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Two problems related to the
Smarandache function

Wenpeng Zhang† and Ling Li† ‡

† Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China

‡ Basic Department, Shaanxi Polytechnic Institute, Xianyang, Shaanxi, P.R.China

Abstract For any positive integer n, the famous pseudo Smarandache function Z(n)

is defined as the smallest positive integer m such that n |m(m + 1)

2
. That is, Z(n) =

min

{
m : n |m(m + 1)

2
, n ∈ N

}
. The Smarandache reciprocal function Sc(n) is defined as

Sc(n) = max {m : y | n! for all 1 ≤ y ≤ m, and m + 1 † n!}. That is, Sc(n) is the largest

positive integer m such that y | n! for all integers 1 ≤ y ≤ m. The main purpose of this paper

is to study the solvability of some equations involving the pseudo Smarandache function Z(n)

and the Smarandache reciprocal function Sc(n), and propose some interesting conjectures.

Keywords The pseudo Smarandache function, the Smarandache reciprocal function, the d-

ual function, equation, positive integer solutions, conjecture.

§1. Introduction and results

For any positive integer n, the famous pseudo Smarandache function Z(n) is defined as

the smallest positive integer m such that n |m(m + 1)
2

. That is,

Z(n) = min
{

m : n |m(m + 1)
2

, n ∈ N

}
.

Its dual function Z∗(n) is defined as Z∗(n) = max
{

m :
m(m + 1)

2
| n, m ∈ N

}
, where N

denotes the set of all positive integers. From the definition of Z(n) we can find that the first
few values of Z(n) are: Z(1) = 1, Z(2) = 3, Z(3) = 2, Z(4) = 7, Z(5) = 4, Z(6) = 3, Z(7) = 6,
Z(8) = 15, Z(9) = 8, Z(10) = 4, Z(11) = 10, Z(12) = 8, Z(13) = 12, Z(14) = 7, Z(15) = 5,
Z(16) = 31, · · · · · · . About the elementary properties of Z(n), many authors had studied it,
and obtained some interesting results, see references [1], [2], [3], [4], [5] and [6]. For example,
the first author [6] studied the solvability of the equations:

Z(n) = S(n) and Z(n) + 1 = S(n),

and obtained their all positive integer solutions, where S(n) is the Smarandache function.
On the other hand, in reference [7], A.Murthy introduced another function Sc(n), which

called the Smarandache reciprocal function. It is defined as the largest positive integer m such
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that y | n! for all integers 1 ≤ y ≤ m. That is, Sc(n) = max{m : y | n! for all 1 ≤ y ≤
m, and m + 1 † n!}. For example, the first few values of Sc(n) are:

Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, S(5) = 6, Sc(6) = 6, Sc(7) = 10,

Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(12) = 12, Sc(13) = 16,

Sc(14) = 16, S5(15) = 16, Sc(16) = 16, Sc(17) = 18, Sc(18) = 18, · · · · · · .

A.Murthy [7], Ding Liping [8] and Ren Zhibin [9] also studied the elementary properties of
Sc(n), and obtained some interesting conclusions, one of them is that if Sc(n) = x and n 6= 3,
then x + 1 is the smallest prime greater than n.

The main purpose of this paper is to study the solvability of some equations related to the
Smarandache function, and propose some interesting problems. That is, we have the following:

Unsolved problem 1. Whether there exist infinite positive integers n such that the
equation

Sc(n) + Z(n) = 2n. (1)

Unsolved problem 2. Find all positive integer solutions of the equation

Sc(n) = Z∗(n) + n. (2)

§2. Some results on these unsolved problems

In this section, we shall give some new progress on these unsolved problems. First for the
problem 1, it is clear that n = 1 satisfy the equation (1). n = 3 does not satisfy the equation (1).
If p ≥ 5 and pα + 2 are two odd primes, then n = pα satisfy the equation (1). In fact this time,
we have Z (pα) = pα−1, Sc (pα) = pα +1. Therefore, Sc (pα)+Z (pα) = pα +1+pα−1 = 2 ·pα.
So n = pα satisfy the equation (1). For example, n = 1, 5, 11, 17, 29 and 41 are six solutions of
the equation (1). We think that the equation (1) has infinite positive integer solutions. Even
more, we have the following:

Conjecture 1. For any positive integer n, the equation

Sc(n) + Z(n) = 2n

holds if and only if n = 1, 3α and p2β+1, where α ≥ 2 be any integer such that 3α + 2 be a
prime, p ≥ 5 be any prime, β ≥ 0 be any integer such that p2β+1 + 2 be a prime.

For the problem 2, it is clear that n = 3 does not satisfy the equation (2). If p ≥ 5
be a prime, n = p2α+1 such that n + 2 be a prime, then Sc(n) = n + 1, Z∗(n) = 1, so
Sc(n) = Z∗(n)+n. Therefore, n = p2α+1 satisfy the equation (2). Besides these, whether there
exist any other positive integer n satisfying the equation (2) is an open problem. We believe
that the following conjecture is true.

Conjecture 2. For any positive integer n, the equation

Sc(n) = Z∗(n) + n
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In our conjectures, if prime p ≥ 5, then p2β + 2 can be divided by 3. So if pα + 2 be a
prime, then α must be an odd number.

From our conjectures we also know that there exists close relationship between the solutions
of the equations (1), (2) and the twin primes. So we think that the above unsolved problems
are very interesting and important.
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On the additive k-power complements

Yanchun Guo

Department of Mathematics, Xianyang Normal University,
Xianyang, Shaanxi, P.R.China

Abstract For any positive integer n, let bk (n) denotes the additive k-power complements

of n. That is, bk (n) denotes the smallest non-negative integer m such that n + m is a perfect

k-power. The main purpose of this paper is using the elementary method to study the mean

value properties of Ω (n + bk (n)), and give a sharper asymptotic formula for it, where Ω (n)

denotes the number of all prime divisors of n.

Keywords Additive k-power complements, function of prime divisors, asymptotic formula.

§1. Introduction and result

For any positive integer n ≥ 2, let ak (n) denotes the k-power complement sequence. That
is, ak (n) denotes the smallest integer such that nak (n) is a perfect k-power. In problem 29
of reference [1], Professor F. Smarandache asked us to study the properties of this sequence.
About this problem, many people had studied it, and obtained a series results. For example,
Yao Weili [2] studied the mean value properties of d (n · ak (n)), and proved that for any real
number x ≥ 1, we have the asymptotic formula

∑

n≤x

d (nak (n)) = x
(
A0 lnk x + A1 lnk−1 x + · · ·+ Ak−1 lnx + Ak

)
+ O

(
x

1
2+ε

)
,

where d(n) is the Dirichlet divisor function, A0, A1, · · · , Ak are computable constants, ε

denotes any fixed positive number.
Similarly, we define the additive k-power complements as follows: for any positive inte-

ger n, bk (n) denotes the smallest non-negative integer such that n+ bk (n) is a perfect k-power.
About the elementary properties of bk (n), some scholars have studied it, and got some useful
results. For example, Xu Zhefeng [3] studied the mean value properties of bk (n) and d (bk (n)),
and obtained two interesting asymptotic formulas. That is, for any real number x > 3, we have
the asymptotic formulas

∑

n≤x

bk (n) =
k2

4k − 2
x2− 1

k + O
(
x2− 2

k

)
,

∑

n≤x

d (bk (n)) =
(

1− 1
k

)
x lnx +

(
2γ + ln k − 2 +

1
k

)
x + O

(
x1− 1

k lnx
)

,

where γ is the Euler constant.
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In this paper, we use the elementary and analytic methods to study the mean value prop-
erties of Ω (n + bk (n)), and give a sharper asymptotic formula for it, where Ω (n) denotes the
number of all prime divisors of n, i.e., Ω (n) = α1 + α2 + · · ·+ αr, if n = pα1

1 pα2
2 · · · pαr

r be the
factorization of n into prime powers. That is, we shall prove the following:

Theorem. For any real number x ≥ 2, we have the asymptotic formula

∑

n≤x

Ω(n + bk (n)) = kx ln lnx + k (A− ln k)x + O
( x

lnx

)
,

where A = γ +
∑

p

(
ln

(
1− 1

p

)
+

1
p− 1

)
be a constant,

∑
p

denotes the summation over all

primes, and γ be the Euler constant.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem. First we need a simple Lemma
which we state as follows:

Lemma. For any real number x > 1, we have the asymptotic

∑

n≤x

Ω(n) = x ln lnx + Ax + O
( x

lnx

)
,

where A = γ +
∑
p

(
ln

(
1− 1

p

)
+ 1

p−1

)
, γ be the Euler constant.

Proof. See reference [4].

Now we use above Lemma to complete the proof of our theorem. For any real number x > 2,
let M be a fixed positive integer such that

Mk 6 x < (M + 1)k
.

Then from the definition of M we have the estimate

M = x
1
k + O(1). (1)

For any prime p and positive integer α, note that Ω (pα) = αp and

(x + 1)k =
k∑

i=0

Ci
k · xk−i.
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Then from the definition of bk (n) and (1) we have

∑

n≤x

Ω(n + bk (n)) =
∑

16t6M−1


 ∑

tk6n<(t+1)k

Ω(n + bk (n))


 +

∑

Mk6n6x

Ω(n + bk (n))

=
∑

16t6M−1


 ∑

tk6n<(t+1)k

Ω
(
(t + 1)k

)

 + O


 ∑

Mk6n6(M+1)k

Ω
(
(M + 1)k

)



=
∑

16t6M−1

k
(
C1

ktk−1 + C2
ktk−2 + · · ·+ 1

)
Ω(t + 1) + O

(
x

k−1
k +ε

)

= k2
∑

16t6M−1

(t + 1)k−1 Ω(t + 1) + O
(
x

k−1
k +ε

)

= k2
∑

16t6M

tk−1Ω(t) + O
(
x

k−1
k +ε

)
, (2)

where we have used the estimate Ω (n) ¿ nε.

Let A (x) =
∑

n6x

Ω(n), then by Able’s identity (see Theorem 4.2 of reference [5]) and the

above Lemma we can easily deduce that
∑

16t6M

tk−1Ω(t) = Mk−1A (M)−
∫ M

2

A (t)
(
tk−1

)′
dt + O(1)

= Mk−1

(
M ln lnM + AM + O

(
M

lnM

))

−
∫ M

2

(
t ln ln t + At + O

(
t

ln t

))
(k − 1) tk−2dt + O(1)

= Mk ln lnM + AMk + O
(

Mk

lnM

)
−

∫ M

2

(
(k − 1) tk−1 ln ln t + (k − 1) Atk−1

)
dt

= Mk ln lnM + AMk − k − 1
k

(
Mk ln lnM + AMk

)
+ O

(
Mk

lnM

)

=
1
k

Mk ln lnM +
1
k

AMk + O
(

Mk

lnM

)
. (3)

Note that

0 6 x−Mk < (M + 1)k −Mk = C1
kMk−1 + C2

kMk−2 + · · ·+ 1 ¿ x
k−1

k (4)

and

ln k + ln lnM 6 ln lnx < ln k + ln ln (M + 1) 6 ln k + ln lnM + O
(
x−

1
k

)
. (5)

From (3), (4) and (5) we have
∑

16t6M

tk−1Ω(t) =
1
k

x ln lnx +
1
k

(A− ln k) x + O
( x

lnx

)
. (6)

Combining (2) and (6) we may immediately deduce the asymptotic formula
∑

n6x

Ω(n + bk (n)) = kx ln lnx + k (A− ln k)x + O
( x

lnx

)
.

This completes the proof of Theorem.
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The generalization of sequence of numbers
with alternate common differences

Xiong Zhang, Yilin Zhang and Jianjie Ding

Shaanxi Institute of education, Xi’an 710061, China

Abstract In this paper, as generalizations of the number sequences with alternate common

differences, two types of special sequence of numbers are discussed. One is the periodic

sequences of numbers with two common differences; and the other is the periodic sequence of

numbers with two common ratios. The formulus of the general term an and the sum of the

first n term Sn are given respectively.
Keywords Sequence of numbers with alternate common differences, periodic number sequ-

ence with two common differences, periodic number sequence of numbers with two common

ratios, general term an, the sum of the first n terms Sn.

§1. Introduction

In the paper[1], we have the definition like this: A sequence of numbers {an} is called a
sequence of numbers with alternate common differences if the following conditions are satisfied:

(i) ∀k ∈ N, a2k − a2k−1 = d1;

(ii) ∀k ∈ N, a2k+1− a2k = d2 here d1(d2) is called the first(the second)common difference
of {an}.

We also give the formulas of the general term an and the sum of the first n terms Sn. In
this paper, we’ll discuss the generalization of sequence of numbers with alternate.

§2. Periodic number sequence two common differences

Definition 1.1. A sequence of numbers {an} is called a periodic number sequence two
common differences if the following conditions are satisfied:

(i) ∀k = 0, 1, 2, · · · akt+1, akt+2, akt+3, · · · , akt+t is a finite arithmetic progression with d1

as the common difference,where t is a constant natural numbers;

(ii) ∀k = 0, 1, 2, · · · a(k+1)t+1 = a(k+1)t + d2.

We call the finite arithmetic progression “akt+1, akt+2, akt+3, · · · , akt+t”the (k + 1)th
period of {an} and“a(k+1)t, a(k+1)t+1”the (k+1)th interval of {an}; d1 is named the common
difference inside the periods and d2 is called the interval common difference, t is called the
number sequence {an}

′
s period.
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In this section, {an} denotes a periodic sequence of numbers with two common differences
d1 and d2. It’s easy to get that{an} has the following form:

a1, a1 + d1, a1 + 2d1, · · · , a1 + (t− 1)d1; a1 + (t− 1)d1 + d2, a1 + td1 + d2,

a1 + (t + 1)d1 + d2, · · · , a1 + (2t− 2)d1 + d2; a1 + (2t− 2)d1 + 2d2, a1 + (2t− 1)d1 + 2d2,

a1 + 2td1 + 2d2, · · · , a1 + (3t− 3)d1 + d2, · · · . (1)

Particularly, when t = 2, {an} becomes a sequence of numbers with alternate common
differences d1 and d2; so the concept of a periodic number sequence with two common differences
is a generalization of the concept of a number sequence with alternate common differences.

Theorem 1.1. The formula of the general term of (1) is

an = a1 + (n− 1−
[
n− 1

t

]
)d1 +

[
n− 1

t

]
d2.

Proof.

an = a1 + (n− 1)d1 + (d2 − d1)k

= a1 + kd2 + [(n− 1)− k]d1

= a1 +
[
n− 1

t

]
d2 + (n− 1−

[
n− 1

t

]
)d1.

Here, k means the number of intervals, it can be proved easily that k =
[
n− 1

t

]
.

Theorem 1.2. {an} is a periodic number sequence with two common differences d1 and
d2, the sum of the first n terms of {an}Sn is:

Sn = n a1 +
t(t− 1)

2

[n

t

]2

d1 +

[
n
t

] ([
n
t

]− 1
)

2
t d2 +

(
[n

t

]
(t− 1) d1 +

[n

t

]
d2)(n−

[n

t

]
t) +

(n− [
n
t

]
t)(n− [

n
t

]
t− 1)

2 d1 .

Particularly, when t|n, suppose
n

t
= k, then

Sn = n a1 +
t(t− 1)

2 k
2
d1 +

k(k − 1)
2

t d2 .

Proof. Let M(k,t) be the sum of the t terms of the (k + 1)th period.

Then

M(k,t) = t a(k−1)t+1 +
t(t− 1)

2 d1

= t[a1 +(k − 1) d2 +((k − 1)t− (k − 1)) d1] +
t(t− 1)

2 d1

= t a1 +t(k − 1) d2 +
2k − 1

2
t(t− 1) d1 .



10 Xiong Zhang, Yilin Zhang and Jianjie Ding No. 2

M(k+1,t) = t akt+1 +
t(t− 1)

2 d1

= t[a1 +k d2 +(kt− k) d1]

= t a1 +tk d2 +
2k + 1

2
t(t− 1) d1 .

Hence M(k+1,t)−M(k,t) = t(t−1)d1 +td2. Therefore, the new sequence {M(k,t)} generated

form {an} is an arithmetic progression with M(0,t) = t a1 +
t(t− 1)

2 d1, d = t(t− 1)d1 + td2. So

the sum of the first
[n

t

]
t terms of {an}.

S[n
t ]t = (t a1 +

t(t− 1)
2 d1)

[n

t

]
+

[
n
t

]
(
[

n
t

]− 1)
2

(t(t− 1) d1 +t d2)

=
[n

t

]
t a1 +

t(t− 1)
2

[n

t

]2

d1 +

[
n
t

]
(
[

n
t

]− 1)
2

t d2 .

Sn−S[n
t ]t = a[n

t ]t+1(n−
[n

t

]
) +

(n− [
n
t

]
t)(n− [

n
t

]
t− 1)

2 d1

= (a1 +
[n

t

]
(t− 1) d1 +

[n

t

]
d2)(n−

[n

t

]
t) +

(n− [
n
t

]
t)(n− [

n
t

]− 1)
2 d1 .

Thus,
Sn = S[n

t ]t +(Sn−S[n
t ]t)

= n a1 +
t(t− 1)

2

[n

t

]2

d1 +

[
n
t

]
(
[

n
t

]
t− 1)

2
t d2 +(

[n

t

]
(t− 1) d1 +

[n

t

]
d2)(n−

[n

t

]
t)

+
(n− [

n
t

]
t)(n− [

n
t

]
t− 1)

2 d1 .

Particularly, when t|n, suppose
n

t
= k, then

Sn = n a1 +
t(t− 1)

2 k
2
d1 +

k(k − 1)
2

t d2 .

§3. Periodic number sequence with two common ratios

Definition 2.1. A sequence of numbers {an} is called a periodic number sequence with
two common ratios if the following conditions are satisfied:

(i) ∀k = 0, 1, 2, · · · akt+1, akt+2, akt+3, · · · , akt+t is a finite geometric progression with q1

as the common ratio, where t is a constant natural number;
(ii) ∀k = 0, 1, 2, · · · a(k+1)t+1 = a(k+1)tq2, where q2 is a constant natural number;
We call the finite geometric progression “akt+1, akt+2, akt+3, · · · , akt+t”the (k + 1)th

period of {an} and“a(k+1)t, a(k+1)t+1”the (k+1)th interval of {an}; q1 is named the common
ratio inside the periods and q2 is called the interval common ratio, t is called the number
sequence {an}

′
s period.
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In this section, {an} denotes a periodic sequence of numbers with two common ratios q1

and q2. It’s easy to get that {an} has the following form:

a1, a1q1, a1q
2
1 , · · · , a1q

t−1
1 ; a1q2q

t−1
1 , a1q2q

t
1, a1q2q

t+1
1 , · · · , a1q2q

2t−2
1 ; (2)

a1q
2
2q2t−2

1 , a1q
2
2q2t−1

1 , a1q
2
2q2t

1 , · · · , a1q
2
2q3t−3

1 , · · · .

The formula of the general term of (2) is

an = a1q
(n−1−[ n−1

t ])
1 q

[ n−1
t ]

2 .

Let M(k,t) be the sum of the t terms of the (k + 1)th period. Therefore, the new sequence

{M(k,t)} generated form {an} is an geometric progression with M(0,t) = a1(1−q
′
1)

1−q1
, q = q2q

t−1
1 .

So the sum of the first n terms of {an}.
Theorem 2.2. {an} is a periodic number sequence with two common ratios q1 and q2,

the sum of the first n terms of {an}Sn is

Sn =
a1(1−q1

t)
1−q1

(1− (q2 q1
t−1)[

n
t ])

1− q2 q1
t−1

+
a1 q2

[n
t ] q1

[n
t ](t−1)(1− q1

n−[n
t ]t)

1− q1
.

Particularly, when t|n, suppose
n

t
= k, then

Sn =
a1(1− q1

t)(1− (q2 q1
t−1)k)

(1− q1)(1− q2 q1
t−1)

.
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integers 1 ≤ y ≤ m. The main purpose of this paper is using the elementary method to study

the solvability of an equation involving the Smarandache function S(n) and the Smarandache

reciprocal function Sc(n), and obtain its all positive integer solutions.

Keywords The Smarandache function, the Smarandache reciprocal function, equation, po-
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§1. Introduction and result

For any positive integer n, the famous F. Smarandache function S(n) is defined as the
smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. It
is easy to find that the first few values of this function are S(1) = 1, S(2) = 2, S(3) = 3,
S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4,
· · · . About the elementary properties of S(n), many authors had studied it, and obtained
some interesting results, see references [1]-[5]. For example, Xu Zhefeng [5] studied the value
distribution problem of S(n), and proved the following conclusion:

Let P (n) denote the largest prime factor of n, then for any real number x > 1, we have
the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.

On the other hand, in reference [6], A. Murthy introduced another function Sc(n), which
called the Smarandache reciprocal function. It is defined as the largest positive integer m such
that y | n! for all integers 1 ≤ y ≤ m. That is, Sc(n) = max{m : y | n! for all 1 ≤ y ≤



Vol. 4 An equation related to the Smarandache function and its positive integer solutions 13

m, and m + 1 † n!}. For example, the first few values of Sc(n) are:

Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(6) = 6, Sc(7) = 10,

Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(12) = 12, Sc(13) = 16,

Sc(14) = 16, S5(15) = 16, Sc(16) = 16, Sc(17) = 18, Sc(18) = 18, · · · .

A. Murthy [6] studied the elementary properties of Sc(n), and proved the following conclusion:
If Sc(n) = x and n 6= 3, then x + 1 is the smallest prime greater than n.
The main purpose of this paper is using the elementary method to study the solvability of

an equation involving the Smarandache function S(n) and the Smarandache reciprocal function
Sc(n), and obtain its all positive integer solutions. That is, we shall prove the following:

Theorem. For any positive integer n, the equation

Sc(n) + S(n) = n

holds if and only if n = 1, 2, 3 and 4.

§2. Proof of the theorem

In this section, we shall prove our Theorem directly. First we need an estimate for π(x),
the number of all primes ≤ x. From J. B. Rosser and L. Schoenfeld [7] we have the estimate

π(x) <
x

lnx

(
1 +

3
2 · lnx

)
for x > 1

and

π(x) >
x

lnx

(
1 +

1
2 · lnx

)
for x > 59.

Using these estimates and some calculating we can prove that there must exist a prime between

n and
3
2
n, if n ≥ 59. So from this conclusion and A. Murthy [6] we have the estimate

Sc(n) <
3
2
· n, if n ≥ 59. (1)

If 1 ≤ n ≤ 59, it is easy to check that n = 1, 2, 3 and 4 satisfy the equation Sc(n) + S(n) = n.
Now we can prove that n does not satisfy the equation Sc(n)+S(n) = n, if n > 59. In fact this
time, if n be a prime p > 59, then from reference [6] we know that Sc(p) > p and S(p) = p, so
Sc(p) + S(p) > 2p. If n has more than two prime divisors, from the properties of Smarandache
function S(n) we know that

S(n) = max
1≤i≤r

{S(pαi
i )} ≤ max

1≤i≤r
{αi · pi} ,

if n = pα1
1 pα2

2 · · · pαr
r be the factorization of n into prime powers. From this formula we may

immediately deduce the estimate

S(n) ≤ 1
2
· n. (2)
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Combining (1) and (2) we can deduce that if n > 59 has more than two prime divisors, then

Sc(n) + S(n) <
3
2
· n +

1
2
· n = 2n.

So n does not satisfy the equation Sc(n) + S(n) = 2n.

If n = pα > 59 be a power of prime p, and α ≥ 2, then note that S(2α) ≤ 1
2
· 2α, α ≥ 3;

S(3α) ≤ 1
2
· 3α, α ≥ 3; S(pα) ≤ 1

2
· pα, α ≥ 2, p ≥ 5. We also have S(n) ≤ 1

2
· n, and therefore,

Sc(pα) + S(pα) <
3
2
· pα +

1
2
· pα = 2 · pα.

So the equation Sc(n) + S(n) = 2n has no positive integer solution if n > 59. This completes
the proof of Theorem.
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§1. Introduction

A semigroup S is called an rpp semigroup if all its principal right ideals aS1(a ∈ S),
regard as right S1-systems, are projective. This class of semigroups and its subclasses have
been extensively studied by J.B.Fountain and other authors (see [1-7]). On a semigroup S,
the Green’s star relation L∗ is defined by (a, b) ∈ L∗ if and only if the elements a, b of S are
related by the usual Green’s relation L on some oversemigroup of S. It was then shown by
J.B.Fountain [2] that a monoid S is rpp if and only if every L∗-class contains an idempotent.
Thus, a semigroup S is rpp if and only if every L∗-class of S contains at least one idempotent.
Dually, we can define lpp semigroups and a semigroup which is both rpp and lpp is called
abundant[3]. Abundant semigroups and rpp semigroups are generalized regular semigroups.

It is noted that rpp semigroups with central idempotents have similar structure as Clifford
semigroups. This kind of rpp semigroups was called the C−rpp semigroups by J.B.Fonutain. He
has proved that a C−rpp semigroup can be described as a strong semilattice of left cancellative
monoids.

In order to generalize the above result of Fountain, Y.Q.Guo, K.P.Shum and P.Y.Zhu have
introduced the concept of strongly rpp semigroups in [4]. They considered an rpp semigroup S

with a set of idempotents E(S). For ∀a ∈ S, let the enevelope of a be Ma = {e ∈ E(S)|S1a ⊂
S1e and ∀x, y ∈ S1, ax = ay ⇒ ex = ey}. Surely, Ma consists of the idempotents in the L∗-
class of a. Then the authors in [4] called the semigroup S strongly rpp if there exists a unique
e in Ma such that ea = a for ∀a ∈ S. Now, we call a semigroup S a left C − rpp semigroup[4]
if S is strongly rpp and L∗ is a semilattice congruence on S. Y.Q.Guo called an rpp semigroup
S a right C − rpp semigroup[5] if L∗ ∨ R is a congruence on S and Se ⊂ eS for ∀e ∈ E(S).
He has shown that a right C − rpp semigroup S can be expressed as a semilattice Y of direct
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products Ma and Ba, where Ma is a left cancellative monoid and Ba is a right zero band for
∀α ∈ Y .

In this paper, we will give some properties on right C − rpp semigroups by the result of
K.P.Shum and X.M.Ren in [8]. Then, by using the concept of right ∆-product, we study the
right C−rpp semigroups whose set of idempotents forms a right normal band. We will see that
this kind of semigroups is a strong semilattice of direct products of left cancellative monoids
and right zero bands.

Terminologies and notations which are not mentioned in this paper should be referred to
[8] and also the text of J.M.Howie [9].

§2. Preliminaries

In this section, we simply introduce the concept of right ∆-product of semigroups and the
structure of right C − rpp semigroups. These are introduced by K.P.Shum and X.M.Ren in [8].

We let Y be a semilattice and M = [Y ;Mα, θα,β ] is a strong semilattice of cancellative
monoids Mα with structure homomorphism θα,β . Let Λ = ∪α∈Y Λα be a semilattice decom-
position of right regular band Λ into right zero band Λα. For ∀α ∈ Y , we form the Cartesian
product Sα = Mα × Λα.

Now, for ∀α, β ∈ Y with α > β and the right transformation semigroup J ∗(∗β), we define
a mapping

Φα,β : Sα → J ∗(∗β)

by u 7→ ϕu
α,β satisfying the following conditions:

(P1): If (a, i) ∈ Sα, i′ ∈ Λα, then i′ϕ(a,i)
α,α = i;

(P2): For ∀(a, i) ∈ Sα, (b, j) ∈ Sβ , we consider the following situation separately:
(a) ϕ

(a,i)
α,αβϕ

(b,j)
β,αβ is a constant mapping on Λαβ and we denote the constant value by

〈ϕ(a,i)
α,αβϕ

(b,j)
β,αβ〉;

(b) If α, β, δ ∈ Y with αβ > δ and 〈ϕ(a,i)
α,αβϕ

(b,j)
β,αβ〉 = k, then ϕ

(ab,k)
αβ,δ = ϕ

(a,i)
α,δ ϕ

(b,j)
β,δ ;

(c) If ϕ
(ω,λ)
γ,γα ϕ

(a,i)
α,γα = ϕ

(ω,λ)
γ,γβ ϕ

(b,j)
β,γβ for ∀(ω, λ) ∈ Sγ , then ϕ

(1γ ,λ)
γ,γα ϕ

(a,i)
α,γα = ϕ

(1γ ,λ)
γ,γβ ϕ

(b,j)
β,γβ ,

where 1γ is the identity of the monoid Mγ .
We now form the set union S =

⋃
α∈Y Sα and define a multiplication “ ◦ ” on S by

(a, i) ◦ (b, j) = (ab, 〈ϕ(a,i)
α,αβϕ

(b,j)
β,αβ〉) (∗)

After straightforward verification, we can verify that the multiplication“ ◦ ”satisfies the
associative law and hence (S, ◦) becomes a semigroup. We call the above constructed semigroup
the right ∆-product of semigroup M and Λ on Y , under the structure mapping Φα,β . We denote
this semigroup (S, ◦) by S = M∆∗

Y,ΦΛ.
Lemma 2.1. (See [8] Theorem 1.1). Let M = [Y ;Mα, θα,β ] be a strong semilattice of

cancellative monoids Mα with structure homomorphism θα,β . Let Λ =
⋃

α∈Y Λα be a semilattice
decomposition of right regular band Λ into right zero band Λα on the semilattice Y . Then the
right ∆-product of M and Λ, denoted by M∆∗

Y,ΦΛ, is a right C − rpp semigroup. Conversely,
every right C − rpp semigroup can be constructed by using this method.
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§3. Some properties and main result

In this section, we will first give some properties, by using right ∆-product of semigroups,
for right C − rpp semigroups which have been stated in the introduction. Then, we will obtain
the structure of right C − rpp semigroups whose set of idempotents forms a right normal band.

Theorem 3.1. Let S be a right C − rpp semigroup. Then the following statements hold:
(1) For ∀u ∈ RegS, Su ⊆ uS;
(2) For ∀e ∈ E(S), the mapping ηe: x 7→ xe(∀x ∈ S1) is a semigroup homomorphism from

S1 onto S1e.
Proof. (1) We first assume that S = M∆∗

Y,ΦΛ is an arbitrary right C − rpp semigroup.
For ∀u = (a, i) ∈ Sα ∩ RegS, there exists x = (b, j) ∈ Sβ such that uxu = u and xux = x. we
can easily know α = β by the multiplication of semigroups. Hence for ∀x ∈ Sα, from (∗) and
(P1) we have (b, j) = x = xux = (bab, j). So bab = b = b1β = b1α, where 1α is the identity
element of Mα. By the left cancelltivity of Mα, we immediately obtain ab = 1α.

For γ ∈ Y and v = (c, k) ∈ Sγ , let w = ((bθα,γα)(ca), 〈ϕv
γ,γαϕu

α,γα〉) ∈ Sγα, where θα,γα is
a semigroup homomorphism from Mα onto Mγα, and Mγα is a left cancellative monoid. This
leads to 1αθα,γα = 1γα. Hence,

uw = (a, i)((bθα,γα)(ca), 〈ϕv
γ,γαϕu

α,γα〉)
= ((aθα,γα)θγα,γα(bθα,γα)(ca), 〈ϕu

α,γαϕw
γα,γα〉)

= ((aθα,γα)(bθα,γα)(ca), 〈ϕv
γ,γαϕu

α,γα〉)
= ((ab)θα,γα(ca), 〈ϕv

γ,γαϕu
α,γα〉)

= (1αθα,γα(ca), 〈ϕv
γ,γαϕu

α,γα〉)
= (1γα(ca), 〈ϕv

γ,γαϕu
α,γα〉)

= (ca, 〈ϕv
γ,γαϕu

α,γα〉)
= (c, k)(a, i)
= vu.

This shows Su ⊆ uS.

(2)For ∀e ∈ E(S) and ∀x, y ∈ S1, if y = 1, then we have immediately

ηe(x · 1) = ηe(x) = xe = xee = ηe(x)ηe(1).

