1.5)

Incomplete elliptic integral of the second kind E is defined as

E(ψ, k) = E(ψ | k2) = E(sinψ; k) =
√

1− k2 sin2 θ dθ (1.6)

Substituting t = sin θ and x = sin ψ , one obtains Jacobi’s form:

E(x; k) =
∫ x

0

√
1− k2t2√
1− t2

dt (1.7)

Equivalently, in terms of the amplitude and modular angle:

E(ψ\α) = E(ψ, sinα) =
∫ ψ

0

√
1− (sin θ sinα)2 dθ (1.8)

Incomplete elliptic integral of the third kind Π is defined as

Π(n;ψ\α) =
∫ ψ

0

1
1− n sin2 θ

dθ

1− (sin θ sinα)2
(1.9)

or

Π(n;ψ | m) =
∫ sin ψ

0

1
1− nt2

dt

(1−mt2)(1− t2)
(1.10)

The number n is called the characteristic and can take on any value, independently of the other
arguments.

Complete elliptic integral of the first kind is defined as
Elliptic Integrals are said to be ’complete’ when the amplitude ψ = π

2 and therefore x=1.
The complete elliptic integral of the first kind K may thus be defined as

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dt√
(1− t2)(1− k2t2)

(1.11)

or more compactly in terms of the incomplete integral of the first kind as

K(k) = F
(π

2
, k

)
= F (1; k) (1.12)

It can be expressed as a power series

K(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

k2n =
π

2

∞∑
n=0

[
P2n(0)

]2

k2n (1.13)
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where Pn is the Legendre polynomial, which is equivalent to

K(k) =
π

2

[
1 +

(
1
2

)2

k2 +
(

1 . 3
2 . 4

)2

k4 + ......... +
{

(2n− 1)!!
(2n)!!

}2

k2n + ......

]
(1.14)

where n!! denotes the double factorial. In terms of the Gauss hypergeometric function, the
complete elliptic integral of the first kind can be expressed as

K(k) =
π

2 2F1

(1
2
,
1
2
; 1; k2

)
(1.15)

The complete elliptic integral of the first kind is sometimes called the quarter period. It can
most efficiently be computed in terms of the arithmetic-geometric mean:

K(k) =
π
2

agm(1− k, 1 + k)
(1.16)

Complete elliptic integral of the second kind is defined as
The complete elliptic integral of the second kind E is proportional to the circumference of

the ellipse C:
C = 4aE(e)

where a is the semi-major axis, and e is the eccentricity.
E may be defined as

E(k) =
∫ π

2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2√
1− t2

dt (1.17)

or more compactly in terms of the incomplete integral of the second kind as

E(k) = E
(π

2
, k

)
= E(1; k) (1.18)

It can be expressed as a power series

E(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
k2n

1− 2n
(1.19)

which is equivalent to

E(k) =
π

2

[
1−

(
1
2

)2
k2

1
−

(
1 . 3
2 . 4

)2
k4

3
− .........−

{
(2n− 1)!!

(2n)!!

}2
k2n

2n− 1
− ......

]
(1.20)

In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind
can be expressed as

E(k) =
π

2 2F1

(1
2
,−1

2
; 1; k2

)
(1.21)

Complete elliptic integral of the third kind is defined as
The complete elliptic integral of the third kind Π can be defined as

Π(n, k) =
∫ π

2

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
(1.22)
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Generalized Hypergeometric Functions
A generalized hypergeometric function pFq(a1, ...ap; b1, ...bq; z) is a function which can be

defined in the form of a hypergeometric series, i.e., a series for which the ratio of successive
terms can be written

ck+1

ck
=

P (k)
Q(k)

=
(k + a1)(k + a2)...(k + ap)

(k + b1)(K + b2)...(k + bq)(k + 1)
z. (1.23)

Where k + 1 in the denominator is present for historical reasons of notation, and the resulting
generalized hypergeometric function is written

pFq




a1, a2, · · · , ap ;

z

b1, b2, · · · , bq ;


 =

∞∑

k=0

(a1)k(a2)k · · · (ap)kzk

(b1)k(b2)k · · · (bq)kk!
(1.24)

or

pFq




(ap) ;

z

(bq) ;


 ≡ pFq




(aj)
p
j=1 ;

z

(bj)
q
j=1 ;


 =

∞∑

k=0

((ap))kzk

((bq))kk!
(1.25)

where the parameters b1, b2, · · · , bq are neither zero nor negative integers and p, q are non-
negative integers.

The pFq series converges for all finite z if p ≤ q, converges for | z |< 1 if p 6= q +1, diverges
for all z, z 6= 0 if p > q + 1.

The pFq series absolutely converges for | z |= 1 if R(ζ) < 0, conditionally converges for

| z |= 1, z 6= 0 if 0 ≤ R(ζ) < 1, diverges for | z |= 1 , if 1 ≤ R(ζ) , ζ =
p∑

i=1

ai −
q∑

i=0

bi.

The function 2F1(a, b; c; z) corresponding to p = 2, q = 1, is the first hypergeometric
function to be studied (and, in general, arises the most frequently in physical problems), and so is
frequently known as ”the” hypergeometric equation or, more explicitly, Gauss’s hypergeometric
function (Gauss 1812, Barnes 1908). To confuse matters even more, the term ”hypergeometric
function” is less commonly used to mean closed form, and ”hypergeometric series” is sometimes
used to mean hypergeometric function.

The hypergeometric functions are solutions of Gaussian hypergeometric linear differential
equation of second order

z(1− z)y′′ + [c− (a + b + 1)z]y′ − aby = 0 (1.26)

The solution of this equation is

y = A0

[
1 +

ab

1! c
z +

a(a + 1)b(b + 1)
2! c(c + 1)

z2 + · · · · · ·
]

(1.27)

This is the so-called regular solution,denoted

2F1(a, b; c; z) =
[
1 +

ab

1! c
z +

a(a + 1)b(b + 1)
2! c(c + 1)

z2 + · · · · · ·
]

=
∞∑

k=0

(a)k (b)kzk

(c)kk!
(1.28)
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which converges if c is not a negative integer for all of | z |< 1 and on the unit circle | z |= 1 if
R(c− a− b) > 0.

It is known as Gauss hypergeometric function in terms of Pochhammer symbol (a)k or
generalized factorial function.

§2. Main Integrals

∫ √
1 + x−n dx =

nx 2F1

(
1
2 ,− 1

n ; n−1
n ;−x−n

)
− 2x

√
x−n + 1

n− 2
+ Constant (2.1)

If n = 38 then the integral(2.1) becomes

∫ √
1 + x−38 dx =

1
360

√
1 + x−38 x

[19x38
2F1

(
1
2 , 10

19 ; 29
19 ;−x38

)
√

1 + x38
− 20

]
+ Constant (2.2)

If n = 20 then the integral(2.1) becomes

∫ √
1 + x−20 dx =

1
99

√
1 + x−20 x

[10x20
2F1

(
1
2 , 11

20 ; 31
20 ;−x20

)
√

1 + x20
− 11

]
+ Constant (2.3)

If n = 10 then the integral(2.1) becomes

∫ √
1 + x−10 dx =

1
24

√
1 + x−10 x

[5x10
2F1

(
1
2 , 3

5 ; 8
5 ;−x10

)
√

1 + x10
− 6

]
+ Constant (2.4)

∫ √
1 + xn dx =

nx 2F1

(
1
2 , 1

n ; n+1
n ;−xn

)
+ 2x

√
xn + 1

n + 2
+ Constant (2.5)

If n = 3 then the integral(2.5) becomes
∫ √

1 + x3 dx =
1
5

x

[
3 2F1

(1
3
,
1
2
;
4
3
;−x3

)
+ 2

√
1 + x3

]
+ Constant (2.6)

If n = 5 then the integral(2.5) becomes
∫ √

1 + x5 dx =
1
7

x

[
5 2F1

(1
5
,
1
2
;
6
5
;−x5

)
+ 2

√
1 + x5

]
+ Constant (2.7)

If n = 6 then the integral(2.5) becomes
∫ √

1 + x6 dx =

=

2(x6 + 1)x2 +
3

3
4 (x4−x2+1)

√
x4+x2

[(1+
√

3)x2+1]2
F

(
cos−1

(
1−(−1+

√
3)x2

(1+
√

3)x2+1

)∣∣∣ 1
4 (2+

√
3)

)

√
x4−x2+1

[(1+
√

3)x2+1]2

8x
√

x6 + 1
+ Constant (2.8)
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If n = 7 then the integral(2.5) becomes
∫ √

1 + x7 dx =
1
9

x

[
7 2F1

(1
7
,
1
2
;
8
7
;−x7

)
+ 2

√
1 + x7

]
+ Constant (2.8)

If n = 17 then the integral(2.5) becomes
∫ √

1 + x17 dx =
1
19

x

[
17 2F1

( 1
17

,
1
2
;
18
17

;−x17
)

+ 2
√

1 + x17

]
+ Constant (2.9)

∫
1√

1 + xn
dx = x 2F1

(1
2
,
1
n

;
n + 1

n
;−xn

)
+ Constant (2.10)

If n = 3 then the integral(2.10) becomes
∫

1√
1 + x3

dx =

=
1

4
√

3
√

1 + x3
2 6
√−1

√
− 6
√−1

(
x + (−1)

2
3

)√
(−1)

2
3 x2 + 3

√−1 x + 1 ×

× F

(
sin−1

(√
−(−1)

5
6 (x + 1)

4
√

3

)∣∣∣∣ 3
√−1

)
+ Constant (2.11)

If n = 11 then the integral(2.10) becomes
∫

1√
1 + x11

dx = x 2F1

( 1
11

,
1
2
;
12
11

;−x11
)

+ Constant (2.12)

If n = 14 then the integral(2.10) becomes
∫

1√
1 + x14

dx = x 2F1

( 1
14

,
1
2
;
15
14

;−x14
)

+ Constant (2.13)

∫
1√

1 + x−n
dx = x 2F1

(1
2
,− 1

n
;
n− 1

n
;−x−n

)
+ Constant (2.14)

If n = 8 then the integral(2.14) becomes

∫
1√

1 + x−8
dx =

x
√

1 + x8
2F1

(
1
2 , 5

8 ; 13
8 ;−x8

)

5
√

1 + x−8
+ Constant (2.15)

If n = 16 then the integral(2.14) becomes

∫
1√

1 + x−16
dx =

x
√

1 + x16
2F1

(
1
2 , 9

16 ; 25
16 ;−x16

)

9
√

1 + x−16
+ Constant (2.16)
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§1. Introduction and preliminaries

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akzk, (1)

which are analytic in the open unit disc U = {z : z ∈ C|z| < 1}. Dn
λ , the operator introduced

by authors [3] and is given by

D0
λf(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z), λ ≥ 0

D1
λf(z) = (1− λ)zf ′(z) + λz(zf ′(z))′,

Dn
λf(z) = Dλ

(
z(zn−1f(z))n

n!

)
, (n ∈ N0 = NU{0}).

If the function f is given by (1), then we write

Dn
λf(z) = z +

∞∑

k=2

[1 + λ(k − 1)]δ(n, k)akzk
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where

δ(n, k) =


 k + n− 1

n


 =

k−2∏

j=2

(j + n)

(k − 1)!
, k ≥ 2.

The hadamard product(or convolution) of two functions f(z) given by (1) and

g(z) = z +
∞∑

k=2

akzk

is defined by

(f ∗ g)(z) = z +
∞∑

k=2

akbkzk.

The class
Sγ(z) =

z

(1− z)2(1−γ)
, (z ∈ U ; 0 ≤ γ < 1),

is the well-known extremal function for S∗(γ). Setting

ck(γ) =

k∏
n=2

(n− 2γ)

(k − 1)!
, (k ∈ N \ 1; N := 1, 2, 3, ...),

Sγ(z) can be written in the form:

Sγ(z) = z +
∞∑

k=2

ck(γ)zk.

Then we can see that ck(γ) is an decreasing function in γ (0 ≤ γ < 1) and that

lim
k→∞

ck(γ) =





∞,
(
γ < 1

2

)
,

1,
(
γ = 1

2

)
,

0,
(
γ > 1

2

)
.