If x ∈ S, then we know there exists z ∈ S such that ye = ez by using (∗) and e ∈ RegS.
Hence,

ηe(xy) = (xy)e = x(ye) = x(ez) = xe(ez) = (xe)(ye) = ηe(x)ηe(y).

This shows that ηe is a semigroup homomorphism.
In the following section, we proceed to study the structure of right C − rpp semigroups

whose set of idempotents forms a right normal band.
Definition 3.2. A band E is called a right normal band if ∀e, f, g ∈ E such that efg = feg.
Theorem 3.3. Let S = M∆∗

Y,ΦΛ be a right C − rpp semigroup. E(S) is the set of
idempotents of S. Then the following statements are equivalent:

(1) S is a strong semilattice of Mα × Λα;
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(2) E(S) is a right normal band.
Where M = [Y ;Mα, θα,β ] be a strong semilattice of left cancellative monoids Mα with structure
homomorphism θα,β , Λ = ∪α∈Y Λα be a semilattice decomposition of right regular band Λ into
right zero band Λα.

Proof. (1)⇒(2). Let S be strong semilattice Y of Sα = Mα×Λα with structure homomor-
phism Ψα,β for α, β ∈ Y and α > β. From [8] we knew E(S) =

⋃
α∈Y {(1α, i) ∈ Mα × Λα|i ∈ Λα},

where 1α is the identity element of Mα. If (1α, i) ∈ Sα, (1β , j) ∈ Sβ , then (1α, i)ψα,αβ is an
element in Eαβ . Since Eαβ is a right zero band, we have

(1α, i)(1β , j) = (1α, i)ψα,αβ(1β , j)ψβ,αβ = (1β , j)ψβ,αβ .

Consequently, for any idempotents (1α, i), (1β , j) and (1γ , k), we have

(1α, i)(1β , j)(1γ , k) = (1α, i)ψα,αβγ(1β , j)ψβ,αβγ(1γ , k)ψγ,αβγ = (1γ , k)ψγ,αβγ .
(1β , j)(1α, i)(1γ , k) = (1β , j)ψβ,αβγ(1α, i)ψα,αβγ(1γ , k)ψγ,αβγ = (1γ , k)ψγ,αβγ .

Thus,

(1α, i)(1β , j)(1γ , k) = (1β , j)(1α, i)(1γ , k).

This shows that E(S) is a right normal band.
(2)⇒(1). If E(S) is a right normal band, then we knew that E(S) is a strong semilattice

of right zero band, and every right zero band is just a J (= D)-class of E(S). As E(S) itself
is a semilattice of right zero bands Eα = {(1α, i) | i ∈ Λα}, each Eα is just a J -class of
E(S). This means that E(S) is a strong semilattice of Eα. Let the strong semilattice structure
homomorphism be ξα,β , where α, β ∈ Y and α > β. Then for any idempotents (1α, i), (1β , j),
we have

(1α, i)(1β , j) = (1α, i)ξα,αβ(1β , j)ξβ,αβ = (1β , j)ξβ,αβ .

Let θα,β be the strong semilattice structure homomorphism of the C−rpp compotent Ms =⋃
α∈Y Mα of S. By virtue of the right normality of E(S), for ∀(a, i) ∈ Sα and j1, j2 ∈ Λβ

⋃
Λαβ ,

we have
(aθα,αβ , 〈ϕ(a,i)

α,αβϕ
(1β ,j1)
β,αβ 〉) = (a, i)(1β , j1)

= (1α, i)(a, i)(1β , j1)
= (1α, i)(aθα,αβ , 〈ϕ(a,i)

α,αβϕ
(1β ,j1)
β,αβ 〉)

= (1α, i)(a, i)(1αβ , 〈ϕ(a,i)
α,αβϕ

(1β ,j1)
β,αβ 〉)

= (a, i)(1α, i)(1αβ , 〈ϕ(a,i)
α,αβϕ

(1β ,j1)
β,αβ 〉)

= (a, i)(1α, i)ξα,αβ(1αβ , 〈ϕ(a,i)
α,αβϕ

(1β ,j1)
β,αβ 〉)ξαβ,αβ

= (a, i)(1α, i)(1αβ , j2)
= (a, i)(1αβ , j2)
= (a, i)(1β , j2)
= (aθα,αβ , 〈ϕ(a,i)

α,αβϕ
(1β ,j2)
β,αβ 〉).

This shows 〈ϕ(a,i)
α,αβϕ

(1β ,j1)
β,αβ 〉 = 〈ϕ(a,i)

α,αβϕ
(1β ,j2)
β,αβ 〉.
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Now, for ∀α, β ∈ Y, α > β, i ∈ Λα, j0 ∈ Λβ , we define a mapping Ψα,β : Sα → Sβ by
(a, i) 7→ (aθα,αβ , 〈ϕ(a,i)

α,αβϕ
(1β ,j0)
β,αβ 〉).

By the same arguments as the previous one, we can get the above mapping Ψα,β is inde-
pendent of the choices j0 ∈ Λβ .

Clearly, Ψα,α is an identity mapping for ∀α ∈ Y .
Furthermore, for ∀(a, i), (b, j) ∈ Sα, α > β and j0 ∈ Λβ , we have

(a, i)(b, j)Ψα,β = (ab, j)Ψα,β

= ((ab)θα,αβ , 〈ϕ(ab,j)
α,αβ ϕ

(1β ,j0)
β,αβ 〉)

= (aθα,αβbθα,αβ , 〈ϕ(a,i)
α,αβϕ

(b,j)
α,αβϕ

(1β ,j0)
β,αβ 〉)

= (aθα,αβ , 〈ϕ(a,i)
α,αβϕ

(1β ,j0)
β,αβ 〉)(bθα,αβ , 〈ϕ(b,j)

α,αβϕ
(1β ,j0)
β,αβ 〉)

= (a, i)Ψα,β(b, j)Ψα,β .
Thus, Ψα,β is indeed a homomorphism from Sα onto Sβ .

For ∀α, β, γ ∈ Y satisfying α > β > γ, and j0 ∈ Λβ , k0 ∈ Λγ , we have
(a, i)Ψα,βΨβ,γ = (aθα,αβ , 〈ϕ(a,i)

α,αβϕ
(1β ,j0)
β,αβ 〉)Ψβ,γ

= (aθα,β , 〈ϕ(a,i)
α,β ϕ

(1β ,j0)
β,β 〉)Ψβ,γ

= (aθα,β , j0)Ψβ,γ

= (aθα,βθβ,γ , 〈ϕ(aθα,β ,j0)
β,γ ϕ

(1β ,k0)
γ,γ 〉)

= (aθα,γ , k0)
= (aθα,γ , 〈ϕ(a,i)

α,γ ϕ
(1β ,k0)
γ,γ 〉)

= (a, i)Ψα,γ .
In other words, we have Ψα,βΨβ,γ = Ψα,γ . Summing up all the above discussion, we are now
ready to construct a strong semilattice S of Sα with the above structure homomorphism Ψα,β .
Clearly, S = S as sets. The remaining part is to show that S = S as semigroup as well.

Denote the multiplication in S by ∗, Then for ∀(a, i) ∈ Sα, (b, j) ∈ Sβ and j0 ∈ Λαβ , we
have

(a, i) ∗ (b, j) = (a, i)Ψα,αβ(b, j)Ψβ,αβ

= (aθα,αβ , 〈ϕ(a,i)
α,αβϕ

(1β ,j0)
β,αβ 〉)(bθβ,αβ , 〈ϕ(b,j)

β,αβϕ
(1β ,j0)
β,αβ 〉)

= (a, i)(b, j).
Thus, it can be seen that the multiplication ∗ of S is exactly the same as the usual semigroup
multiplication of S. This shows that S is a strong semilattice of Mα × Λα.

The proof is completed.
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Abstract For any positive integer n, the famous Pseudo Smarandache Square-free function

Zw(n) is defined as the smallest positive integer m such that mn is divisible by n. That

is, Zw(n) = min{m : n|mn, m ∈ N}, where N denotes the set of all positive integers. The

main purpose of this paper is using the elementary method to study the properties of Zw(n),

and give an inequality for it. At the same time, we also study the solvability of an equation

involving the Pseudo Smarandache Square-free function, and prove that it has infinity positive

integer solutions.
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§1. Introduction and results

For any positive integer n, the famous Pseudo Smarandache Square-free function Zw(n) is
defined as the smallest positive integer m such that mn is divisible by n. That is,

Zw(n) = min{m : n|mn, m ∈ N},

where N denotes the set of all positive integers. This function was proposed by Professor F.
Smarandache in reference [1], where he asked us to study the properties of Zw(n). From the
definition of Zw(n) we can easily get the following conclusions: If n = pα1

1 pα2
2 · · · pαr

r denotes
the factorization of n into prime powers, then Zw(n) = p1p2 · · · pr. From this we can get the
first few values of Zw(n) are: Zw(1) = 1, Zw(2) = 2, Zw(3) = 3, Zw(4) = 2, Zw(5) = 5,
Zw(6) = 6, Zw(7) = 7, Zw(8) = 2, Zw(9) = 3, Zw(10) = 10, · · · . About the elementary
properties of Zw(n), some authors had studied it, and obtained some interesting results, see
references [2], [3] and [4]. For example, Maohua Le [3] proved that

∞∑
n=1

1
(Zw(n))α

, αεR, α > 0

is divergence. Huaning Liu [4] proved that for any real numbers α > 0 and x ≥ 1, we have the
asymptotic formula

∑

n≤x

(Zw(n))α =
ζ(α + 1)xα+1

ζ(2)(α + 1)

∏
p

[
1− 1

pα(p + 1)

]
+ O

(
xα+ 1

2+ε
)

,
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where ζ(s) is the Riemann zeta-function.

Now, for any positive integer k > 1, we consider the relationship between Zw

(
k∏

i=1

mi

)

and
k∑

i=1

Zw(mi). In reference [2], Felice Russo suggested us to study the relationship between

them. For this problem, it seems that none had studied it yet, at least we have not seen such
a paper before. The main purpose of this paper is using the elementary method to study this
problem, and obtained some progress on it. That is, we shall prove the following:

Theorem 1. Let k > 1 be an integer, then for any positive integers m1, m2, · · · , mk, we
have the inequality

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
≤ Zw

(
k∏

i=1

mi

)
,

and the equality holds if and only if all m1, m2, · · · , mk have the same prime divisors.
Theorem 2. For any positive integer k ≥ 1, the equation

k∑

i=1

Zw(mi) = Zw

(
k∑

i=1

mi

)

has infinity positive integer solutions (m1, m2, · · · , mk).

§2. Proof of the theorems

In this section, we shall prove our Theorems directly. First we prove Theorem 1. For any
positive integer k > 1, we consider the problem in two cases:

(a). If (mi, mj) = 1, i, j = 1, 2, · · · , k, and i 6= j, then from the multiplicative properties
of Zw(n), we have

Zw

(
k∏

i=1

mi

)
=

k∏

i=1

Zw(mi).

Therefore, we have

k

√√√√Zw

(
k∏

i=1

mi

)
= k

√√√√
k∏

i=1

Zw(mi) <

k∑

i=1

Zw(mi)

k
<

k∏

i=1

Zw(mi) = Zw

(
k∏

i=1

mi

)
.

(b). If (mi, mj) > 1, i, j = 1, 2, · · · , k, and i 6= j, then let mi = pαi1
1 pαi2

2 · · · pαir
r ,

αis ≥ 0, i = 1, 2, · · · , k; s = 1, 2, · · · , r. we have Zw(mi) = pβi1
1 pβi2

2 · · · pβir
r , where

βis =

{
0, if αis = 0 ;

1, if αis ≥ 1.
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Thus

k∑

i=1

Zw(mi)

k
=

pβ11
1 pβ12

2 · · · pβ1r
r + pβ21

1 pβ22
2 · · · pβ2r

r + · · ·+ pβk1
1 pβk2

2 · · · pβkr
r

k

≤ p1p2 · · · pr + p1p2 · · · pr + · · ·+ p1p2 · · · pr

k
= p1p2 · · · pr = Zw

(
k∏

i=1

mi

)
,

and equality holds if and only if αis ≥ 1, i = 1, 2, · · · , k, s = 1, 2, · · · , r.

k

√√√√Zw

(
k∏

i=1

mi

)
= k
√

p1p2 · · · pr ≤ k

√
pα1
1 pα2

2 · · · pαr
r

≤ pβ11
1 pβ12

2 · · · pβ1r
r + pβ21

1 pβ22
2 · · · pβ2r

r + · · ·+ pβk1
1 pβk2

2 · · · pβkr
r

k
=

k∑

i=1

Zw(mi)

k
,

where αs =
k∑

i=1

βis, s = 1, 2, · · · , r, but in this case, two equal sign in the above can’t be hold

in the same time.
So, we obtain

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
.

From (a) and (b) we have

k

√√√√Zw

(
k∏

i=1

mi

)
<

k∑

i=1

Zw(mi)

k
≤ Zw

(
k∏

i=1

mi

)
,

and the equality holds if and only if all m1, m2, · · · , mk have the same prime divisors. This
proves Theorem 1.

To complete the proof of Theorem 2, we need the famous Vinogradov’s three-primes the-
orem, which was stated as follows:

Lemma 1. Every odd integer bigger than c can be expressed as a sum of three odd primes,
where c is a constant large enough.

Proof. (See reference [5]).
Lemma 2. Let k ≥ 3 be an odd integer, then any sufficiently large odd integer n can be

expressed as a sum of k odd primes

n = p1 + p2 + · · ·+ pk.

Proof. (See reference [6]).
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Now we use these two Lemmas to prove Theorem 2. From Lemma 2 we know that for any
odd integer k ≥ 3, every sufficient large prime p can be expressed as

p = p1 + p2 + · · ·+ pk.

By the definition of Zw(n) we know that Zw(p) = p. Thus,

Zw(p1) + Zw(p2) + · · ·+ Zw(pk) = p1 + p2 + · · ·+ pk = p = Zw(p)

= Zw(p1 + p2 + · · ·+ pk).

This means that Theorem 2 is true for odd integer k ≥ 3.
If k ≥ 4 is an even number, then for every sufficient large prime p, p−2 is an odd number,

and by Lemma 2 we have

p− 2 = p1 + p2 + · · ·+ pk−1 or p = 2 + p1 + p2 + · · ·+ pk−1.

Therefore,

Zw(2) + Zw(p1) + Zw(p2) + · · ·+ Zw(pk−1) = 2 + p1 + p2 + · · ·+ pk−1 = p

= Zw(p) = Zw(2 + p1 + p2 + · · ·+ pk−1).

This means that Theorem 2 is true for even integer k ≥ 4.
At last, for any prime p ≥ 3, we have

Zw(p) + Zw(p) = p + p = 2p = Zw(2p),

so Theorem 2 is also true for k = 2. This completes the proof of Theorem 2.
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§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n | m!. That is, S(n) = min{m : n | m!, n ∈ N}. For
example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5,
S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, · · · . About
the elementary properties of S(n), many authors had studied it, and obtained some interesting
results, see references [1], [2], [3], [4] and [5]. For example, Lu Yaming [2] studied the solutions
of an equation involving the F.Smarandache function S(n), and proved that for any positive
integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1,m2, · · · ,mk).
Dr. Xu Zhefeng [3] studied the value distribution problem of S(n), and proved the following

conclusion:
Let P (n) denotes the largest prime factor of n, then for any real number x > 1, we have

the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.
Chen Guohui [4] studied the solvability of the equation

S2(x)− 5S(x) + p = x, (1)
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and proved the following conclusion:
Let p be a fixed prime. If p = 2, then the equation (1) has no positive integer solution; If

p = 3, then the equation (1) has only one positive integer solution x = 9; If p = 5, then the
equation (1) has only two positive integer solutions x = 1, 5; If p = 7, then the equation (1)
has only two positive integer solutions x = 21, 483. If p ≥ 11, then the equation (1) has only
one positive integer solution x = p(p− 4).

Le Maohua [5] studied the lower bound of S(2p−1(2p − 1)), and proved that for any odd
prime p, we have the estimate:

S
(
2p−1(2p − 1)

) ≥ 2p + 1.

Recently, in a still unpublished paper, Su Juanli improved the above lower bound as 6p + 1.
That is, she proved that for any prime p ≥ 7, we have the estimate

S
(
2p−1(2p − 1)

) ≥ 6p + 1.

The main purpose of this paper is using the elementary method to study the estimate
problem of S (Fn), and give a sharper lower bound estimate for it, where Fn = 22n

+ 1 is the
Fermat number. That is, we shall prove the following:

Theorem. For any positive integer n ≥ 3, we have the estimate

S (Fn) ≥ 8 · 2n + 1,

where Fn = 22n

+ 1 is called the Fermat number.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. First note that the
Fermat number F1 = 5, F2 = 17, F3 = 257, F4 = 65537, they are all prime. So for n = 3
and 4, we have S (F3) = 257 ≥ 8 · 23 + 1, S (F4) = 65537 > 8 · 24 + 1. Now without loss of
generality we can assume that n ≥ 5. If Fn be a prime, then from the properties of S(n) we
have S (Fn) = Fn = 22n

+ 1 ≥ 8 · 2n + 1. If Fn be a composite number, then let p be any prime
divisor of Fn, it is clear that (2, p) = 1. Let m denotes the exponent of 2 modulo p. That is,
m denotes the smallest positive integer r such that

2r ≡ 1 (mod p).

Since p | Fn, so we have Fn = 22n

+1 ≡ 0 (mod p) or 22n ≡ −1 (mod p), and 22n+1 ≡ 1 (mod p).
From this and the properties of exponent (see Theorem 10.1 of reference [6]) we have m | 2n+1,
so m is a divisor of 2n+1. Let m = 2d, where 1 ≤ d ≤ n + 1. It is clear that p † 2d− 1, if d ≤ n.
So m = 2n+1 and m | φ(p) = p− 1. Therefore, 2n+1 | p− 1 or

p = h · 2n+1 + 1. (2)

Now we discuss the problem in following three cases:
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(A) If Fn has more than or equal to three distinct prime divisors, then note that 2n+1 + 1
and 2 · 2n+1 + 1 can not be both primes, since one of them can be divided by 3. So from (2)
we know that in all prime divisors of Fn, there exists at least one prime divisor pi such that
pi = hi · 2n+1 + 1 ≥ 4 · 2n+1 + 1 = 8 · 2n + 1.

(B) If Fn has just two distinct prime divisors, without loss of generality we can assume

Fn =
(
2n+1 + 1

)α · (3 · 2n+1 + 1
)β or Fn =

(
2 · 2n+1 + 1

)α · (3 · 2n+1 + 1
)β

.

If Fn =
(
2n+1 + 1

)α ·(3 · 2n+1 + 1
)β , and α ≥ 4 or β ≥ 2, then from the properties of S(n)

we have the estimate

S(Fn) ≥ max
{

S
((

2n+1 + 1
)α

)
, S

((
3 · 2n+1 + 1

)β
)}

= max
{
α · (2n+1 + 1

)
, β · (3 · 2n+1 + 1

)}

≥ 8 · 2n + 1.

If Fn = 22n

+ 1 =
(
2n+1 + 1

) · (3 · 2n+1 + 1
)

= 3 · 22n+2 + 2n+3 + 1, then note that n ≥ 5,
we have the congruence

0 ≡ 22n

+ 1− 1 = 3 · 22n+2 + 2n+3 ≡ 2n+3 (mod 2n+4).

This is impossible.
If Fn = 22n

+1 =
(
2n+1 + 1

)2·(3 · 2n+1 + 1
)

= 3·23n+3+3·22n+3+3·2n+1+22n+2+2n+2+1,
then we also have

0 ≡ 22n

+ 1− 1 = 3 · 23n+3 + 3 · 22n+3 + 3 · 2n+1 + 22n+2 + 2n+2 ≡ 3 · 2n+1 (mod 2n+2).

This is still impossible.
If Fn = 22n

+ 1 =
(
2n+1 + 1

)3 · (3 · 2n+1 + 1
)
, then we have

22n

+ 1 ≡ (
3 · 2n+1 + 1

)2 ≡ 3 · 2n+2 + 1 (mod 2n+4)

or

0 ≡ 22n ≡ (
3 · 2n+1 + 1

)2 − 1 ≡ 3 · 2n+2 (mod 2n+4).

Contradiction with 2n+4 † 3 · 2n+2.
If Fn =

(
2 · 2n+1 + 1

)α · (3 · 2n+1 + 1
)β , and α ≥ 2 or β ≥ 2, then from the properties of

S(n) we have the estimate

S(Fn) ≥ max
{

S
((

2 · 2n+1 + 1
)α

)
, S

((
3 · 2n+1 + 1

)β
)}

= max
{
α · (2 · 2n+1 + 1

)
, β · (3 · 2n+1 + 1

)}

≥ 8 · 2n + 1.

If Fn = 22n

+ 1 =
(
2 · 2n+1 + 1

) · (3 · 2n+1 + 1
)
, then we have

Fn = 22n

+ 1 = 3 · 22n+3 + 5 · 2n+1 + 1.

From this we may immediately deduce the congruence

0 ≡ 22n

= 3 · 22n+3 + 5 · 2n+1 ≡ 5 · 2n+1 (mod 22n+3).

This is not possible.
(C) If Fn has just one prime divisor, we can assume that
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Fn =
(
2n+1 + 1

)α or Fn =
(
2 · 2n+1 + 1

)α or Fn =
(
3 · 2n+1 + 1

)α
.

If Fn =
(
2n+1 + 1

)α, then it is clear that our theorem holds if α ≥ 4. If α = 1, 2 or 3, then
from the properties of the congruence we can deduce that Fn =

(
2n+1 + 1

)α is not possible.
If Fn =

(
2 · 2n+1 + 1

)α or
(
3 · 2n+1 + 1

)α, then our theorem holds if α ≥ 2. If α = 1, then
Fn be a prime, so our theorem also holds.

This completes the proof of Theorem.
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Keywords Euler function, F. Smarandache function, equation, solvability.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n divides m!. That is, S(n) = min{m : m ∈ N, n|m!},
where N denotes the set of all positive integers. From the definition of S(n), it is easy to see
that if n = pα1

1 pα2
2 · · · pαk

k be the factorization of n into prime powers, then we have

S(n) = max
1≤i≤k

{S(pαi
i )} .

It is clear that from this properties we can calculate the value of S(n), the first few values of
S(n) are: S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4,
S(9) = 6, S(10) = 5, · · · . About the arithmetical properties of S(n), some authors had studied
it, and obtained many interesting results. For example, Lu Yaming [2] studied the solvability
of an equation involving the F.Smarandache function S(n), and proved that for any positive
integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite group positive integer solutions (m1, m2, · · · , mk).
Jozsef Sandor [3] proved that for any positive integer k ≥ 2, there exist infinite group

positive integers (m1, m2, · · · , mk) satisfying the inequality:

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).

Also, there exist infinite group positive integers (m1, m2, · · · , mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).
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Rongji Chen [5] studied the solutions of an equation involving the F.Smarandache function
S(n), and proved that for any fixed r ∈ N with r ≥ 3, the positive integer n is a solution of

S(n)r + S(n)r−1 + · · ·+ S(n) = n

if and only if
n = p(pr−1 + pr−2 + · · ·+ 1),

where p is an odd prime satisfying pr−1 + pr−2 + · · ·+ 1|(p− 1)!.
Xiaoyan Li and Yanrong Xue [6] proved that for any positive integer k, the equation

S(n)2 + S(n) = kn has infinite positive integer solutions, and each solution n has the form
n = pn1, where p = kn1 − 1 is a prime.

For any positive integer n, the Euler function φ(n) is defined as the number of all positive
integers not exceeding n, which are relatively prime to n. It is clear that φ(n) is a multiplicative
function.

In this paper, we shall use the elementary method and compiler program to study the
solvability of the equation:

S(1) + S(2) + · · ·+ S(n) = φ

(
n(n + 1)

2

)
, (1)

and give its all positive integer solutions. That is, we shall prove the following:
Theorem. The equation

S(1) + S(2) + · · ·+ S(n) = φ

(
n(n + 1)

2

)

has and only has two positive integer solutions n = 1, 10.

§2. Main lemmas

In this section, we shall give two simple lemmas which are necessary in the proof of our
Theorem. First we have the following:

Lemma 1. For any positive integer n > 100, we have the inequality

n∑

i=1

S(i) 6 π2

11.99
· n2

lnn
.

Proof. From the mean value formula of S(n) (See reference [7])

∑

n6x

S(n) =
π2

12
· x2

lnx
+ O

(
x2

ln2 x

)

we know that there exists one constant N > 0 such that
n∑

i=1

S(i) 6 π2

12
· n2

lnn
+

1
1199

· π2

12
· n2

lnn
6 π2

11.99
· n2

lnn

holds for all positive integer n > N . We can take N = 100 by calculation. This completes the
proof of Lemma 1.
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Lemma 2. For Euler function φ(n), we have the estimate

φ

(
n(n + 1)

2

)
>

n(n + 1)
4

· e 3
4 · 1

ln1.5 (2 ln n(n+1)
2 )

.

Proof. Let n = pα1
1 pα2

2 · · · pαk

k be the factorization of n into prime powers, then there
always exist some primes p1, p2, · · · ps such that p1p2 · · · ps > n. From [1] we have

∑

p6x

ln p = x + O
(

x

log x

)
,

by this estimate we know that

lnn <
s∑

i=1

ln pi 6
∑

pi6ps

ln pi 6 ps < 2 ln n.

Thus ∑

p|n

1
p

6
∑

pi6ps

1
pi

6 ln ln ps < ln ln(2 lnn).

Note that φ(n) = n
∏

p|n

(
1− 1

p

)
, if

n(n + 1)
2

is even, then

φ

(
n(n + 1)

2

)
=

n(n + 1)
2

∏

p|n(n+1)
2

(
1− 1

p

)

=
n(n + 1)

4
e

∑
p|n(n+1)

2 ,p 6=2

ln(1− 1
p )+ 1.5

p − 1.5
p

=
n(n + 1)

4
e

− ∑
p|n(n+1)

2 ,p 6=2

1.5
p +

∑
p|n(n+1)

2 ,p 6=2

[ln(1− 1
p )+ 1.5

p ]

> n(n + 1)
4

e

− ∑
p|n(n+1)

2 ,p 6=2

1.5
p

>
n(n + 1)

4
· e 3

4 · e−1.5 ln ln(2 ln
n(n+1)

2 )

=
n(n + 1)

4
· e 3

4 · 1

ln1.5 (2 ln n(n+1)
2 )

.

If
n(n + 1)

2
is odd, we can also get the same result. This completes the proof of Lemma 1.

§3. Proof of the theorem

In this section, we shall complete the proof of our Theorem. First we study the tendency
of the functional digraph

f(x) =
x(x + 1)

4
· e 3

4
1

ln1.5(2 ln x(x+1)
2 )

− π2

11.99
· x2

lnx
.

By use of Mathematica compiler program we find that f(x) > 0, if x > 100754.
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figure 1

From the figure 1 we know that if n > 100754, then

n∑

i=1

S(i) 6 π2

11.99
· n2

lnn
<

n(n + 1)
4

· e 3
4 · 1

ln1.5(2 ln n(n+1)
2 )

< φ

(
n(n + 1)

2

)
. (2)

If x ∈ (100754,+∞), we use Mathematica compiler program to compute f
′
(x)，then we

find that the derivative f
′
(x) is positive, so (2) is also true if x > 100754.

Now we consider the solution of (1) for all n ∈ [1, 100754]. By use of the computer
programming language, we obtain that the equation (1) has no any other positive integer
solutions except n = 1, n = 10. This completes the proof of Theorem.
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The computing programme is given as follows if n ∈ [1, 100754].
# include“stdio.h”
# include“math.h”
# define N 100754
int S(int n)
{int ret=1,num=n;
unsigned long int nn=1;
for(ret=1;ret<=n;ret++) { nn=nn∗ret;
if(nn%num==0) break;} if (ret>n) ret=n;
return ret; }
int SumS(int n)
{int ret=0,i;
for(i=1;i<=n;i++) ret+=S(i);
return ret;}
int coprime(int i,int n)
{ int a=n,b=i;
while(a!=b) { if(a==0) return b;
if(b==0) return a;
if(a>b) a=a%b;
else
b=b%a;}
return a; }
int Euler(int n)
{int ret=1,i;
for(i=2;i<n;i++) {if(coprime(i,n)==1) ret++;} return ret;}
main()
{ int kk;
for(kk=1;kk<=N;kk++) if(SumS(kk)==Euler((kk∗(kk+1)/2)))
printf(“rusult is % d\n”,kk);
getch (); }
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by matrix decomposition.

Keywords Generalized Hermitian matrix, full-rank factorization, Procrustes problem, opt-

imal approximation.

§1. Introduction

Some symbols and notations: Let Cm×n
r be the set of all m×n complex matrices with rank

r, HCn×n be the set of all n×n Hermitian matrices. Denoted by A+, A∗, rank(A) the Moore-
Penrose generalized inverse, conjugate transpose, rank of matrix A, respectively. Moreover, In

represents identity matrix of order n, and J = (en, en−1, · · · , e1), ei ∈ Cn is the ith column of
In. ‖ ¦ ‖ stands for the Frobenius norm. Matrix R ∈ Cn×n

r is said to be projective (orthogonal
projective) matrix, if R2 = R (R2 = R and R∗ = R).

Definition 1.1. If A ∈ Cn×n, we say that A is centro-symmetric matrix, if JAJ = A.
The centro-symmetric matrix has important and practical applications in information the-

ory, linear system theory and numerical analysis (see [1-2]). As the extension of the centro-
symmetric matrix, we define the following conception.

Definition 1.2. For given orthogonal projective matrix R ∈ Cn×n
r , we say that A ∈ Cn×n

is generalized Hermitian matrix, if RAR = A∗. Denote the set of all generalized Hermitian
matrices by GHCn×n.

In this paper, we discuss two problems as follows:
Problem I.(Procrustes Problem): Given orthogonal projective matrix R ∈ Rn×n, and

X, B ∈ Cn×m, find A ∈ GHCn×n such that
‖AX −B‖ = min .

Problem II.(Optimal Approximation Problem): Given M ∈ Cn×n, find Â ∈ SE such
that
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‖ M − Â‖ = min
A∈SE

‖M −A‖,
where SE is the solution set of Problem I.

Obviously, when M = 0, Problem II is changed into finding the least Frobenius norm
solution of Problem I.

Many important results have been achieved about the above problems with different ma-
trix sets, such as centro-symmetric matrix[3], symmetric matrix[4−5], R-symmetric matrix[6−7]

and (R,S)-symmetric matrix[8] set. In this paper, we investigate the above problems in the
generalized Hermitian matrix set by matrix decomposition.

§2. Preliminary knowledge

In this section, we discuss the properties and structures of (orthogonal) projective matrices
R ∈ Cn×n

r and A ∈ GHCn×n.
Denote s = rank(I−R), we know that r+s = n since R2 = R. Suppose that p1, p2, . . . , pr

and q1, q2, . . . , qs are the normal orthogonal basis for range R(R) and null space N(R) of R,
respectively. Let P = (p1, p2, . . . , pr) ∈ Cn×r

r and Q = (q1, q2, . . . , qs) ∈ Cn×s
s , then

P ∗P = Ir, Q∗Q = Is, (1)
RP = P, RQ = 0. (2)

Lemma 2.1.(see [9]) Let matrix A ∈ Cn×m
r and its full-rank factorization A = FG, where

F ∈ Cn×r
r , G ∈ Cr×m

r , then A is projective matrix if and only if GF = Ir.

Lemma 2.2. R ∈Cn×n
r is projective matrix, then

R =
(
P Q

)

Ir 0

0 0





P̂

Q̂


 , (3)

where matrix
(
P Q

)
is invertible, and

(
P Q

)−1

=


P̂

Q̂


 .

If R is orthogonal projective matrix, we have

R =
(
P Q

)

Ir 0

0 0





P ∗

Q∗


 , (4)

where
(
P Q

)
is unitary matrix.

Proof. Assume that the full-rank factorization of R is R = PP̂ , we obtain from Lemma
2.1 and (1) that

P̂ = P ∗R, P̂P = Ir. (5)

Similarly, if the full-rank factorization of I −R is I −R = QQ̂, we generate
Q̂ = Q∗(I −R), Q̂Q = Is, (6)

since (I − R)2 = I − R. Connecting with (1)(2)(5) and (6), we know that (3) holds. The
equality (4) is obvious since R∗ = R.

Lemma 2.3. Given matrices R as in (4) and A ∈ GHCn×n, then
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A =
(
P Q

)

G 0

0 0





P ∗

Q∗


 , ∀ G∈HCr×r. (7)

Proof. According to Lemma 2.2 and Definition 2.1, it is clear that (7) holds.

Lemma 2.3 indicates that arbitrary matrix M ∈ Cn×n can be written as

M =
(
P Q

)

M1 M2

M3 M4





P ∗

Q∗


 .

§3. The solutions of Problem I and II

Given matrices X, B ∈ Cn×m, partition

P ∗

Q∗


 X =


X1

X2


 and


P ∗

Q∗


 B =


B1

B2


, (8)

where X1, B1 ∈ Cr×m and X2, B2 ∈ Cs×m.
We need the following two lemmas derived from References [7] and [8], respectively.

Lemma 3.1. Suppose that matrices X1, B1 in (8), then matrix equation A1X1 = B1 is
consistent for A1 ∈ HCr×r, if and only if B1X

+
1 X1 = B1 and X∗

1B1 = B∗
1X1, the general

solution is
A1 = Ã1 + (Ir −X1X

+
1 )K1(Ir −X1X

+
1 ),

where Ã1 = (Ir − X1X+
1

2 )B1X
+
1 + (B1X

+
1 )
∗
(Ir − X1X+

1
2 ), ∀K1 ∈ HCr×r.

Lemma 3.2. Given matrices X1, B1 in (8), then
min

G∈Cr×r
‖ GX1 −B1 ‖=‖ B1(Ir −X+

1 X1) ‖
if and only if G = B1X

+
1 + K2(Ir −X1X

+
1 ), ∀K2 ∈ Cr×r.

According to Lemmas 3.1 and 3.2, we obtain

Lemma 3.3. For the above given matrices X1, B1,
min

A1∈HCr×r
‖ A1X1 −B1 ‖=‖ B1(Ir −X+

1 X1) ‖
if and only if

X∗
1B1X

+
1 = X+

1 X1B
∗
1X1X

+
1 , (9)

and the expression of A1 is the same as that in Lemma 3.1.

Proof. ‖ A1X1 −B1 ‖2 =‖ B1 −B1X
+
1 X1 + B1X

+
1 X1 −A1X1 ‖2

=‖ B1(Ir −X+
1 X1) ‖2 + ‖ B1X

+
1 X1 −A1X1 ‖2

Hence, the least residual can be attained only if B1X
+
1 X1 = A1X1, which is consistent for

A1 ∈ HCr×r under condition (9) by Lemma 3.3. The proof is completed.

Based on the previous analysis, Problem I can be solved in the following Theorem.

Theorem 3.1. Given matrix R as in (4), X, B ∈ Cn×m and the partition (8), then
min

A∈GHCn×n
‖AX −B‖2 = ‖B1(Ir −X+

1 X1)‖2 + ‖B2‖2, (10)

if and only if (9) holds, at this time
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A =
(
P Q

)

Ĝ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) 0

0 0





P ∗

Q∗


 , (11)

where G̃ = (Ir − X1X+
1

2 )B1X
+
1 + (B1X

+
1 )
∗
(Ir − X1X+

1
2 ), ∀K ∈ HCr×r.

Proof. According to the unitary invariance of Frobenius norm, formulas (4) and (7), we
obtain

‖AX −B‖ 2

=

∣∣∣∣∣∣

∣∣∣∣∣∣
(
P Q

)

G 0

0 0





P ∗

Q∗


 X −B

∣∣∣∣∣∣

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∣∣∣∣∣∣


G 0

0 0





X1

X2


−


B1

B2




∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ||GX1 −B1|| 2 + ‖B2‖ 2.
Therefore, the problem (10) is equivalent to the following least residual problem

min
G∈HCr×r

‖ GX1 −B1 ‖ .

From Lemma 3.3, we know that the minimum can be attained if and only if (9), and
G = G̃ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ),

where K ∈ HCr×r is arbitrary. Submitting G into (7), then (11) holds.

The following lemma stated from [6].

Lemma 3.4. Let L ∈ Cq×m,∆ ∈ Cq×q, Γ ∈ Cm×m, and ∆2 = ∆ = ∆∗, Γ2 = Γ = Γ∗,
then ‖ L−∆LΓ ‖= min

N∈Cq×m
‖ L−∆NΓ ‖ if and only if ∆(L−N)Γ = 0.

Let SE be the solution set of Problem I. We can easily verify from its definition that SE is a
closed convex subsets in matrix space Cn×n under Frobenius norm. The optimal approximation
theorem[10] reveals that Problem II has unique solution, which can be expressed in the next
theorem.

Theorem 3.2. Suppose that the given matrix in Problem II is

M =
(
P Q

)

M1 M2

M3 M4





P ∗

Q∗


 ∈ Cn×n

then
min

A∈SE

‖ M −A ‖ (12)

if and only if

A =
(
P Q

)

Ĝ + (Ir −X1X

+
1 )M1+M∗

1
2 (Ir −X1X

+
1 ) 0

0 0





P ∗

Q∗


 , (13)

where Ĝ is the same as that in Theorem 3.1.

Proof. By using the unitary invariance of Frobenius norm and Theorem 3.1, we obtain

‖ M −A ‖2=
∣∣∣∣∣∣

∣∣∣∣∣∣


M1 M2

M3 M4


−


Ĝ + (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) 0

0 0




∣∣∣∣∣∣

∣∣∣∣∣∣

2

= ‖ (M1 − Ĝ)− (Ir −X1X
+
1 )K(Ir −X1X

+
1 ) ‖2

+ ‖ M2 ‖2 + ‖ M3 ‖2 + ‖ M4 ‖2,
then the problem (12) equals to solve the minimum problem
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min
K∈HCr×r

‖ (M1 − Ĝ)− (Ir −X1X
+
1 )K(Ir −X1X

+
1 ) ‖ .

Moreover, since ‖M1‖2 = ‖M1+M∗
1

2 ‖2 + ‖M1−M∗
1

2 ‖2, hence the above minimum problem can be
transformed equivalently as

min
K∈HCr×r

‖ (
M1 + M∗

1

2
− Ĝ1)− (Ir −X1X

+
1 )K(Ir −X1X

+
1 ) ‖ .

We further deduce from Lemma 3.4 that
(Ir −X1X

+
1 )K(Ir −X1X

+
1 ) = (Ir −X1X

+
1 )M1+M∗

1
2 (Ir −X1X

+
1 ), (14)

submitting (14) into (11), we obtain (13).
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Abstract In this paper, defining a vector product in Semi-Euclidean space E4
2, we present a

method to calculate Frenet apparatus of Partially Null curves. Thereafter, in the same space,

using presented method, we prove that Frenet apparatus of a partially null evolute curve can

be formed by involute’s Frenet apparatus.
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§1. Introduction

Suffice it to say that the many important results in the theory of the curves in E3 were
initiated by G. Monge; and G. Darboux pionneered the moving frame idea. Thereafter, F. Frenet
defined his moving frame and his special equations which play important role in mechanics and
kinematics as well as in differential geometry. E. Cartan opened door of notion of null curves
(for more details see [2]). And, thereafter null curves deeply studied by W. B. Bonnor [7] in
Minkowski space-time. In the same space, Frenet equations for some special null; Partially
and Pseudo Null curves are given in [4]. By means of Frenet equations, in [3] authors gave
characterizations of such kind null curves lying on the pseudo-hyperbolic space in E4

1 . In [6],
authors defined a vector product and by this way, they presented a method to calculate Frenet
apparatus of space-like curves with non-null frame vectors and time-like curves in Minkowski
space-time. Additionally, in [5] authors defined Frenet equations of pseudo null and a partially
null curves in Semi-Euclidean space E4

2 .
In this work, first we defined vector product in E4

2 and then, using Frenet equations defined
in [5], we present a method to determine Frenet apparatus of partially null curves in E4

2 .
Moreover, we prove that Frenet apparatus of a partially null evolute curve can be formed by
involute’s Frenet apparatus in terms of presented method.

§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of
curves in the space E4

2 are briefly presented(A more complete elementary treatment can be
found in [1]).
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Semi-Euclidean space E4
2 is an Euclidean space E4 provided with the standard flat metric

given by

g = −dx2
1 − dx2

2 + dx2
3 + dx2

4, (1)

where (x1, x2, x3, x4) is a rectangular coordinate system in E4
2 . Since g is an indefinite metric,

recall that a vector v ∈ E4
2 can have one of the three causal characters; it can be space-like if

g(v, v) > 0 or v = 0, time-like if g(v, v) < 0 and null (light-like) if g(v, v)=0 and v 6= 0. Similary,
an arbitrary curve α = α(s) in E4

2 can be locally be space-like, time-like or null (light-like),
if all of its velocity vectors α′(s) are respectively space-like, time-like or null. Also, recall the
norm of a vector v is given by ‖v‖ =

√
|g(v, v)|. Therefore, v is a unit vector if g(v, v) = ±1.

Next, vectors v, w in E4
2 are said to be orthogonal if g(v, w) = 0. The velocity of the curve α(s)

is given by ‖α′(s)‖ . The Lorentzian hypersphere of center m = (m1,m2,m3,m4) and radius
r ∈ R+ in the space E4

2 defined by

S3
2(m, r) =

{
α = (α1, α2, α3, α4) ∈ E4

2 : g(α−m,α−m) = r2
}

. (2)

Denote by {T (s), N(s), B1(s), B2(s)} the moving Frenet frame along the curve α(s) in the space
E4

2 . Then T,N, B1, B2 are, respectively, the tangent, the principal normal, the first binormal and
the second binormal vector fields. Space-like or time-like curve α(s) is said to be parametrized
by arclength function s, if g(α′(s), α′(s)) = ±1. For a partially null unit speed curve in E4

2 ,
following Frenet equations are given in [5]




T ′

N ′

B′
1

B′
2




=




0 κ 0 0

κ 0 τ 0

0 0 σ 0

0 −ε2τ 0 −σ







T

N

B1

B2




, (3)

where T,N, B1 and B2 are mutually orthogonal vectors satisfying equations
g(T, T ) = ε1 = ±1, g(N, N) = ε2 = ±1, whereby ε1ε2 = −1
g(B1, B1) = g(B2, B2) = 0, g(B1, B2) = 1.

And here, κ, τ and σ are first, second and third curvature of the curve α, respectively. The
set {κ, τ, σ, T (s), N(s), B1(s), B2(s)} is called Frenet apparatus of the curves. Let ϕ and δ be
partially null unit speed curves in E4

2 . ϕ is an involute of δ if ϕ lies on the tangent line to δ at
δ(s0) and the tangents to δ and ϕ at δ(s0) and ϕ are perpendicular for each s0. ϕ is an evolute
of δ if δ is an involute of ϕ. And this curve couple defined by ϕ = δ + λT .

In [5] authors gave a characterization about partially null curves with the following state-
ment.

Theorem2.1. A partially null unit speed curve ϕ(s) in E4
2 with curvatures κ 6= 0, τ 6= 0

for each s ∈ I ⊂ R has σ = 0 for each s.

§3. Vector product in semi-euclidean space E4
2

Definition 3.1. Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) and c = (c1, c2, c3, c4) be vectors
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in E4
2 . The vector product in E4

2 is defined with the determinant

a ∧ b ∧ c = −

∣∣∣∣∣∣∣∣∣∣∣

−e1 −e2 e3 e4

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣∣∣∣∣∣

, (4)

where e1, e2, e3 and e4 are mutually orthogonal vectors (coordinate direction vectors) satisfying
equations

e1 ∧ e2 ∧ e3 = e4 , e2 ∧ e3 ∧ e4 = e1 , e3 ∧ e4 ∧ e1 = −e2 , e4 ∧ e1 ∧ e2 = −e3.
Proposition 3.2. Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4), c = (c1, c2, c3, c4) and d =

(d1, d2, d3, d4) be vectors in E4
2 . From the definition of vector product, there is a property in

the space E4
2 such as

g(a ∧ b ∧ c, a) = g(a ∧ b ∧ c, b) = g(a ∧ b ∧ c, c) = 0. (5)

Proof of above proposition is elementary. Using definition, it can be easily obtained.

§4. A method to calculate Frenet apparatus of partially

null curves in E4
2

Let α = α(s) be a partially null unit speed curve in E4
2 . By means of Frenet equations and

Theorem 2.1, let us calculate following differentiations respect to s.

dα

ds
= α′(s) = T. (6)

d2α

ds2
= α′′(s) = κN. (7)

d3α

ds3
= α′′′(s) = κ2T + κ′N + κτB1. (8)

Using (7), we easily have first curvature and principal normal, respectively,

κ = ‖α′′(s)‖ , (9)

N =
α′′(s)

κ
. (10)

Considering (4), we form following expression

T ∧N ∧ α′′′ = −

∣∣∣∣∣∣∣∣∣∣∣

−T −N B1 B2

1 0 0 0

0 1 0 0

κ2 κ′ κτ 0

∣∣∣∣∣∣∣∣∣∣∣

= κτB2. (11)
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Taking the norm of both sides, we get second curvature and second binormal as

B2 =
T ∧N ∧ α′′′

‖T ∧N ∧ α′′′‖ , (12)

τ =
‖T ∧N ∧ α′′′‖

‖α′′‖ . (13)

And, last using vector product we have first binormal as follow:

B1 = N ∧ T ∧B2. (14)

§5. Determination of Frenet apparatus of partially null

involute-evolute curve couples in E4
2

Theorem 5.1. Let ϕ and δ be partially null unit speed curves in E4
2 and ϕ be evolute of δ.

The Frenet apparatus of ϕ ({Tϕ, Nϕ, B1ϕ, B2ϕ, κϕ, τϕ, σϕ}) can be formed by Frenet apparatus
of δ ({T,N, B1, B2, κ, τ, σ}).

Proof. From Theorem 2.1 we know that σϕ = σ = 0. Then, considering definition we
write that

ϕ = δ + λT. (15)

Definition of involute-evolute yields that Tϕ ⊥ T . Using this and differentiating (15) respect
to s, we have

1 +
dλ

ds
= 0. (16)

Thus, we easily find λ = c − s, where c is constant. Rewriting (15) and differentiating it,
we get

Tϕ
dsϕ

ds
= (c− s)κN. (17)

Taking the norm of both sides of (17), we obtain

Tϕ = N (18)

and

∥∥∥∥
dϕ

ds

∥∥∥∥ =
dsϕ

ds
= (c− s)κ. (19)

Considering presented method we calculate following derivatives. (Here ′ denotes derivative
according to s)

ϕ′′ = (c− s)κ2T + [(c− s)κ′ − κ]N + (c− s)κτB1. (20)
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ϕ′′′ =
[−2κ2 + 3(c− s)κκ′

]
T +

[−2κ′ + (c− s)κ3 + (c− s)κ′′
]
N

+ [−2κτ + 2(c− s)κ′τ + (c− s)κτ ′]B1



 . (21)

(20) gives us first curvature and the principal normal of ϕ as

κϕ =
√
−(c− s)2κ4 − [(c− s)κ′ − κ]2 + (c− s)2κ2τ2 (22)

and

Nϕ =
(c− s)κ2T + [(c− s)κ′ − κ]N + (c− s)κτB1√
−(c− s)2κ4 − [(c− s)κ′ − κ]2 + (c− s)2κ2τ2

. (23)

The vector product of Tϕ ∧Nϕ ∧ ϕ′′′ implies that

Tϕ ∧Nϕ ∧ ϕ′′′ = − (c− s)2κ4

κϕ

( τ

κ

)′
B2. (24)

Taking the norm of (24) and considering (22), we have second curvature and second binor-
mal of ϕ

τϕ =
(c− s)2κ4

κϕ

( τ

κ

)′
(25)

and
B2ϕ = B2. (26)

Let us form

Nϕ ∧ Tϕ ∧B2ϕ = − 1
κϕ

∣∣∣∣∣∣∣∣∣∣∣

−T −N B1 B2

(c− s)κ2 (c− s)κ′ − κ (c− s)κτ 0

0 1 0 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣

. (27)

And therefore, we have

B1ϕ =
(c− s)κ

κϕ
[−τT − κB1] (28)

.
This result completes the proof.
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Abstract In this paper we investigate the relation for the Bernoulli numbers of higher order

and the Stirling numbers of the first kind, and establish an computational formula for the
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§1. Introduction and result

The Nörlund numbers Nn and the Bernoulli polynomials B
(k)
n (x) of order k are defined,

respectively, by（see [1], [4], [7]）

t

(1 + t) log(1 + t)
=

∞∑
n=0

Nn
tn

n!
, (1)

and (
t

et − 1

)k

ext =
∞∑

n=0

B(k)
n (x)

tn

n!
. (2)

The numbers B
(k)
n = B

(k)
n (0) are the Bernoulli numbers of order k，B

(1)
n = Bn are the

ordinary Bernoulli numbers, and bn =
1
n!

B(n)
n (1) are the Bernoulli numbers of the second kind.

By (1) and (2), we can get (see [4], [7])：

Nn = B(n)
n . (3)

Stirling numbers of the first kind s(n, k) can be defined by means of (see [1], [3], [5])

x(x− 1)(x− 2) · · · (x− n + 1) =
n∑

k=0

s(n, k)xk, (4)

or by the generating function

(log(1 + x))k = k!
∞∑

n=k

s(n, k)
xn

n!
. (5)
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It follows from (4) or (5) that

s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k), (6)

with s(n, 0) = 0(n > 0), s(n, n) = 1, s(n, 1) = (−1)n−1(n − 1)!(n > 0), s(n, k) = 0(k > n or
k < 0).

Stirling numbers of the second kind S(n, k) can be defined by means of (see [1], [3], [5])

xn =
n∑

k=0

S(n, k)x(x− 1)(x− 2) · · · (x− k + 1), (7)

or by the generating function

(ex − 1)k = k!
∞∑

n=k

S(n, k)
xn

n!
. (8)

It follows from (7) or (8) that

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), (9)

with S(n, 0) = 0(n > 0), S(n, n) = 1, S(n, 1) = 1(n > 0), S(n, k) = 0(k > n or k < 0).
Associated Stirling numbers of the first kind d(n, k) and associated Stirling numbers of the

second kind b(n, k) are defined, respectively, by (see [1], [3])

(log(1 + x)− x)k = k!
∞∑

n=2k

(−1)n−kd(n, k)
xn

n!
, (10)

and

(ex − 1− x)k = k!
∞∑

n=2k

b(n, k)
xn

n!
. (11)

It follows from (10) and (11) that

d(n, k) = (n− 1)d(n− 2, k − 1) + (n− 1)d(n− 1, k), (12)

with d(n, 0) = 0(n > 0), d(0, 0) = 1, d(n, 1) = (n− 1)!(n > 1), d(n, k) = 0(2k > n or k < 0).
and

b(n, k) = (n− 1)b(n− 2, k − 1) + kb(n− 1, k), (13)

with b(n, 0) = 0(n > 0), b(0, 0) = 1, b(n, 1) = 1(n > 1), b(n, k) = 0(2k > n or k < 0).
In [7] the following recurrence formulas for Nörlund numbers Nn are found:

(−1)n Nn

n
= 1−

n−1∑

k=0

(−1)k

n− k + 1
Nk

k!
, (−1)n Nn

n!
=

n∑

k=0

(
n

k

)
Nk

k!
.

Howard [2], on the other hand, obtained relationships between Nörlund numbers Nn and
Stirling numbers of the first kind s(n, k), and the Bernoulli numbers of the second kind bn:

Nn =
n∑

k=0

(−1)ks(n, k)
k + 1

, Nn =
1

n + 1

[n/2]∑

k=0

s(n + 1, 2k + 1)
k + 1
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and

Nn = n!
n∑

k=0

(−1)n−kbk, n!bn = Nn + nNn−1.

In [6], Liu obtained some computational formulas for Nörlund numbers Nn:

Nn = n · n!
n−1∑

k=0

(−1)n−1−k (k − 1)!d(n + k, k)
(n + k)!

,

Nn =
n∑

k=0

n!k!
(n + k)!

s(n + k, n)S(n, k),

Nn =
n∑

k=0

(−1)k n

n + k

(
2n

n + k

)
S(n + k, k),

Nn =
n∑

k=0

(−1)k n

n + k
b(n + k, k).

The main purpose of this paper is that to prove an computational formula for Nörlund
numbers. That is, we shall prove the following main conclusion.

Theorem. Let n ≥ 1 be integers. Then we have

Nn =
n

2n(1− 2n)

n−1∑

l=0

2ls(n, n− l)
n− l

n∑
r=0

(
n

r

)
rn−l. (14)

§2. Proof of the Theorem

Proof. Writing
(

t

et − 1

)k

= 2−k

(
2t

e2t − 1

)k

(et + 1)k

= 2−k
k∑

r=0

(
k

r

)(
2t

e2t − 1

)k

ert,

we form the Abel convolution of
(

2t

e2t − 1

)k

=
∞∑

l=0

2lB
(k)
l

tl

l!

and

ert =
∞∑

m=0

rm tm

m!
.

Then
(

t

et − 1

)k

= 2−k
k∑

r=0

(
k

r

) ∞∑
n=0

∑

l+m=n

2lB
(k)
l rm

(
n

l

)
tn

n!

=
∞∑

n=0

(
2−k

n∑

l=0

(
n

l

)
2lB

(k)
l

k∑
r=0

(
k

r

)
rn−l

)
tn

n!
,
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whence

B(k)
n = 2−k

n−1∑

l=0

(
n

l

)
2lB

(k)
l

k∑
r=0

(
k

r

)
rn−l + 2n−kB(k)

n 2k,

on separating the term with l = n. Hence

B(k)
n =

1
2k(1− 2n)

n−1∑

l=0

(
n

l

)
2lB

(k)
l

k∑
r=0

(
k

r

)
rn−l. (15)

Using the known formula ([7])

B
(n)
l =

l!(n− 1− l)!
(n− 1)!

s(n, n− l) (l < n), (16)

in (15) completes the proof of Theorem.
Remark 1. Taking k = 1 in (15), we have

Bn =
1

2(1− 2n)

n−1∑

l=0

(
n

l

)
2lBl. (17)

Remark 2. Taking k = n + 1, n + 2, · · · in (15), and note that (16) and

B(n+1)
n = (−1)nn!,

B(n+2)
n = (−1)nn!

(
1 +

1
2

+
1
3

+ · · ·+ 1
n + 1

)

(see [7]), we have

n−1∑

l=0

2ls(n + 1, n + 1− l)
n+1∑
r=0

(
n + 1

r

)
rn−l = (−1)nn!2n+1(1− 2n), (18)

n−1∑

l=0

2l(n + 1− l)
n + 1

s(n + 2, n + 2− l)
n+2∑
r=0

(
n + 2

r

)
rn−l

= (−1)nn!2n+2(1− 2n)
(

1 +
1
2

+
1
3

+ · · ·+ 1
n + 1

)
. (19)
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Abstract A Q(Sk, Cs1 , Cs2 , · · · , Csk ) graphs be a graph abtained from Sk whose every one

degree vertex attached one cycle Ci(i = 1, 2, · · · , k). In this paper, we determine the lower

and the higher bound for the Merrifield−simmons index in Q(Sk, Cs1 , Cs2 , · · · , Csk ) graphs in

terms of the order k, and characterize the Q(Sk, Cs1 , Cs2 , · · · , Csk ) graphs with the smallest

and the largest Merrifield−simmons index.
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§1. Introduction

Let G = (V, E) be a simple connected graph with the vertex set V (G) and the edge set
E(G). For any v ∈ V ,NG(v) = {u | uv ∈ E(G)} denotes the neighbors of v, and dG(v) =
| NG(v) | is the degree of v in G; NG[v] = {v} ∪ NG(v). A leaf is a vertex of degree one and
a stem is a vertex adjacent to at least one leaf. Let E

′ ⊆ E(G), we denote by G − E
′

the
subgraph of G obtained by deleting the edges of E

′
.W ⊆ V (G), G−W denotes the subgraph

of G obtained by deleting the vertices of W and the edges incident with them. If a graph G has

components G1, G2, · · · , Gk, then G is denoted by
k⋃

i=1

Gi. Pn denotes the path on n vertices,

Cn is the cycle on n vertices, and Sn is the star consisting of one center vertex adjacent to n−1
leaves and Tn is a tree on n vertices.

For a graph G = (V, E), a subset S ⊆ V is called independent if no two vertices of S

are adjacent in G. The set of independent sets in G is denoted by I(G). The empty set is
an independent set. The number of independent sets in G, denoted by σ−index, is called the
Merrifield − Simmons index in theoratical chemistry.the Q(Sk, Cs1 , Cs2 , · · · , Csk

) graphs is
abtained from Sk whose every one degree vertex attached one cycle Csi(i = 1, · · · , k).

The Merrifield−Simmons index [1-3] is one of the topogical indices whose mathematical
properties were studied in some detail [4-12] whereas its applicability for QSPR and QSAR was
examined to a much lesser extent; in [2] it was shown that σ−index is correlated with the
boiling points.

In this paper, we investigate the Merrifield−Simmons index on Q(Sk, Cs1 , Cs2 , · · · , Csk
)

graphs. We characterize the Q(Sk, Cs1 , Cs2 , · · · , Csk
) graphs with the smallest and the largest
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Merrifield-Simmons index.

§2. Some known results

We give with several important lemmas from [2-6] will be helpful to the proofs of our main
results, and also give three lemmas which will increase the Merrifield-Simmons index.

Lemma2.1.[2] Let G be a graph with k components G1, G2, · · · , Gk, then

σ(G) =
k∏

i=1

σ(Gi).

Lemma 2.2.[4] For any graph G with any v ∈ V (G), we have σ(G) = σ(G−v)+σ(G−[v]),
where [v] = NG(v)

⋃
v.

Lemma 2.3.[3] Let T be a tree, then Fn+2 ≤ σ(T ) ≤ 2n−1 + 1 and σ(T ) = Fn+2 if and
only if T ∼= Pn and σ(T ) = 2n−1 + 1 if and only if T ∼= Sn.

Lemma 2.4.[5] Let n = 4m + i(i ∈ {1, 2, 3, 4}) and m ≥ 2, then
σ((Pn, v2, T )) > σ((Pn, v4, T )) > · · · > σ((Pn, v2m+2ρ, T )) > · · · > σ((Pn, v2m+1, T )) >

σ((Pn, v3, T ))> σ((Pn, v1, T )), where ρ = 0 if i = 1, 2 and ρ = 1 if i = 3, 4.

Lemma 2.5.[6] Let α =
1 +

√
5

2
and β =

1−√5
2

and by definition of Fibonacci number
Fn and Lucas number Ln, we know

Fn =
αn − βn

√
5

, Ln = αn + βn, Fn · Fm =
1
5
(Ln+m − (−1)n · Lm−n).

Lemma 2.6. Let G is Q(S3, Cs, Cl, Ch) graphs with n vertices, then
σ(Q(S3, Cs, Cl, Ch)) = (Fs+1 + Fs−1)(Fl+1 + Fl−1)(Fh+1 + Fh−1) + Fs+1Fl+1Fh+1.

Proof. From the lemmas 2.1 and 2.2, we have

σ(Q(S3, Cs, Cl, Ch)) = LsLlLh + Fs+1Fl+1Fh+1.

From the lemma 2.6, we have Ls = Fs+1 + Fs−1, Ll = Fl+1 + Fl−1, Lh = Fh+1 + Fh−1, so
σ(Q(S3, Cs, Cl, Ch)) = (Fs+1 + Fs−1)(Fl+1 + Fl−1)(Fh+1 + Fh−1) + Fs+1Fl+1Fh+1.
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Lemma 2.7. Let G = Cs1 ∪ Cs2 ∪ · · · ∪ Csk
graphs and G1 = C4 ∪ C4 ∪ · · · ∪ C4 ∪

Cs1+s2+···+sk−4(k−1) graph as shown picture 2.1 where k − 1 are numbers of C4, then σ(G1) ≥
σ(G) and σ(G1) = σ(G) if and only if G1

∼= G.

Proof. If k = 2, then
σ(G) = Ls1Ln−s1

= (Fs1+1 + Fs1−1)(Fn−s1+1 + Fn−s1−1)

= Fs1+1Fn−s1+1 + Fs1+1Fn−s1−1 + Fs1−1Fn−s1+1 + Fs1−1Fn−s1−1

=
1
5
[(Ln+2 + (−1)s1Ln−2s1) + (Ln + (−1)s1Ln−2s1−2) + (Ln + (−1)s1Ln−2s1+2)

+(Ln−2 + (−1)s1Ln−2s1)]

=
1
5
[(Ln+2 + 2Ln + Ln−2) + (−1)s1(2Ln−2s1 + Ln−2s1−2 + Ln−2s1+2)].

From above, we know that the result is correct if K = 2. We presume that the result is correct
if K = k, then if K = k + 1, we have

σ(G) =
k+1∏

i=1

σ(Csi)

=
k∏

i=1

σ(Csi) · σ(Csk+1)

≤ Lk−1
4 Ls1+s2+···+sk−4(k−1)Lsk+1

σ(G1) = Lk
4Ls1+s2+···+sk+1−4k.

σ(G1)− σ(G) ≥ Lk
4Ls1+s2+···+sk+1−4k − Lk−1

4 Ls1+s2+···+sk−4(k−1)Lsk+1

= Lk−1
4 (L4Ls1+s2+···+sk+1−4k − Ls1+s2+···+sk−4(k−1)Lsk+1)

= Lk−1
4 [(α4 + β4)(αs1+s2+···+sk+1−4k + βs1+s2+···+sk+1−4k)

−(αs1+s2+···+sk−4(k−1) + βs1+s2+···+sk−4(k−1))(αsk+1 + βsk+1)]

= Lk−1
4 (Ls1+s2+···+sk+1−4k−4 − (−1)sk+1Ls1+s2+···+sk−4k+4−sk+1)

≥ 0.
From above, we know that the result is correct.

Lemma 2.8. Let G = Cs1 ∪ Cs2 ∪ · · · ∪ Csk
graphs and G2 = C3 ∪ C3 ∪ · · · ∪ C3 ∪

Cs1+s2+···+sk−3(k−1) graph as shown picture 2.1 where k − 1 are numbers of C3, then
σ(G) ≥ σ(G2) and σ(G) = σ(G2) if and only if G2

∼= G.

Proof. If k = 2, from the lemma 2.7 we know that the result is correct.

We presume that the result is correct if K = k, then if K = k + 1, we have

σ(G) =
k+1∏

i=1

σ(Csi
) =

k∏

i=1

σ(Csi
) · σ(Csk+1) ≥ Lk−1

3 Ls1+s2+···+sk−3(k−1)Lsk+1

σ(G2) = Lk
3Ls1+s2+···+sk+1−3k.