Let Sm,n,λ,γ(α) the subclass of A consisting of function f which satisfy the inequality

Re

(
Dm

λ (f ∗ Sγ(z))
Dn

λ(f ∗ Sγ(z))

)
> α, (z ∈ U)

for some 0 ≤ α < 1, m ∈ N, n ∈ N0.

§2. Coefficient Estimate

Theorem 2.1. Let f(z) ∈ A satisfies

∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)|ak| ≤ 2(1− α). (2)
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where

ψ(m,n, k, λ, α)ck(γ) = [1 + λ(k − 1)]ck(γ)

× {|δ(m, k)− (1 + α)δ(n, k)|+ [δ(m, k) + (1− α)δ(n, k)]}
(3)

for some α (0 ≤ α < 1), m ∈ N, n ∈ N0, then f(z) ∈ Sm,n,λ,γ(α).

Proof. Suppose (2) is true for α (0 ≤ α < 1), m ∈ N, n ∈ N0, and λ ≥ 0. For f(z) ∈ A defined
the function F (z) by

F (z) =
(

Dm
λ (f ∗ Sγ(z))

Dn
λ(f ∗ Sγ(z))

)
− α

It is sufficient to show that ∣∣∣∣
F (z)− 1
F (z) + 1

∣∣∣∣ < 1, (z ∈ U). (4)

Note that

∣∣∣∣
F (z)− 1
F (z) + 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣

Dm
λ (f ∗ Sγ(z))

Dn
λ(f ∗ Sγ(z))

− α− 1

Dm
λ (f ∗ Sγ(z))

Dn
λ(f ∗ Sγ(z))

− α + 1

∣∣∣∣∣∣∣∣

=
∣∣∣∣
Dm

λ (f ∗ Sγ(z))− (1 + α)Dn
λ(f ∗ Sγ(z))

Dm
λ (f ∗ Sγ(z))− (1− α)Dn

λ(f ∗ Sγ(z))

∣∣∣∣ .

Therefore
∣∣∣∣
F (z)− 1
F (z) + 1

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

α +
∞∑

k=2

[1 + λ(k − 1)]ck(γ)[δ(m, k)− (1 + α)δ(n, k)]akzk−1

(2− α)−
∞∑

k=2

[1 + λ(k − 1)]ck(γ)[δ(m, k) + (1− α)δ(n, k)]akzk−1

∣∣∣∣∣∣∣∣∣∣

=

α +
∞∑

k=2

|[1 + λ(k − 1)]ck(γ)[δ(m, k)− (1 + α)δ(n, k)]||ak||zk−1|

(2− α)− |
∞∑

k=2

[1 + λ(k − 1)]ck(γ)[δ(m, k) + (1− α)δ(n, k)]||ak||zk−1|

=

α +
∞∑

k=2

|[1 + λ(k − 1)]ck(γ)[δ(m, k)− (1 + α)δ(n, k)]||ak|

(2− α)− |
∞∑

k=2

[1 + λ(k − 1)]ck(γ)[δ(m, k) + (1− α)δ(n, k)]||ak|
.

This expression is bounded above by 1, using (4)

α +
∞∑

k=2

|[1 + λ(k − 1)]ck(γ)[δ(m, k)− (1 + α)δ(n, k)]||ak|

≤ (2− α)− |
∞∑

k=2

[1 + λ(k − 1)]ck(γ)[δ(m, k) + (1− α)δ(n, k)]||ak|.
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which is equivalent to condition (2).
This completes the proof of Theorem 2.1.

Now derive the coefficient of inequalities for f(z) belonging to the class Sm,n,λ,γ(α).

Theorem 2.2. If f(z) ∈ Sm,n,λ,γ(α), then for k ≥ 2,

|aj | ≤
2(1− α)

j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k) |aj−k|

[1 + λ(j − 1)]cj(γ)|δ(m, j)− δ(n, j)|

Proof. Define the function φ(z) by

φ(z) =
1

1− α

(
Dm

λ (f ∗ Sγ(z))
Dn

λ(f ∗ Sγ(z))

)
= 1 +

∞∑

k=1

Ckzk

Since φ(z) is Caratheodory function,

|Ck| ≤ 2, (k = 1, 2, 3, ...)

The definition of φ(z) implies that

1
1− α

(Dm
λ (f ∗ Sγ(z))−Dn

λ(f ∗ Sγ(z))) = Dn
λf(z)

(
1 +

∞∑

k=1

Ckzk

)

We have

1
1− α

(Dm
λ (f ∗ Sγ(z))− αDn

λ(f ∗ Sγ(z)))

= z + (1 + λ)
[
c2(γ)

δ(m, 2)− αδ(n, 2)
1− α

]
a2z

2

+ (1 + 2λ)
[
c3(γ)

δ(m, 3)− αδ(n, 3)
1− α

]
a3z

3

+ ...

+ [1 + λ(j − 1)]
[
cj(γ)

δ(m, j)− αδ(n, j)
1− α

]
ajz

j + ...

(5)

. Also

Dn
λ(f ∗ Sγ(z))

(
1 +

∞∑

k=1

Ckzk

)

=

(
z +

∞∑

k=1

[1 + λ(k − 1)]ck(γ)akzk

)
(1 + C1z + C2z

2 + ... + Cjz
j + ...)

(6)
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From (5) and (6)

z + (1 + λ)
[
δ(m, 2)− αδ(n, 2)

1− α

]
c2(γ)a2z

2

+ (1 + 2λ)
[
δ(m, 3)− αδ(n, 3)

1− α

]
c3(γ)a3z

3 + ...

+ [1 + λ(j − 1)]
[
δ(m, j)− αδ(n, j)

1− α

]
cj(γ)ajz

j + ...

=

(
z +

∞∑

k=1

[1 + λ(k − 1)]ck(γ)δ(m, k)akzk

)

× (1 + C1z + C2z
2 + ... + Cjz

j + ...)

Consider coefficient of zj of both sides in the above equality, then

[1 + λ(j − 1)]cj(γ)
[
δ(m, j)− αδ(n, j)

1− α

]
aj = [1 + λ(j − 1)]cj(γ)δ(n, j)aj

+
j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k)aj−kCk

That is

[1 + λ(j − 1)]cj(γ)
[
δ(m, j)− αδ(n, j)

1− α
− δ(n, j)

]
aj

=
j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k)aj−kCk

(7)

Therefore

|aj | = 1− α

[1 + λ(j − 1)]cj(γ)|[δ(m, j)− δ(n, j)]|×∣∣∣∣∣
j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k)aj−kCk

∣∣∣∣∣

≤
(1− α)

j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k)|aj−k||Ck|

[1 + λ(j − 1)]cj(γ)|δ(m, j)− δ(n, j)|

(8)

i.e.

|aj | ≤
2(1− α)

j−1∑

k=1

[1 + λ(j − k − 1)]cj−k(γ)δ(n, j − k) |aj−k|

[1 + λ(j − 1)]cj(γ)|δ(m, j)− δ(n, j)|

Corollary 2.1. If the function f(z) is in the class Sm,n,λ,γ(α) then

ak <
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
. (9)
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The result (9) is sharp for the function f(z) of the form

f(z) = z +
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
zk. (10)

where ψ(m,n, k, λ, α)ck(γ) given in equation (3).

§3. Extreme Point

In view of Theorem 2.1, we now introduce the subclass S̃m,n,λ,γ(α) ⊂ Sm,n,λ,γ(α) which
consist of function

f(z) = z +
∞∑

k=1

akzk, (ak ≥ 0)

whose Taylor-Maclaurin coefficients satisfy inequality (2). Determining extreme points of the
class S̃m,n,λ,γ(α).

Theorem 4.1. Let f1(z) = z and

fk(z) = z +
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
zk, for k = 2, 3 . . . ,

where ψ(m,n, k, λ, α)ck(γ) is given by (3). Then f(z) ∈ S̃m,n,λ,γ(α), if and only if f(z) can be
expressed in the form,

f(z) =
∞∑

k=1

ηkfk(z),

where

ηk ≥ 0 for n ∈ N = 1, 2, 3, ... and
∞∑

k=1

ηk = 1.

Proof. Suppose that,

f(z) =
∞∑

k=1

ηkfk(z) = z +
∞∑

k=2

2(1− α)
ψ(m,n, k, λ, α)ck(γ)

ηkzk. (11)

Then,

∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
ηk = 2(1− α)

∞∑

k=2

ηk

= 2(1− α)(1− η1)

≤ 2(1− α).

which shows that f satisfies condition (2) and therefore, f(z) ∈ S̃m,n,λ,γ(α).
Conversely, suppose that f(z) ∈ S̃m,n,λ,γ(α). Thus

ak ≤ 2(1− α)
ψ(m,n, k, λ, α)ck(γ)

.
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We may set

ηk =
ψ(m,n, k, λ, α)ck(γ)

2(1− α)
ak

and

η1 = 1−
∞∑

k=2

ηk

.
Then we obtain

f(z) =
∞∑

k=2

ηkfk(z),

which completes the proof of Theorem 4.1

§4. Closure Theorem

Theorem 4.1. Let fj(z) be defined as,

fj(z) = z +
∞∑

k=2

ak,jz
k, ak,j ≥ 0, j = 1, 2, 3 . . . m

belong to the class S̃m,n,λ,γ(α). Then the function,

h(z) =
1
m

m∑

j=1

fj(z) = z +
1
m

∞∑

k=2




m∑

j=1

ak,j


 zk

is also belongs to the class S̃m,n,λ,γ(α).

Proof. Since fj(z) ∈ S̃m,n,λ,γ(α), in view of Theorem 2.1, we have,

∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)ak,j

2(1− α)
≤ 1, j = 1, 2, 3 . . .m. (12)

Now
1
m

m∑

j=1

fj(z) = z − 1
m

m∑

j=1

( ∞∑

k=2

ak

)
zk = z −

∞∑
n=2

ekzk,

where

ek =
1
m

m∑

j=1

ak,j ≤ 1.

Notice that,
∞∑

k=2

[ψ(m,n, k, λ, α)ck(γ)]
2(1− α)

1
m

m∑

j=1

ak,j ≤ 1, using(12).

Thus h(z) ∈ S̃m,n,λ,γ(α).
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§5. Growth and Distortion Theorem

Theorem 5.1. If the function f(z) defined by (1) is in the class Sm,n,λ,γ(α), 0 ≤ γ <

1, 0 ≤ α < 1 and either 0 ≤ γ ≤ 5
6 or |z| ≤ 3

4 then,

|f(z)| ≥ max

{
0, |z| − (1− α)

ψ(m,n, 2, λ, α)(1− γ)
|z|2

}

and
|f(z)| ≤ |z|+ (1− α)

ψ(m,n, 2, λ, α)(1− γ)
|z|2 .

The bounds are sharp.

Proof. By virtue of the theorem , we note that

|f(z)| ≥ max

{
0, |z| − max

n∈N−{1}
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
|z|k

}

and
|f(z)| ≤ |z|+ max

n∈N−{1}
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
|z|k , for z ∈ U .

Hence it suffices to deduce that

G(m,n, k, λ, α, |z|) =
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
|z|k

is a decreasing function of k, (k ≥ 2). Since

ck+1(γ) =
k + 1− 2γ

k
ck(γ).

We can see that, for |z| 6= 0,

G(m,n, k, λ, α, |z|) ≥ G(m,n, k + 1, λ, α, |z|)

if and only if
H(γ, k, |z|) = (k + 1)(k + 1− 2γ)− k2 |z| ≥ 0.

It is easy to see that H(γ, k, |z|) is a decreasing function of γ for fixed |z|. Consequently it
follows that

H(γ, k, |z|) ≥ H(
5
6
, k, |z|) = k2(1− |z|) +

1
3
(k − 2) ≥ 0,

for 0 ≤ γ ≤ 5
6 , z ∈ U and k ≥ 2.