σ(G)− σ(G2) ≥ Lk−1
3 Ls1+s2+···+sk−3k+3Lsk+1 − Lk

3Ls1+s2+···+sk+1−3k

= Lk−1
3 (Ls1+s2+···+sk−3(k−1)Lsk+1 − L3Ls1+s2+···+sk+1−3k)

= Lk−1
3 [(αs1+s2+···+sk−3(k−1) + βs1+s2+···+sk−3(k−1))(αsk+1 + βsk+1)

−(α3 + β3)(αs1+s2+···+sk+1−3k + βs1+s2+···+sk+1−3k)]

= Lk−1
3 (Ls1+s2+···+sk+1−3k−3 + (−1)sk+1Ls1 + s2 + · · ·+ sk − 3k − 3− sk+1)

≥ 0.
From above, we know that the result is correct.
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§3. The graph with the largest Merrifield-Simmons index

in Q(Sk, Cs1
, Cs2

, · · · , Csk
) graphs

In this section, we will find the Q(Sk, Cs1 , Cs2 , · · · , Csk
) graphs with the largest σ−index

in Q(Sk, Cs1 , Cs2 , · · · , Csk
) graphs. and give some good results on orders of σ−index.

Definition 3.1. Let Q(Sk, Cs1 , Cs2 , · · · , Csk
) graphs be a graph abtained from Sk whose

every one degree vertex attached one cycle Ci(i = 1, 2, · · · , k) as shown Picture 3.1.
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Remark: Above graphs will be used frequently in this paper.

Theorem 3.1. Let s is constant and l = 4j + i, i ∈ {1, 2, 3, 4} and j ≥ 2. Then
σ(Q(S3, Cs, C4, Cn−s−5)) > σ(Q(S3, Cs, C6, Cn−s−7))
> · · · > σ(Q(S3, Cs, C2j+2ρ, Cn−s−2j−2ρ−1)) > σ(Q(S3, Cs, C2j+1, Cn−s−2j−2))
> · · · > σ(Q(S3, Cs, C5, Cn−s−6)) > σ(Q(S3, Cs, C3, Cn−s−4)),
where ρ = 0 if i = 1, 2 and ρ = 1 if i = 3, 4.

Proof. From Lemma 2.6, we have
σ(Q(S3, Cs, Cl, Cn−s−l−1))

= (Fs+1 + Fs−1)(Fl+1 + Fl−1)(Fn−s−l + Fn−s−l−2) + Fs+1Fl+1Fn−s−l

= Fs+1Fl+1Fn−s−l + Fs+1Fl+1Fn−s−l−2 + Fs+1Fl−1Fn−s−l + Fs+1Fl−1Fn−s−l−2

+Fs−1Fl+1Fn−s−l + Fs−1Fl+1Fn−s−l−2 + Fs−1Fl−1Fn−s−l + Fs−1Fl−1Fn−s−l−2.

From Lemma 2.5, we have
σ(Q(S3, Cs, Cl, Cn−s−l−1))

=
1
5
[2Fs+1(Ln−s+1 − (−1)l+1Ln−s−2l−1) + Fs+1(Ln−s−1 − (−1)l+1Ln−s−2l−3)

+Fs+1(Ln−s−1 − (−1)l−1Ln−s−2l+1) + Fs−1(Ln−s+1 − (−1)l+1Ln−s−2l−1)
+Fs−1(Ln−s−1 − (−1)l−1Ln−s−2l+1) + Fs−1(Ln−s−1 − (−1)l+1Ln−s−2l−3)
+Fs+1(Ln−s−3 − (−1)l−1Ln−s−2l−1) + Fs−1(Ln−s−3 − (−1)l−1Ln−s−2l−1)]

=
1
5
[(2Fs+1Ln−s+1) + (2Fs+1Ln−s−1) + (Fs−1Ln−s+1) + (2Fs−1Ln−s−1)

+(Fs+1Ln−s−3) + (Fs−1Ln−s−3) + (−1)l(3Fs+1Ln−s−2l−1 + Fs+1Ln−s−2l−3

+2Fs−1Ln−s−2l−1 + Fs−1Ln−s−2l+1 + Fs−1Ln−s−2l−3 + Fs+1Ln−s−2l+1)].
From above, we know that the result is correct.

Theorem 3.2. Let s = 2j + i, i ∈ {1, 2, 3, 4} and j ≥ 2, then
σ(Q(S3, C4, C4, Cn−9)) > σ(Q(S3, C6, C4, Cn−11))
> · · · > σ(Q(S3, C2j+2ρ, C4, Cn−2j−2ρ−5)) > σ(Q(S3, C2j+1, C4, Cn−2j−6))
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> · · · > σ(Q(S3, C5, C4, Cn−10)) > σ(Q(S3, C3, C4, Cn−8)),
where ρ = 0 if i = 1, 2 and ρ = 1 if i = 3, 4.

Proof. From lemma 2.6, we have
σ(Q(S3, Cs, C4, Cn−s−5))

= 2Fs+1F5Fn−s−4 + Fs+1F5Fn−s−6 + Fs+1F3Fn−s−4 + Fs−1F5Fn−s−4

+Fs−1F3Fn−s−4 + Fs−1F5Fn−s−6 + Fs+1F3Fn−s−6 + Fs−1F3Fn−s−6

= 12Fs+1Fn−s−4 + 7Fs−1Fn−s−4 + 7Fs+1Fn−s−6 + 7Fs−1Fn−s−6

=
1
5
[12(Ln−3 − (−1)s+1Ln−2s−5) + 7(Ln−5 − (−1)s−1Ln−2s−3)

+7(Ln−5 − (−1)s+1Ln−2s−7) + 7(Ln−7 − (−1)s−1Ln−2s−5)]

=
1
5
[(12Ln−3 + 14Ln−5 + 7Ln−7)

+(−1)s(19Ln−2s−5 + 7Ln−2s−3 + 7Ln−2s−7)].
From above, we know that the result is correct.

Corollary 1. The Q(S3, Cs, Cl, Cn−s−l−1) graphs with the largest σ− index is
Q(S3, C4, C4, Cn−9).

Theorem 3.3. Let n ≥ 4k, then
σ(Q(Sk, Cs1 , Cs2 , · · · , Csk

)) ≤ σ(Q(Sk, C4, · · · , C4, Cs1+s2+···+sk−4k+4)) and
σ(Q(Sk, Cs1 , Cs2 , · · · , Csk

)) = σ(Q(Sk, C4, · · · , C4, Cs1+s2+···+sk−4k+4)) if only and if
Q(Sk, Cs1 , Cs2 , · · · , Csk

) ∼= Q(Sk, C4, · · · , C4, Cs1+s2+···+sk−4k+4).
Proof. If K = 3, we have proofed that the result is correct. We presume that the result is

correct, if K = k, then if K = k + 1 we have
σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1))

= σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1)− v) + σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1)− [v])
≤ (Lk−1

4 Ls1+s2+···+sk−4(k−1) + F k−1
5 Fs1+s2+···+sk−4k+5)Fsk+1+1

+Lk−1
4 Ls1+s2+···+sk−4k+4Fsk+1−1

σ(Q(Sk+1, C4, · · · , C4, Cs1+s2+···+sk+1−4k))
= Lk

4Ls1+s2+···+sk+1−4k + F k
5 Fs1+s2+···+sk+1−4k+1

σ(Q(Sk+1, C4, · · · , C4, Cs1+s2+···+sk+1−4k))− σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1))
≥ Lk−1

4 [L4Ls1+s2+···+sk+1−4k − Ls1+s2+···+sk−4k+4(Fsk+1+1 + Fsk+1−1)]
+F k−1

5 (F5Fs1+s2+···+sk+1−4k+1 − Fs1+s2+···+sk−4k+5Fsk+1+1)
= Lk−1

4 (Ls1+s2+···+sk+1−4k−4 − (−1)sk+1Ls1+s2+···+sk−4k+4−sk+1)
+F k−1

5 (Ls1+s2+···+sk+1−4k−4 − (−1)sk+1Ls1+s2+···+sk−4k+4−sk+1)
= (Lk−1

4 − F k−1
5 )(Ls1+s2+···+sk+1−4k−4 − (−1)sk+1Ls1+s2+···+sk−4k+4−sk+1) ≥ 0.

From above, we know that the result is correct.

§4. The graph with the smallest Merrifield-Simmons index

in Q(Sk, Cs1
, Cs2

, · · · , Csk
) graphs

In this section, we will find the Q(Sk, Cs1 , Cs2 , · · · , Csk
) graphs with the smallest Merrifield-

Simmons index.
Theorem 4.1. Let s = 2j + i, i ∈ {1, 2, 3, 4} and j ≥ 2, then

σ(Q(S3, C4, C3, Cn−8)) > σ(Q(S3, C6, C3, Cn−10))
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> · · · > σ(Q(S3, C2j+2ρ, C3, Cn−2j−2ρ−4)) > σ(Q(S3, C2j+1, C3, Cn−2j−5))
> · · · > σ(Q(S3, C5, C3, Cn−9)) > σ(Q(S3, C3, C3, Cn−7)),
where ρ = 0 if i = 1, 2 and ρ = 1 if i = 3, 4.

Proof. From lemma 2.6, we have
σ(Q(S3, Cs, C3, Cn−s−4))

= 2Fs+1F4Fn−s−3 + Fs+1F4Fn−s−5 + Fs+1F2Fn−s−3 + Fs−1F4Fn−s−3

+Fs−1F2Fn−s−3 + Fs−1F4Fn−s−5 + Fs+1F2Fn−s−5 + Fs−1F2Fn−s−5

= 7Fs+1Fn−s−3 + 4Fs+1Fn−s−5 + 4Fs−1Fn−s−3 + 4Fs−1Fn−s−5

=
1
5
[7(Ln−2 − (−1)s+1Ln−2s−4) + 4(Ln−4 − (−1)s−1Ln−2s−6)

+4(Ln−4 − (−1)s+1Ln−2s−2) + 4(Ln−6 − (−1)s−1Ln−2s−4)]

=
1
5
[(7Ln−2 + 8Ln−4 + 4Ln−6)

+(−1)s(11Ln−2s−4 + 4Ln−2s−6 + 4Ln−2s−2)].
From above, we know that the result is correct.
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Theorem 4.2. Let n ≥ 4k, then

σ(Q(Sk, Cs1 , Cs2 , · · · , Csk
)) ≥ σ(Q(Sk, C3, · · · , C3, Cs1+s2+···+sk−3k+3)) and

σ(Q(Sk, Cs1 , Cs2 , · · · , Csk
)) = σ(Q(Sk, C3, · · · , C3, Cs1+s2+···+sk−3k+3))

if only and if Q(Sk, Cs1 , Cs2 , · · · , Csk
) ∼= Q(Sk, C3, C3, · · · , Cs1+s2+···+sk−3k+3).

Proof. If K = 3, we have proofed that the result is correct. We presume that the result is
correct, if K = k, then if K = k + 1 we have
σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1))

= σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1)− v) + σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1)− [v])
≥ (Lk−1

3 Ls1+s2+···+sk−3(k−1) + F k−1
4 Fs1+s2+···+sk−3k+4)Fsk+1+1

+Lk−1
3 Ls1+s2+···+sk−3k+3Fsk+1−1

σ(Q(Sk+1, C3, · · · , C3, Cs1+s2+···+sk+1−3k))
= Lk

3Ls1+s2+···+sk+1−3k + F k
4 Fs1+s2+···+sk+1−3k+1

σ(Q(Sk+1, C3, · · · , C3, Cs1+s2+···+sk+1−3k))− σ(Q(Sk+1, Cs1 , Cs2 , · · · , Csk+1))
≤ Lk−1

3 [L3Ls1+s2+···+sk+1−3k − Ls1+s2+···+sk−3k+3(Fsk+1+1 + Fsk+1−1)]
+F k−1

4 (F4Fs1+s2+···+sk+1−3k+1 − Fs1+s2+···+sk−3k+4Fsk+1+1)
= Lk−1

3 (−Ls1+s2+···+sk+1−3k−3 − (−1)sk+1Ls1+s2+···+sk−3k+3−sk+1)
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+F k−1
4 (−Ls1+s2+···+sk+1−3k−3 − (−1)sk+1Ls1+s2+···+sk−3k+3−sk+1)

= (Lk−1
3 − F k−1

4 )(−Ls1+s2+···+sk+1−3k−3 − (−1)sk+1Ls1+s2+···+sk−3k+3−sk+1) ≤ 0.
From above, we know that the result is correct.
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Abstract For any positive integer n ≥ 3, if n and n + 2 both are primes, then we call that

n and n + 2 are twin primes. In this paper, we using the elementary method to study the

relationship between the twin primes and some arithmetical function, and give a new critical

method for twin primes.

Keywords The Smarandache reciprocal function, critical method for twin primes.

§1. Introduction and result

For any positive integer n, the Smarandache reciprocal function Sc(n) is defined as the
largest positive integer m such that y | n! for all integers 1 ≤ y ≤ m, and m + 1 † n!. That is,
Sc(n) = max{m : y | n! for all 1 ≤ y ≤ m, and m + 1 † n!}. From the definition of Sc(n) we
can easily deduce that the first few values of Sc(n) are:

Sc(1) = 1, Sc(2) = 2, Sc(3) = 3, Sc(4) = 4, Sc(5) = 6, Sc(6) = 6,

Sc(7) = 10, Sc(8) = 10, Sc(9) = 10, Sc(10) = 10, Sc(11) = 12, Sc(12) = 12,

Sc(13) = 16, Sc(14) = 16, S5(15) = 16, Sc(16) = 16, Sc(17) = 18, · · · · · · .

About the elementary properties of Sc(n), many authors had studied it, and obtained a
series results, see references [2], [3] and [4]. For example, A.Murthy [2] proved the following
conclusion:

If Sc(n) = x and n 6= 3, then x + 1 is the smallest prime greater than n.
Ding Liping [3] proved that for any real number x > 1, we have the asymptotic formula

∑

n≤x

Sc(n) =
1
2
· x2 + O

(
x

19
12

)
.

On the other hand, Jozsef Sandor [5] introduced another arithmetical function P (n) as
follows: P (n) = min{p : n |p!, where p be a prime}. That is, P (n) denotes the smallest prime
p such that n | p!. In fact function P (n) is a generalization of the Smarandache function S(n).
Its some values are: P (1) = 2, P (2) = 2, P (3) = 3, P (4) = 5, P (5) = 5, P (6) = 3, P (7) = 7,
P (8) = 5, P (9) = 7, P (10) = 5, P (11) = 11, · · · . It is easy to prove that for each prime p one
has P (p) = p, and if n is a square-free number, then P (n) = greatest prime divisor of n. If p

be a prime, then the following double inequality is true:

2p + 1 ≤ P (p2) ≤ 3p− 1 (1)
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and

S(n) ≤ P (n) ≤ 2S(n)− 1. (2)

In reference [6], Li Hailong studied the value distribution properties of P (n), and proved
that for any real number x > 1, we have the mean value formula

∑

n≤x

(
P (n)− P (n)

)2
=

2
3
· ζ

(
3
2

)
· x

3
2

lnx
+ O

(
x

3
2

ln2 x

)
,

where P (n) denotes the largest prime divisor of n, and ζ(s) is the Riemann zeta-function.
In this paper, we using the elementary method to study the solvability of an equation

involving the Smarandache reciprocal function Sc(n) and P (n), and give a new critical method
for twin primes. That is, we shall prove the following:

Theorem. For any positive integer n > 3, n and n + 2 are twin primes if and only if n

satisfy the equation

Sc(n) = P (n) + 1. (3)

§2. Proof of the theorem

In this section, we shall prove our theorem directly. First we prove that if n (> 3) and
n + 2 both are primes, then n satisfy the equation (3). In fact this time, from A.Murthy [2] we
know that Sc(n) = n + 1 and P (n) = n, so Sc(n) = P (n) + 1, and n satisfy the equation (3).

Now we prove that if n > 3 satisfy the equation Sc(n) = P (n) + 1, then n and n + 2 both
are primes. We consider n in following three cases:

(A) If n = q be a prime, then P (n) = P (q) = q, and Sc(q) = P (q) + 1 = q + 1, note that
q > 3, so from [2] we know that q + 2 must be a prime. Thus n and n + 2 both are primes.

(B) If n = qα, q be a prime and α ≥ 2, then from the estimate (2) and the properties of
the Smarandache function S(n) we have

P (qα) ≤ 2S (qα)− 1 ≤ 2αq − 1.

On the other hand, from [2] we also have

Sc (qα) ≥ qα + 2, if q ≥ 3; and Sc (2α) ≥ 2α + 1.

If Sc (qα) = P (qα) + 1, then from the above two estimates we have the inequalities

qα + 3 ≤ 2αq (4)

and

2α + 2 ≤ 4α. (5)

It is clear that (4) does not hold if q ≥ 5 (q = 3) and α ≥ 2 (α ≥ 3). If n = 32, then
Sc(9) = 10, P (9) = 7, so we also have Sc(9) 6= P (9) + 1.
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It is easy to check that the inequality (5) does not hold if α ≥ 4. Sc(2) 6= P (2) + 1,
Sc(4) 6= P (4) + 1, Sc(8) 6= P (8) + 1.

Therefore, if n = qα, where q be a prime and α ≥ 2 be an integer, then n does not satisfy
the equation (3).

(C) If n = pα1
1 · pα2

2 · · · pαk

k , where k ≥ 2 be an integer, pi (i = 1, 2, · · · , k) are primes, and
αi ≥ 1. From the definition of Sc(n) and the inequality (2) we have Sc(n) ≥ n and

P (n) ≤ 2S(n)− 1 = 2 · max
1≤i≤k

{S (pαi
i )} − 1 ≤ 2 · max

1≤i≤k
{αipi} − 1.

So if n satisfy the equation (3), then we have

n ≤ Sc(n) = P (n) + 1 ≤ 2 · S(n) ≤ 2 · max
1≤i≤k

{αipi}.

Let max
1≤i≤k

{αipi} = α · p and n = pα · n1, n1 > 1. Then from the above estimate we have

pα · n1 ≤ 2 · α · p. (6)

Note that n has at least two prime divisors, so n1 ≥ 2, thus (6) does not hold if p ≥ 3 and
α > 1. If p = 2, then n1 ≥ 3. In any case, n does not satisfy the equation (3).

This completes the proof of Theorem.
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§1. Introduction

An investigation of relations between spaces with countable networks and images of sepa-
rable metric spaces is one of interesting questions on generalized metric spaces. In the past, E.
Michael [9] proved that a space is an ℵ0-space if and only if it is a compact-covering image of
a separable metric space. Recently, Y. Ge sharpened this result as follows.

Theorem 1.1.([3], Theorem 12) The following are equivalent for a space X.

(1) X is an ℵ0-space.

(2) X is a sequence-covering, compact-covering image of a separable metric space.

(3) X is a sequentially-quotient image of a separable metric space.

Taking this result into account, the following question naturally arises.

Questions 1.2. Can “separable metric”, or “image”in Theorem 1.1 be replaced by
stronger ones?

In this paper, we affirmatively answer Question1.2 by proving that a space X is an ℵ0-space
if and only if X is a sequence-covering, compact-covering mssc-image of a relatively compact
metric space. This sharpens the main result in [3].

Throughout this paper, all spaces are regular and T1, N denotes the set of all natural
numbers, ω = N ∪ {0}, and a convergent sequence includes its limit point. Let P be a family
of subsets of X. Then

⋃P, and
⋂P denote the union

⋃{P : P ∈ P}, and the intersection⋂{P : P ∈ P}, respectively. A sequence {xn : n ∈ ω} converging to x0 is eventually in A ⊂ X,
if {xn : n ≥ n0} ∪ {x0} ⊂ A for some n0 ∈ N.

For terms are not defined here, please refer to [2][13].
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§2. Main results

Definition 2.1. Let P be a collection of subsets of a space X.
(1) P is a pseudobase of X [9], if for every compact subset K and K ⊂ U with U open in

X, there exists P ∈ P such that K ⊂ P ⊂ U .
(2) For each x ∈ X, P is a network at x in X, if x ∈ ⋂P, and if x ∈ U with U open in X,

there exists P ∈ P such that x ∈ P ⊂ U .
(3) P is a cs-network of X [4], if for every convergent sequence S converging to x ∈ U with

U open in X, there exists P ∈ P such that S is eventually in P ⊂ U .
(4) P is a k-network of X [10], if for every compact subset K and K ⊂ U with U open in

X, there exists a finite F ⊂ P such that K ⊂ ⋃F ⊂ U.

Definition 2.2. Let X be a space.
(1) X is relatively compact, if X is compact.
(2) X is a k-space [2], if F ⊂ X is closed in X whenever F ∩K is closed in K for every

compact subset K of X.
(3) X is an ℵ0-space [9], if X has a countable pseudobase.
Remark 2.3.

(1) It follows from [12，Proposition C] and the regularity of spaces that a space X is an
ℵ0-space if and only if X has a countable closed k-network (cs-network).

(2) It is easy to see that “compact metric⇒ relatively compact metric⇒ separable metric”,
and these implications can not be reversed from Example 2.8 and Example 2.9.

Definition 2.4. Let f : X −→ Y be a mapping.
(1) f is an mssc-mapping [6], if X is a subspace of the product space

∏

n∈N
Xn of a family

{Xn : n ∈ N} of metric spaces, and for each y ∈ Y , there is a sequence {Vy,n : n ∈ N} of
open neighborhoods of y in Y such that each pn(f−1(Vy,n)) is a compact subset of Xn, where
pn :

∏

i∈N
Xi −→ Xn is the projection.

(2) f is a sequence-covering mapping [11], if for every convergent sequence S in Y , there
exists a convergent sequence L in X such that f(L) = S.

(3) f is a pseudo-sequence-covering mapping [5], if for every convergent sequence S in Y ,
there exists a compact subset K of X such that f(K) = S.

(4) f is a subsequence-covering mapping [8], if for every convergent sequence S in Y , there
exists a compact subset K of X such that f(K) is a subsequence of S.

(5) f is a sequentially-quotient mapping [1], if for every convergent sequence S in Y , there
exists a convergent sequence L in X such that f(L) is a subsequence of S.

(6) f is a compact-covering mapping [9], if for every compact subset K of Y , there exists
a compact subset L of X such that f(L) = K.

Theorem 2.5. The following are equivalent for a space X.
(1) X is an ℵ0-space.
(2) X is a sequence-covering, compact-covering mssc-image of a relatively compact metric

space.
(3) X is a sequentially-quotient image of a separable metric space.
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Proof. (1) ⇒ (2). Since X is an ℵ0-space, X has a countable closed cs-network P1 and
a countable closed k-network P2 by Remark 2.3. Then P = P1 ∪ P2 is a countable closed
cs-network and k-network of X. Put P = {Pi : i ∈ N}, and put Qi = {Pj : j ≤ i} ∪ {X} =
{Qα : α ∈ Ai}, where each Ai is a finite set. Then X ∈ Qi ⊂ Qi+1. Let every Ai be endowed
with the discrete topology. Put

M =
{

a = (αi) ∈
∏

i∈N
Ai : {Qαi

: i ∈ N} forms a network at some point xa ∈ X
}

.

Then M , which is a subspace of the product space
∏

i∈N
Ai, is a metric space. Since X is T1 and

regular, xa is unique for each a ∈ M . We define f : M −→ X by f(a) = xa for each a ∈ M .

(a) f is onto.

Let x ∈ X. For each i ∈ N, let Qαi
= Pi if x ∈ Pi ∈ Qi, and otherwise, Qαi

= X. Then
αi ∈ Ai for each i ∈ N, and {Qαi

: i ∈ N} forms a network at x in X. Put a = (αi), then a ∈ M

and f(a) = x.

(b) f is continuous.

Let x = f(a) ∈ U with U open in X and a ∈ M . Put a = (αi) ∈
∏

i∈N
Ai, where {Qαi :

i ∈ N} forms a network at x in X. Then there exists n ∈ N such that x ∈ Qαn
⊂ U . Put

Ma = {b = (βi) ∈ M : βn = αn}. Then Ma is an open neighborhood of a in M . For each
b ∈ Ma, we get f(b) ∈ Qβn = Qαn ⊂ U . It implies that f(Ma) ⊂ U .

(c) f is an mssc-mapping.

Let x ∈ X. For each i ∈ N, put Vx,i = X. Then {Vx,i : i ∈ N} is a sequence of open
neighborhoods of x in X. Since Ai is finite, Ai is compact. Then pi(f−1(Vx,i)) = pi(f−1(X)) ⊂
Ai is compact. It implies that f is an mssc-mapping.

(d) M is relatively compact.

Since Ai is finite, Ai is compact. Then
∏

i∈N
Ai is compact, so M ⊂

∏

i∈N
Ai is compact. It

implies that M is relatively compact.

(e) f is sequence-covering.

Let S = {xm : m ∈ ω} be a convergent sequence converging to x0 in X. Suppose that U

is an open neighborhood of S in X. A family A of subsets of X has property cs(S,U) if:

(i) A is finite.

(ii) For each Q ∈ A, ∅ 6= Q ∩ S ⊂ Q ⊂ U .

(iii) For each xm ∈ S, there exists unique Qxm
∈ A such that xm ∈ Qxm

.

(iv) If x0 ∈ Q ∈ A, then S \Q is finite.

For each i ∈ N, since A = {X} ⊂ Qi has property cs(S,X) and Qi is finite, we can assume
that

{A ⊂ Qi : A has property cs(S,X)} = {Aij : j = ni−1 + 1, . . . , ni},

where n0 = 0. By this notation, for each j ∈ N, there is unique i ∈ N such that Aij has property
cs(S,X). Then for each j ∈ N, we can put Aij = {Qα : α ∈ Ej}, where Ej is a finite subset of
Aj .
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For each j ∈ N, m ∈ ω and xm ∈ S, it follows from (iii) that there is unique αjm ∈ Ej

such that xm ∈ Qαjm
∈ Aij . Let am = (αjm) ∈

∏

j∈N
Ej ⊂

∏

j∈N
Aj . Then {Qαjm

: j ∈ N} is a

network at xm in X. In fact, let xm ∈ U with U open in X. If m = 0, then S is eventually
in Qx0 ⊂ U for some Qx0 ∈ Q. For each x ∈ S \ Qx0 , let x ∈ Qx ⊂ X \ (S \ {x}) for some
Qx ∈ Q. Then G = {Qx0} ∪ {Qx : x ∈ S \ Qx0} ⊂ Q has property cs(S,X). Since G is finite,
G ⊂ Qi for some i ∈ N. It implies that G = Aij for some i ∈ N and some j ∈ {ni−1 +1, . . . , ni}.
Since xm = x0 ∈ Qαj0 , Qαj0 = Qx0 . Hence xm = x0 ∈ Qαj0 ⊂ U . If m 6= 0, then S \ {xm}
is eventually in Qx0 ⊂ X \ {xm} for some Qx0 ∈ Q. For each x ∈ (S \ {xm}) \ Qx0 , let
x ∈ Qx ⊂ X \ (S \ {x}) for some Qx ∈ Q, and let xm ∈ Qxm

⊂ U ∩ (X \ (S \ {xm})) for some
Qxm ∈ Q. Then H = {Qx0} ∪ {Qxm} ∪ {Qx : x ∈ (S \ {xm}) \ Qx0} has property cs(S,X).
Since H is finite, H ⊂ Qi for some i ∈ N. It implies that H = Aij for some i ∈ N and some
j ∈ {ni−1 + 1, . . . , ni}. Since xm ∈ Qαjm

, Qαjm
= Qxm

. Hence xm ∈ Qαjm
⊂ U .

By the above, for each m ∈ ω, we get am = (αjm) ∈ M satisfying f(am) = xm. For
each j ∈ N, since families H and G are finite, there exists m(j) ∈ N such that αjm = αj0 if
m ≥ m(j). Hence the sequence {αjm : m ∈ N} converges to αj0 in Aj . Thus, the sequence
{am : m ∈ N} converges to a0 in M . Put L = {am : m ∈ ω}, then L is a convergent sequence
in M and f(L) = S. This shows that f is sequence-covering.

(f) f is compact-covering.

Let K be a compact subset of X. Suppose that V is an open neighborhood of K in X. A
family B of subsets of X has property k(K, V ) if:

(i) B is finite.

(ii) Q ∩K 6= ∅ for each Q ∈ B.

(iii) K ⊂ ⋃B ⊂ V .

For each i ∈ N, since B = {X} ⊂ Qi has property k(K, X) and Qi is finite, we can assume
that

{B ⊂ Qi : B has property k(K, X)} = {Bij : j = ni−1 + 1, . . . , ni},

where n0 = 0. By this notation, for each j ∈ N, there is unique i ∈ N such that Bij has property
k(K, X). Then for each j ∈ N, we can put Bij = {Qα : α ∈ Fj}, where Fj is a finite subset of
Aj .

Put L = {a = (αi) ∈
∏

i∈N
Fi :

⋂

i∈N
(K ∩ Qαi) 6= ∅}. We shall prove that L is a compact

subset of M satisfying that f(L) = K, hence f is compact-covering, by the following facts (i),
(ii), and (iii).

(i) L is compact.

Since L ⊂
∏

i∈N
Fi and

∏

i∈N
Fi is compact, we only need to prove that L is closed in

∏

i∈N
Fi. Let

a = (αi) ∈
∏

i∈N
Fi \L. Then

⋂

i∈N
(K ∩Qαi

) = ∅. Since K ∩Qαi
is closed in K for every i ∈ N and

K is compact, there exists i0 ∈ N such that
⋂

i≤i0

(K ∩Qαi
) = ∅. Put W = {b = (βi) ∈

∏

i∈N
Fi :

βi = αi if i ≤ i0}. Then W is an open neighborhood of a in
∏

i∈N
Fi and W ∩L = ∅. If not, there
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exists b = (βi) ∈ W ∩L. Since b ∈ L,
⋂

i∈N
(K ∩Qβi

) 6= ∅, hence
⋂

i≤i0

(K ∩Qβi
) 6= ∅. Since b ∈ W ,

⋂

i≤i0

(K ∩Qαi
) =

⋂

i≤i0

(K ∩Qβi
) 6= ∅. This is a contradiction of the fact that

⋂

i≤i0

(K ∩Qαi
) = ∅.

(ii) L ⊂ M and f(L) ⊂ K.
Let a = (αi) ∈ L, then a ∈

∏

i∈N
Fi and

⋂

i∈N
(K ∩ Qαi

) 6= ∅. Pick x ∈
⋂

i∈N
(K ∩ Qαi

). If

{Qαi : i ∈ N} is a network at x in X, then a ∈ M and f(a) = x, hence L ⊂ M and f(L) ⊂ K.
So we only need to prove that {Qαi : i ∈ N} is a network at x in X. Let V be an open
neighborhood of x in X. There exist an open subset W of K such that x ∈ W , and compact
subsets clK(W ) and K \W such that clK(W ) ⊂ V and K \W ⊂ X \ {x}, where clK(W ) is
the closure of W in K. Since Q is a k-network of X, there exist finite families Q1 ⊂ Q and
Q2 ⊂ Q such that clK(W ) ⊂ ⋃Q1 ⊂ V and K \W ⊂ ⋃Q2 ⊂ X \ {x}. We may assume that
Q ∩K 6= ∅ for each Q ∈ Q1 ∪ Q2. Put L = Q1 ∪ Q2, then L has property k(K, X). It implies
that L = Bij for some i ∈ N and some j ∈ {ni−1 + 1, . . . , ni}. Since x ∈ Qαj ∈ Bij , Qαj ∈ Q1,
thus Qαj

⊂ V . This prove that {Qαj
: j ∈ N} is a network at x in X.

(iii) K ⊂ f(L).
Let x ∈ K. For each i ∈ N, there exists αi ∈ Fi such that x ∈ Qαi . Put a = (αi), then

a ∈ L. Furthermore, f(a) = x as in the proof of (ii). So K ⊂ f(L).
(2) ⇒ (3). It is obvious.
(3) ⇒ (2). It follows from [3, Lemma 11].
Corollary 2.6. The following are equivalent for a space X.
(1) X is a k-and-ℵ0-space.
(2) X is a sequence-covering, compact-covering, quotient mssc-image of a relatively com-

pact metric space.
(3) X is a quotient mssc-image of a separable metric space.
Remark 2.7. It follows from Remark 2.3, Definition 2.4, and [3, Lemma 10] that “sequentially-

quotient”, “relatively compact metric”, “image” in the above results can be replaced by “sequence-
covering” (“compact-covering”, “pseudo-sequence-covering”, “subsequence-covering”), “separa-
ble metric”, “mssc-image”, respectively. Then Theorem 2.5 sharpens the main result in [3].