Further, since H(γ, k, |z|) is decreasing in |z| and increasing in k, we obtain that

H(γ, k, |z|) > H(1, k, |z|) ≥ H(1, 2,
3
4
),

for 0 ≤ γ ≤ 1, |z| ≤ 3
4 and k ≥ 2. Thus

max
n∈N−{1}

G(m,n, k, λ, α, |z|)

is attained at k = 2, and the proof is complete.
Finally, since the function fk(z), (k ≥ 0) defined in theorem are the extreme points of the
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class S̃m,n,λ,γ(α), we can see that the bound of the theorem are attained by the function f2(z)
is

f2(z) = z +
(1− α)

ψ(m,n, 2, λ, α)(1− γ)
z2. (13)

Corollary 5.1 Let the function f(z) defined by (1) be in the class Sm,n,λ,γ(α), with
0 ≤ γ ≤ 5

6 and 0 ≤ β < 1. Then f(z) is included in a disk with its center at the origin and
radius r given by

r = 1 +
(1− α)

ψ(m,n, 2, λ, α)(1− γ)

Remark 5.1 The extremal function f(z) given by (13) is equal to zero when

z = − (1− γ)ψ(m,n, 2, λ, α)
1− α)

.

Letting z → 1−, it follows that

α → 1− α + ψ(m,n, 2, λ, α)
ψ(m,n, 2, λ, α)

.

We thus have
|f(z)| ≥ |z| − (1− α)

ψ(m,n, 2, λ, α)(1− γ)
|z|2 .

for all z ∈ U if and only if

0 ≤ α ≤ 1− α + ψ(m,n, 2, λ, α)
ψ(m,n, 2, λ, α)

.

Theorem 5.2. If the function f(z) defined by (1) is in the class Sm,n,λ,γ(α), 0 ≤ γ <

1, 0 ≤ α < 1 and either 0 ≤ γ ≤ 1
2 or |z| ≤ 1

2 then,

1− (1− α)
ψ(m,n, 2, λ, α)(1− γ)

|z| ≤ |f ′(z)| ≤ 1 +
(1− α)

ψ(m,n, 2, λ, α)(1− γ)
|z|

The bounds are sharp.

Proof. By virtue of the theorem , we note that

|f ′(z)| ≥ 1− max
n∈N−{1}

2(1− α)
ψ(m,n, k, λ, α)ck(γ)

|z|k−1

and
|f ′(z)| ≤ 1 + max

n∈N−{1}
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
|z|k−1

.

Hence it suffices to deduce that

G1(m,n, k, λ, α, |z|) =
2(1− α)

ψ(m,n, k, λ, α)ck(γ)
|z|k−1
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is a decreasing function of k, (k ≥ 2). Since

ck+1(γ) =
k + 1− 2γ

k
ck(γ).

We can see that, for |z| 6= 0,

G1(m,n, k, λ, α, |z|) ≥ G1(m,n, k + 1, λ, α, |z|)

if and only if
H1(γ, k, |z|) = k + 1− 2γ − k |z| ≥ 0.

Since H1(γ, k, |z|) is a decreasing function in |z|. It follows that

H1(γ, k, |z|) ≥ H1(γ, n, 1) = 1− 2α ≥ 0, for 0 ≤ γ ≤ 1
2
.

Further, since H1(γ, k, |z|) is decreasing in α, we have

H1(γ, k, |z|) ≥ H1(1, k, |z|) = k − 1− k |z| ≥ H1(1, k,
1
2
) ≥ H1(1, 2,

1
2
) = 0,

for |z| ≤ 1
2 . Finally, the bound of the theorem are attained by the function f2(z) given by

(13).

§6. Convolution Theorem

Theorem 6.1. Let the function f(z) and g(z) defined by,

f(z) = z +
∞∑

k=2

akzk (14)

and

g(z) = z +
∞∑

k=2

bkzk (15)

belong to the class S̃m,n,λ,γ(α) with 0 ≤ λ < 1, −1 < α ≤ 1. Then (f ∗g)(z) ∈ S̃m,n,λ(ξ) where,

ξ ≤ 1− 4(1− α)2[1 + λ(k − 1)][δ(m, k)− δ(n, k)]
ψ2(m,n, k, λ, α)ck(γ)

,

and the result is sharp for,

f(z) = z − 2(1− α)
ψ(m,n, k, λ, α)ck(γ)

zk

Proof. f(z) and g(z) ∈ S̃m,n,λ,γ(α) and so we have,

∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

ak ≤ 1. (16)
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∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

bk ≤ 1. (17)

By applying Cauchy-Schwarz inequity to (16) and (17), we have

∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

√
akbk ≤ 1. (18)

We need to find smallest number ξ such that

∞∑

k=2

ψ(m,n, k, λ, ξ)ck(γ)
2(1− ξ)

akbk ≤ 1. (19)

Thus from (18) and (19)

ψ(m,n, k, λ, ξ)ck(γ)
2(1− ξ)

akbk ≤ ψ(m,n, k, λ, α)ck(γ)
2(1− α)

√
akbk (20)

That is √
akbk ≤ (1− ξ)ψ(m,n, k, λ, α)

(1− α)ψ(m,n, k, λ, ξ)
(21)

From (18)
√

akbk ≤ 2(1− α)
ψ(m,n, k, λ, α)ck(γ)

. (22)

Therefore in view of (21) and (22)

2(1− α)
ψ(m,n, k, λ, α)ck(γ)

≤ (1− ξ)ψ(m,n, k, λ, α)
(1− α)ψ(m,n, k, λ, ξ)

which simplifies to

ξ ≤ 1− 2(1− α)2[1 + λ(k − 1)]ck(γ)δ(m, k) + δ(m, k)
ψ2(m,n, k, λ, α)ck(γ) + 2(1− α)2[1 + λ(k − 1)]ck(γ)δ(n, k) + δ(n, k)

.

Since
A(k) = 1− 2(1− α)2[1 + λ(k − 1)]ck(γ)δ(m, k) + δ(m, k)

ψ2(m, n, k, λ, α)ck(γ) + 2(1− α)2[1 + λ(k − 1)]ck(γ)δ(n, k) + δ(n, k)
. (23)

is an increasing function of n (n ≥ 1) for 0 ≤ γ ≤ 1
2 , 0 ≤ α < 1, letting k = 2 in (23), we

obtain

A(2) = 1− 4(1− α)2[1 + λ)](1− γ)δ(m, 2) + 2δ(m, 2)
ψ2(m,n, 2, λ, α)(1− γ) + 4(1− α)2[1 + λ](1− γ)δ(n, 2) + δ(n, 2)

. (24)

This completes the proof.

§7. Inclusion Properties

Theorem 7.1. Let the function f(z) and g(z) defined by (14) and (15) be in the class
S̃m,n,λ,γ(α). Then the function h(z) defined by,

h(z) = z +
∞∑

k=2

(a2
k + b2

k)zk is the class S̃m,n,λ,γ(α)
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where,

ρ ≤ 1− (1− α)[1 + λ(k − 1)]ck(γ)δ(m, k) + δ(m, k)
2ψ(m,n, k, λ, α)ck(γ)− (1− α)[1 + λ(k − 1)]ck(γ)δ(n, k)− δ(n, k)

. (25)

Proof. Now, f(z) and g(z) ∈ S̃m,n,λ,γ(α) and thus we have

∞∑

k=2

[
ψ(m,n, k, λ, α)ck(γ)

2(1− α)

]2

a2
k ≤

[ ∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

ak

]2

≤ 1 (26)

and
∞∑

k=2

[
ψ(m,n, k, λ, α)ck(γ)

2(1− α)

]2

b2
k ≤

[ ∞∑

k=2

ψ(m,n, k, λ, α)ck(γ)
2(1− α)

bk

]2

≤ 1. (27)

Adding (26) and (27), we get,

∞∑

k=2

1
2

[
ψ(m,n, k, λ, α)ck(γ)

2(1− α)

]2

(a2
k + b2

k) ≤ 1. (28)

We must show that h ∈ S̃m,n,λ,γ(α), that is,

∞∑

k=2

ψ(m,n, k, λ, ρ)ck(γ)
2(1− ρ)

(a2
k + b2

k) ≤ 1. (29)

In view of (28) and (29),

ψ(m,n, k, λ, ρ)ck(γ)
1− ρ

≤
{

1
2

[ψ(m,n, k, λ, α)ck(γ)]
(1− α)

}

Simplifying, we get

ρ ≤ 1− 2(1− α){δ(m, k) + [1 + λ(k − 1)]ck(γ)[δ(m, k)− 2δ(n, k)]}
ψ(m,n, k, λ, α)ck(γ) + 2(1− α)[δ(n, k)− [1 + λ(k − 1)]ck(γ)δ(n, k)]

.

§8. Integral Means Inequalities for Fractional Derivative

We will make use of the following definitions of fractional derivatives by Owa [8] and
Srivastava and Owa [13,14].

Definition 8.1 The fractional derivative of order λ is defined, for a function f(z), by

Dλ
z f(z) =

1
Γ(1− λ)

d

dz

∫ z

0

f(ζ)
(z − ζ)λ

dζ (0 ≤ λ < 1) (30)

where the function f(z) is analytic in a simply-connected region of the complex z-plane con-
taining the origin and the multiplicity of (z − ζ)−1 is removed by requiring log(z − ζ) to be real
when z − ζ > 0.
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Definition 8.2 Under the hypothesis of Definition (8.1), the fractional derivative of order
p + λ is defined, for a function f(z), by

Dp+λ
z f(z) =

dp

dzp
Dλ

z f(z) (0 ≤ λ < 1, p ∈ N0 = NU0). (31)

It readily follows from (30) in Definition that

Dλ
z zk =

Γ(k + 1)
Γ(k − λ + 1)

zk−λ (0 ≤ λ < 1). (32)

We need the concept of subordination between analytic functions and a subordination
theorem of Littlewood [5] in our investigation.

Definition 8.3 For two functions f and g analytic in U , we say that the function f is
subordinate to g in U , denoted by f ≺ g, if their exist a Schwarz function w(z), analytic in U with
w(0) = 0 and |w(z)| < |z| < 1(z ∈ U) , such that f(z) = g(w(z))(z ∈ U). In particular, if the
function g is univalent inU , the above subordination is equivalent to f(0) = g(0), f(U) = g(U).
The Littlewood’s subordination theorem which we will use in our investigation to obtain the
integral mean inequality.

Lemma 8.1 If the functions f(z) and g(z) are analytic in U , with f(z) ≺ g(z) or f(z) ≺
g(z), then ∫ 2π

0

|f(reiθ)|µdθ ≤
∫ 2π

0

|g(reiµ)|ηdµ (33)

where µ > 0, z = reiµ and 0 < r < 1. Strict inequality holds for 0 < r < 1 unless f is constant
or w(z) = αz, |α| = 1

Theorem 8.1. Let f(z) ∈ S̃m,n,λ,γ(α) and suppose that

∞∑

k=2

(k − p)p+1ak ≤ 2(1− α)Γ(k + 1)Γ(3− δ − p)
ψ(m,n, k, λ, ρ)ck(γ)(k + 1− δ − p)Γ(2− p)

(34)

for some k ≥ p, 0 ≤ δ < 1 and (k − p)p−1 denote the Pochhammer symbol defined by

(k − p)p+1 = (k − p)k − p− 1...k.

Also let the function

fk(z) = z +
2(1− α)

ψ(m,n, k, λ, ρ)ck(γ)
zk, k ≥ 2. (35)

If their exist an analytic function w(z) given by

(w(z))k−1 =
ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)

2(1− α)Γ(k + 1)

∞∑

k=2

(k − p)p+1
Γ(k − p)akzk−1

Γ(j + 1− δ − p)
,

(k ≥ p). Then for z = reiθ and 0 < r < 1

∫ 2π

0

|Dp+δ
z f(z)|µdθ ≤

∫ 2π

0

|Dp+δ
z fk(z)|µdθ, (0 ≤ δ < 1, µ > 0). (36)
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Proof. By virtue of the fractional derivative formula (32) and definition , we find from (1) that

Dp+λ
z f(z) =

z1−δ−p

Γ(2 + δ − p)

{
1 +

∞∑

k=2

Γ(2− δ − p)Γ(k + 1)
Γ(k + 1− δ − p)

}

=
z1−δ−p

Γ(2− δ − p)

{
1 +

∞∑

k=2

Γ(2− δ − p)(k + 1)p+1φ(k)akzk−1

}

where
φ(k) =

Γ(k − p)
Γ(k + 1− δ − p)

(0 ≤ δ < 1, k ≥ p).

Since φ(k) is a decreasing function of j, we have

0 < φ(k) ≤ φ(2) =
Γ(2− p)

Γ(3− δ − p)
.

Similarly, from (31) and (34), we get

Dp+λ
z f(z) =

z1−δ−p

Γ(2− δ − p)

{
1 +

2(1− α)Γ(2− δ − p)Γ(k + 1)zk−1

ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)

}
.