Finally, we give examples to illustrate the above results.
Let R and Q be the set of all real numbers and rational numbers endowed with the usual

topology, respectively.
Example 2.8. A relatively compact metric space is not compact.
Proof. Let M = (0, 1) ⊂ R. Then M is a relatively compact metric space, which is not

compact.
Example 2.9. A separable metric space is not relatively compact.
Proof. Recall that Q is a separable metric space. Since Q = R and R is not compact, Q

is not relatively compact.
Example 2.10. A sequence-covering, compact-covering mapping from a separable metric

space is not an mssc-mapping.
Proof. Recall that Q is a non-locally compact, separable metric space. Put M = Q×{0}×

· · · × {0} · · · ⊂
∏

i∈N
Xi, where Xi = Q for each i ∈ N. It is clear that M is a separable metric
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space. Define f : M −→ Q by f(x, 0, . . . ) = x for each x ∈ Q. Then f is a sequence-covering,
compact-covering mapping from a separable metric space. If f is an mssc-mapping, then, for
each x ∈ Q, there exists a sequence {Vx,i : i ∈ N} of open neighborhoods of x in Q such that
each pi(f−1(Vx,i)) is a compact subspace of Xi. Thus, p1(f−1(Vx,1)) is a compact subset of Q,
so Q is a locally compact space. It is a contradiction. Hence f is not an mssc-mapping.

Example 2.11. An ℵ0-space is not any image of a compact metric space. It implies that
“relatively compact metric” in the above results can not be replaced by “compact metric”.

Proof. Recall that R is an ℵ0-space. Since R is not compact, R is not any image of a
compact metric space.

Example 2.12. An ℵ0-space is not any sequence-covering, compact-covering compact
image of a metric space. It implies that “mssc-image” in the above results can not be replaced
by “compact image”.

Proof. Recall that Sω is a Fréchet and ℵ0-space (see [7], Example 1.8.7, for example). It
follows from [13, Remark 4] that Sω is not any quotient compact image of a metric space. Then
X is not any sequence-covering, compact-covering compact image of a metric space.
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Abstract We settle two conjectures posed by K. Kashihara in his book [1]. The first conjecture

states that

n∏
i=1

(
1− 1

pi

)
<

1

pn+1 − pn
for all n; while the second one that the sequence of

general term

n∑
i=1

p2
i

/ (
n∑

i=1

pi

)2

is convergent. Here pn denotes the nth prime. We will prove

that the first conjecture is false for sufficiently large n. The second conjecture is true, the

limit being zero.

Keywords prime numbers, estimates on primes, convergence of sequences.

§1. Introduction

Let pn denote the nth prime number. In his book [2], K. Kashihara posed several conjec-
tures and open problems. On page 45 it is conjectured the following inequality:

pn+1 − pn <

n∏

i=1

1
1− 1

pi

, (n = 1, 2, . . .) (1)

A numerical evidence suggests that this inequality may be true for all values of n. However,
as we will see, for large values of n, relation (1) cannot hold.

Another conjecture (see page 46) states that the sequence (xn) of general term

xn =

n∑

i=1

p2
i

(
n∑

i=1

pi

)2 (n ≥ 1) (2)

is convergent, having a limit between 1,4 and 1,5. Though this sequence is indeed convergent,
we will see that its limit is ρ = 0.

§2. Proof of the theorem

An old theorem of F. Mertens (see e.g. [3], p.259) states that
∏

p≤x

(
1− 1

p

)
∼ c

log x
as x →∞, (3)
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where c = e−γ (e and γ being the two Euler constants). Inequality (1) can be written also as

∏

p≤pn

(
1− 1

p

)
<

1
pn+1 − pn

. (4)

Since the first term of (4) is ∼ c

log pn
, if (4) would be true, then for all ε > 0 (fixed) and

n ≥ n0 we would obtain that
1

pn+1 − pn
>

∏

p≤pn

(
1− 1

p

)
>

c− ε

log pn
. Let ε =

c

2
> 0. Then

c

2
· 1
log pn

<
1

pn+1 − pn
, so bn =

pn+1 − pn

log pn
<

2
c

= K. This means that the sequence of general

term (bn) is bounded above. On the other hand, a well-known theorem by E. Westzynthius (see
[3], p. 256) states that lim

n→∞
sup bn = +∞, i.e. the sequence (bn) is unbounded. This finishes

the proof of the first part.
For the proof of convergence of (xn) given by (2), we shall apply the result

∑

p≤x

pα ∼ x1+α

(1 + α) log x
as x →∞ (α ≥ 0) (5)

due to T. Salát and S. Znám (see [3], p. 257). We note that for α = 1, relation (5) was
discovered first by E. Landau. Now, let α = 1, resp. α = 2 in (5), we can write:

∑

p≤pn

p ∼ p2
n

2 log pn
as n →∞; (6)

and ∑

p≤pn

p2 ∼ p3
n

3 log pn
as n →∞. (7)

Thus, xn =





 ∑

p≤pn

p2


 · 3 log pn

p3
n

· p4
n

 ∑

p≤pn

p




2

· 4 log2 pn



· 4
3
· log pn

pn
.

By (6) and (7), the limit of term [. . .] is 1. Since
4
3
· log pn

pn
→ 0, we get lim

n→∞
xn = 0. This

finishes the proof of the second part.
Remarks.
1) An extension of (5) is due to M. Kalecki [1]:
Let f : (0,+∞) → R be an arbitrary function having the following properties:

a) f(x) > 0; b) f(x) is a non-decreasing function; c) for each n > 0, ϕ(n) = lim
x→∞

f(nx)
f(x)

exists.
Put s = log ϕ(e). Then

∑

p≤x

f(p) ∼ f(x) · x
log x

· 1
s + 1

as x →∞. (8)
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For f(x) = xα (α ≥ 0) we get ϕ(n) = nα, so s = α and relation (5) is reobtained. We note
that for α = 0, relation (5) implies the ”prime number theorem” ([3])

π(x) ∼ x

log x
as x →∞,

where π(x) =
∑

p≤x

1 = number of primes ≤ x.

2) By letting f(x) = (g(x))α
, where g satisfies conditions a) − c) a general sequence of

terms xn =
n∑

i=1

(g(pi))
α

/ (
n∑

i=1

g(pi)

)α

may be studied (via (8)) in a similar manner. We omit

the details.
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Abstract This paper considers some of the properties of the lattice cubic y = x3 . We show

that the area of any triangle inscribed in the lattice cubic is integer-valued. We find that a

geometrical problem leads to the Diophantine equation 4p2 = (2q + r)2 + r2. We study the

implications of the solutions of this Diophantine equation.
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§1. Introduction

On a two-dimensional coordinate plane, a point is represented by an ordered pair of num-
bers (x, y). Of particular interest is a lattice point, defined below.

Definition 1.1. The point (x, y) on the xy-plane is called a lattice point if both x and y

are integers.
Throughout this paper, we shall denote by Z the set of all integers, and by Z+ the set of

all positive integers, and by N the set of all positive integers including 0.
Definition 1.2. A lattice triangle on the xy-plane is one whose vertices are all integers.

A lattice triangle is called Heronian if its sides as well as the area are all positive integers.
Definition 1.3. The lattice cubic consists of all points (x, y) on the parabola y = x3 such

that x, y ∈ Z. 　
In this paper, we consider some of the properties of the lattice cubic. We show that a

geometrical problem in the lattice cubic gives rise to a Diophantine equation. Some of the
properties were studied by Majumdar [1]. Here, we particularly focus on the nature of the
solution of the Diophantine equation.

§2. The lattice cubic y = x3

A lattice triangle 4PQR, inscribed in the lattice cubic y = x3, can be described by its
vertices P (p, p3), Q(q, q3) and R(r, r3), where p, q, r ∈ Z . Without loss of generality, we may
assume that p < q < r.

Now, the slope of the line PQ is
q3 − p3

q − p
= q2 + pq + p2 . Since

q2 + pq + p2 =
1
4

[
(2q + p)2 + 3p2

]
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for any p 6= 0 and q 6= 0, it follows that the quadratic form q2 + pq + p2 is positive definite.
Thus,

(q2 + pq + p2)(r2 + qr + q2) > 0

for any p 6= 0 and q 6= 0. But r2 + qr + q2 is the slope of the line QR. It thus follows that no
right-angled triangle can be inscribed in the lattice cubic y = x3.
Again, since

PQ =
√

(q − p)2 + (q3 − p3)2 = (q − p)
√

1 + (q2 + pq + p2)2,

and since 1+(q2 +pq+p2)2 can not be a perfect square, it follows that no Heronian triangle can
be inscribed in the lattice cubic y = x3. However, the area of the triangle 4PQR is integer-
valued, as the following lemma shows.

Lemma 2.1. The area of the lattice triangle with vertices at the lattice points P (p, p3),
Q(q, q3) and R(r, r3) with p < q < r on the lattice cubic y = x3, is

4(p, q, r) ≡ 1
2
(q − p)(r − q)(r − p)|p + q + r|. (1)

Proof. The area of the triangle PQRis the absolute value of

1
2

∣∣∣∣∣∣∣∣

1 p p3

1 q q3

1 r r3

∣∣∣∣∣∣∣∣
.

Now, ∣∣∣∣∣∣∣∣

1 p p3

1 q q3

1 r r3

∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

∣∣∣∣∣∣∣∣

1 p p3

0 q − p (q − p)(q2 + pq + p2)

0 r − q (r − q)(r2 + qr + q2)

∣∣∣∣∣∣∣∣

= (q − p)(r − q)

∣∣∣∣∣∣
1 q2 + pq + p2

1 r2 + qr + q2

∣∣∣∣∣∣
which gives the desired result.

In (1), let

m = q − p, n = r − q. (2)

Then, from Lemma 2.1, the area of the triangle PQR can be written as

4(p, q, r) =
1
2
mn(m + n)|3p + 2m + n|; p ∈ Z; m,n ∈ Z+ (3)

In [1], we proved the following result. Here, we use a different approach, taking into account
the possible forms of the integers involved. This form would be helpful in the analysis of the
possible values of the inscribed triangles later. 　　　　　

Lemma 2.2. The area of the lattice triangle with vertices at P (p, p3), Q(q, q3) and R(r, r3)
is

4(p, q, r) = 3`
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for some ` ∈ Z.
Proof. By (3), the area of the triangle PQR can be expressed as

4(p, q, r) =
1
2
mn(m + n)|3p + 2m + n|; p ∈ Z; m,n ∈ Z+ (4)

We consider the following nine possibilities that may arise :
(1) m = 3k1 + 1, n = 3k2 + 1 for some integers k1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
(3k1 + 1)(3k2 + 1)[3(k1 + k2) + 2]|p + 2k1 + k2 + 1|.

(2) m = 3k1 + 1, n = 3k2 + 2 for some integers k1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
(3k1 + 1)(3k2 + 2)(k1 + k2 + 1)|3(p + 2k1 + k2) + 4|.

(3) m = 3k1 + 2, n = 3k2 + 1 for some integers k1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
(3k1 + 2)(3k2 + 1)(k1 + k2 + 1)|3(p + 2k1 + k2) + 5|.

(4) m = 3k1 + 2, n = 3k2 + 2 for some integers k1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
(3k1 + 2)(3k2 + 2)[3(k1 + k2) + 4]|p + 2k1 + k2 + 2|.

(5) m = 3k1, n = 3k2 + 1 for some integers k1 ≥ 1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
k1(3k2 + 1)[3(k1 + k2) + 4]|3(p + 2k1 + k2) + 1|.

(6) m = 3k1 + 1, n = 3k2 for some integers k1 ≥ 1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
(3k1 + 1)k2[3(k1 + k2) + 1]|3(p + 2k1 + k2) + 2|.

(7) m = 3k1, n = 3k2 + 2 for some integers k1 ≥ 1, k2 ≥ 0 . In this case,

4(p, q, r) =
3
2
k1(3k2 + 2)[3(k1 + k2) + 2]|3(p + 2k1 + k2) + 2|.

(8) m = 3k1 + 2, n = 3k2 for some integers k1 ≥ 0, k2 ≥ 1 . In this case,

4(p, q, r) =
3
2
(3k1 + 2)k2[3(k1 + k2) + 2]|3(p + 2k1 + k2) + 4|.

(9) m = 3k1, n = 3k2 for some integers k1, k2 ≥ 1 .
In this case,

4(p, q, r) =
34

2
k1k2(k1 + k2)|p + 2k1 + k2|.

Thus, in all the cases, 4(p, q, r) is a multiple of 3, establishing the lemma.
By symmetry, if 4(p, q, r) = 3` then 4(−p,−q,−r) = 3` that is, the area of the triangle

with vertices P
′
(−p,−p3), Q

′
(−q,−q3) and R(−r,−r3)is also 3`. Now, given any integer ` ≥ 1,

is it always possible to find a triangle with area `? The answer is yes : For example, in Case
(1) in the proof of Lemma 2.2, putting p = 0, 1, 2, . . . successively, we get the triangles of areas
3, 6, 9, . . .. The next question is
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Question 1. Is it possible to find some formula for all the lattice triangles inscribed in
the lattice cubic y = x3, each having the area 3` for any fixed integer ` ≥ 1?

In connection with Question 1 above, we observe the following facts from the proof of
Lemma 2.2 :

Case (1) : For k1 = 0 = k2,4(p, q, r) = 3|p + 1|.
Case (2) : For k1 = 0 = k2,4(p, q, r) = 3|3p + 4|.
Case (3) : For k1 = 0 = k2,4(p, q, r) = 3|3p + 5|.
Case (5) : For k1 = 1, k2 = 0,4(p, q, r) = 6|3p + 7|.
Case (6) : For k1 = 0, k2 = 1,4(p, q, r) = 6|3p + 5|.
(1) The minimum-area triangles, each of area 3, can be obtained from Case (1) with

p = 0, and Case (2) with p = −1. Thus, we get the triangles 4(0, 1, 2) and 4(−2,−1, 0) (in
the notation of (1) and (2)), as well as the triangles 4(−1, 0, 2) and 4(−2, 0, 1) . Note that,
Case (3) with p = −2 does not give any different triangle.

Hence, there are, in total, four triangles, each of area 3.
(2) To find the triangles, each of area 6, we put p = 1 in Case (1), p = −2 in Case (2),

and p = −2 in Case (5). Corresponding to these values, the triangles are 4(1, 2, 3) (and hence,
also the triangle 4(−3,−2,−1)), 4(−2,−1, 1), (and the triangle 4(−1, 1, 2)), and 4(−2, 1, 2)
(and the triangle 4(−2,−1, 2) ). No further triangles are obtained from Case (3) with p = - 1
and Case (6) with p = - 2.
Thus, there are six triangles, each with area 6.

(3) There are only two triangles, each of area 9. These can be obtained from Case (1) with
p = 2. Thus, the desired triangles are 4(2, 3, 4) and 4(−4,−3,−2) .

(4) To find the triangles, each of area 12, note that Case (1) with p = 3 (or, p = −5),
Case (2) with p = 0 (Case (3) with p = −3 gives the same triangles), and Case (5) with p = −3
(or, Case (6) with p = −1), give such triangles. The triangles of interest are 4(3, 4, 5) (and
4(−5,−4,−3) ), 4(0, 1, 3) (and 4(−3,−1, 0) ) and 4(−1, 0, 3) (and 4(−3, 0, 1)).
Thus, there are six triangles, each of area 12.

(5) To find the triangles, each of area 15, we put p = 4 (or, p = −6) in Case (1), p = −3
in Case (2) (Case (3) with p = 0 gives the same triangles), and p = −3, k1 = 1, k2 = 0 in Case
(7) (Case (8) with p = −2, k1 = 0, k2 = 1 gives the same triangles). Then, we get the triangles
4(4, 5, 6)(and 4(−6,−5,−4) ), 4(0, 2, 3) (and 4(−3,−2, 0)) and 4(−2, 0, 3) (and 4(−3, 0, 2)
). Thus, there are six triangles, each of area 15.

Given any two distinct points P (p, p3) and Q(q, q3) with p 6= 0, q 6= 0 and q 6= −p, on the
lattice cubic y = x3, we can always find a line parallel to PQ and intersecting the lattice cubic,
namely, the line joining the points P

′
(−p,−p3) and Q

′
(−q,−q3). But what happens, if we

choose the line PO, passing through the point P
′
(−p,−p3) on the lattice cubic and the origin

O(0, 0)? More precisely, let P (−p,−p3)), p 6= 0, be any point on the lattice cubic y = x3. Then,
the line PO would intersect the lattice cubic at the second point P

′
(−p,−p3). The question is :

Is there any line parallel to POP
′
and intersecting the lattice cubic? To answer this question,

let Q(q, q3) and R(r, r3) be two distinct points on the lattice cubic y = x3 such that QR is
parallel to POP

′
. Then, we have the following result. 　

Lemma 2.3. The line QR (where Q and R are the lattice points Q(q, q3), R(r, r3) on
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the lattice cubic y = x3) is parallel to the line POP
′
(where P and P

′
are the points P (p, p3),

P
′
(−p,−p3)) if and only if p, q and r satisfy the Diophantine equation

p2 = q2 + qr + r2. (5)

　　　　

Proof. The slope of the line POP
′
is p2, and that of the line QR is q2 + qr + r2.　Thus,

these two lines are parallel if and only if p2 = q2 + qr + r2.
By inspection, we have the following solutions of the Diophantine equation (5) :
(1) q = ±p, r = ∓p;
(2) q = ±p, r = 0;
(3) q = 0, r = ±p.
These are the trivial solutions. To find the points Q(q, q3) and R(r, r3), we have to look for

the non-trivial solutions of the Diophantine equation (5). Moreover, we may assume, without
loss of generality, that p > 0; also, we may assume that q > 0 and r > 0, because, by symmetry,
if QR is parallel to POP

′
, then Q

′
R
′

is also parallel to POP
′

, where Q
′
(−q,−q3) and

R
′
(−r,−r3). Thus, the problem of finding the line parallel to POP

′
reduces to the problem

of finding positive non-trivial solutions of the Diophantine equation (5). We now observe the
following facts :

(1) if (p0, q0, r0)is a solution of the Diophantine equation (5), so is (p0, r0, q0);
(2) if (p0, q0, r0) is a solution of (5), so is (kp0, kq0, kr0) for any k ∈ Z+.
Note that the solutions (p0, q0, r0) and (p0, r0, q0) are the same. By virtue of the second

observation, it is sufficient to look for solutions of the Diophantine equation (5) for primes p

only.
Writing the Diophantine equation (5) in the form,

4p2 = (2q + r)2 + 3r2. (6)

　We searched for the solution of the Diophantine equation (6) for 1 6 p 6 100. The following
table summarizes our findings.

Table 2.1 : Solutions of 4p2 = (2q + r)2 + 3r2 ,1 6 p 6 100

p q r p q r p q r

7 3 5 49 16 39 91 11 85

13 7 8 21 35 19 80

19 5 16 61 9 56 39 65

31 11 24 67 32 45 49 56

37 7 33 73 17 63 97 55 57

43 13 35 79 40 51

The above table shows that, there are solutions of the Diophantine equation (6) only
for the primes p = 7, 13, 19, 31, 37, 43, 61, 67, 73, 79 and 97 (and their multiples) on the range
1 6 p 6 100, and in each case, there is only one solution. Thus, corresponding to each of these
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values, there are only two lines parallel to the line POP
′
; thus, for example, there are only two

lines, namely, the line passing through the points Q(q, q3) = Q(3, 33) and R(r, r3) = R(5, 53),
and (by symmetry) the line passing though the points (−3,−33) and (−5,−53), which are
parallel to the line through the origin 0(0, 0) and the point (7, 73). However, there are four
lines parallel to the line through (49, 493) and 0(0,0); the four lines are those passing　through
the points (16, 163) and (39, 393) (and the line through (−16,−163) and (−39,−393), together
with the line passing through the points (21, 213) and (35, 353) (as well as the line through
(−21,−213) and (−35,−353)) And there are eight lines, each of which is parallel to the line
through the origin 0 (0, 0) and the point (91, 913) : The line through the points (11, 113) and
(85, 853) (and that through (- 11, - 113) and (- 85, - 853)), the line through the points (19, 193)
and (80, 803) (and the line through (- 19, - 193) and (- 80, - 803)), the line through the points
(39, 393) and (65, 653) (together with the line through (- 39, - 393) and (- 65, - 653)), and the
line through the points (49, 493) and (56, 563) (as well as the line passing through the points
(- 49, - 493) and (- 56, - 563)).

Our second question is
Question 2. Is it possible to determine a formula that would give all the lines parallel to

the line through the origin 0(0, 0) and the point P (p, p3), p 6= 0, on the lattice cubic y = x3?
Now, we consider the problem of finding all lattice triangles, inscribed in the lattice cubic

y = x3, whose areas are perfect squares, that is, the triangles such that

4(p, q, r) = a
′2

for some integer a
′ > 1. Now, since 3|4(p, q, r) (by Lemma 2.2), it follows that 3|a′ . Thus,

the triangles whose areas are perfect squares must be such that

4(p, q, r) = (3a)2

for some integer a ≥ 1.
It is always possible to find a lattice triangle inscribed in the lattice cubic y = x3 , whose

area is a perfect square. Recall that, triangles with area (3a)2 occur in pairs, that is, if the area
of the triangle with vertices at the points P (p, p3), Q(q, q3) and R(r, r3) is (3a)2 , then the area
of the triangle with vertices at P

′
(−p,−p3), Q

′
(−q,−q3) and R

′
(−r,−r3) is also (3a)2. We

already found two triangles, each with area 9.
In fact, we can prove a more general result.
Lemma 2.4. There exists an infinite number of lattice triangles inscribed in the lattice

cubic y = x3, each with an area which is a perfect square.
Proof. We prove the lemma by actually constructing a family of lattice triangles, each

having an area which is a perfect square. To do so, we proceed as follows : In (2.3), let m = n.
Then,

4(p, q, r) = 3m3|p + m|. (7)

To make (7) a perfect square, let

p = (3n2 − 1)m;m,n ∈ Z+.
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The resulting triangle is 4 (
(3n2 − 1)m, 3n2m, (3n2 + 1)m

)
.

Hence, 4 (
(3n2 − 1)m, 3n2m, (3n2 + 1)m

)
; m,n ∈ Z+, is the desired family, with the area

(3m2n)2.
We now pose the following question
Question 3. Is it possible to characterize all the triangles inscribed in the lattice cubic

y = x3 , whose areas are perfect squares?
Next, we consider the problem of finding all inscribed lattice triangles whose areas are

cubes of natural numbers. By Lemma 2.2, the areas of such triangles must be of the form

4(p, q, r) = (3a)3

for some integer a ≥ 1. We can prove the following result.
Lemma 2.5. There exists an infinite number of lattice triangles inscribed in the lattice

cubic y = x3, each with an area which is cube of a natural number.
Proof. We proceed on the same line of proof as of Lemma 2.4. In (7), letting

p = 32n3 −m; m,n ∈ Z.

We get the triangle 4(32n3 −m, 32n3, 32n3 + m), whose area is (3n)3.
In connection with Lemma 2.5, we raise the following question.
Question 4. Is it possible to characterize all the lattice triangles inscribed in the lattice

cubic y = x3, whose areas are cubes of natural numbers?

§3. Some open problems

The case of the lattice parabola y = x2 has been treated by Sastry [2], and later, to
some extent, by Majumdar [1]. This paper treats the case of the lattice parabola y = x3, in
continuation of our previous study in [1]. There are several open problems in connection with
the lattice parabola and lattice cubic, some of which are already mentioned in Section 2. It
might be a problem of great interest to study the properties of the lattice triangles inscribed in
the lattice curve y = xn, where n ≥ 3 is an integer.
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the form ααT (α ∈ Rn) is discussed, and a structure of orthogonal matrices of SC matri-

ces diagonalized is given. And the method of inverse eigenvalue problem of SC matrices is
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Let Jn = (en, en−1, · · · , e1), where ei is the ith column of the n ×n identity matrix. A
matrix A is called centrosymmetric if JnA = AJn, and anti-centrosymmetric if JnA = −AJn.
For A ∈ Rn×n, a structure of centrosymmetric matrices and it’s solution of the inverse eigenvalue
problem were developed by FuZhao Zhou, XiYan Hu and Lei Zhang in [1]. In [3], Trench
studied problem of R-symmetric or R-skew symmetric matrices. Recently, some properties and
the inverse eigenvalue problem of generalized centrosymmetric matrix have been studied in [4]
and [5], respectively.

A centrosymmetric matrix of a real symmetric is called an SC matrix. In this paper,
eigenvalue problem of SC matrices with the form ααT and matrices sum with the form ααT (α ∈
Rn) are discussed. Also a structure of orthogonal matrices of SC matrices diagonalized is
given. Furthermore the method finding inverse eigenvalue problem of SC matrices given in [2],
is improved here.

§1. Eigenvalue problem of SC matrices

Lemma 1.1. Let 0 6= α ∈ Rn. Then A = ααT has a unique nonzero eigenvalue λ such
that λ =‖α‖22 and a unit eigenvector x = α

‖α‖2 corresponding to λ.

Proof. Clearly, A = ααT is a real symmetric matrix. Since α 6= 0, we have rank(A)=1.
Therefore, A has a unique nonzero eigenvalue. Denote the eigenvalue of A by λ and the unit
eigenvector corresponding to λ by x. Then we get ααT x = λx. Since λ 6= 0, it follows that

1This research is supported by National Natural Science Foundation of China(Grant No:10671151).
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αT x 6= 0. Let a = λ
αT x . Then α = ax. Notice that xT x = 1. We have λ = a2. Furthermore,

αT α = λxT x = a 2. So λ = a2 = αT α=‖α‖22 and x = α
a = α

‖α‖2 .

Corollary 1.2. A = ααT is a positive semidifinite matrix.

lemma 1.3. Let 0 6= α ∈ Rn. Then A = ααT is an SC matrix if and only if Jα = α or
Jα = −α.

Proof. Because A = ααT is a real symmetric matrix, we only need to prove that A is a
centrosymmetric matrix if and only if Jα = α or Jα = −α.

Suppose that A=ααT is a centrosymmetric matrix. We have that x = α
‖α‖2 is the unit

eigenvector corresponding to the eigenvalue λ of A by Lemma 1.1. Thus, α = ‖α‖2 x and
Jα=J( ‖α‖2x)= ‖α‖2 Jx. Since Jx = x or Jx = −x from [1], then Jα = α or Jα = −α.

Conversely, suppose Jα = α or Jα = −α, then it is easy to check that JααT J=Jα(Jα)T ,
i.e., A = ααT is a centrosymmetric matrix.

Theorem 1.4. Let 0 6= αi ∈ Rn and Ai = αiαi
T (i = 1, 2, · · · , s). If AiAj = 0 for

i, j = 1, 2, · · · , s, i 6= j, then A =
s∑

i=1

Ai has only nonzero eigenvalue ‖α1‖22, ‖α2‖22, · · · , ‖αs‖22.

Proof. Clearly, Ai = αiαi
T is a real symmetric matrix. It follows that A =

s∑

i=1

Ai is

a real symmetric matrix. Since αi 6= 0(i = 1, 2, · · · , s), we have αiαi
T 6= 0. Thus AiAj=

αiαi
T αjαj

T = (αi
T αj)αiαj

T = 0 if and only if αiαj
T 6= 0, i.e., αi and αj are orthogonal. Conse-

quently, α1, α2, · · · , αs are orthogonal vectors set.

Meanwhile, Aαi = Aiαi =αiαi
T αi = ‖αi‖ 2

2 αi(i = 1, 2, · · · , s), i.e., ‖α1‖22 , ‖α2‖22, · · · ,
‖αs‖22 are nonzero eigenvalues of A. A is the sum of matrix Ai(i = 1, 2, · · · , s), where
rank(Ai)=1, and rank(A) is no more than s. Thus, A has s nonzero eigenvalues at most.

Hence, A =
s∑

i=1

Ai has and has only nonzero eigenvalues ‖α1‖22, ‖α2‖ 2
2, · · · , ‖αs‖22.

Corollary 1.5. Let 0 6= αi ∈ Rn and Ai = αiαi
T (i = 1, 2, · · · , s). Suppose that

AiAj = 0(i, j = 1, 2, · · · , s, i 6= j). Then A =
s∑

i=1

Ai is a positive semidifinite matrix where

s < n, and A =
s∑

i=1

Ai is a positive difinite matrix where s = n.

Corollary 1.6. Let α1,α2, · · · , αn be orthonornal column vectors set and Ai = αiαi
T (i =

1, 2, · · · , s). Then
s∑

i=1

Ai is an identity matrix.

Theorem 1.7. Let A and B be n× n real symmetric matrices, where r(A) = r,r(B) = s

(r(A) means rank of A), and r + s ≤ n, let nonzero eigenvalues of A be λ1, λ2, · · · , λr, and let
nonzero eigenvalues of B be µ1, µ2, · · · , µs. If AB = 0, then nonzero eigenvalues of A + B are
λ1, λ 2, · · · , λr, µ1, µ2, · · · , µs.

Proof. Since A and B are n× n real symmetric matrices, then BA = 0 where AB = 0 and
so A and B commute. Hence there exists an orthogonal matrix Q such that A = QΛAQT and
B = QΛBQT , where ΛA = diag(λr1 , λr2 , · · · , λrn

) and ΛB = diag(µs1 , µs2 , · · · , µsn
). Thus,

AB = 0 if and only if ΛAΛB = 0. ΛAΛB = 0 if and only if λri
µsi

= 0(i = 1, 2, · · · , n),
that is, if AB = 0, then λri

and µsi
equal to zero at least one. Thereby, λri

+ µsi
equals
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zero or equals λj or µk(j = 1, 2, · · · , r; k = 1, 2, · · · , s). Meanwhile, since A + B = Q(ΛA +
ΛB)QT =Qdiag(λr1 + µs1 , λr2 + µs2 , · · · , λrn

+ µsn
)QT , if AB = 0, then nonzero eigenvalues of

A + B are λ1, λ2, · · · , λr, µ1, µ2, · · · , µr. Obviously, A + B is nonsingular where r + s = n.

Theorem 1.8. Let X1 = (x1, x2, · · · , x r) and Λ1 = diag(λ1, λ2, · · · , λr), where
λ1, λ2, · · · , λr are nonzero and the set {x1, x2, · · · , xr} is an orthonormal vectors set. Then
there exists a nonsingular real symmetric matrix A such that AX1 = X1Λ1.

Proof. Let A 1 = X1Λ1X1
T . Since X1 is a n × r matrix with orthonormal columns,

there exists a n × (n − r) matrix X 2 with orthonormal column such that X2
T X1 = 0. Put

A2=X2Λ2X2
T , where Λ2 = diag(λr+1, λr+2, · · · , λn) with det Λ2 6= 0. Then A2A1 = 0. Let

A = A1+A2. By Theorem 1.7, A is nonsingular and
AX1 =(A1 + A2)X1=(X1Λ1X1

T +X2 Λ2X2
T )X1= X1Λ1X1

T X1 + X2Λ 2X2
T X1

=X1Λ1I2 + 0=X1Λ1.

It is clear that three Theorems above hold for SC matrices.

Theorem 1.9. Let A be SC matrix. Then

(1) For n=2k, P = 1√
2


 P1 P2

−JkP1 JkP2


 is an orthogonal matrix such that

P TAP=


 Λ1

Λ2


, where P1, P 2 are k×k orthogonal matrices and Λ1, Λ2 are k×k diagonal

matrices;

(2) For n=2k + 1, P = 1√
2




P1 P 2

0
√

2 γT

−JkP1 JkP 2


is an orthogonal matrix such that

P TAP =


 Λ1

Λ 2


, where P1 is a k×k orthogonal matrix, P2

′
=


 P 2

γT


is a (k+1)×(k+1)

orthogonal matrix, γ ∈ R(k+1)×1, and Λ1,Λ 2 are k× k and (k + 1)× (k + 1) diagonal matrices,
respectively.