For z = reiθ, 0 < r < 1, we must show that

∫ 2π

0

∣∣∣∣∣1 +
∞∑

k=2

Γ(2− δ − p)(k − p)p+1φ(k)ajz
k−1

∣∣∣∣∣

µ

dθ

≤
∫ 2π

0

∣∣∣∣1 +
2(1− α)Γ(2− δ − p)Γ(k + 1)zk−1

ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)

∣∣∣∣
µ

dθ, (µ > 0).

(37)

Thus by applying Littlewood’s subordination theorem, it would be suffice to show that

1 +
∞∑

k=2

Γ(2− δ − p)(k − p)p+1φ(k)ajz
k−1 ≺ 1 +

2(1− α)Γ(2− δ − p)Γ(k + 1)zk−1

ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)
.

By setting

1 +
∞∑

k=2

Γ(2− δ − p)(k − p)p+1φ(k)ajz
k−1

= 1 +
2(1− α)Γ(2− δ − p)Γ(k + 1)zk−1

ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)
(w(z))k−1.

(38)

(w(z))k−1 =
ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)

2(1− α)Γ(k + 1)

∞∑

k=2

(k − p)p+1φ(k)akzk−1.

which readily yields w(0) = 0. Further, we prove that the analytic function w(z) satisfies
|w(z)| < 1, z ∈ U . We know that

|w(z)|k−1 ≤
∣∣∣∣∣
ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)

2(1− α)Γ(k + 1)

∞∑

k=2

(k − p)p+1φ(k)akzk−1

∣∣∣∣∣

≤ ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)
2(1− α)Γ(k + 1)

∞∑

k=2

(k − p)p+1φ(k)ak|zk−1|
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≤ |z|ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ − p)
2(1− α)Γ(k + 1)

∞∑

k=2

(k − p)p+1φ(k)ak

≤ |z| < 1

By means of the hypothesis (2) of Theorem.
As special case p = 0, Theorem 8.1 readily yields.

Corollary 8.1 Let f(z) ∈ S̃m,n,λ,γ(α) and suppose that

∞∑

k=2

kak ≤ 2(1− α)Γ(k + 1)Γ(3− δ)
ψ(m,n, k, λ, ρ)ck(γ)(k + 1− δ)

.

For some j ≥ 0, 0 ≤ δ < 1. Also let the function

fk(z) = z +
2(k − α)

ψ(m,n, k, λ, ρ)ck(γ)
zk, k ≥ 2.

If their exist an analytic function w(z) given by

(w(z))k−1 =
ψ(m,n, k, λ, ρ)ck(γ)Γ(k + 1− δ)

2(1− α)Γ(k + 1)

∞∑

k=2

Γ(k + p)akzk−1

Γ(k + 1− δ)
,

Then for z = reiθ and 0 < r < 1
∫ 2π

0

|Dδ
zf(z)|µdθ ≤

∫ 2π

0

|Dδ
zfk(z)|µdθ, (0 ≤ δ < 1, µ > 0).
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27: 1429–1436.

[3] K. Al-Shaqsi and M. Darus. Subclass of close-to-convex functions. Int. J. Contemp. Math. Sci.,

2007, 2(15): 745–757.

[4] P. L. Duren. Univalent functions. New York: Springer, 1983.

[5] J. E. Littlewood. On inequalities in the theory of functions. Proc. London Math. Soc., 1925, 23(1):

481–519.

[6] S. M. Khairnar and M. More. On certain subclass of analytic functions involving Al-Oboudi

differential operator. J. Inequal. Pure and Appl. Math., 2009, 10(2): Art 57, 11pp.

[7] S. M. Khairnar and M. More. Properties of a class of analytic and univalent functions using

Ruscheweyh derivatives. Int. J. Contemp. Math. Sci., 2008, 3(20): 967–976.

[8] S. Owa. On the distortion theorems I. Kyungpook Math. J., 1978, 18(1): 53–59.

[9] S. Ruscheweyh. New criteria for univalent functions. Proc. Amer. Math. Soc., 1975, 49: 109–115.



82 J. J. Bhamare and S. M. Khairnar No. 2
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§1. Introduction and preliminaries

Continuous functions stands among the most fundamental point in the whole of the Math-
ematical Science. Many different forms of stronger and weaker forms of functions have been
introduced over the years. As a generalization of closed sets, Levine [9] introduced the concept
of generalized closed (briefly g-closed) sets which are weaker than closed sets in topological
spaces. Balachandran et. al. [1] introduced the concept of generalized continuous maps and
generalized irresolute maps in topological spaces and Benchalli et. al. [2], [3], [5] introduced
and studied the concepts of ωα-closed sets, ωα-continuous maps and gωα-continuous maps in
topological spaces. Recently Patil et. al. [15], [16] introduced the concept of generalized star
ωα-closed (briefly g∗ωα-closed) sets and generalized star ωα-spaces (briefly g∗ωα-spaces) in
topological spaces.

In this paper, we introduce the concepts of generalized star ωα-continuous (briefly g∗ωα-
continuous) functions and generalized star ωα-irresolute (briefly g∗ωα-irresolute) maps in topo-
logical spaces. Further, we also introduce g∗ωα-closed maps, g∗ωα-open maps and g∗ωα-closed
graphs in topological spaces.

Throughout this paper spaces (X, τ) and (Y, σ) (or simply X and Y) always denote topo-
logical spaces on which no separation axioms are assumed unless explicitly stated.

Definition 1.1. A subset A of a topological space X is called a
(i) semi-open [8] if A⊆cl(int(A)) and semi-closed if int(cl(A))⊆A.
(iii) α-open [14] if A⊆int(cl(int(A))) and α-closed if cl(int(cl(A)))⊆A.
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Definition 1.2. A subset A of a topological space X is called a
(i) Tg∗ωα-space [16] if every g∗ωα-closed set is closed.
(ii) g∗ωαT -space [16] if every g∗ωα-closed set is ω-closed.
(iii) gωαTg∗ωα-space [16] if every gωα-closed set is g∗ωα-closed.
(iv) Tω-space [17] if every ω-closed set is closed.

Definition 1.3. A subset A of X is said to be a
(i) g-closed [9] (respectively αg-closed [6]) if cl(A) ⊆ U (respectively αcl(A) ⊆ U) whenever A
⊆ U and U is open in X.
(iii) ω-closed [17] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X.
(iv) ωα-closed [2] (resp. gωα-closed [4]) if αcl(A) ⊆ U whenever A ⊆ U and U is ω-open (resp.
ωα-open ) in X.
(v) g∗ωα-closed [15] if cl(A) ⊆ U whenever A ⊆ U and U is ωα-open in X.

Definition 1.4. A function f : X → Y is called a
(i) g-continuous [1] (resp. α-continuous [13], ω-continuous [17], αg-continuous [6], gp-continuous
[11]) if f−1(G) is g-closed (resp. α-closed, ω-closed, αg-closed, gp-closed) set in X for every
closed set G of Y.
(ii) g-closed [12] (resp. ω-closed [17], αg-closed [7]) if f(G) is g-closed (resp. ω-closed, αg-
closed) in Y for every closed set G in X.
(iii) ωα-closed [3] (resp. gωα-closed [5]) if f(G) is ωα-closed (resp. gωα-closed) for every closed
set G in X.
(iv) gωα-continuous [5] if f−1(G) is gωα-closed in X for every closed set G of Y.
(v) ω-irresolute [17] (resp. ωα-irresolute [3]) if f−1(G) is ω-closed (resp. ωα-closed) in X for
each ω-closed (resp. ωα-closed) set G of Y.

Definition 1.5. [16] The intersection of all g∗ωα-closed sets containing a subset A of X
is called g∗ωα-closure of A and is denoted by g∗ωα-cl(A).
If A is g∗ωα-closed then g∗ωα-cl(A)= A.

Definition 1.6. [16] The union of all g∗ωα-open sets contained in a subset A of X is
called g∗ωα-interior of A and is denoted by g∗ωα-int(A).
If A is g∗ωα-open then g∗ωα-int(A) = A.

Definition 1.7. [10] Let f : X → Y be a function. Then
(i) the subset { (x, f(x)) : x ∈ X } of the product space X × Y is called the graph of f and is
denoted by G(f).
(ii) a closed graph, if its graph G(f) is closed set in the product space X × Y. A.

Definition 1.8. [10] A function f : X → Y has a closed graph if for each (x, y) ∈ (X ×
Y) \ G(f) there exist U ∈ O(X, x) and V ∈ O(Y, y) such that f(U) ∩ V = φ.

Definition 1.9. Let x ∈ X and V ⊂ X, then V is called g∗ωα-neighborhood of x in X if
there exists g∗ωα-open set U of X such that x ∈ U ⊆ V.

Theorem 1.10 Let A be a subset of X. Then x ∈ g∗ωα-cl(A) if and only if for any
g∗ωα-nbd Nx of x in X such that Nx∩ A 6= φ.

Proof. Let us assume that there is a g∗ωα-nbd N of x in X such that N ∩ A = φ. There exists
a g∗ωα-open set G of X such that x ∈ G ⊆ N. Therefore we have G ∩ A = φ and so x ∈ X-G.
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Then g∗ωα-cl(A) ∈ X-G and therefore x /∈ g∗ωα-cl(A), which is contradiction to the hypothesis
x ∈ g∗ωα-cl(A). Therefore N ∩ A 6= φ.

Conversely, suppose x ∈ g∗ωα-cl(A). Then there exist a g∗ωα-closed set G of X such that
A ⊆ G and x 6= G.

§2. g∗ωα-continuous functions in topological spaces

In this section, we introduce the concept of generalized star ωα-continuous (briefly g∗ωα-
continuous) functions in topological spaces and study their properties.

Definition 2.1. A function f : X → Y is called g∗ωα-continuous if the inverse image of
every closed set in Y is g∗ωα-closed in X.

Theorem 2.1. Every continuous function is g∗ωα-continuous function.
However the converse of the above Theorem need not be true as seen from the following example.

Example 2.1. X = Y = { a, b, c }, τ = { X, φ, { a }, { a, c }} and σ = { Y, φ, { a,
b }}. Let f : X → Y be the identity function. Then f is g∗ωα-continuous but not continuous,
since for the closed set A = { c } in Y, f−1(c) = { c } is not closed in X.

Reamrk 2.1. The converse of the Theorem 2.1 holds if X is Tg∗ωα space.

Theorem 2.2. Every g∗ωα-continuous function is gωα-continuous, αg-continuous and
gp-continuous.

Proof. Let f : X → Y be a function. Let V be an open set in Y. Since f is g∗ωα-continuous,
f−1(V) is g∗ωα-open in X. Then by Theorem 3.2 [15], f−1(V) is gωα-open in X and from [4]
every gωα-closed set is αg-closed and gp-closed. Therefore f is gωα-continuous, αg-continuous
and gp-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 2.2. X = Y = { a, b, c }, τ = { X, φ, { a }} and σ = { Y, φ, { a }, { a, b }}.
The identity function f : X → Y is gωα-continuous, αg-continuous and gp-continuous but not
g∗ωα-continuous, since for the closed set A = { c } in Y, f−1({ c }) = { c } is not g∗ωα-closed
in X.

Remark 2.2. The concept of g∗ωα-continuous function is independent with ωα-continuous.

Example 2.3. X = Y = { a, b, c }, τ = { X, φ, { a }} and σ = { Y, φ, { a }, { b }, {
a, b }}. Define a function f : X → Y by f(a)=b, f(b)=a and f(c)=c. Then f is ωα-continuous
but not g∗ωα-continuous, since for the closed set A = { b, c } in Y, f−1({ b, c }) = { a, c } is
not g∗ωα-closed in X.

Example 2.4. X = Y = { a, b, c }, τ = { X, φ, { a }, { b, c }} and σ = { Y, φ, { a
}}. Define a function f : X → Y by f(a)=b, f(b)=a and f(c)=c. Then f is g∗ωα-continuous but
not ωα-continuous, since for the closed set A = { b, c } in Y, f−1({ b, c }) = { a, c } is not
ωα-closed in X.

Remark 2.3. The concept of g∗ωα-continuous function is independent with α-continuous.
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Example 2.5. Let X = Y = { a, b, c }, τ = { X, φ, { a }, { a, b }} and σ = { Y, φ, {
a }}. Let f : X → Y be the identity function. Then f is α-continuous but not g∗ωα-continuous,
since for the closed set A = { c } in Y, f−1({ c }) = { c } is not g∗ωα-closed in X.

Example 2.6. Let X = Y = { a, b, c }, τ = { X, φ, { a }, { b, c }} and σ = { Y, φ, { a
}, { b }, { a, b }}. The identity function f : X → Y is g∗ωα-continuous but not α-continuous,
since for the closed set A = { a, c } in Y, f−1({ a, c }) = { a, b } is not α-closed in X.

Theorem 2.3. A function f : X → Y is g∗ωα-continuous if and only if f−1(V) is
g∗ωα-open set in X for every open set V in Y.

Proof. The proof is obvious.

Remark 2.4. The composition of g∗ωα-continuous functions need not be g∗ωα-continuous
as seen from the following example.

Example 2.7. X = Y = Z = { a, b, c }, τ = { X, φ, { a }, { a, b }}, σ = { Y, φ, { a, b
}} and η = { Z, φ, { a }}. Let f : X → Y be the identity function and the function g : Y →
Z is defined by g(a)=b, g(b)=a and g(c)=c. Then f and g are g∗ωα-continuous functions but
gof : X → Z is not g∗ωα-continuous, since for the closed set { b, c } in Z, (gof)−1({ b, c }) =
f−1(g−1({ b, c })) = f−1({ a, c }) = { a, c } is not g∗ωα-closed set in X.

Theorem 2.4. Let f : X → Y and g : Y → Z are any two functions then gof : X → Z
is g∗ωα- continuous if g is continuous and f is g∗ωα-continuous.

Proof. Let f : X → Y is g∗ωα-continuous and g : Y → Z is continuous. Let F be any closed
set in Z. Since g is continuous, g−1(F) is closed in Y. Since f is g∗ωα-continuous f−1(g−1(F)) =
(gof)−1(F) is g∗ωα-closed in X. Hence (gof)−1 is g∗ωα-closed in X. Thus gof is g∗ωα-continuous.

The characterization of g∗ωα-continuous functions.
Theorem 2.5. Following statements are equivalent for the function f : X → Y :

(i) f is g∗ωα-continuous.
(ii) the inverse image of each open set in Y is g∗ωα-open in X.
(iii) the inverse image of each closed set in Y is g∗ωα-closed in X.
(iv) for each x in X, the inverse image of every neighborhood of f(x) is a g∗ωα-neighborhood of
x.
(v) for each x in X and each neighborhood N of f(x) there is a g∗ωα-neighborhood W of x such
that f(W) ⊆ N.
(vi) for each subset A of X, f(g∗ωαcl(A)) ⊆ cl(f(A)).
(vii) for each subset B of Y, g∗ωαcl(f−1(B)) ⊆ f−1(cl(B)).

Proof. (i) → (ii) Follows from the Theorem 2.3.
(ii) → (iii) Follows from the Definition 2.1.
(ii) → (iv) Let x ∈ X and let N be a neighborhood of f(x). Then there exists an open set V in
Y such that f(x) ∈ V ⊆ N. Consequently f−1(V) is g∗ωα-open in X and x ∈ f−1(V)⊆ f−1(N).
Thus f−1(N) is g∗ωα neighborhood of f(x).
(iv) → (v) Let x ∈ X and let N be a neighborhood of f(x). Then by assumption W = f−1(N)
is a g∗ωα neighborhood of x and f(W) = f(f−1(N)) ⊆ N.
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(v) → (vi) Let y ∈ f(g∗ωα-cl(A)) and let N be any neighborhood of y. Then there exists x ∈
X and a g∗ωα neighborhood W of x such that f(x) = y, x ∈ W. Hence x ∈ g∗ωα-cl(A) and
f(W) ⊆ N. By Theorem 1.10, W ∩ A 6= φ and hence f(A) ∩ N 6= φ. Hence y ∈ f(x) ∈ cl(f(A)).
Therefore f(g∗ωα-cl(A)) ⊆ cl(f(A)).
(vi) → (vii) Let B be any subset of Y. Then replacing A by f−1(B) in (vi), we obtain f(g∗ωα-
cl(f−1(B)) ⊆ cl(f(f−1(B))) ⊆ cl(B). That is g∗ωα-cl(f−1(B)) ⊆ f−1(cl(B)).
(vii) → (i) Let G be an open set in Y, then Y-G is closed in Y. Therefore, f−1(Y-G) = f−1(cl(Y-
G)) ⊆ g∗ωα-cl(f−1(Y-G)) = X - (g∗ωα-int(f−1(G)). This implies that g∗ωα-int(f−1(G)) ⊆ X
- f−1(Y-G)) = f−1(G). Thus, g∗ωα-int(f−1(G)) ⊆ f−1(G). But f−1(G) ⊆ g∗ωα-int(f−1(G)) is
always true. Therefore f−1(G) = g∗ωα-int(f−1(G)). This implies f−1(G) is g∗ωα-open set.
Therefore f is g∗ωα-continuous.

§3. g∗ωα-irresolute maps in topological spaces

This section gives the concept of generalized star ωα-irresolute (briefly g∗ωα-irresolute)
maps and their properties in topological spaces.

Definition 3.1. A map f : X → Y is called g∗ωα-irresolute if f−1(V) is g∗ωα-closed in
X for every g∗ωα-closed set V in Y.

Theorem 3.1. A map f : X → Y is g∗ωα-irresolute if and only if for every g∗ωα-open
set A in Y, f−1(A) is g∗ωα-open in X.

Proof. The proof is obvious.

Theorem 3.2. If f : X→ Y is g∗ωα-irresolute then for every subset A of X, f(g∗ωα-cl(A))
⊆ cl(f(A)).

Proof. If A⊆X, then cl(f(A)) which is also g∗ωα-closed in Y. As f is g∗ωα-irresolute, f−1(cl(f(A)))
is g∗ωα-closed in X. Furthermore, A ⊆ f−1(f(A)) ⊆ f−1(cl(f(A))). Therefore by g∗ωα-closure,
g∗ωα-cl(A) ⊆ f−1(cl(f(A))). Consequently, f(g∗ωα-cl(A)) ⊆ f(f−1(cl(f(A)))) ⊆ cl(f(A)).

Theorem 3.3. Every g∗ωα-irresolute map is g∗ωα-continuous.

Proof. Let f : X → Y be a g∗ωα-irresolute map and V be a closed set in Y. Then from [15], V
is g∗ωα-closed in Y. Since f is g∗ωα-irresolute map, f−1(V) is g∗ωα-closed in Y. Therefore f is
g∗ωα-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.1. X = Y = { a, b, c }, τ = { X, φ, { a }, { a, c }} and σ = { Y, φ, { a,
b }}. Define a function f : X → Y by f(a)=a, f(b)=c and f(c)=b. Then f is g∗ωα-continuous
but not g∗ωα-irresolute, since for the g∗ωα-closed set A = { a, c } in Y, f−1({ a, c }) = { a,
b } is not g∗ωα-closed in X.

Theorem 3.4. Let f : X → Y be a closed surjective and g∗ωα-irresolute map. If X is
Tg∗ωα-space then Y is also Tg∗ωα-space.
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Proof. Let A be g∗ωα-closed in Y. Then f−1(A) is g∗ωα-closed in X as f is g∗ωα-irresolute.
Since X is Tg∗ωα-space, then f−1(A) is closed in X. Since f is closed and surjective then A =
f(f−1(A)) is closed in Y. Hence Y is also Tg∗ωα-space.

Theorem 3.5. If f : X → Y is bijective closed and ωα-irresolute then the inverse map
f−1 : Y → X is g∗ωα-irresolute.

Proof. Let G be a g∗ωα-closed set in X. Let (f−1)−1(G) = f(G) ⊆ U where U is ωα-open in
Y.Then G ⊆ f−1(U) holds. Since f−1(U) is ωα-open in X and G is g∗ωα-closed in X, cl(G) ⊆
f−1(U) and hence f(cl(G)) ⊆ U. Since f is closed and cl(G) is closed in X, f(cl(G)) is closed in
Y. So f(cl(G)) is g∗ωα-closed in Y. Therefore cl(f(cl(G)))) ⊆ U, so that cl(f(G)) ⊆ U. Thus f(G)
is g∗ωα-closed in Y. Hence f−1 is g∗ωα-irresolute.

Theorem 3.6. Let f : X → Y and g : Y → Z be two functions. If f is g∗ωα-continuous
and g is g∗ωα-irresolute and Y is Tg∗ωα-space then gof : X → Z is g∗ωα-irresolute.

§4. g∗ωα-closed maps in topological spaces

The concept of g∗ωα-closed maps are introduced and their properties are discussed in this
section.

Definition 4.1. A map f : X → Y is called generalized star ωα-closed (briefly g∗ωα-closed)
map if for each closed set F of X, f(F) is g∗ωα-closed in Y.

Remark 4.1. From the Definition 4.1, every closed map is a g∗ωα-closed map but not
conversely.

Example 4.1. X = Y = { a, b, c }, τ = { X, φ, { a }} and σ = { Y, φ, { a }, { b, c
}}. Let f : X → Y be a map defined as f(a)=b, f(b)=c and f(c)=a. Then f is g∗ωα-closed map
but not closed, since the set A = { b, c } is g∗ωα-closed in X but f({ b, c }) = { a, c } is not
closed in Y.

Remark 4.2. The converse of the Remark 4.1 is true if Y is Tg∗ωα space.
Theorem 4.1: A map f : X → Y is g∗ωα-closed if and only if for any subset S of Y and

for an open set U containing f−1(S) there exists g∗ωα-open set K of Y containing S such that
f−1(K) ⊆ S.

Proof. Suppose f : X → Y is g∗ωα-closed. Let S be a subset of Y and U be an open set of X
containing f−1(S). Then K = Y - f(X - U) is g∗ωα-open set containing S such that f−1(K) ⊆ F.

Conversely, suppose F is closed in X. Then f−1(Y- f(F)) ⊆ X - f−1(f(F)) ⊆ X-F and X - F
is open. Then by hypothesis, there exists g∗ωα-open set K of Y such that Y - f(F) ⊆ K and
f−1(K) ⊆ X - F. Therefore F ⊆ X - f−1(K). Hence Y - K ⊆ f(F) ⊆ f(X - f−1(K)) ⊆ Y - K, which
implies f(F) ⊆ Y - K. Since Y - K is g∗ωα-closed, f(F) is g∗ωα-closed and thus f is g∗ωα-closed
map.

Theorem 4.2. If f : X → Y is g∗ωα-closed and A is a closed subset of X then f|A : A
→ Y is g∗ωα-closed.
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Proof. Let B ⊂ A be a closed set in X. Then f(B) is g∗ωα-closed in Y as f is g∗ωα-closed in Y.
But f(B) = (f | A)(B), so (f | A)(B) is g∗ωα-closed in Y. Therefore f | A is g∗ωα-closed.

Theorem 4.3. Let f : X → Y and g : Y → Z are any two maps such that gof : X → Z
is g∗ωα-closed map:
(i) if f is g∗ωα-continuous and surjective then g is g∗ωα-closed map.
(ii) if g is g∗ωα-irresolute and injective then f is g∗ωα-closed map.

Proof. (i) Let F be closed set of Y. Then f−1(F) is closed set of X as f is continuous. Since gof
is g∗ωα-closed map, (gof)(f−1(F)) = g(F) is g∗ωα-closed in Z. Hence g : Y → Z is g∗ωα-closed
map.
(ii) Let F be closed set in X. Then (gof)(F) is g∗ωα-closed in Z and so g−1(gof)(F) = f(F) is
g∗ωα-closed in Y, since g is g∗ωα-irresolute and injective. Hence f is g∗ωα-closed map.

Theorem 4.4. If A is g∗ωα-closed in X and f : X → Y is bijective ωα-irresolute and
g∗ωα-closed then f(A) is g∗ωα-closed in Y.

Proof. Let cl(A) ⊆ G where G is ωα-open in Y. Since f is ωα-irresolute, f−1(G) is ωα-open set
containing A. Hence cl(A) ⊆ f−1(G) as A is g∗ωα-closed. Again, since f is g∗ωα-closed, f(cl(A))
is g∗ωα-closed contained in the set G, which implies cl(f(cl(A))) ⊆ G and hence cl(f(A)) ⊆ G.
So f(A) is g∗ωα-closed in Y.