Proof. If n = 2k, then A is a SC matrix and so A=Q


 A11

A22


QT , where

Q = 1√
2


 Ik Ik

−Jk Jk


 and A11, A22 are k × k real symmetric matrices. Since A11, A22 are

k×k real symmetric matrices, there exist orthogonal matrices P1, P2 such that A11 = P1Λ1P1
T ,

A22=P2Λ2 P2
T , where Λ1,Λ2 are k × k diagonal matrices. Let

P =
1√
2


 Ik Ik

−Jk Jk





 P1

P2


 =

1√
2


 P1 P2

−JkP1 Jk P2


 .

Thus P TAP=


 Λ1

Λ2


. For the case where n = 2k + 1, the proof of the result is similar.
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§2. Inverse eigenvalue problems of SC matrices

(1) Let λ1, λ2, · · · , λn be real numbers. Find an SC matrix A such that λ1, λ2, · · · , λn are
eigenvalues of A.

If n = 2k, P1, P2 are k × k orthogonal matrices. Set P = 1√
2


 P1 P2

−JkP1 JkP2


.

Then, P TAP = diag(λ1, λ2, · · · , λn).
If n = 2k + 1, P1 is a k × k orthogonal matrix and P

′
2 is a (k + 1) × (k + 1) orthogonal

matrix, where P
′
2 =


 P2

γT


 and γ ∈ R(k+1)×1. Set

P =
1√
2




P1 P 2

0
√

2 γT

−JkP1 Jk P 2


 .

Then P TAP = diag(λ1, λ2, · · · , λn).
Example. 1, 2, 3, 4, 5 are eigenvalues of SC matrix A,

Write P1 =


 1 0

0 1


 P2 =




√
2
3 0

√
1
3

0 1 0


 γT =

(
−

√
1
3 0

√
2
3

)
P
′
2 =


 P2

γT


.

We can obtain: A = Pdiag(1, 2, 3, 4, 5)P T .
(2) For r given eigenpairs (λ1, x1), (λ 2, x 2), · · · , (λr, xr) of a n × n SC matrix A, where

x1, x2, · · · , xr is a orthonormal vectors set, find a SC matrix A.
By the characteristic of eigenvector for SC matrix, if n = 2k,

let X = (x1, x2, · · · , xr) = 1√
2


 Xr1 Xr2

−JkXr1 JkXr2


, r1 + r2 = r. Take orthonormal eigen-

vectors sets X
′
r1
∈ Rk×(k−r1) and X

′
r2
∈ Rk×(k−r2), such that Xr1

T X
′
r1

= 0 and Xr2
T X

′
r2

= 0.

Set P1 =
(

Xr1 X
′
r1

)
, P2 =

(
Xr2 X

′
r2

)
.

Then, P1A11P1
T =diag(λ1, · · · , λr1 , λ

′
1, · · · , λ

′
k−r1

),
P2A22 P2

T = diag(λr1+1, · · · , λr, λ
′
r1+1, · · · , λ

′
k−r2

) , whereλ
′
1, · · · , λ

′
k−r1

λ
′
r1+1, · · · , λ

′
k−r2

are ar-
bitrary real numbers.

By Theorem 1.9, if P = 1√
2


 P1 P2

−JkP1 JkP2


, then

A = Pdiag(λ1, · · · , λr1 , λ
′
1, · · · , λ

′
k−r1

, λr1+1, · · · , λr, λ
′
r1+1, · · · , λ

′
k−r2

)P T ;
If n = 2k + 1, without loss of generality , we suppose that

X = (x1, x2, · · · , xr) =
1√
2




Xr1 Xr2

0
√

2 γT

−JkXr1 JkXr2


 , r1 + r2 = r.

The result will be obtained.
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Example. For two given eigenvalues 1, 3 of 4×4 SC matrix A, the eigenvectors correspond-
ing to the eigenvalues are X1 = 1√

2

(
1, 0, 0, −1

)
T and X2 = 1√

2

(
0, 1, 1, 0

)
T .

Take X
′
1 = 1√

2

(
0, 1, −1, 0

)
T and X

′
2 = 1√

2

(
1, 0, 0, 1

)
T .

Set P = (X1, X
′
1, X 2 , X

′
2). Then A = Pdiag(1, λ

′
1, 3,λ

′
2 )P T , λ

′
1 , λ

′
2 are arbitrary real numbers.
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Abstract Murthy [1] introduced the concept of the Smarandache Cyclic Determinant Nat-

ural Sequence, the Smarandache Cyclic Arithmetic Determinant Sequence, the Smarandache

Bisymmetric Determinant Natural Sequence, and the Smarandache Bisymmetric Arithmetic

Determinant Sequence. In this paper, we derive the n-th terms of these four sequences.

Keywords The Smarandache cyclic determinant natural sequence, the Smarandache cyclic

arithmetic determinant sequence, the Smarandache bisymmetric determinant natural seque-

nce, the Smarandache bisymmetric arithmetic determinant sequence.

§1. Introduction

Murthy [1] introduced the concept of the Smarandache cyclic determinant natural sequence,
the Smarandache cyclic arithmetic determinant sequence, the Smarandache bisymmetric deter-
minant natural sequence, and the Smarandache bisymmetric arithmetic determinant sequence
as follows.

Definition 1.1. The Smarandache cyclic determinant natural sequence, {SCDNS(n)} is





|1| ,
∣∣∣∣∣∣

1 2

2 1

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

1 2 3

2 3 1

3 1 2

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

∣∣∣∣∣∣∣∣∣∣∣

, ...





.

Murthy conjectured that the n− th term of the above sequence is

SCDNS(n) = (−1)

[n

2

]
n + 1

2
nn−1,

where [x] denotes the greatest integer less than or equal to x .
Definition 1.2. The Smarandache cyclic arithmetic determinant sequence,

{SCADS(n)} is




|1| ,

∣∣∣∣∣∣
a a + d

a + d a

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

a a + d a + 2d

a + d a + 2d a

a + 2d a a + d

∣∣∣∣∣∣∣∣
, ...





.
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Murthy conjectured, erroneously, that the n− th term of the above sequence is

SCDNS(n) = (−1)

[n

2

]
a + (n− 1)d

2
(nd)n−1

where [x] denotes the greatest integer less than or equal to x .
Definition 1.3. The Smarandache bisymmetric determinant natural sequence,

{SBDNS(n)} is




|1| ,
∣∣∣∣∣∣

1 2

2 1

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

1 2 3

2 3 2

3 2 1

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4

2 3 4 3

3 4 3 2

4 3 2 1

∣∣∣∣∣∣∣∣∣∣∣

, ...





.

Definition 1.4. The Smarandache bisymmetric arithmetic determinant sequence,
{SBADS(n)} is




|1| ,

∣∣∣∣∣∣
a a + d

a + d a

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

a a + d a + 2d

a + d a + 2d a + d

a + 2d a + d a

∣∣∣∣∣∣∣∣
, ...





.

Murthy also conjectured about the n-th terms of the last two sequences, but those expres-
sions are not correct.

In this paper, we derive explicit forms of the n-th terms of the four sequences. These are
given in Section 3. Some preliminary results, that would be necessary in the derivation of the
expressions of the n-th terms of the sequences, are given in Section 2.

§2. Some preliminary results

In this section, we derive some results that would be needed later in proving the main
results of this paper in Section 3. We start with the following result.

Lemma 2.1. Let D ≡ |dij | be the determinant of order n ≥ 2 with

dij =





a, if i = j > 2;

1, otherwise.

where a is a fixed number. Then,

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1

1 a 1 · · · 1 1

1 1 a · · · 1 1
...

1 1 1 · · · a 1

1 1 1 · · · 1 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a− 1)n−1.
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Proof. Performing the indicated column operations (where Ci → Ci − C1 indicates the
column operation of subtracting the 1st column from the ith column, 2 ≤ i ≤ n), we get

D ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1

1 a 1 · · · 1 1

1 1 a · · · 1 1
...

1 1 1 · · · a 1

1 1 1 · · · 1 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C2 → C2 − C1

C3 → C3 − C1

...

Cn → Cn − C1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0

1 a− 1 0 · · · 0 0

1 0 a− 1 · · · 0 0
...

1 0 0 · · · a− 1 0

1 0 0 · · · 0 a− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a− 1 0 · · · 0 0

0 a− 1 · · · 0 0

0 0 · · · a− 1 0

0 0 · · · 0 a− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is a determinant of order n − 1 whose diagonal elements are all a − 1 and off-diagonal
elements are all zero. Hence,

D = (a− 1)n−1.

Lemma 2.2. Let Da =
∣∣∣d(a)

ij

∣∣∣ be the determinant of order n ≥ 2 whose diagonal elements
are all a (where a is a fixed number) and off-diagonal elements are all 1, that is,

dij =





a, if i = j > 1;

1, otherwise.

Then,

D(a) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 1 · · · 1 1

1 a 1 · · · 1 1

1 1 a · · · 1 1
...

1 1 1 · · · a 1

1 1 1 · · · 1 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a− 1)n−1(a + n− 1).

Proof. We perform the indicated column operations (where C1 → C1 + C2 + ... + Cn

indicates the operation of adding all the columns and then replacing the 1st column by that

sum, and C1 → 1
C1 + C2 + ... + Cn

denotes the operation of taking out the common sum) to

get
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D(a) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 1 1 · · · 1 1

1 a 1 · · · 1 1

1 1 a · · · 1 1
...

1 1 1 · · · a 1

1 1 1 · · · 1 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 → C1 + C2 + ... + Cn

C1 → 1
C1 + C2 + ... + Cn

(a + n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1

1 a 1 · · · 1 1

1 1 a · · · 1 1
...

1 1 1 · · · a 1

1 1 1 · · · 1 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (a + n− 1)(a− 1)n−1,

where the last equality is by virtue of Lemma 2.1.
Corollary 2.1. The value of the following determinant of order n ≥ 2 is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−n 1 1 · · · 1 1

1 −n 1 · · · 1 1

1 1 −n · · · 1 1
...

1 1 1 · · · −n 1

1 1 1 · · · 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n (n + 1)n−1.

Proof. Follows immediately from Lemma 2.2 as a particular case when a = −n.
Lemma 2.3. Let An = |aij | be the determinant of order n ≥ 2, defined by

aij =





1, if i 6 j;

−1, otherwise.

Then,

An ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

−1 1 1 · · · 1 1 1

−1 −1 1 · · · 1 1 1
...

−1 −1 −1 · · · −1 1 1

−1 −1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2n−1.

Proof. The proof is by induction on n. Since

A2 =
∣∣∣∣∣∣

1 1

−1 1

∣∣∣∣∣∣
= 2,

the result is true for n = 2 . So, we assume the validity of the result for some integer n ≥ 2. To
prove the result for n+1, we consider the determinant of order n+1, and perform the indicated
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column operations (where C1 → C1 + Cn indicates the operation of adding the n− th column
to the 1st column to get the new 1st column), to get

An+1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

−1 1 1 · · · 1 1 1

−1 −1 1 · · · 1 1 1
...

−1 −1 −1 · · · −1 1 1

−1 −1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 → C1 + Cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 1 · · · 1 1 1

0 1 1 · · · 1 1 1

0 −1 1 · · · 1 1 1
...

0 −1 −1 · · · −1 1 1

0 −1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

−1 1 1 · · · 1 1 1
...

−1 −1 −1 · · · −1 1 1

−1 −1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2An = 2n,

by virtue of the induction hypothesis. Thus, the result is true for n + 1, which completes
induction.

Corollary 2.2. The value of the following determinant of order n ≥ 2 is

Bn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

1 1 1 · · · 1 1 −1

1 1 1 · · · 1 −1 −1
...

1 1 −1 · · · −1 −1 −1

1 −1 −1 · · · −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

[n

2

]

2n−1.

Proof. To prove the result, note that the determinant Bn can be obtained from the
determinant An of Lemma 2.3 by successive interchange of columns. To get the determinant
Bn from the determinant An, we consider the two cases depending on whether n is even or odd.

Case 1 : When n is even, say, n = 2m for some integer m ≥ 1.
In this case, starting with the determinant Bn = B2m, we perform the indicated column

operations.

Bn = B2m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1 1

1 1 · · · 1 1 −1
...

1 1 · · · −1 −1 −1

1 −1 · · · −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 → C2m

C2 → C2m−1

...

Cm → Cm+1

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1 1

−1 1 · · · 1 1 1
...

−1 −1 · · · −1 1 1

−1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)m2n−1.

Case 2 : When n is odd, say, n = 2m + 1 for some integer m ≥ 1 . In this case,

Bn = B2m+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

1 1 1 · · · 1 1 −1

1 1 1 · · · 1 −1 −1
...

1 1 −1 · · · −1 −1 −1

1 −1 −1 · · · −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 → C2m+1

C2 → C2m

...

Cm → Cm+2

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1 1

−1 1 1 · · · 1 1 1

−1 −1 1 · · · 1 1 1
...

−1 −1 −1 · · · −1 1 1

−1 −1 −1 · · · −1 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m2n−1.

Since, in either case, m =
[n

2

]
, the result is established.

§3. Main results

In this section, we derive the explicit expressions of the n-th terms of the four determinant
sequences, namely, the Smarandache cyclic determinant natural sequence, the Smarandache
cyclic arithmetic determinant sequence, the Smarandache bisymmetric determinant natural
sequence, and the Smarandache bisymmetric arithmetic determinant sequence. These are given
in Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4 respectively.

Theorem 3.1. The n-th term of the Smarandache cyclic determinant natural sequence,
SCDNS(n) is

SCDNS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · n− 2 n− 1 n

2 3 4 5 · · · n− 1 n 1

3 4 5 6 · · · n 1 2

4 5 6 7 · · · 1 2 3
...

n− 1 n 1 2 · · · n− 4 n− 3 n− 2

n 1 2 3 · · · n− 3 n− 2 n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

[n

2

]
n + 1

2
nn−1.

Proof. We consider separately the possible two cases.
Case 1 : When n is even, say, n = 2m for some integer m ≥ 1 (so that

[n

2

]
= m ).

We now perform the indicated operations on SCDNS(n) (where Ci ↔ Cj denotes the operation
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of interchanging the i -thcolumn and the j-th column, and Ri → Ri −Rj means that the j-th
row is subtracted from the i-th row to get the new i-th row). Note that, there are in total, m

interchanges of columns, each changing the value of SCDNS(n) by −1. Then,

SCDNS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · 2m− 2 2m− 1 2m

2 3 4 5 · · · 2m− 1 2m 1

3 4 5 6 · · · 2m 1 2

4 5 6 7 · · · 1 2 3
...

2m− 1 2m 1 2 · · · 2m− 4 2m− 3 2m− 2

2m 1 2 3 · · · 2m− 3 2m− 2 2m− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 ↔ C2m

C2 ↔ C2m−1

...

Cm ↔ Cm+1

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m 2m− 1 2m− 2 · · · 3 2 1

1 2m 2m− 1 · · · 4 3 2

2 1 2m · · · 5 4 3

3 2 1 · · · 6 5 4
...

2m− 3 2m− 4 2m− 5 2m 2m− 1 2m− 2

2m− 2 2m− 3 2m− 4 · · · 1 2m 2m− 1

2m− 1 2m− 2 2m− 3 · · · 2 1 2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C2m → C1 + C2 + ... + C2m

C2m → 1
C1 + C2 + ... + C2m

(−1)m 2m(2m + 1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m 2m− 1 · · · 3 2 1

1 2m · · · 4 3 1
...

2m− 3 2m− 4 2m 2m− 1 1

2m− 2 2m− 3 · · · 1 2m 1

2m− 1 2m− 2 · · · 2 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

...

R2m → R2m −R2m−1

(−1)m 2m(2m + 1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m 2m− 1 2m− 2 · · · 2 1

1− 2m 1 1 · · · 1 0

1 1− 2m 1 · · · 1 0

1 1 1− 2m · · · 1 0
...

1 1 1 · · · 1 0

1 1 1 · · · 1− 2m 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)m 2m(2m + 1)
2

(−1)2m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2m 1 1 · · · 1 1

1 1− 2m 1 · · · 1 1

1 1 1− 2m · · · 1 1
...

1 1 1 1 1

1 1 1 · · · 1− 2m 1

1 1 1 · · · 1 1− 2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m+1 2m(2m + 1)
2

{
(−1)2m−1(2m)2(m−1)

}
= (−1)m 2m + 1

2
(2m)2m−1.

Case 2 : When n is odd, say, n = 2m + 1 for some integer m ≥ 1 (so that
[n

2

]
= m).

Here,

SCDNS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 · · · 2m− 1 2m 2m + 1

2 3 4 5 · · · 2m 2m + 1 1

3 4 5 6 · · · 2m + 1 1 2

4 5 6 7 · · · 1 2 3
...

2m 2m + 1 1 2 · · · 2m− 3 2m− 2 2m− 1

2m + 1 1 2 3 · · · 2m− 2 2m− 1 2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 ↔ C2m+1

C2 ↔ C2m

C3 ↔ C2m−1

...

Cm ↔ Cm+2

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m + 1 2m 2m− 1 · · · 3 2 1

1 2m + 1 2m · · · 4 3 2

2 1 2m + 1 · · · 5 4 3

3 2 1 · · · 6 5 4
...

2m− 2 2m− 3 2m− 4 2m + 1 2m 2m− 1

2m− 1 2m− 2 2m− 3 · · · 1 2m + 1 2m

2m 2m− 1 2m− 2 · · · 2 1 2m + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

C2m+1 → C1 + C2 + ... + C2m+1

C2m+1 → 1
C1 + C2 + ... + C2m+1

(−1)m (2m + 1)(2m + 2)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m + 1 2m 2m− 1 · · · 3 2 1

1 2m + 1 2m · · · 4 3 1

2 1 2m + 1 · · · 5 4 1

3 2 1 · · · 6 5 1
...

2m− 2 2m− 3 2m− 4 2m + 1 2m 1

2m− 1 2m− 2 2m− 3 · · · 1 2m + 1 1

2m 2m− 1 2m− 2 · · · 2 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

...

R2m+1 → R2m+1 −R2m

(−1)m 2m(2m + 1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2m + 1 2m 2m− 1 · · · 3 2 1

−2m 1 1 · · · 1 1 0

1 −2m 1 · · · 1 1 0

1 1 −2m · · · 1 1 0
...

1 1 1 1 1 0

1 1 1 · · · −2m 1 0

1 1 1 · · · 1 −2m 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m (2m + 1)(2m + 2)
2

(− 1)2m+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2m 1 1 · · · 1 1

1 −2m 1 · · · 1 1

1 1 −2m · · · 1 1
...

1 1 1 1 1

1 1 1 · · · −2m 1

1 1 1 · · · 1 −2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m (2m + 1)(2m + 2)
2

{
(−1)2m(2m + 1)2m−1

}
= (−1)m 2m + 2

2
(2m + 1)2m.

Thus, the result is true both when n is even and when n is odd, completing the proof.
Theorem 3.2. The n-th term of the Smarandache cyclic arithmetic determinant sequence,
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SCADS(n) is

SCADS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d a + 2d · · · a + (n− 2)d a + (n− 1)d

a + d a + 2d a + 3d · · · a + (n− 1)d a

a + 2d a + 3d a + 4d · · · a a + d

a + 3d a + 4d a + 5d · · · a + d a + 2d
...

a + (n− 2)d a + (n− 1)d a · · · a + (n− 4)d a + (n− 3)d

a + (n− 1)d a a + d · · · a + (n− 3)d a + (n− 2)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

[n

2

] (
a +

n− 1
2

d

)
(nd)n−1.

Proof. Here also, we consider separately the possible two cases.

Case 1 : If n = 2m for some integer m ≥ 1 (so that
[n

2

]
= m). In this case, performing

the indicated column and row operations, we get successively

SCADS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d · · · a + (2m− 2)d a + (2m− 1)d

a + d a + 2d · · · a + (2m− 1)d a

a + 2d a + 3d · · · a a + d

a + 3d a + 4d · · · a + d a + 2d
...

a + (2m− 2)d a + (2m− 1)d · · · a + (2m− 4)d a + (2m− 3)d

a + (2m− 1)d a · · · a + (2m− 3)d a + (2m− 2)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 ↔ C2m

C2 ↔ C2m−1

...

Cm ↔ Cm+1

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + (2m− 1)d a + (2m− 2)d · · · a + d a

a a + (2m− 1)d · · · a + 2d a + d

a + d a · · · a + 3d a + 2d

a + 2d a + d · · · a + 4d a + 3d
...

a + (2m− 4)d a + (2m− 5)d a + (2m− 2)d a + (2m− 3)d

a + (2m− 3)d a + (2m− 4)d · · · a + (2m− 1)d a + (2m− 2)d

a + (2m− 2)d a + (2m− 3)d · · · a a + (2m− 1)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

C2m → C1 + C2 + ... + C2m

C2m → 1
C1 + C2 + ... + C2m

(−1)mS2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + (2m− 1)d a + (2m− 2)d · · · a + d 1

a a + (2m− 1)d · · · a + 2d 1

a + d a · · · a + 3d 1

a + 2d a + d · · · a + 4d 1
...

a + (2m− 4)d a + (2m− 5)d a + (2m− 2)d 1

a + (2m− 3)d a + (2m− 4)d · · · a + (2m− 1)d 1

a + (2m− 2)d a + (2m− 3)d · · · a 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
S2m = a + (a + d) + (a + 2d) + . . . + {a + (2m− 1)d} = 2ma +

2m(2m− 1)
2

d

)

=

R2 → R2 −R1

R3 → R3 −R2

...

R2m → R2m −R2m−1

(−1)m S2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + (2m− 1)d a + (2m− 2)d · · · a + d 1

(1− 2m)d d · · · d 0

d (1− 2m)d · · · d 0

d d · · · d 0
...

d d · · · d 0

d d · · · (1− 2m)d 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m

{
2ma +

2m(2m− 1)
2

d

}
(− 1)2m+1

d2m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− 2m 1 · · · 1

1 1− 2m · · · 1
...

1 1 · · · 1

1 1 · · · 1− 2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m+1

{
2ma +

2m(2m− 1)
2

d

} {
d2m−1(−1)2m−1(2m)2(m−1)

}

= (−1)m

{
a + (

2m− 1
2

)d
}

d2m−1 (2m)2m−1.

Case 2 : If n = 2m + 1 for some integer m ≥ 1 (so that
[n

2

]
= m).
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In this case, performing the indicated column and row operations, we get successively

SCADS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d a + 2d · · · a + (2m− 1)d a + 2md

a + d a + 2d a + 3d · · · a + 2md a

a + 2d a + 3d a + 4d · · · a a + d

a + 3d a + 4d a + 5d · · · a + d a + 2d
...

a + (2m− 1)d a + 2md a · · · a + (2m− 3)d a + (2m− 2)d

a + 2md a a + d · · · a + (2m− 2)d a + (2m− 1)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C1 ↔ C2m+1

C2 ↔ C2m

...

Cm ↔ Cm+2

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + 2md a + (2m− 1)d · · · a + d a

a a + 2md · · · a + 2d a + d

a + d a · · · a + 3d a + 2d

a + 2d a + d · · · a + 4d a + 3d
...

a + (2m− 3)d a + (2m− 4)d a + (2m− 1)d a + (2m− 2)d

a + (2m− 2)d a + (2m− 3)d · · · a + 2md a + (2m− 1)d

a + (2m− 1)d a + (2m− 2)d · · · a a + 2md

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

C2m+1 → C1 + C2... + C2m+1

C2m+1 → 1
C1 + C2... + C2m+1

(−1)m S2m + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + 2md a + (2m− 1)d · · · a + 2d a + d 1

a a + 2md · · · a + 3d a + 2d 1

a + d a · · · a + 4d a + 3d 1

a + 2d a + d · · · a + 5d a + 4d 1
...

a + (2m− 2)d a + (2m− 3)d a a + 2md 1

a + (2m− 1)d a + (2m− 2)d · · · a + d a 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(

S2m+1 = a + (a + d) + (a + 2d) . . . + (a + 2md) = (2m + 1)a +
2m(2m + 1)

2
d

)
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=

R2 → R2 −R1

R3 → R3 −R2

...

R2m+1 → R2m+1 −R2m

(−1)m S2m + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a + 2md a + (2m− 1)d · · · a + d 1

−2md d · · · d 0

d −2md · · · d 0
...

d d d 0

d d · · · −2md 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m

{
(2m + 1)a +

2m(2m + 1)
2

d

}
(−1)2m+2d2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2m 1 · · · 1

1 −2m · · · 1
...

1 1 · · · 1

1 1 · · · −2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m

{
(2m + 1)a +

2m(2m + 1)
2

d

} {
d2m(−1)2m(2m + 1)2m−1

}

= (−1)m

{
a +

2m

2
d

}
d2m(2m + 1)2m.

Thus, in both the cases, the result holds true. This completes the proof.

Theorem 3.3. The n-th term of the Smarandache bisymmetric determinant natural
sequence, {SBDNS(n)}, n ≥ 5 , is

SBDNS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 1 n

2 3 4 · · · n n− 1

3 4 5 · · · n− 1 n− 2
...

n− 2 n− 1 n 4 3

n− 1 n n− 1 · · · 3 2

n n− 1 n− 2 · · · 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

[n

2

]

(n + 1)2n−2.

Proof. We perform the indicated row and column operations to reduce the determinant
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SBDNS(n) to the form Bn−1 (of Corollary 2.2) as follows :

SBDNS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 2 n− 1 n

2 3 4 · · · n− 1 n n− 1

3 4 5 · · · n n− 1 n− 2
...

n− 2 n− 1 n 5 4 3

n− 1 n n− 1 · · · 4 3 2

n n− 1 n− 2 · · · 3 2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

...

Rn → Rn −Rn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 2 n− 1 n

1 1 1 · · · 1 1 −1

1 1 1 · · · 1 −1 −1
...

1 1 1 −1 −1 −1

1 1 −1 · · · −1 − −1

1 −1 −1 · · · −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

Cn → Cn + C1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 · · · n− 2 n− 1 n + 1

1 1 1 · · · 1 1 0

1 1 1 · · · 1 −1 0
...

1 1 1 −1 −1 0

1 1 −1 · · · −1 −1 0

1 −1 −1 · · · −1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1(n + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1

1 1 1 · · · 1 −1
...

1 1 1 −1 −1

1 1 −1 · · · −1 −1

1 −1 −1 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1(n + 1)Bn−1

= (−1)n+1(n + 1)





(−1)

[
n− 1

2

]

2n−2





.

Now, if n = 2m + 1, then (−1)
n+1+

[
n− 1

2

]

= (−1)(2m+2)+m = (−1)m = (−1)

[n

2

]

,

and if n = 2m, then (−1)
n+1+

[
n− 1

2

]

= (−1)2m+1+(m−1) = (−1)m = (−1)

[n

2

]

.
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Hence, finally, we get SBDNS(n) = (−1)

[n

2

]

(n + 1)2n−2.

Remark 3.1. The values of SBDNS(3) and SBDNS(4) can be obtained by proceeding
as in Theorem 3.3. Thus,

SBDNS(3) =

∣∣∣∣∣∣∣∣

1 2 3

2 3 2

3 2 1

∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

∣∣∣∣∣∣∣∣

1 2 3

1 1 −1

1 −1 −1

∣∣∣∣∣∣∣∣

=

C3 → C3 + C1

∣∣∣∣∣∣∣∣

1 2 4

1 1 0

1 −1 0

∣∣∣∣∣∣∣∣
= −8,

SBDNS(4) =

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4

2 3 4 3

3 4 3 2

4 3 2 1

∣∣∣∣∣∣∣∣∣∣∣

=

R2 → R2 −R1

R3 → R3 −R2

R4 → R4 −R3

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4

1 1 1 −1

1 1 −1 −1

1 −1 −1 −1

∣∣∣∣∣∣∣∣∣∣∣

=

C4 → C4 + C1

∣∣∣∣∣∣∣∣∣∣∣

1 2 3 5

1 1 1 0

1 1 −1 0

1 −1 −1 0

∣∣∣∣∣∣∣∣∣∣∣

= (−5)

∣∣∣∣∣∣∣∣

1 1 1

1 1 −1

1 −1 −1

∣∣∣∣∣∣∣∣

= (−5){(−1)[
3
2 ]23−1} = 20.

Theorem 3.4. The n-th term of the Smarandache bisymmetric arithmetic determinant
sequence, {SBADS(n)}, n ≥ 5, is

SBADS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d · · · a + (n− 2)d a(n− 1)d

a + d a + 2d · · · a + (n− 1)d a + (n− 2)d
...

a + (n− 2)d a + (n− 1)d · · · a + 2d a + d

a + (n− 1)d a + (n− 2)d · · · a + d a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

[n

2

] (
a +

n− 1
2

d

)
(2d)n−1.

Proof. We get the desired result, starting from SBADS(n), expressing this in terms of the
determinant Bn−1 (of Corollary 2.2) by performing the indicated row and column operations.

SBADS(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d · · · a + (n− 2)d a + (n− 1)d

a + d a + 2d · · · a + (n− 1)d a + (n− 2)d
...

a(n− 2)d a + (n− 1)d · · · a + 2d a + d

a + (n− 1)d a + (n− 2)d · · · a + d a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

R2 → R2 −R1

R3 → R3 −R2

...

Rn → Rn −Rn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d a + 2d · · · a + (n− 3)d a + (n− 2)d a + (n− 1)d

d d d · · · d d −d

d d d · · · d −d −d
...

d d −d · · · −d −d −d

d −d −d · · · −d −d −d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

Cn → Cn + C1

dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a + d a + 2d · · · a + (n− 3)d a + (n− 2)d 2a + (n− 1)d

1 1 1 · · · 1 1 0

1 1 1 · · · 1 −1 0
...

1 1 1 −1 −1 0

1 1 −1 · · · −1 −1 0

1 −1 −1 · · · −1 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1 dn−1 {2a + (n− 1)d}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1 1

1 1 1 · · · 1 −1
...

1 1 1 −1 −1

1 1 −1 · · · −1 −1

1 −1 −1 · · · −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+1dn−1 {2a + (n− 1)d}


(−1)

[
n− 1

2

]

2n−2


 = (−1)

[n

2

]

dn−1 {2a + (n− 1)d} 2n−2.
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Abstract Let S be a nil-extension of a Clifford semigroup K by a nil semigroup Q. A

congruence pair (δ, ω) on S consists of a congruence δ on Q and a congruence ω on K. It

is proved that there is an order-preserving bijection Γ : σ 7→ (σQ, σK) from the set of all

congruences on S onto the set of all congruence pairs on S, where σK is the restriction of σ

on K, σQ = (σ ∨ ρK)/ρK and ρK is the Rees congruence on S induced by K.

Keywords Clifford quasi-regular semigroups, Nil-extension, congruence pairs.

§1. Introduction

Recall that a regular semigroup S is Clifford if all idempotents of S are central. A semigroup
S is called quasi-regular if for any a in S there exists a nature number m such that am is a
regular element of S. A quasi-regular semigroup S is called a Clifford quasi-regular semigroup
if S is a semilattice of quasi-groups and Reg(S) is an ideal of S (see [4]). A semigroup S with
zero is called nil if for any a ∈ S there exists a nature number n such that an = 0. If S is a
semigroup and K is an ideal of S such that the Rees quotient semigroup S/K is isomorphic to
a semigroup Q, then we say that S is an ideal extension of K by Q. Furthermore, when Q is
a nil semigroup, S is called a nil-extension of K by Q. It was shown in [4] that a nil-extension
of a Clifford semigroup K by a nil semigroup Q is Clifford quasi-regular.

The class of Clifford semigroups play a fundamental role in the development of semigroup
theory. It was proved by Clifford that a semigroup S is a Clifford semigroup if and only if S

is a semilattice of groups; or if and only if S is a strong semilattice of groups. In 1994, Ren-
Guo-Shum have already studied Clifford quasi-regular semigroup in [4]. Also, the congruence
on completely quasi-regular semigroups has been described by Shum-Guo- Ren [1] by using
admissible congruence pairs.