Remark 4.3. Composition of g∗ωα-closed maps need not be a g∗ωα-closed map.
Example 4.2. X = Y = Z = { a, b, c }, τ = { X, φ, { a }}, σ = { Y, φ, { b }} and η =

{ Z, φ,{ a }, { a, b }, { a, c }}. Let f : X → Y be the identity map and define a function g : Y
→ Z as g(a)=b, g(b)=a and g(c)=c. Then f and g are g∗ωα-closed maps but their composition
gof is not g∗ωα-closed map, since for the set A = { b, c } of Z, (gof)({ b, c }) = g(f({ b, c }))
= g({ b, c }) = { a, c } is not a g∗ωα-closed in Y.

Theorem 4.5. If f : X → Y and g : Y → Z are closed and g∗ωα-closed maps respectively
then their composition gof : X → Z is g∗ωα-closed.

Theorem 4.6. If f : X → Y is ω-closed and Y is Tω-space [17] then f : X → Y is
g∗ωα-closed map.

Proof. Let F be closed set in X. Then f(F) is ω-closed in Y as f is ω-closed. Since Y is Tω-space,
we have f(F) is closed in Y and hence g∗ωα-closed in Y. Thus f is g∗ωα-closed map.

Theorem 4.7. If f : X → Y is g∗ωα-closed map and g : Y → Z is ωα-irresolute and
closed then gof is g∗ωα-closed map.

Proof. Let A be a closed set in X. Then f(A) is g∗ωα-closed set in Y as f is g∗ωα-closed map.
Since g : Y → Z is ωα-irresolute and closed map, by Theorem 4.5, we have g(f(A)) = (gof)(A)
is g∗ωα-closed in Z. Thus gof is g∗ωα-closed map.

Theorem 4.8. If f : X → Y is g∗ωα-closed map then g∗ωα-cl(f(A)) ⊂ f(cl(A)) for every
subset A of X.
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Proof. Suppose f is g∗ωα-closed and A ⊂ X. Then cl(A) is closed in X and f(cl(A)) is g∗ωα-
closed in Y. We have f(A) ⊂ f(cl(A)). But g∗ωα-cl(f(A)) ⊂ g∗ωα-cl(f(cl(A))). Since f(cl(A))
is g∗ωα-closed in Y, g∗ωα-cl(f(cl(A)))) = f(cl(A)). Hence g∗ωα-cl(f(A)) ⊂ f(cl(A)) for every
subset A of X.

Remark 4.4.The converse of the above theorem need not be true in general as seen from
the following example.

Example 4.3. X = Y = { a, b, c }, τ = { X, φ, { a }, { a, b }, { a, c }} and σ = {
Y, φ, { a }, { a, b }}. Let f : X → Y be the identity map. Then g∗ωα-cl(f(A)) ⊆ f(cl(A)) for
subset A of X but f is not g∗ωα-closed, since f({ b }) = { b } is not g∗ωα-closed in Y.

Theorem 4.9. Let f : X → Y be an open continuous g∗ωα-closed and surjective and X
is regular then Y is also regular.

Proof. Let U be an open set in Y and p ∈ U. Since f is surjective there exist a point x ∈ X
such that f(x) = p. Since X is regular and f is continuous, there is an open set V in X such
that x ∈ V ⊂ cl(V) ⊆ f−1(U). Hence p ∈ f(V) ⊂ f(cl(V)) ⊆ U. Since f is g∗ωα-closed, f(cl(V)) is
g∗ωα-closed set contained in the open set U. By hypothesis cl(f(cl(V))) = f(cl(V)) and cl(f(V))
= cl(f(cl(V))). Therefore, p ∈ f(V) ⊂ cl(f(V)) ⊆ U and f(V) is open as f is open. Hence Y is
regular.

Theorem 4.10. If A is g∗ωα-closed set of X and f : X → Y is g∗ωα-closed and ωα-
irresolute then f(A) is g∗ωα-closed in Y.

Proof. Let A be a g∗ωα-closed in X and G be an ωα-open in Y such that f(A) ⊆ G. Then
f−1(G) is ωα-open in X such that A ⊆ f−1(G). Hence cl(A) ⊆ f−1(G), since A is g∗ωα-closed
and f−1(G) is ωα-open. Again since f is g∗ωα-closed, f(cl(A)) is g∗ωα-closed set contained in
the ωα-open set G. Therefore cl(f(cl(A))) = f(cl(A)) ⊆ G. This implies cl(f(A)) ⊆ G. Hence
f(A) is g∗ωα-closed in Y.

Theorem 4.11. If A is g∗ωα-closed subset of Y and f : X → Y is bijective g∗ωα-
continuous and ωα-open then f−1(A) is g∗ωα-closed in X.

Proof. Let U be an ωα-open set in X such that f−1(A) ⊆ U. Then A ⊆ f(U). Since A is g∗ωα-
closed in Y, cl(A) ⊆ f(U). Since f is bijective and g∗ωα-continuous, f−1(cl(A)) ⊆ f−1(f(U)) =
U. Therefore f−1(cl(A)) ⊆ U. Now cl(f−1(A)) ⊆ cl(f−1(cl(A))) = f−1(cl(A)) ⊆ U. This implies
cl(f−1(A)) ⊆ U. Hence f−1(A) is g∗ωα-closed in X.

Theorem 4.12. If f : X → Y is continuous g∗ωα-closed map from a normal space X on
to a space Y then Y is also normal.

Proof. Let A and B are disjoint closed sets of Y then f−1(A) and f−1(B) are disjoint closed sets
in X. Then there exist disjoint open sets U and V of X such that f−1(A) ⊆ U and f−1(B) ⊆ V.
Since f is g∗ωα-closed, then by Theorem 4.1, there exist disjoint g∗ωα-open sets G and H in Y
such that A ⊆ G, B ⊆ H and f−1(G) ⊆ U, f−1(H) ⊆ V. That is f−1(G) ∩ f−1(H) = φ and hence
G ∩ H = φ. Since A is closed and G is ωα-open, A ⊆ G and by Theorem 4.2 [15], A ⊆ int(G)
and B ⊆ int(H). Therefore int(G) ∩ int(H) = φ. Hence Y is normal.
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Definition 4.2. A map f : X → Y is called g∗ωα-open map if for each open set U of X,
f(U) is g∗ωα-open set in Y.

Theorem 4.13. If a map f : X → Y is g∗ωα-open then f−1(g∗ωα-cl(A)) ⊆ cl(f−1(A))
for each subset A of Y.

Proof. Suppose f is g∗ωα-open then for any A ⊆ Y, f−1(A) ⊆ cl(f−1(A)). By Theorem 4.1 there
exist g∗ωα-closed set K of Y such that A ⊆ K and f−1(K) ⊆ cl(f−1(A)). Since K is g∗ωα-closed
set, f−1(g∗ωα-cl(A)) ⊆ f−1(K) ⊆ cl(f−1(A)). Hence f−1(g∗ωα-cl(A)) ⊆ cl(f−1(A)).
Following example shows that the converse of the above theorem need not be true in general.

Example 4.4. X = Y = { a, b, c }, τ = { X, φ, { a }, { b }, { a, b }} and σ = { Y, φ,
{ a }}. Let f : X → Y be the identity function. Then for each subset A of Y, conclusion of the
above theorem holds but f is not g∗ωα-open map, since for the open set A = { a, b } of X, f({
a, b }) = { a, b } is not g∗ωα-open in X.

Theorem 4.14. If a map f : X → Y is g∗ωα-open, then for each neighborhood U of x in
X there exists a g∗ωα-neighborhood W of f(x) in Y such that W ⊂ f(U).

Proof. Let f : X → Y be g∗ωα-open map. Let x ∈ X and U be an arbitrary neighborhood of
x in X. Then there exists an open set G in X such that x ∈ G ⊆ U. Now f(x) ∈ f(G) ⊆ f(U)
and f(G) is g∗ωα-open set in Y, as f is g∗ωα-open map. Then f(G) is g∗ωα-nbd of each of its
points. Taking f(G) = W, W is g∗ωα-nbd of f(x) in Y such that W ⊆ f(U).

Theorem 4.15. For any function f : X → Y the following statements are equivalent:
(i) f is g∗ωα-open map
(ii) f(int(A)) ⊆ g∗ωα-int(f(A)) for any subset A in X
(iii) for every x ∈ X and for every open set U in X containing x, there exists a g∗ωα-open set
W in Y containing f(x) such that W ⊆ f(U).

Proof. (i) → (ii) Let A be any subset of X. Then g∗ωα-int(A) is open in X and g∗ωα-int(A)
⊆ A. By hypothesis, f(g∗ωα-int(A)) ⊆ f(A). Then g∗ωα-int(f(A)) is the largest g∗ωα-open set
contained in f(A). Therefore f(g∗ωα-int(A)) ⊆ g∗ωα-int(f(A)).
(ii) → (iii) Let x ∈ X and U be an g∗ωα-open set in X containing x. Then there exists g∗ωα-
open set V in X such that x ∈ V ⊆ U. By hypothesis, f(V) = f(g∗ωα-int(V)) ⊆ g∗ωα-int(f(V)).
Then f(V) is g∗ωα-open in Y containing f(x) such that f(V) ⊆ f(U). Take W = f(V) then W
satisfies our requirement.
(iii) → (i) Let U be an g∗ωα-open set in X and y be any point in f(U). By hypothesis there
exists g∗ωα-open set Wy in Y containing y such that Wy ⊆ f(U). Therefore f(U) = ∪{ Wy : y
∈ f(U) }. Therefore f(U) is g∗ωα-open set in Y.

Theorem 4.16. A surjective map f : X → Y is g∗ωα-open if and only if f−1 : Y → X
is g∗ωα-continuous.

Proof. Necessity: Let U be an open set in X then by hypothesis (f−1)−1(U) = f(U) is g∗ωα-open
in Y. Hence f−1 : Y → X is g∗ωα-continuous.
Sufficiency: Let U be an open set in X. Then by hypothesis f(U) = (f−1)−1(U) is g∗ωα-open in
Y. Hence f : X → Y is g∗ωα-open.
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Proposition 4.17. For any bijective function f : X → Y the following statements are
equivalent:
(i) f−1 : Y → X is g∗ωα-continuous
(ii) f is g∗ωα-open map
(iii) f is g∗ωα-closed map.

§5. g∗ωα-homeomorphism in topological spaces

In this section the concept and characterizations of g∗ωα-homeomorphism in topological
spaces are introduced and discussed.

Definition 5.1. A function f: X → Y is called g∗ωα-homeomorphism if f and f−1 are
g∗ωα-continuous.

Remark 5.1. From the Definition 5.1 it is clear that every homeomorphism is g∗ωα-
homeomorphism but not conversely.

Example 5.1. Let X = Y = { a, b, c }, τ = { X, φ, { a, b }} and σ = { Y, φ, { a }, {
b }, { a, b }}. Let f : X → Y be an identity function. Then f is g∗ωα-homeomorphism but not
homeomorphism, as f is not continuous, since for the open set A = { a } in Y, f−1({ a }) = {
a } is not open in X.

Theorem 5.1. Let f : X → Y be a bijective function. Then the following statements are
equivalent:
(i) f is g∗ωα-homeomorphism.
(ii) f is g∗ωα-continuous and g∗ωα-open map.
(iii) f is g∗ωα-continuous and g∗ωα-closed map.

Proof. Follows from the definitions.

Theorem 5.2. If f : X → Y and g : Y → Z are g∗ωα-homeomorphism and Y is
Tg∗ωα-space then gof : X → Z is g∗ωα-homeomorphism.

Proof. Let A be an open set in Z. Since g is g∗ωα-continuous, g−1(A) is g∗ωα-open in Y. Then
g−1(A) is open in Y as Y is Tg∗ωα-space. Also, since f is g∗ωα-continuous, f−1(g−1(A)) =
(gof)−1(A) is g∗ωα-open in X. Therefore gof is g∗ωα-continuous.

Again, let A be an open set in X. Since f−1 is g∗ωα-continuous, (f−1)−1 = f(A) is g∗ωα-open
Y and so f(A) is open in Y as Y is Tg∗ωα-space. Also, g−1 is g∗ωα-continuous then, (g−1)−1f(A)
= g(f(A)) = (gof)(A) is g∗ωα-open in Z. Therefore ((gof)−1)−1(A) = (gof)(A) is g∗ωα-open
set in Z. Hence (gof)−1 is g∗ωα-continuous. Thus gof is g∗ωα-homeomorphism.

Definition 5.2. A bijective function f : X → Y is said to be strongly g∗ωα-homeomorphism
if both f and f−1 are g∗ωα-irresolute.
We say that spaces X and Y are strongly g∗ωα-homeomorphic if there exists a g∗ωα-homeomorphism
from X on to Y.
We denote the family of all strongly g∗ωα-homeomorphism of a topological space X on to itself
by strongly g∗ωα-hX.

Theorem 5.3. Every strongly g∗ωα-homeomorphism is g∗ωα-homeomorphism.
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Proof. Follows from Theorem 3.3.

Remark 5.2. Composition of two strongly g∗ωα-homeomorphism is a strongly g∗ωα-
homeomorphism.

Theorem 5.4. The set strongly g∗ωα-hX is group under the composition of maps.

Proof. Define a binary operation * : strongly g∗ωα-hX → strongly g∗ωα-hX by f*g = gof for
all f, g ∈ strongly g∗ωα-hX and so o is the usual operation of composition of maps. Then by
Remark 5.2, gof ∈ strongly g∗ωα-hX. We know that the composition of maps is associative and
identity map I : X → X belonging to strongly g∗ωα-hX serves as the identity element. If f ∈
strongly g∗ωα-hX, then f−1 ∈ strongly g∗ωα-hX such that fof−1 = f−1of = I and so inverse
exists for each element of strongly g∗ωα-hX. Therefore (strongly g∗ωα-hX, o ) is a group under
the operation of composition of maps.

Theorem 5.5. Let f : X → Y be strongly g∗ωα-homeomorphism. Then f induces an
isomorphism from the group strongly g∗ωα-hX onto the group strongly g∗ωα-hY.

Proof. Using the map f, we define a map ηf : strongly g∗ωα-hX → strongly g∗ωα-hY by ηf (h)
= fohof−1 for every h ∈ strongly g∗ωα-hX. Then ηf is a bijection. Further for all h1 and h2 ∈
strongly g∗ωα-hX, ηf (h1oh2) = fo(h1oh2)of−1 = (foh1of−1) o (foh2of−1) = ηf (h1) o ηf (h2).
Therefore ηf is homeomorphism and so it is an isomorphism induced by f.

Theorem 5.6. Strongly g∗ωα-homeomorphism is an equivalence relation in the collection
of all topological spaces.

Proof. Reflexivity and Symmetry are immediate and Transitivity follows from the Remark
5.2.

Corollary 5.1. If A ⊂ B then g∗ωα-cl(A) ⊂ g∗ωα-cl(B).
Theorem 5.7. If f : X → Y is strongly g∗ωα-homeomorphism then g∗ωα-cl(f−1(B)) =

f−1(g∗ωα-cl(B)) for every B ⊆ Y.

Proof. Since f is strongly g∗ωα-homeomorphism, f is g∗ωα-irresolute. Since g∗ωα-cl(f(B)) is
g∗ωα-closed set in Y, f−1(g∗ωα-cl(f(B))) is g∗ωα-closed in X. Now f−1(B) ⊂ f−1(g∗ωα-cl(B)))
and so by Corollary 5.1, g∗ωα-cl(f−1(B)) ⊆ f−1(g∗ωα-cl(B))).
Again, since f is strongly g∗ωα-homeomorphism, f−1 is g∗ωα-irresolute. Since g∗ωα-cl(f−1(B)) is
g∗ωα-closed in X, (f−1)−1(g∗ωα-cl(f−1(B))) = f(g∗ωα-cl(f−1(B))) is g∗ωα-closed in Y. Now, B ⊂
(f−1)−1(f−1(B)))⊆ (f−1)−1(g∗ωα-cl(f−1(B))) = f(g∗ωα-cl(f−1(B))) and so g∗ωα-cl(B)⊆ f(g∗ωα-
cl(f−1(B))). Therefore f−1(g∗ωα-cl(B)) ⊆ f−1(f(g∗ωα-cl(f−1(B)))) ⊆ g∗ωα-cl(f−1(B)) and hence
the equality holds.

Corollary 5.2. If f : X → Y is strongly g∗ωα-homeomorphism then g∗ωα-cl(f(B)) =
f(g∗ωα-cl(B)) for all subset B of X.

Proof. Since f : X → Y is strongly g∗ωα-homeomorphism, f−1 : Y → X is also strongly g∗ωα-
homeomorphism. Therefore by the Theorem 5.7, g∗ωα-cl((f−1)−1(B)) = (f−1)−1(g∗ωα-cl(B))
for all B ⊂ X, that is g∗ωα-cl(f(B)) = f(g∗ωα-cl(B)).
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Corollary 5.3. If f : X → Y is strongly g∗ωα-homeomorphism then f(g∗ωα-int(B)) =
g∗ωα-int(f(B)) for all B ⊆ X.

Proof. For any subset B ⊆ X, g∗ωα-int(B) = g∗ωα-cl(Bc))c. Thus by using Corollary 5.2, we
obtain f(g∗ωα-int(B)) = f((g∗ωα-cl(Bc))c = (f(g∗ωα-cl(Bc)))c = (g∗ωα-cl(f(Bc)))c = (g∗ωα-
cl((f(B))c))c = g∗ωα-int(f(B)).

§6. g∗ωα-closed graphs in topological spaces

In this section we discussed the properties of g∗ωα-closed graphs.
Definition 6.1. A topological space X is said to be a

(i) g∗ωα-T1-space if for each pair of distinct points x and y of X there exist disjoint g∗ωα-open
sets U containing x but not y and V containing y but not x.
(ii) g∗ωα-T2-space if for each pair of distinct points x and y of X there exist disjoint g∗ωα-open
sets U and V such that x ∈ U and y ∈ V.

Definition 6.2. A function f : X → Y has g∗ωα-closed graph if for each (x, y) ∈ (X ×
Y) \ G(f) there exist U ∈ G∗ωαO(X, x) and V ∈ O(Y, y) such that (U × cl(V)) ∩ G(f) = φ.

Theorem 6.1. Let f : X → Y be a function. Then the following properties are equivalent:
(i) f is g∗ωα-closed graph.
(ii) for each (x, y) ∈ (X × Y) \ G(f) there exist U ∈ G∗ωαO(X, x) and V ∈ O(Y, y) such that
f(U) ∩ cl(V) = φ.
(iii) for each (x, y) ∈ (X × Y) \ G(f) there exist U ∈ G∗ωαO(X, x) and V ∈ G∗ωαO(Y, y)
such that (U × g∗ωα-cl(V)) ∩ G(f) = φ.
(iv) for each (x, y) ∈ (X × Y) \ G(f) there exist U ∈ G∗ωαO(X, x) and V ∈ G∗ωαO(Y, y)
such that f(U) ∩ g∗ωα-cl(V) = φ.

Proof. (i) → (ii): Suppose (i) holds. Then (x, y) ∈ (X × Y) \ G(f) there exist U ∈ G∗ωαO(X,
x) and V ∈ O(Y, y) such that (U × cl(V)) ∩ G(f) = φ. Thus, for each x ∈ X, U is g∗ωα-open
set in X containing x, implies f(x) 6= y. Therefore f(U) ∩ cl(V) = φ. Thus (b) holds.
(ii) → (i): By (ii) there exist U ∈ G∗ωαO(X, x) and V ∈ O(Y, y) such that f(U) ∩ cl(V) = φ.
That is U is a g∗ωα-open set in X containing x and f(x) 6= y. Thus (U × cl(V)) \ G(f) = φ.
(i) → (iii) From (iii) there exist U ∈ G∗ωαO(X, x) and V ∈ O(Y, y) such that (U × cl(V)) ∩
G(f) = φ. Therefore (U × g∗ωα-cl(V)) ∩ G(f) = φ. Thus (iii) holds.
(ii)→ (iv): Suppose (ii) holds, that is (x, y) ∈ (X × Y) \ G(f) there exist U ∈ G∗ωαO(X, x) and
V ∈ O(Y, y) such that f(U) ∩ cl(V) = φ. Since every open set is g∗ωα-open [15], g∗ωα-cl(V)
⊆ cl(V), implies f(U) ∩ g∗ωα-cl(V) = φ. Thus (iv) holds.
(i) → (iv): It follows from (ii).

Theorem 6.2. If f : X → Y is surjective g∗ωα-closed graph then Y is a T1-space.

Proof. Let y1, y2 ∈ Y with y1 6= y2. Let x0 ∈ X. Since f is surjective f(x0) = y2. Therefore
(x0, y1) ∈ (X × Y) \ G(f). Since f is g∗ωα-closed graph there exist U1 ∈ G∗ωαO(X, x0) and
V1 ∈ O(Y, y1) such that f(U1) ∩ cl(V1) = φ. Since x0 ∈ U1 and f(x0) = y1 ∈ f(U1) and f(U1)
∩ cl(V1) = φ, implies y2 /∈ V1.
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Let x1 ∈ X. Since f is surjective f(x1) = y1. Therefore (x1, y2) ∈ (X × Y) \ G(f). Since f is
g∗ωα-closed graph there exist U2 ∈ G∗ωαO(X, x1) and V2 ∈ O(Y, y2) such that f(U2) ∩ cl(V2)
= φ. Since x1 ∈ U2 and f(x1) = y2 ∈ f(U2) and f(U2) ∩ cl(V2) = φ, implies y1 /∈ V2. Therefore,
for each y1, y2 ∈ Y there exist an open sets V1 and V2 such that y1 ∈ V1, y2 /∈ V1 and y1 /∈ V2,
y2 ∈ V2. Hence Y is T1-space.

Corollary 6.1. If f : X → Y is surjective g∗ωα-closed graph then Y is g∗ωα-T1-space.
Theorem 6.3. If f : X → Y is injective g∗ωα-closed graph then X is g∗ωα-T1-space.

Proof. Let x1, x2 ∈ X with x1 6= x2. Since f is injective, f(x1) 6= f(x2), implies (x1, f(x2)) ∈
(X × Y) \ G(f). Since f is g∗ωα-closed graph there exist U1 ∈ G∗ωαO(X, x1) and V1 ∈ O(Y,
f(x2)) such that f(U1) ∩ cl(V1) = φ. Since x1 ∈ U1, implies f(x1) ∈ f(U1), so f(x2) /∈ f(U1) and
x2 /∈ U1 .
Let us consider, (x2, f(x1)) ∈ (X × Y) \ G(f). Since f is g∗ωα-closed graph there exist U2 ∈
G∗ωαO(X, x2) and V2 ∈ O(Y, f(x1)) such that f(U2) ∩ cl(V2) = φ. Since x2 ∈ U2, implies
f(x2) ∈ f(U2), so f(x1) /∈ f(U2) and x1 /∈ U2. Therefore, for each x1, x2 ∈ X, there exists
g∗ωα-open sets U1 and U2 in X such that x1 ∈ U1, x2 /∈ U1 and x1 /∈ U2, x2 ∈ U2. Hence X is
g∗ωα-T1-space.

Corollary 6.2. Let f : X → Y be bijective with g∗ωα-closed then both X and Y are
g∗ωα-T1-spaces.

Theorem 6.4. Let f : X → Y be surjective g∗ωα-closed graph then Y is T2-space.

Proof. Let y1, y2 ∈ Y with y1 6= y2. Since f is surjective, for each x1 ∈ X, f(x1) = y1. Now
(x1, y2) ∈ (X × Y) \ G(f). Since f is g∗ωα-closed graph there exist U ∈ G∗ωαO(X, x1), V ∈
O(Y, y2), such that f(U) ∩ cl(V) = φ. Now x1 ∈ U, implies f(x1) = y1 ∈ f(U). So y1 6= cl(V)
as f(U) ∩ cl(V) = φ. Therefore there exists W ∈ O(Y, y1) such that W ∩ V = φ. Hence, Y is
T2-space.