Here we shall study congruences on a Clifford quasi-regular semigroup S. It is proved that
every congruence σ on such a semigroup S can be uniquely represented by a congruence pair
(σQ, σK) on S, where σK is the restriction of σ on K, σQ = (σ ∨ σK)/ρK and ρK is the Rees
congruence on S induced by an ideal K.

1This research is supported by National Natural Science Foundation of China(Grant No:10671151).
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Throughout this paper, S is a Clifford quasi-regular semigroup. We use ρK to denote the
Rees congruence on S induced by an ideal K of S. Denote the set of all regular elements of S by
Reg(S) and the set of all idempotents of S by E(S). H∗

a denote the H∗-class of S containing a,
where H∗ be a generalized Green’s relation (see [6]). Let C(S) be the set of all congruences on
S and let Aσ be the set {a ∈ S | (∃x ∈ A)(a, x) ∈ σ} for any σ ∈ C(S). The σ-class containing
the zero element 0 is denoted by 0σ. For terminologies and notations not mentioned in this
paper, the reader is referred to [2].

§2. Preliminaries

We shall first state some basic properties concerning congruences on a Clifford quasi-regular
semigroup S.

Proposition 2.1. For any a ∈ S there exists a unique idempotent e ∈ E(S) such that
a ∈ H∗

e . Moreover, an ∈ He if n > r(a), where r(a) = min{n | an ∈ Reg(S)}.
Proof. The proof follows directly from the definition.
Remark. For the sake of convenience, we use a◦ to denote the unique idempotent of

H∗-class of S containing a. It can be easily verified that Reg(S) = K.
Proposition 2.2. Let σ be any congruence on S. Then a ∈ Kσ if and only if (a, aa◦) ∈ σ

and (a, a◦a) ∈ σ.
Proof. Suppose that a ∈ Kσ. Then it is obvious that (a, aa◦) ∈ σ and (a, a◦a) ∈ σ if

a ∈ K. On the other hand, if a /∈ K, then we can find an element x ∈ K such that (a, x) ∈ σ.
Since S is a nil-extension of a Clifford semigroup K, there exists a positive integer n ∈ N

such that an ∈ K. This implies that anσ = xnσ. However, since anσ · (an)−1
σ = a◦σ, where

(an)−1 is the group inverse of an, we have (anσ)−1 = (an)−1σ. Thus, (an)−1σ = (anσ)−1 =
(xnσ)−1 = (xn)−1σ. This means that (a◦, x◦) ∈ σ so that (aa◦, xx◦) = (aa◦, x) ∈ σ and
(a◦a, x◦x) = (a◦a, x) ∈ σ. Hence (a, aa◦) ∈ σ and (a, a◦a) ∈ σ by the transitivity of σ.
Conversely, if (a, aa◦) ∈ σ and (a, a◦a) ∈ σ, then by the above remark, we have aa◦ ∈ K and
a◦a ∈ K. This implies that a ∈ Kσ.

Proposition 2.3. If σ is a congruence on S, then (a◦, b◦) ∈ σ for any (a, b) ∈ σ.
Proof. This proof is the same as the proof of Proposition 2.3 in [1].
Lemma 2.4[4]. The following statements on a semigroup S are equivalent:
(i) S is a Clifford quasi-regular semigroup;
(ii)S is quasi-regular, E(S) is in the center of S and Reg(S) is an ideal of S;
(iii)S is a nil-extension of a Clifford semigroup.

§3. Congruence pairs

Let S be a nil-extension of a Clifford semigroup K by a nil semigroup Q. In order to obtain
a description of any congruence on S, we introduce the following definition.

Definition 3.1. Suppose that δ is a congruence on a semigroup Q and ω is a congruence
on a semigroup K. Then a pair (δ, ω) ∈ C(Q) × C(K) is called a congruence pair on S if it
satisfy the following conditions



98 Xueming Ren and Xudong Wang No. 2

(M1) If (e, f) ∈ ω for some idempotents e, f ∈ E(S), then (pe, pf) ∈ ω for any p ∈ Q.
Dually, (ep, fp) ∈ ω for any p ∈ Q;

(M2) If (p, q) ∈ δ |Q\0δ, then (pe, qe) ∈ ω and (ep, eq) ∈ ω for any e ∈ E(S);
(M3) If (p, q) ∈ δ |Q\0δ, then ((pc)◦, (qc)◦) ∈ ω and ((cp)◦, (cq)◦) ∈ ω for any c ∈ S;
(M4) If 0 6= a ∈ 0δ and c ∈ S, then
(i) (aa◦c, ac(ac)◦) ∈ ω and dually (caa◦, ca(ca)◦) ∈ ω,
(ii) (a◦ac, (ac)◦ac) ∈ ω and dually (ca◦a, (ca)◦ca) ∈ ω;
(M5) If (pe, qf) ∈ ω for some idempotents e, f ∈ E(S) and any p, q ∈ S, then (pe, fq) ∈ ω.

Dually, if (ep, fq) ∈ ω, then (ep, qf) ∈ ω;
(M6) If (pe, fq) ∈ ω for some idempotents e, f ∈ E(S) and any p, q ∈ S, then (ep, qf) ∈ ω.

Dually, if (ep, qf) ∈ ω, then (pe, fq) ∈ ω.
Now suppose that S is a nil-extension of a Clifford semigroup K by a nil semigroup Q and

ρK is the Rees congruence on S induced by the ideal K. For any σ ∈ C(S), we define a mapping
Γ : σ 7→ (σQ, σK) from C(S) to C(Q)× C(K), where σK = σ |K , and σQ = (σ ∨ ρK)/ρK . Thus,
in view of the above definition, we have the following result.

Lemma 3.2. Let C(S) be the set of all congruences on S. Then σ ⊆ τ if and only if
σQ ⊆ τQ and σK ⊆ τK , for any σ, τ ∈ C(S).

Proof. This proof is the same as the proof of Theorem 3.2 in [1].
Lemma 3.3. If σ ∈ C(S), then (σQ, σK) is a congruence pair on S.
Proof. Let σ ∈ C(S). Clearly, σQ ∈ C(Q) and σK ∈ C(K). To see that (σQ, σK) is a

congruence pair on S, we only need to verify that (σQ, σK) satisfies the conditions (M1) to
(M6) given in Definition 3.1.

(i) If (e, f) ∈ σK for some e, f ∈ E(S), then for any p ∈ Q, we have (pe, pf) ∈ σ. It is easy
to see that pe, pf ∈ K. Thereby, we have (pe, pf) ∈ σK . Similarly, (ep, fp) ∈ σK . Thus the
condition (M1) is satisfied.

(ii) By using the similar arguments as in (i), we can also see that (σQ, σK) satisfies condition
(M2).

(iii) If (p, q) ∈ σQ |Q\0σQ
, then by the definition of σQ, we have (p, q) ∈ σ and hence

(pc, qc) ∈ σ for any c ∈ S. By Proposition 2.3, It can be immediately seen that ((pc)◦, (qc)◦) ∈ σ.
Consequently ((pc)◦, (qc)◦) ∈ σK . Dually, ((cp)◦, (cq)◦) ∈ σK . This shows that (σQ, σK)
satisfies the condition (M3).

(iv) Let a ∈ 0σQ \ {0}. Then by Proposition 2.2, (a, aa◦) ∈ σ and so (ac, aa◦c) ∈ σ for
any c ∈ S, that is, ac ∈ Kσ. In this case, (ac, ac(ac)◦) ∈ σ. It follows that (aa◦c, ac(ac)◦) ∈ σ

and consequently (aa◦c, ac(ac)◦) ∈ σK . A similar argument can show that (caa◦, ca(ca)◦) ∈
σK . Thus, (σQ, σK) satisfies the condition (M4)(i). On the other hand, since a ∈ 0σQ \ {0},
(a, a◦a) ∈ σ by Proposition 2.2. Hence, for any c ∈ S (ac, a◦ac) ∈ σ giving ac ∈ Kσ. In this
case, (ac, (ac)◦ac) ∈ σ. We have that (a◦ac, (ac)◦ac) ∈ σ and (ac, (ac)◦ac) ∈ σK . The dual
(ca◦a, (ca)◦ca) ∈ ω can be similarly proved. Thus, (σQ, σK) satisfied the condition (M4)(ii);

(v) Let (pe, qf) ∈ ω for any p, q ∈ S and e, f ∈ E(S). Then qf = fq since S is a nil-
extension of a Clifford semigroup and by Proposition 2.4. This shows that (pe, fq) ∈ ω. The
dual part can be similarly proved. Hence, (σQ, σK) satisfies the condition (M5);

(vi) A similar arguments can show that (σQ, σK) satisfies the condition (M6).
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Thus, by Definition 3.1, (σQ, σK) is indeed a congruence pair on S.
Lemma 3.4. Let C(S) be the set of all congruences on S. Then σ ⊆ τ if and only if

σQ ⊆ τQ and σK ⊆ τK , for any σ, τ ∈ C(S).
(1◦) (a, b) ∈ δ for any a, b ∈ S \R;
(2◦) (aa◦, b◦b) ∈ ω for any a, b ∈ R, where R = K

⋃{0δ \ {0}}. Then σ is a congruence
on S such that Kσ = R.

Proof. We first prove that the relation σ defined above is an equivalence on S. Let a ∈ R,
then (aa◦, aa◦) ∈ ω. Also by the given condition(M5)(i), we have (aa◦, a◦a) ∈ ω. Obviously,
the above relation σ is reflexive. To show that the relation σ is symmetric, let a, b ∈ R such
that (aa◦, b◦b) ∈ ω. Then by (M6), (a◦a, bb◦) ∈ ω. Also since ω ∈ C(K), (bb◦, a◦a) ∈ ω. It
is easy to see that the above relation σ is symmetric. In order to show that the relation σ is
transitive. Let a, b ∈ R such that (aa◦, b◦b) ∈ ω and (bb◦, c◦c) ∈ ω. Then (b◦b, b◦b) ∈ ω by
ω ∈ C(K). And since the given condition (M5)(i), we have (b◦b, bb◦) ∈ ω. Thus (aa◦, c◦c) ∈ ω.
It implies that the above relation σ satisfies transitive. Hence, the relation σ is an equivalence.
We now proceed to prove that σ is a congruence on S.

(i) Suppose that a, b ∈ S \ R such that (a, b) ∈ σ if and only if (a, b) ∈ δ. Then we have
either ac ∈ S \R or ac ∈ R for any c ∈ S. If ac ∈ S \R then bc ∈ S \R since δ is a congruence
on Q. This implies that (ac, bc) ∈ δ and so (ac, bc) ∈ σ. If ac ∈ R, then by the definition of
δ, we know that bc ∈ R. If c ∈ K, then ac, bc ∈ K. But from (a, b) ∈ δ, for any a, b ∈ S \ R

and by the condition (M2) of a congruence pair, we can easily observe that (ac◦, bc◦) ∈ ω. As
ω ∈ C(K), we immediately note that (ac◦c, bc◦c) = (ac, bc) = (ac(ac)◦, (bc)◦bc) ∈ ω. This
shows that (ac, bc) ∈ σ whenever c ∈ K.

It remains to show that (ac, bc) ∈ σ when c /∈ K and (a, b) ∈ δ. In fact, if c ∈ Q, then
((ac)◦, (bc)◦) ∈ ω by the given condition (M3). Thus, by the condition (M1), we have

(c(ac)◦, c(bc)◦) ∈ ω. (1)

Furthermore, we observe that, by Proposition 2.3, ((c(ac)◦)◦, (c(bc)◦)◦) ∈ ω. Thus, by the
conditions (M1) and (M2), we have (b(c(ac)◦)◦, b(c(bc)◦)◦) ∈ ω and (a(c(ac)◦)◦, b(c(ac)◦)◦) ∈ ω,
whence (a(c(ac)◦)◦, b(c(bc)◦)◦) ∈ ω. Together with the obtained property (3.1), we obtain that

(a(c(ac)◦)◦c(ac)◦, b(c(bc)◦)◦c(bc)◦) = (ac(ac)◦, bc(bc)◦) ∈ ω.

By the given condition (M5)(i), we have (ac(ac)◦, (bc)◦bc) ∈ ω. It is trivial to see that (ac, bc) ∈
ω by using condition (2◦).

(ii) Suppose that (aa◦, b◦b) ∈ ω for a, b ∈ R. We now show that (ac, bc) ∈ σ for any c ∈ S.
In fact, by Proposition 2.3, ((aa◦)◦, (b◦b)◦) ∈ ω. Thus, for any c ∈ S, ((aa◦)◦c, (b◦b)◦c) ∈ ω by
the condition (M1) and hence (aa◦c, b◦bc) ∈ ω by assumption. If a ∈ K, then it is trivial to see
that aa◦c = ac and (ac, ac(ac)◦) ∈ ω. Consequently, (aa◦c, ac(ac)◦) ∈ ω. If a ∈ 0δ \ {0}, then
(aa◦c, ac(ac)◦) ∈ ω by the condition (M4)(i). Also if b ∈ K, then b◦bc = bc and (bc, (bc)◦bc) ∈ ω.
Consequently, (b◦bc, (bc)◦bc) ∈ ω. If b ∈ 0δ \ {0}, then (b◦bc, (bc)◦bc) ∈ ω by the condition
(M4)(ii). Thus, by the transitivity of congruence ω, we may deduce that (ac(ac)◦, (bc)◦bc) ∈ ω.
This shows that (ac, bc) ∈ ω since the condition (2◦) is satisfied by the pair (ac, bc). Thus, σ is
a left congruence on S.
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Likewise, we can show that σ is also a right congruence on S and hence σ is a congruence
on S. Furthermore, it is easy to see that Kσ = R.

By using Lemma 3.4, the following theorem for congruence pairs on S is established.
Lemma 3.5. Let S be a nil-extension of a Clifford semigroup K by a nil semigroup Q

and let (δ, ω) be a congruence pair on S. Then a congruence σ given in Lemma 3.4 is a unique
congruence on S satisfying σQ = δ and σK = ω.

Proof. We first show that σQ = δ. To see that δ ⊆ σQ, we let a, b ∈ Q such that (a, b) ∈ δ.
Then, we have a, b ∈ Q \R or a, b ∈ 0δ \ {0} in Q. If a, b ∈ Q \R, then (a, b) ∈ σQ if and only if
(a, b) ∈ δ by the definition of σ. On the other hand, if a, b ∈ 0δ \ {0}, then by the definition of
σ, we have a, b ∈ Kσ and so a, b ∈ 0σQ. This show that δ ⊆ σQ and so δ = σQ since Kσ = R.

We still need to show that σK = ω. For this purpose, we pick a, b ∈ K such that (a, b) ∈ ω.
Then, it is trivial to see that (aa◦, b◦b) ∈ ω. It follows from the definition of σ that (a, b) ∈ σK .
Conversely, if (a, b) ∈ σK for a, b ∈ K, then (a, b) ∈ σ. Thereby, (a, b) = (aa◦, b◦b) ∈ ω and
hence σK = ω. Finally, by using the facts given in theorem 3.2, we can observe that the
congruence σ satisfying σQ = δ and σK = ω must be unique.

Summarizing the above results, we obtain the following theorem.
Theorem 3.6. S be a nil-extension of a Clifford semigroup K by a nil semigroup Q. Then

a mapping Γ : σ 7−→ (σQ, σK) is an order-preserving bijection from the set of all congruences
on S onto the set of all congruence pairs on S.
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Abstract In a recent paper, Zhang and Zhang [1] introduced the concept of sequences of

numbers with alternate common differences. In this paper, we extend the idea to sequences

in geometric progression. We also revisit some of the results of Zhang and Zhang to provide

simpler and shorter forms and proofs in some cases.
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§1. Introduction

In a recent paper, Zhang and Zhang [1] introduced the concept of sequences of numbers
in arithmetic progression with alternate common differences as well as the periodic sequence
with two common differences. In this paper, we extend the concept to sequences of numbers
in geometric progression with alternate common ratios and the periodic sequence with two
common ratios. In doing so, we revisit the results of Zhang and Zhang [1], in Section 2 and
Section 4 respectively. We give some of the results and their proofs in simpler forms. In Section
3, the sequence of numbers with two common ratios is treated. We derive the explicit forms of
the general term, an, and the sum of first n terms Sn of the sequence. Section 5 deals with the
periodic sequence of numbers in geometric progression with two common ratios.

§2. Sequence of numbers with alternate common

differences

The sequence of numbers with alternate common differences, defined by Zhang and Zhang
[1], is as follows.

Definition 2.1. A sequence of numbers an is called one with alternate common differences
if the following two conditions are satisfied:

(1) For all k ∈ N, a2k − a2k−1 = d1;
(2) For all k ∈ N, a2k+1 − a2k = d2,

where d1 and d2 are two fixed numbers, called respectively the first common difference and the
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second common difference of the sequence.
Lemma 2.1. Let {an} be a sequence of numbers with alternate common differences d1

and d2. Then, for all k > 1,

a2k−1 = a1 + (k − 1)(d1 + d2), (1)

a2k = a1 + kd1 + (k − 1)d2. (2)

Proof. From Definition 2.1, adding the two conditions therein,

a2i+1 − a2i−1 = d1 + d2

for all i > 1. Then,

k−1∑

i=1

(a2i+1 − a2i−1) = (k − 1)(d1 + d2),

that is, a2k−1 − a1 = (k − 1)(d1 + d2),
so that, a2k−1 = a1 + (k − 1)(d1 + d2),

a2k = a2k−1 + d1 = a1 + kd1 + (k − 1)d2.

Corollary 2.1. Let {an} be a sequence of numbers with alternate common differences d1

and d2. Then,

an = a1 +
[n

2

]
d1 +

[
n− 1

2

]
d2,

where [x] denotes the greatest integer less than or equal to x.

Proof. If n is odd, say, n = 2k − 1 for some integer k ≥ 1, then,
[
n− 1

2

]
= k − 1 =

[n

2

]

and (1) can be expressed as

a2k−1 = an = a1 + (k − 1)d1 + (k − 1)d2 = a1 +
[n

2

]
d1 +

[
n− 1

2

]
d2.

And if n is even, say, n = 2k for some integer k > 1, then

[n

2

]
= k,

[
n− 1

2

]
= k − 1,

so that (2) can be rewritten as

a2k = an = a1 + kd1 + (k − 1)d2 = a1 +
[n

2

]
d1 +

[
n− 1

2

]
d2.
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Lemma 2.2. Let {an} be a sequence of numbers with alternate common differences d1

and d2, and let {Sn} be the sequence of n− th partial sums. Then, for all k > 1,

S2k−1 = (2k − 1)a1 + (k − 1){kd1 + (k − 1)d2}, (3)

S2k = 2ka1 + k {kd1 + (k − 1)d2} . (4)

Proof. By definition,

S2k =
2k∑

i=1

ai =
k∑

i=1

(a2i−1 + a2i).

Using Lemma 2.1, S2k =
k∑

i=1

{2a1 + (2i− 1)d1 + 2(i− 1)d2} = 2ka1 + k2d1 + k(k + 1)d2,

so that S2k−1 = S2k − a2k = (2k − 1)a1 + k(k − 1)d1 + (k − 1)2d2.

Corollary 2.2. Let {an} be a sequence of numbers with alternate common differences d1

and d2. Then,

Sn = na1 +
[n

2

] ([
n + 1

2

]
d1 +

[
n− 1

2

])
.

Proof. If n = 2k − 1 for some integer k > 1, then,

[n

2

]
= k − 1 =

[
n− 1

2

]
,

[
n + 1

2

]
= k,

so that, from (3),

S2k−1 = Sn = (2k − 1)a1 + (k − 1){kd1 + (k − 1)d2}
= na1 +

[n

2

] ([
n + 1

2

]
d1 +

[
n− 1

2

]
d2

)
,

and if n = 2k for some integer k > 1, then,

[n

2

]
= k =

[
n + 1

2

]
,

[
n− 1

2

]
= k − 1,

and from (4),

S2k = Sn = ka1 + k{kd1 + (k − 1)d2}
= na1 +

[n

2

] ([
n + 1

2

]
d1 +

[
n− 1

2

]
d2

)
.

§3. Sequence of numbers with alternate common ratios

The sequence of numbers with alternate common ratios is defined as follows.
Definition 3.1. A sequence of numbers {an} is called one with alternate common ratios

if the following two conditions are satisfied :
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(1) For all k ∈ N,
a2k

a2k−1
= r1,

(2) For all k ∈ N,
a2k+1

a2k
= r2,

where r1 and r2 are two fixed numbers, called respectively the first common ratio and the
second common ratio of the sequence.

Lemma 3.1. Let {an} be a sequence of numbers with alternate common ratios r1 and r2.
Then, for all k > 1,

(1) a2k−1 = a1(r1r2)k−1;

(2) a2k = a1r
k
1rk−1

2 .

Proof. From Definition 3.1,

a2k+1

a2k−1
=

a2k

a2k−1
· a2k+1

a2k
= r1r2 (5)

for all integer k ≥ 1. Therefore,

a2k−1

a2k−3
· a2k−3

a2k−5
· · · 5

3
· 3
1

= (r1r2) · (r1r2) · · · (r1r2) = (r1r2)k−1,

so that

a2k−1 = a1(r1r2)k−1.

Then,

a2k = r1a2k−1 = a1r
k
1rk−1

2 .

Corollary 3.1. Let {an} be a sequence of numbers with alternate common ratios r1 and
r2. Then, both the subsequences {a2n−1} and {a2n} are sequences of numbers with common
ratio r1r2.

Proof. From (5), we see that {a2n−1} is in geometric progression with common ratio r1r2.
Again, since

a2k+2

a2k
=

a2k+2

a2k+1
· a2k+1

a2k
= r1r2

for all integer k ≥ 1, it follows that {a2n} is also in GP with common ratio r1r2.

Lemma 3.2. Let {an} be a sequence of numbers with alternate common ratios r1 and r2,
and let Sn be the sequence of n-th partial sums. Then, for all n ≥ 1,

(1) S2n−1 =
a1

1− r1r2

[
1− (r1r2)n + r1{1− (r1r2)n−1}];

(2) S2n =
a1

1− r1r2
[1− (r1r2)n] (1 + r1).

Proof. By definition,

S2n−1 =
2n−1∑

i=1

ai =
n∑

i=1

a2i−1 +
n−1∑

i=1

a2i.
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Using Lemma 3.1,

S2n−1 =
n∑

i=1

a1(r1 r2)i−1 +
n−1∑

i=1

a1r
i
1 ri−1

2

= a1
1− (r1 r2)n−1

1− r1 r2
+ a1r1

1− (r1 r2)n−1

1− r1 r2
,

which gives the desired expression for S2n−1 after some algebraic manipulation.
Then,

S2n = S2n−1 + a2n

=
a1

1− r1r2

[
1− (r1r2)n + r1{1− (r1r2)n−1}] + a1r

n
1 rn−1

2

=
a1

1− r2r2
[1− (r1r2)n] (1 + r1).

Lemma 3.3. Let {an} be a sequence of numbers with alternate common ratios r1 and r2

with |r1r2| < 1. Then, the infinite series
∞∑

n=1
an is convergent, and

∞∑
n=1

an = a1
1 + r1

1− r1r2
.

Proof. From Lemma 3.2, both the sequences {S2n−1}∞n=1 and {S2n}∞n=1 are convergent
with

lim
n→∞

S2n−1 = a1
1 + r1

1− r1 r2
= lim

n→∞
S2n.

§4. Periodic sequence of numbers with two common

differences

The periodic sequence of numbers with two common differences has been defined by Zhang
and Zhang [1] as follows.

Definition 4.1. A sequence of numbers {an} is called periodic with period p and two
common differences if the following two conditions are satisfied :

(1) For all k = 1, 2, 3, · · · ,

a(k−1)p+1, a(k−1)p+2, · · · , akp

is a finite arithmetic progression with common difference d1;
(2) For all k = 1, 2, 3, · · · ,

akp+1 = akp + d3,

where p > 1 is a fixed integer, and d1 and d3 are two fixed numbers.
Zhang and Zhang [1] found the expressions for an and Sn for this sequence, which are rather

complicated. We derive the expressions for an and Sn for this sequence under the assumption
that

d3 = d1 + d2. (6)
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These are given in Lemma 4.4 and Lemma 4.5 respectively. Note that the assumption (6) is
not restrictive : Given the numbers d1 and d3, we can always find the number d2 satisfying the
condition (6).

Following Zhang and Zhang [1], we shall say that the terms {a1, a2, . . . , ap} belong to the
1st interval of length p, the terms {ap+1, ap+2, . . . , a2p} belong to the 2nd interval of length
p, and so on, and in general, the terms {a(k−1)p+1, a(k−1)p+2, . . . , akp} belong to the k − th

interval of length p. Note that, in each interval, the terms are in arithmetic progression (AP)
with common difference d1. Thus, in particular, in the k − th interval,

akp = a(k−1)p+1 + (p− 1)d1. (7)

Lemma 4.1. Let {an} be a p-periodic sequence of numbers with two common differences
d1 and d2. Then, for all k = 1, 2, 3, . . . ,

akp = a1 + (kp− 1)d1 + (k − 1)d2.

Proof. The proof is by induction on k . The result is clearly true for k = 1. So, we assume
the validity of the result for some integer k > 1. Now,

a(k+1)p = akp+1 + (p− 1)d1.

But,
akp+1 = akp + d1 + d2.

Therefore, using the induction hypothesis, we get

a(k+1)p = (akp + d1 + d2) + (p− 1)d1

= {a + (kp− 1)d1 + (k − 1)d2}+ pd1 + d2

= a1 + {(k + 1)p− 1}d1 + kd2,

which shows that the result is true for k + 1 as well.
Lemma 4.2. Let {an} be a p-periodic sequence of numbers with two common differences

d1 and d2. Let
(k − 1)p + 1 ≤ ` ≤ kp

for some k ∈ {1, 2, 3, . . .}. Then,

a` = a1 + (`− 1)d1 + (k − 1)d2.

Proof. Since (k − 1)p + 1 ≤ ` ≤ kp, it follows that

a` = a(k−1)p+1 + [`− (k − 1)p− 1] d1.

But, by Lemma 4.1,

a(k−1)p+1 = a(k−1)p + d1 + d2

= [a1 + {(k − 1)p− 1}d1 + (k − 2)d2] + d1 + d2

= a1 + (k − 1)pd1 + (k − 1)d2.
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Therefore, we finally get

a` = {a1 + (k − 1)pd1 + (k − 1)d2}+ {`− (k − 1)p− 1}d1

= a1 + (`− 1)d1 + (k − 1)d2.

Lemma 4.3. Let (k − 1)p + 1 ≤ ` ≤ kp for some k ∈ {1, 2, 3, · · · } (p ≥ 2).
Then,

k =
[
`− 1

p

]
+ 1.

Proof. From the given inequality, we get

k − 1 ≤ `− 1
p

, k ≥ `

p
.

Since k, p and ` are all (positive) integers, it follows that

k − 1 =
[
`− 1

p

]
.

Lemma 4.4. Let {an} be a p-periodic sequence of numbers with two common differences d1

and d2 with p ≥ 2. Then,

an = a1 + (n− 1)d1 +
[
n− 1

p

]
d2.

Proof. follows immediately from Lemma 4.2 and Lemma 4.3.
Lemma 4.5. Let {an} be a p-periodic sequence of numbers with two common differences

d1 and d2 with p ≥ 2 , and let {Sn} be the sequence of n− th partial sums. Then,

Sn = na1 +
n(n− 1)

2
d1 +

[
n− 1

p

]{
n− p

2

([
n− 1

p

]
+ 1

)}
d2.

Proof. By definition,

Sn =
n∑

i=1

ai

=
n∑

i=1

{
a1 + (i− 1)d1 +

[
i− 1

p

]
d2

}

= na1 +
n(n− 1)

2
d1 + d2

n∑

i=1

[
i− 1

p

]
.

Now, to calculate
n∑

i=1

[
i− 1

p

]
, let (k − 1)p + 1 ≤ n ≤ kp for some k ∈ {1, 2, 3, · · · }.

Then, the sum
n∑

i=1

[
i− 1

p

]
can be written as

n∑

i=1

[
i− 1

p

]
=

k−1∑

i=1

ip∑

j=(i−1)p+1

[
j − 1

p

]
+

n∑

i=(k−1)p+1

[
i− 1

p

]
.

To find the above sums, note that
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[
j − 1

p

]
= i− 1

for all (i− 1)p + 1 ≤ j ≤ ip.
Therefore,

n∑

i=1

[
i− 1

p

]
=

k−1∑

i=1

p(i− 1) + {n− (k − 1)p}(k − 1)

= p
(k − 2)(k − 1)

2
+ {n− (k − 1)p}(k − 1)

= n(k − 1)− p

2
k(k − 1)

= (k − 1)
{

n− p

2
k
}

.

Therefore,

Sn = na1 +
n(n− 1)

2
d1 + (k − 1)

{
n− p

2
k
}

d2.

We then get the desired result by virtue of Lemma 4.3.
If p = 1, from Lemma 4.4 and Lemma 4.5, we see that the terms of sequence {an} are in

AP with common difference d1 + d2. Also, recall that, if the terms of a sequence {bn}are in
AP with common difference d1, then bn = d1 + (n− 1)d1, and the sum of first n of its terms is

simply na1 +
n(n− 1)

2
d1. These expressions may be compared with those given in Lemma 4.4

and Lemma 4.5.

§5. Periodic sequence of numbers with two common ratios

The periodic sequence of numbers with two common ratios is defined as follows.
Definition 5.1. A sequence of numbers {an} is called periodic with period p and two

common ratios if the following two conditions are satisfied :
(1) For all k = 1, 2, 3, · · · , the subsequence

{a(k−1)p+1, a(k−1)p+2, . . . , akp}

is a finite geometric progression with common ratio r1;
(2) For all k = 1, 2, 3, · · · ,

akp+1

akp
= r1r2,

where p > 1 is a fixed integer, and r1 and r2 are two fixed numbers.
As in Section 4, the terms {a1, a2, · · · , ap} belong to the 1st interval of length p, the terms

{ap+1, ap+2, · · · , a2p} belong to the 2nd interval of length p, and so on, and in general, the
terms {a(k−1)p+1, a(k−1)p+2, · · · , akp} belong to the k − th interval of length p. Note that, in
each interval, the terms are in geometric progression (GP) with common ratio r1. Thus, in
particular, in the k -th interval,

akp = a(k−1)p+1r
p−1
1 . (8)

Lemma 5.1. Let{an} be a p-periodic sequence of numbers with two common ratios r1

and r2. Then, for all k = 1, 2, 3, · · · ,
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(1) akp = a1r
kp−1
1 rk−1

2 ;
(2) akp+1 = a1r

kp
1 rk

2 .
Proof. To prove part (1), note that the result is true k = 1. To proceed by induction, we

assume its validity for some integer k > 1. Now,

a(k+1)p = akp+1r
p−1
1 .

But,
akp+1 = akpr1r2.

Therefore, using the induction hypothesis, we get

a(k+1)p = (akpr1r2)r
p−1
1

= (a1r
kp−1
1 rk−1

2 )(r1r2)r
p−1
1 )

= a1r
(k+1)p−1
1 rk

2

showing the validity of the result for k + 1.
Now,

akp+1 = akpr1r2 = (a1r
kp−1
1 rk−1

2 )(r1r2) = a1r
kp
1 rk

2 .

This establishes part (2) of the lemma.
Lemma 5.2. Let {an} be a p-periodic sequence of numbers with two common ratios r1

and r2. Let
(k − 1)p + 1 ≤ n ≤ kp

for some k ∈ {1, 2, 3, · · · }. Then,
an = a1r

n−1
1 rk−1

2 .