Corollary 6.3. Let f : X → Y be surjective g∗ωα-closed graph, then Y is g∗ωα-T2-space.
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Abstract Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}. Let A(G) be the

adjacency matrix of a graph G. The rows of A(G) corresponding to a vertex v of G, denoted

by s(v) is the string. The Hamming index of a graph G is the sum of the Hamming distances

between all pairs of vertices of G. In this paper we obtain Hamming index generated by

adjacency matrix of some thorn graphs.
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§1. Introduction

In information theory, the Hamming distance between two strings of equal length is the
number of positions at which the corresponding symbols are different. In another way, it
measures the minimum number of substitutions required to change one string into the other,
or the minimum number of errors that could have transformed one string into the other.

The Hamming distance is named after Richard Hamming, who introduced it in his funda-
mental paper on Hamming codes Error detecting and error correcting codes in 1950 [4]. It is
used in telecommunication to count the number of flipped bits in a fixed-length binary word
as an estimate of error, and therefore is sometimes called the signal distance. Hamming weight
analysis of bits is used in several disciplines including information theory, coding theory, and
cryptography. However, for comparing strings of different lengths, or strings where not just
substitutions but also insertions or deletions have to be expected. For q-array strings over an
alphabet of size q ≥ 2. The Hamming distance is applied in case of orthogonal modulation and
is also used in systematics as a measure of genetic distance.

Let Z2 = {0, 1}. The set Z2 is a group under binary operation ⊕ with addition modulo 2.
Therefore for any positive integer n, Zn

2 = Z2 × Z2 × · · · × Z2 (n factors) is a group under the
operation ⊕ defined by

(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

Element of Zn
2 is an n-tuple (x1, x2, . . . , xn) written as x = x1x2 . . . xn, where every xi is

either 0 or 1 and is called a string or word. The number of 1’s in x = x1x2 . . . xn is called the
weight of x and is denoted by wt(x).
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Let x = x1x2 . . . xn and y = y1y2 . . . yn be the elements of Zn
2 . Then the sum x ⊕ y is

computed by adding the corresponding components of x and y under addition modulo 2. That
is, xi + yi = 0 if xi = yi and xi + yi = 1 if xi 6= yi, i = 1, 2, . . . , n.

The Hamming distance Hd(x, y) between the strings x = x1x2 . . . xn and y = y1y2 . . . yn is
the number of i’s such that xi 6= yi, 1 ≤ i ≤ n.

Thus Hd(x, y) = Number of positions in which x and y differ = wt(x⊕ y).
Example: Let x = 01001 and y = 11010. Therefore x ⊕ y = 10011. Hence Hd(x, y) =

wt(x⊕ y) = 3.
A graph G with vertex set V (G) is called a Hamming graph [1, 4 - 7] if each vertex

v ∈ V (G) can be labeled by a string s(v) of a fixed length such that Hd(s(u), s(v)) = dG(u, v)
for all u, v ∈ V (G), where dG(u, v) is the length of shortest path joining u and v in G. Here we
denote Hd(s(ui), s(vj)) = HdG(ui, vj).

§2. Preliminaries

Let G be a simple, undirected graph with n vertices and m edges. Let V (G) = {v1, v2, . . . , vn}
be the vertex set of G and E(G) = {e1, e2, . . . , em} be the edge set of G.

The distance between two vertices u and v in G is the length of shortest path joining u

and v and is denoted by dG(u, v). The adjacency matrix of G is a matrix A(G) = [aij ] of order
n, in which aij = 1 if the vertex vi is adjacent to the vertex vj and aij = 0, otherwise. Denote
by s(v), the row of the adjacency matrix corresponding to the vertex v. It is a string in the set
Zn

2 of all n-tuples over the field of order two.
Sum of Hamming distances [3, 9] between all pairs of strings generated by the adjacency

matrix of a graph G is denoted by HA(G). Thus,

HA(G) =
∑

1≤i<j≤n

HdG(vi, vj).

¡
¡

@
@

t t
t
t

v3 v4

v2

v1

Figure 1: Graph G

For a graph G of Figure 1, the adjacency matrix is

A(G) =

v1 v2 v3 v4

v1

v2

v3

v4




0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0




,



Vol. 11 Hamming index of some thorn graphs with respect to adjacency matrix 99

and the strings are s(v1) = 0100, s(v2) = 1011, s(v3) = 0101, s(v4) = 0110.

HdG(v1, v2) = 4, HdG(v1, v3) = 1, HdG(v1, v4) = 1,

HdG(v2, v3) = 3, HdG(v2, v4) = 3, HdG(v3, v4) = 2.

Therefore HA(G) = 4 + 1 + 1 + 3 + 3 + 2 = 14.

§3. Hamming distance between pair of vertices

The vertices which are adjacent to both u and v are called the common neighbours of u

and v. The vertices which are neither adjacent to u nor adjacent to v are called non-common
neighbours of u and v.

Theorem 3.1. [3] Let G be a graph with n vertices. Let the vertices u and v of G have k

common neighbours and l non common neighbours.
(i) If u and v are adjacent vertices, then

HdG(u, v) = n− k − l.

(ii) If u and v are nonadjacent vertices, then

HdG(u, v) = n− k − l − 2.

Theorem 3.2. Let G be a graph with n vertices. Let the vertices u and v of G have k

common neighbours and l non common neighbours. Let w be another vertex of G.
(i) If u and v are non adjacent vertices in G and G

′
is a graph obtained from G by joining

u and v, then
HdG′(u, v) = HdG(u, v) + 2.

(ii) If w is vertex adjacent to both u and v in G
′
, then

HdG′(u,w) = n− k − l − 1.

(iii) If w is vertex non adjacent to both u and v in G
′
, then

HdG′(u,w) = n− k − l − 2 + 1.

(iv) If w is vertex adjacent to u but not v(vice-versa) in G
′
, then

HdG′(u,w) = n− k − l − 2− 1.

Proof. (i) If u and v are non adjacent in G, then from Theorem 3.1 (ii),

HdG(u, v) = n− k − l − 2. (1)

G
′
is a graph obtained from G by joining u and v, then from Theorem 3.1 (i),

HdG′(u, v) = n− k − l. (2)
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Therefore, from Eq. (1) and Eq. (2), we get

HdG′(u, v) = HdG(u, v) + 2.

(ii) If w is vertex adjacent to both u and v, then from Theorem 3.1 (i),

HdG(u, v) = n− k − l. (3)

Since w is vertex adjacent to both u and v, then the number of common neighbour in G
′

is (k + 1). Therefore Eq. (3) becomes,

HdG′(u,w) = n− k − l − 1.

(iii) If w is vertex non-adjacent to both u and v, then from Theorem 3.1 (ii),

HdG(u, v) = n− k − l − 2. (4)

Since w is vertex not-adjacent to both u and v, then the number of non common neighbour
in G

′
is (l − 1). Hence Eq. (4) becomes

HdG′(u,w) = n− k − l − 2 + 1.

(iv) If w is vertex adjacent to u but not v (vice-versa), then from Theorem 3.1 (i),

HdG(u, v) = n− k − l − 2. (5)

Since w is adjacent to u but not v, then the number of common neighbours is (k + 1) and
hence Eq. (5) becomes

HdG′(u,w) = n− k − l − 2− 1.

§4. Hamming index of some thorn graphs

Definition. [2] The thorn graph of a graph G denoted by G+k is the graph obtained from
G by attaching k pendent vertices to each vertex of G.
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Figure 2: G and G+2
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Theorem 4.1. Let Cn be a cycle on n vertices. Then Hamming index of C+k
n is given by

HA(C+k
n ) = HA(Cn) + 2k

(
n

2

)
(1 + k) + [k2n2 − 4nk + 3n2k].

Proof. Let Cn be a cycle on n vertices. Then adjecency matrix of C+k
n is

A(C+k
n ) =




A(Cn) I · · · I

I O · · · O
...

...

I O · · · O




,

where A(Cn)is the adjacency matrix of Cn and I is the identity matrix of order n and O is the
null matrix.

HA(C+k
n ) =

∑

1≤i<j≤(k+1)n

HdG(ui, vj)

=
∑

1≤i<j≤n

HdG(ui, vj) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) +
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)

=
∑

(u,v)∈Cn

2k + HdG(u, v) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) +
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj). (6)

(i)
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) = 2k2

(
n

2

)
. (7)

(ii)
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) =
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)for a pair of (ui, vj) adjacent pairs

+
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)for a pair of (ui, vj) non-adjacent pairs.

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between kn adjacent pairs = k(k + 3)n. (8)

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between k(n2 − n) non-adjacent pairs

= Hamming distance between 2nk pairs with common neighbour

+ Hamming distance between [k(n2 − n)− 2nk] pairs with non

common neighbour = (k + 1)(2nk) + (k + 3)(kn2 − 3nk). (9)

Substituting Eq. (7), Eq. (8) and Eq. (9) in Eq. (6), we get

HA(C+k
n ) = HA(Cn) + 2k

(
n

2

)
(1 + k) + [k2n2 − 4nk + 3kn2].
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Theorem 4.2. Let Kn be a complete graph on n vertices. Then Hamming index of K+k
n

is given by

HA(K+k
n ) = HA(Kn) + 2k

(
n

2

)
(1 + k) + kn(n + k) + [(n− 1) + (k − 1)]k(n2 − n).

Proof. Let Kn be a complete graph on n vertices. Then adjecency matrix of k+k
n is

A(K+k
n ) =




A(Kn) I · · · I

I O · · · O
...

...

I O · · · O




,

where A(Kn) is the adjacency matrix of Kn, I is the identity matrix of order n and O is the
null matrix.

HA(K+k
n ) =

∑

1≤i<j≤(k+1)n

HdG(ui, vj)

=
∑

1≤i<j≤n

HdG(ui, vj) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) +
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)

=
∑

(u,v)∈Kn

2k + HdG(u, v) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) +

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj). (10)

i)
∑

n+1<=i<j<=(k+1)n

HdG(ui, vj) = 2k2

(
n

2

)
. (11)

ii)
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) =
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)for a pair of (ui, vj) adjacent pairs

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between kn adjacent pairs = kn(k + n).(12)

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between k(n2 − n) non− adjacent pairs

= [(n− 1) + (k − 1)]k(n2 − n). (13)
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Substituting Eq. (11), Eq. (12) and Eq. (13) in Eq. (10), we get

HA(K+k
n ) = HA(Kn) + 2k

(
n

2

)
(1 + k) + kn(n + k) + [(n− 1) + (k − 1)]k(n2 − n).

Theorem 4.3. Let Pn be a path on n vertices. Then Hamming index of P+k
n is given by

HA(P+k
n ) = HA(Pn) + 2k

(
n

2

)
(1 + k) + k[n(3 + k)− 2] + 2k2 + (n− 2)[2k(k + 1)]

+k(n− 2)[n(k + 3)− k − 5].

Proof. Let Pn be a path on n vertices. Then adjecency matrix of P+k
n is

A(P+k
n ) =




A(Pn) I · · · I

I O · · · O
...

...

I O · · · O




,

where A(Pn)is the adjacency matrix of Pn, I is the identity matrix of order n and O is the null
matrix.

HA(P+k
n ) =

∑

1≤i<j≤(k+1)n

HdG(ui, vj)

=
∑

1≤i<j≤n

HdG(ui, vj) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) +
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)

=
∑

(u,v)∈Pn

2k + HdG(u, v) +
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj)

+
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj). (14)

(i)
∑

n+1≤i<j≤(k+1)n

HdG(ui, vj) = 2k2

(
n

2

)
. (15)

(ii)
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) =
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)for a pair of (ui, vj)adjacent pairs

+
n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj)for pair of (ui, vj)non adjacent pairs.

n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between kn adjacent pairs = k[n(k + 3)− 2]. (16)
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n∑

i=1

(k+1)n∑

j=n+1

HdG(ui, vj) = Hamming distance between k(n2 − n) non-adjacent pairs

= Hamming distance between 2(n− 1)k pairs with common neighbour

+ Hamming distance between [k(n2 − n)− 2(n− 1)k] pairs with

non-common neighbour = (n− 2)k[n(k + 3)− k − 5]. (17)

Substituting Eq. (15), Eq. (16), and Eq. (17) in Eq. (14), we get

HA(P+k
n ) = HA(Pn) + 2k

(
n

2

)
(1 + k) + k[n(3 + k)− 2] + 2k2 + (n− 2)[2k(k + 1)]

+k(n− 2)[n(k + 3)− k − 5].
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