Proof. Since (k − 1)p + 1 ≤ n ≤ kp, it follow that

an = a(k−1)p+1r
n−(k−1)p−1
1 .

But, by part (2) of Lemma 5.1

a(k−1)p+1 = a1r
(k−1)p
1 rk−1

2 .

Hence,
an =

{
a1r

(k−1)p
1 rk−1

2

}
r

n−(k−1)p−1
1 = a1r

n−1
1 rk−1

2 .

Lemma 5.3. Let {an} be a p-periodic sequence of numbers with two common ratios r1

and r2. Let {Sn} be the sequence of n− th partial sums. Let

(k − 1)p + 1 ≤ n ≤ kp

for some k ∈ {1, 2, 3, · · · }. Then,

Sn =
a1

1− r1

(
1− rp

1

1− rp
1r2

{
1− (rp

1r2)k−1
}

+ (rp
1r2)k−1{1− r

n−(k−1)p−1
1 }

)
.
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Proof. By definition,

Sn =
n∑

i=1

ai =
k−1∑

i=1

ip∑

j=(i−1)p+1

aj +
n∑

i=(k−1)p+1

ai.

Now, note that
ip∑

j=(i−1)p+1

aj = a(i−1)p+1

(
1− rp

1

1− r1

)
,

n∑

i=(k−1)p+1

ai = a(k−1)p+1

(
1− r

n−(k−1)p−1
1

1− r1

)
,

the expression for Sn takes the form

Sn =
1− rp

1

1− r1

(
k−1∑

i=1

a(i−1)p+1

)
+ a(k−1)p+1

(
1− r

n−(k−1)p−1
1

1− r1

)
.

By part (2) of Lemma 5.1,

k−1∑

i=1

a(i−1)p+1 = a1

k−1∑

i=1

(rp
1r2)i−1 = a1

(
1− (rp

1r2)k−1

1− rp
1r2

)
.

Therefore,

Sn = a1

(
1− rp

1

1− r1

)(
1− (rp

1r2)k−1

1− rp
1r2

)
+ a1(r

p
1r2)k−1

(
1− r

n−(k−1)p−1
1

1− r1

)
.

§6. Some remarks

From the proofs of Corollary 2.1 and Corollary 2.2, we have
[
n− 1

2

]
+

[n

2

]
= n− 1

for any integer n ≥ 1, [n

2

]
=

n

2
⇒

[
n− 1

2

]
+

[
n + 1

2

]
= n− 1

for any integer n ≥ 1,

[n

2

]
=

n− 1
2

⇒ [
n− 1

2
] +

[
n + 1

2

]
= n

for any integer n ≥ 1.
Therefore, in the particular case when d1 = d2 = d , say, so that the sequence of numbers

{an} forms an AP with common difference d, the expressions of an and Sn, given respectively
in Corollary 2.1 and Corollary 2.2, take the following forms :

a = a1 +
[n

2

]
d1 +

[
n− 1

2

]
d2 = a1 + (n− 1)d,
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Sn = na1 +
[n

2

] ([
n + 1

2

]
d1 +

[
n− 1

2

]
d2

)
= na1 +

n(n− 1)
2

d.

These are well-known results.
Again, in the particular case when r1 = r2 = r, say, the sequence of numbers {an} in

Section 3 forms a GP with common ratio r. In this case, the expressions for S2n−1 and S2n,
given in Lemma 3.2, can be shown to reduce to the well-known forms. This is done below :

S2n−1 =
a1

1− r1r2

[
1− (r1r2)n + r1

{
1− (r1r2)n−1

}]

=
a1

1− r2

[
1− r2n + r

{
1− r2(n−1)

}]
=

a1

1− r2
(1 + r)(1− r2n−1)

=
a1

1− r
(1− r2n−1),

S2n =
a1

1− r1r2
[1− (r1r2)n] (1 + r1) =

a1

1− r2
(1− r2n)(1 + r) =

a1

1− r
(1− r2n).

The p-periodic sequence of numbers with two common differences d1 and d2 has been treated in
Section 4. Our approach is a little bit different from that of Zhang and Zhang [1]; however, to
get the corresponding results given in Zhang and Zhang, one may put d2 = d3 − d1 in Lemma
4.4 and Lemma 4.5. Clearly, in the particular case when d2 = 0, the sequence an in Section 4
becomes one with common difference d1.

Finally, we observe from Lemma 5.2 and Lemma 5.3 in Section 5 that, the terms of the
sequence {an} are in GP with common ratio r1 in the particular case when r2 = 1 , and they
are in GP with common ratio r1r2 in the particular case when p = 1. From Lemma 5.3, we see

that the infinite series
∞∑

n=1
an is convergent when |r1| < 1 and |r2| < 1, in such a case,

∞∑
n=1

an =
a1

1− r1

(
1− rp

1

1− rp
1 r2

)
.

It might be interesting to study the behavior of the infinite series
∞∑

n=1
an, when |r1r2| < 1.
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Abstract In this paper, we continue studying the properties of (γ, γ,)-operations on topo-

logical spaces initiated by J. Umehara, H. Maki and T. Noiri [12] and further investigated by

S. Hussain and B. Ahmad [5].

Keywords γ-closed (open), γ-closure, γ-regular (open), (γ, γ
′
)-interior, (γ, γ,)-exterior, (γ,

γ
′
) -boundary, (γ, γ

′
)-closure, (γ, γ

′
)-open (closed), (γ, γ

′
)-nbd, (γ, γ

′
)-derived set, (γ, γ

′
)-

dense and (γ, γ
′
)-dense in itself.

§1. Introduction

In 1979, S. Kasahara [7] introduced the concept of α-closed graphs of a function. D. S.
Jankovic [6] defined α-closed sets and studied functions with α-closed graphs. H. Ogata [9]
introduced the notions of γ-Ti, i = 0, 1/2, 1, 2; (γ, β)- homeomorphism and studied some topo-
logical properties. B. Ahmad and F. U. Rehman ( [1] , [11] ) defined and investigated several
properties of γ-interior, γ-exterior, γ-closure and γ-boundary points in topological spaces. They
also discussed their properties in product spaces and studied the characterizations of (γ, β)- con-
tinuous mappings initiated by H. Ogata [10]. In 2003, 2005 and 2006, B.Ahmad and S.Hussain
[2-4] continued studying the properties of γ-operations on topological spaces introduced by S.
Kasahara [7]. They also defined and discussed several properties of γ-nbd, γ-nbd base at x,
γ-closed nbd, γ-limit point, γ-isolated point, γ-convergent point and γ∗-regular space. They
further defined γ- normal spaces, γ0-compact [4] and established many interesting properties. In
1992, J. Umeraha, H. Maki and T. Noiri [12]; and in 1994, J. Umehara [13] defined and discussed
the properties of (γ, γ

′
)-open sets, (γ, γ

′
)- closure, (γ, γ

′
)-generalized closed sets in a space X.

In 2006, S. Hussain and B. Ahmad [5] continued to discuss the properties of (γ, γ
′
)-open sets,

(γ, γ
′
)-closure, (γ, γ

′
)-generalized closed sets in a space X defined in [12].

In this paper, we continue studying properties of (γ, γ
′
)- operations on topological spaces.

Hereafter we shall write spaces in place of topological spaces.
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§2. Preliminaries

In order to make this paper self-contained, we give the preliminaries used in the sequel.
Definition 2.1[10]. Let (X, τ) be a space. An operation γ : τ → P (X) is a function from

τ to the power set of X such that V ⊆ V γ , for each V ∈ τ , where V γ denotes the value of γ

at V . The operations defined by γ(G) = G, γ(G) = cl(G) and γ(G) = int(cl(G)) are examples
of operation γ.

Definition 2.2[10]. Let A ⊆ X. A point a ∈ A is said to be a γ-interior point of A, if
there exists an open nbd N of a such that Nγ ⊆ A . We denote the set of all such points by
intγ(A).Thus
intγ(A) = {x ∈ A : x ∈ N ∈ τ and Nγ ⊆ A} ⊆ A.

Note that A is γ-open [10] iff A = intγ(A). A set A is called γ- closed [10] iff X − A is
γ-open.

Definition 2.3[10]. An operation γ on τ is said to be regular, if for any open nbds U, V

of x ∈ X, there exists an open nbd W of x such that Uγ ∩ V γ ⊇ W γ .
Definition 2.4[10]. An operation γ on τ is said to be open, if for any open nbd U of each

x ∈ X, there exists an γ-open set B such that x ∈ B and Uγ ⊇ B.
Definition 2.5[5]. Let A be a subset of X. A point x ∈ A is said to be (γ, γ

′
)-interior

point of A iff there exist open nbds U and V of x such that Uγ ∪ V γ
′
⊆ A.

We define the set of all such points as (γ, γ
′
)- interior of A and is denoted as by int(γ,γ′ )(A).

Thus int(γ,γ′ )(A) = {x ∈ A : x ∈ U, x ∈ V, U, V ∈ τ and Uγ ∪ V γ
′
⊆ A} ⊆ A.

If A ⊆ B, then int(γ,γ′ )(A) ⊆ int(γ,γ′ )(B).
Definition 2.6[12]. A subset A of (X, τ) is said to be a (γ, γ

′
)-open set iff int(γ,γ′ )(A) = A.

Note that the class of all (γ, γ
′
)-open sets of (X, τ) is denoted by τ(γ,γ′ ).

§3. Properties of bi γ-operations

Definition 3.1. Let X be a space and x ∈ X. Then a (γ, γ
′
)-nbd of x is a set U

which contains a (γ, γ
′
)-open set V containing x. Evidently, a set U is a (γ, γ

′
)-nbd of x if

x ∈ int(γ,γ′ )(U). The class of all (γ, γ
′
)-nbds of x is called the (γ, γ

′
)-nbd system at x and is

denoted by Ux.
Theorem 3.1. The (γ, γ

′
)-nbd system Ux at x in a space X has the following properties:

(1) If U ∈ Ux, then x ∈ U .
(2) If U, V ∈ Ux, then U ∩ V ∈ Ux, where γ and γ

′
are regular operations.

(3) If U ∈ Ux, then there is a V ∈ Ux such that U ∈ Uy, then each y ∈ V .
(4) If U ∈ Ux and U ⊆ V , then V ∈ Ux

(5)(a) If U ⊆ X is (γ, γ
′
)-open, then U contains a (γ, γ

′
)-nbd of each of its points.

(b)If U contains a (γ, γ
′
)-nbd of each of its points, then U is (γ, γ

′
)-open, provided γ and γ

′

are regular.
Proof. (1) is obvious.

(2) If U, V ∈ Ux, then x ∈ int(γ,γ′ )(U) and x ∈ int(γ,γ′ )(V ) imply x ∈ int(γ,γ′ )(U)∩int(γ,γ′ )(V ).
Since γ and γ

′
are regular operations, therefore x ∈ int(γ,γ′ )(U ∩ V ). This implies U ∩ V ∈ Ux.
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(3) Let U ∈ Ux. Take V = int(γ,γ′ )(U). Then each y ∈ V gives y ∈ int(γ,γ′ )(U) and therefore
U ∈ Uy.
(4) If U ∈ Ux, then x ∈ int(γ,γ′ )(U). If U ⊆ V , then int(γ,γ′ )(U) ⊆ int(γ,γ′ )(V ) gives x ∈
int(γ,γ′ )(V ). Hence V ∈ Ux.
(5) (a) If U is (γ, γ

′
)-open, then U = int(γ,γ′ )(U) and therefore U is a (γ, γ

′
)-nbd of each of its

points.
(b) If x ∈ U has a (γ, γ

′
)-nbd Vx ⊆ U , then U = int(γ,γ′ )(

⋃
x∈U

Vx) is union of (γ, γ
′
)-open sets

and therefore is (γ, γ
′
)-open. This completes the proof.

Combining 5(a) and 5(b) of the Theorem 3.1, we have

Proposition 3.1. A set U ⊆ X is (γ, γ
′
)-open iff U contains a (γ, γ

′
)-nbd of each of its

points, where γ and γ
′
are regular operations.

Definition 3.2. A (γ, γ
′
)-nbd base at x in a space X is a subcollection βx taken from

(γ, γ
′
)-nbd system Ux having the property that U ∈ Ux contains some

V ∈ βx. That is Ux must be determined by βx as

Ux = {U ⊆ X/V ⊆ U for some V ∈ βx}.

Then each U ∈ βx is called a basic (γ, γ
′
)-nbd of x.

Example 3.1. In any space X, the (γ, γ
′
)-open nbds of x form a (γ, γ

′
)-nbd base at x,

since for any (γ, γ
′
)-nbd U of x int(γ,γ′ )(U) is also a (γ, γ

′
)-nbd of x.

Example 3.2. If X is the discrete space, then each x ∈ X has a (γ, γ
′
)-nbd base consisting

of a single set, namely {x}, that is, Ux = {{x}}.
Theorem 3.2. Let X be a space and for each x ∈ X, let βx be a (γ, γ

′
)-nbd base at x.

Then
(1) If V ∈ βx, then x ∈ V .
(2) If V1, V2 ∈ βx, then there is some V3 ∈ βx such that V3 ⊆ V1∩V2, where γ and γ

′
are regular

operations.
(3) If V ∈ βx, then there is some V3 ∈ βx such that y ∈ V , then there is some W ∈ βx with
W ⊆ V .
(4) (a) If U ⊆ X is (γ, γ

′
)-open, then U contains a basic (γ, γ

′
)-nbd of each of its points.

(b) If U contains a basic (γ, γ
′
)-nbd of each of its points, then U is (γ, γ

′
)-open provided γ and

γ
′
are regular operations.

Proof. Follows from Theorem 3.1.

Definition 3.3[12]. A point x ∈ X is called a (γ, γ
′
)-closure point of A ⊆ X, if (Uγ ∪

V γ
′
) ∩ A 6= ∅, for any open nbds U and V of x. The set of all (γ, γ

′
)-closure points is called

the (γ, γ
′
)-closure of A and is denoted by cl(γ,γ′ )(A).

Note that cl(γ,γ′ )(A) is contained in every (γ, γ
′
)-closed superset of A. Clearly, a subset A of

X is called (γ, γ
′
)-closed, if cl(γ,γ′ )(A) ⊆ A.

Theorem 3.3. Let X be a space. Suppose a (γ, γ
′
)-nbd base has been fixed at each

x ∈ X. Then
(1) V ⊆ X is (γ, γ

′
)-closed iff each point x /∈ V has a basic (γ, γ

′
)-nbd disjoint from V .

(2) cl(γ,γ′ )(E) = {x ∈ X: each basic (γ, γ
′
)-nbd of x meets E}.
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(3) int(γ,γ′ )(E) = {x ∈ X: each basic (γ, γ
′
)-nbd of x contained in E}.

(4) bd(γ,γ′ )(E) = {x ∈ X: each basic (γ, γ
′
)-nbd of x meets both E and X − E}.

Proof. (1) Follows from Theorem 3.1 (5).
(2) We know that cl(γ,γ′ )(E) = ∩{K ⊆ X : K is(γ, γ

′
)-closed and E ⊆ K} Suppose

some (γ, γ
′
)-nbd U of x does not meet E, then x ∈ int(γ,γ′ )(U) and E ⊆ X − int(γ,γ′ )(U).

Since X − int(γ,γ′ )(U) is (γ, γ
′
)-closed, therefore cl(γ,γ′ )(E) ⊆ X − int(γ,γ′ )(U)[5]. Hence

x /∈ cl(γ,γ′ )(E).
Conversely, if x /∈ cl(γ,γ′ )(E), then X-cl(γ,γ′ )(E) is a (γ, γ

′
)-open set containing x and

hence containing a basic (γ, γ
′
)-nbd of x, which does not meet E. This completes the proof.

(3) This follows from (2) by an application of De Morgan’s Laws on int(γ,γ′ )(E) = X

-cl(γ,γ′ )(E)[5].
(4) Follows from Theorem 3.1 (5) and the definition of bd(γ,γ′ )(E). This completes the

proof.
Definition 3.4. A space X is said to be a (γ, γ

′
)-T1 space, if for any two distinct points

x, y of X there exist open sets U and V containing x and y respectively such that y /∈ Uγ and
x /∈ V γ

′
.

Theorem 3.4. A space X is a (γ, γ
′
)-T1 space iff each singleton in X is (γ, γ

′
)-closed.

Proof. Let X be a (γ, γ
′
)-T1 space. We show that each singleton {x} is (γ, γ

′
)-closed.

For this, we show that its complement X − {x} is (γ, γ
′
)-open. Let y ∈ X − {x}, y 6= x, then

there exist sets U and V containing x and y respectively such that y /∈ Uγ and x /∈ V γ
′
. So

x ∈ Uγ , y /∈ Uγ and y ∈ V γ , x /∈ V γ
′
. This implies that y ∈ Uγ ∪ V γ

′
⊆ X − {x}. So, X − {x}

is (γ, γ
′
)-open. Hence {x} is (γ, γ

′
)-closed.

Conversely, suppose that {x} is (γ, γ
′
)-closed. We show that X is a (γ, γ

′
)-T1 space. Let

x, y ∈ X, x 6= y. Then X − {x}, X − {y} are (γ, γ
′
)-open in X. Thus x ∈ X − {y} and

y ∈ X − {x} such that x /∈ (X − {x})γ and y /∈ (X − {y})γ . This completes the proof
Theorem 3.5. A space X is (γ, γ

′
)-T1 iff every finite subset of X is (γ, γ

′
)-closed, where

γand γ
′
are regular operations.

Proof. Suppose that X is a (γ, γ
′
)-T1 space. Then by above Theorem 3.4, one point

subsets of X are (γ, γ
′
)-closed. Since γ and γ

′
are regular operations, so every finite subset of

X, being a union of a finite number of (γ, γ
′
)-closed sets, is (γ, γ

′
)-closed.

Conversely, suppose that every finite subset of X is (γ, γ
′
)-closed. Then every one point

subset of X is (γ, γ
′
)-closed. Hence X is a (γ, γ

′
)-T1 space. This completes the proof.

Theorem 3.6. In a (γ, γ
′
)-T1 space, each subset A of X is the intersection of its (γ, γ

′
)-

open supersets, where γ and γ
′
are regular operations.

Proof. Since in a (γ, γ
′
)-T1 space, each finite subset A of X is (γ, γ

′
)-closed, where

γ and γ
′

are regular operations. Since each singleton of X is (γ, γ
′
)-closed, therefore each

y ∈ X−A,X−{y} is (γ, γ
′
)-open and A ⊆ X−{y}. So that X−{y} is a (γ, γ

′
)-open superset

of A. Since for each x ∈ A, x ∈ X − {y}, A =
⋂

x∈A

(X − {y}). This completes the proof.

Definition 3.5. Let X be a space and x ∈ X. Then x is called a (γ, γ
′
)-limit point of A,

if (Uγ ∪ V γ
′
) ∩ (A− {x}) 6= ∅ , where U, V are open sets in X.

Definition 3.6[4]. An operation γ : τ → P (X) is said to be strictly regular, if for any
open nbds U, V of x ∈ X, there exists an open nbd W of x such that Uγ ∩ V γ = W γ .
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Theorem 3.7. Let X be a (γ, γ
′
)-T1 space and A ⊆ X. If X is a (γ, γ

′
)-limit point of A,

then every (γ, γ
′
)-open set containing x contains infinite number of distinct points of A, where

γ and γ
′
are strictly regular operations.

Proof. Let U,W be (γ, γ
′
)-open sets and x ∈ U and x ∈ W . Suppose U as well as W

contains only a finite number of distinct points of A. Then
U ∩A = {x1, x2, · · ·xn} = B1,
W ∩A = {y1, y2, · · · yn} = B2.
Clearly B1 is (γ, γ

′
)-closed implies (B1)

′
is (γ, γ

′
)-open ,Where (B1)

′
denotes the complement

of B1 and hence open . Similarly U ∩βγ
1 is (γ, γ

′
)-open and hence open. But U ∩ (B1)

′
contains

x and

(U ∩ (B1)
′
)γ ∩A = (Uγ ∩ ((B1)

′
)γ ∩A

= (Uγ ∩A) ∩ (((B1)
′
)γ ∩A) ⊆ (U ∩A) ∩ ((B1)

′ ∩A)

= B1 ∩ ((B1)
′ ∩A)

= (B1 ∩ (B1)
′
) ∩A = ∅ ∩A = ∅.

Also B2 is (γ, γ
′
)-closed implies (B2)

′
is (γ, γ

′
)-open and hence open. So W ∩ (B2)

′
contains

x. Similarly (W ∩ (B2)
′
)γ
′
∩A = ∅ .

Thus ((U ∩ (B1)
′
)γ ∩A) ∪ ((W ∩ (B2)

′
)γ
′
∩A) = ∅. This implies that

((U ∩ (B1)
′
)γ ∪ ((W ∩ (B2)

′
)γ
′
) ∩A = ∅

This shows that x is not a (γ, γ
′
)-limit point of A, a contradiction. Thus U as well as W

contains infinite number of distinct points of A. This completes the proof.
Corollary 3.1. In a (γ, γ

′
)-T1 space no finite subset has a (γ, γ

′
)-limit point, where γ and

γ
′
are strictly regular operations.

Definition 3.7. The set of a (γ, γ
′
)-limit point of A, denoted Ad

(γ,γ′ ) is called (γ, γ
′
)-

derived set. It is easily seen that if A ⊆ B then
Ad

(γ,γ′ ) ⊆ Bd
(γ,γ′ ). (∗)

Theorem 3.8. In a (γ, γ
′
)-T1 space the (γ, γ

′
)-derived set has the following properties:

(1) cl(γ,γ′ )(A) = A ∪Ad
(γ,γ′ ) .

(2)(A ∪B)d
(γ,γ′ ) = Ad

(γ,γ′ ) ∪Bd
(γ,γ′ ). In general

(3)
⋃
i

(Ai)d
(γ,γ′ ) = (

⋃
i

Ai)d
(γ,γ′ ).

(4)(Ad
(γ,γ′ ))

d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ).

(5) cl(γ,γ′ )(A
d
(γ,γ′ )) = Ad

(γ,γ′ ).

Proof. (1) Let x ∈ cl(γ,γ′ )(A). Then x ∈ C, for every (γ, γ
′
)-closed superset C of A. Now

(i) If x ∈ A, then x ∈ Ad
(γ,γ′ ) .

(ii) If x /∈ A, then we prove that x ∈ A∪Ad
(γ,γ′ ). To prove (ii), suppose U and W are open

sets containing x. Then (Uγ ∪W γ
′
) ∩ A = ∅ , for otherwise A ⊆ X − (Uγ ∩W γ

′
) = C, where

C is a (γ, γ
′
)-closed superset of A not containing x. This contradicts the fact that x belongs to

every (γ, γ
′
)-closed superset C of A. Therefore x ∈ Ad

(γ,γ′ ) gives x ∈ A ∪Ad
(γ,γ′ ).
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Conversely, suppose that x ∈ A ∪ Ad
(γ,γ′ ) , we show that x ∈ cl(γ,γ′ )(A). If x ∈ A, then

x ∈ cl(γ,γ′ )(A). If x ∈ Ad
(γ,γ′ ), then we show that x is in every (γ, γ

′
)-closed superset of A. We

suppose otherwise that there are (γ, γ
′
)-closed supersets C1 and C2 of A not containing x. Then

x ∈ X−C1 = Uγ and x ∈ X−C2 = W γ
′

which are (γ, γ
′
)-open and Uγ ∩A = ∅, W γ

′
∩A = ∅.

So (Uγ ∩ A) ∪ (W γ
′
∩ A) = ∅ =⇒ (Uγ ∪W γ

′
) ∩ A = ∅. This implies that x ∈ Ad

(γ,γ′ ). This

contradiction proves that x ∈ cl(γ,γ′ )(A). Consequently cl(γ,γ′ )(A) = A ∪ Ad
(γ,γ′ ). This proves

(1).
(2) (A∪B)d

(γ,γ′ ) ⊆ Ad
(γ,γ′ )∪Bd

(γ,γ′ ). Let x ∈ (A∪B)d
(γ,γ′ ) . Then x ∈ cl(γ,γ′ )(A∪B)−{x} or

x ∈ cl(γ,γ′ )(A−{x})∪cl(γ,γ′ )(B−{x}), implies x ∈ cl(γ,γ′ )(A−{x}) or x ∈ cl(γ,γ′ )(B−{x}). This
gives x ∈ Ad

(γ,γ′ ) or x ∈ Bd
(γ,γ′ ) . Therefore x ∈ Ad

(γ,γ′ ) ∪ Bd
(γ,γ′ ) . This proves (A ∪ B)d

(γ,γ′ ) ⊆
Ad

(γ,γ′ ) ∪Bd
(γ,γ′ ). The converse follows directly from (*).

(3) The proof is immediate from (*).
(4) Suppose that x /∈ Ad

(γ,γ′ ). Then x /∈ cl(γ,γ′ )(A−{x}). This implies that there are open

sets U and V such that x ∈ U and x ∈ V and (Uγ ∪ V γ
′
)∩ (A− {x}) = ∅ . We prove that x /∈

(Ad
(γ,γ′ ))

d
(γ,γ′ ) . Suppose on the contrary that x ∈ (Ad

(γ,γ′ ))
d
(γ,γ′ ). Then x ∈ cl(γ,γ′ )(A

d
(γ,γ′ )−{x}).

Since x ∈ U and x ∈ V , so (Uγ ∪ V γ
′
) ∩ (Ad

(γ,γ′ ) − {x}) 6= ∅. Therefore there is a q 6= x such

that q ∈ (Uγ ∪ V γ
′
)∩ (Ad

(γ,γ′ )). It follows that q ∈ ((Uγ ∪ V γ
′
)−{x})∩ (Ad

(γ,γ′ )−{x}). Hence

((Uγ∪V γ
′
)−{x})∩(Ad

(γ,γ′ )−{x}) 6= ∅, a contradiction to the fact that (Uγ∪V γ
′
)∩(A−{x}) = ∅.

This implies that x /∈ (Ad
(γ,γ′ ))

d
(γ,γ′ ) and so (Ad

(γ,γ′ ))
d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ).
(5) This is a consequence of (1), (2) and (4). This completes the proof.
Definition 3.8. Let A be a subset of a space X and Ad

(γ,γ′ ) the set of all (γ, γ
′
)-limit

points of A . If A ⊆ Ad
(γ,γ′ ), then A is called (γ, γ

′
)-dense in itself.

In a (γ, γ
′
)-T1 space, set (γ, γ

′
)-dense in itself has the following properties:

Theorem 3.9. (1) If {Ai} is an arbitrary family of subsets of a (γ, γ
′
)-T1 space X (γ, γ

′
)-

dense in themselves, then
⋃
i

Ai ⊆ (
⋃
i

Ai)d
(γ,γ′ ), that is,

⋃
i

Ai is (γ, γ
′
)-dense in itself.

(2) (i) For any subset A of X,
(cl(γ,γ′ )(A))d

(γ,γ′ ) = (A ∪Ad
(γ,γ′ ))

d
(γ,γ′ ) = Ad

(γ,γ′ ) ∪ (Ad
(γ,γ′ ))

d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ) ∪Ad
(γ,γ′ ) = Ad

(γ,γ′ )

or (cl(γ,γ′ )(A))d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ) ⊆ A ∪Ad
(γ,γ′ ) = cl(γ,γ′ )(A)

(ii) For any subset A of X, if A ⊆ (A)d
(γ,γ′ ), then cl(γ,γ′ )(A) ⊆ (cl(γ,γ′ )(A))d

(γ,γ′ ).

(3) If A is (γ, γ
′
)-closed and (γ, γ

′
)-dense in itself and B does not contain a subset P which

is (γ, γ
′
)-dense in itself, then each (γ, γ

′
)-T1 space X is the union of sets A and B.

Proof. (1) Suppose {Ai} is a family of subsets of a (γ, γ
′
)-T1 space X such that each Ai

is (γ, γ
′
)-dense in itself. Then Ai ⊆ (Ai)d

(γ,γ′ ) . By Theorem 3.8 (3),⋃
i

Ai ⊆
⋃
i

(Ai)d
(γ,γ′ ) = (

⋃
i

Ai)d
(γ,γ′ ). This proves (1).

(2) (i) By Theorem 3.8 ( 1, 2 and 4), we infer that
(cl(γ,γ′ )(A))d

(γ,γ′ ) = (A ∪Ad
(γ,γ′ ))

d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ) ∪ (Ad
(γ,γ′ ))

d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ) ∪Ad
(γ,γ′ ) = Ad

(γ,γ′ )

or (cl(γ,γ′ )(A))d
(γ,γ′ ) ⊆ Ad

(γ,γ′ ) ⊆ A ∪Ad
(γ,γ′ ) ⊆ cl(γ,γ′ )(A)

or (cl(γ,γ′ )(A))d
(γ,γ′ ) ⊆ cl(γ,γ′ )(A).

(ii) Since A ⊆ cl(γ,γ′ )(A), therefore Ad
(γ,γ′ ) ⊆ (cl(γ,γ′ )(A))d

(γ,γ′ ). Now
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cl(γ,γ′ )(A) = A ∪Ad
(γ,γ′ ) = Ad

(γ,γ′ ) ⊆ (cl
(γ,γ′ )(A))d

(γ,γ′ ) or cl(γ,γ′ )(A) ⊆ (cl
(γ,γ′ )(A))d

(γ,γ′ ).
This proves (2).

(3) Let A =
⋃
i

Ai, for each Ai (γ, γ
′
)-dense in itself. Then by Theorem 3.9 (1), A is

(γ, γ
′
)-dense in itself. By Theorem 3.9 (2) (ii), cl(γ,γ′ )(A) is (γ, γ

′
)-dense in themselves and

hence cl(γ,γ′ )(A) ⊆ A. That is, A is (γ, γ
′
)-closed. Clearly the set X − A = B, being disjoint

from A, does not contain nonempty sets which are (γ, γ
′
)-dense in themselves. This completes

the proof.
Combining 2(i) and 2 (ii) in the above Theorem, we have:
Proposition 3.2. If A ⊆ (A)d

(γ,γ′ ), then cl(γ,γ′ )(A) = (cl
(γ,γ′ )(A))d

(γ,γ′ ).
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Abstract In reference [2], we used the elementary method to study the mean value prop-

erties of a new arithmetical function, and obtained two mean value formulae for it, but there

exist some errors in that paper. The main purpose of this paper is to correct the errors in

reference [2], and give two correct conclusions.
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§1. Introduction

For any positive integer n, we call an arithmetical function f(n) as the Smarandache
multiplicative function if for any positive integers m and n with (m, n) = 1, we have f(mn) =
max{f(m), f(n)}. For example, the Smarandache function S(n) and the Smarandache LCM
function SL(n) both are Smarandache multiplicative functions. In reference [2], we defined a
new Smarandache multiplicative function f(n) as follows: f(1) = 1; If n > 1, then f(n) =

max
1≤i≤k

{ 1
αi + 1

}, where n = pα1
1 pα2

2 · · · pαk

k be the factorization of n into prime powers. Then we

studied the mean value properties of f(n), and proved two asymptotic formulae:

∑

n≤x

f(n) =
1
2
· x · ln lnx + λ · x + O

( x

lnx

)
, (1)

where λ is a computable constant.

∑

n≤x

(
f(n)− 1

2

)2

=
1
36
· ζ

(
3
2

)

ζ(3)
· √x · ln lnx + d · √x + O

(
x

1
3

)
, (2)

where ζ(s) is the Riemann zeta-function, and d is a computable constant.
But now, we found that the methods and results in reference [2] are wrong, so the formulae

(1) and (2) are not correct. In this paper, we shall improve the errors in reference [2], and
obtain two correct conclusions. That is, we shall prove the following:

Theorem 1. For any real number x > 1, we have the asymptotic formula

∑

n≤x

f(n) =
1
2
· x + O

(
x

1
2

)
.
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Theorem 2. For any real number x > 1, we have the asymptotic formula

∑

n≤x

(
f(n)− 1

2

)2

) =
1
36
· ζ

(
3
2

)

ζ(3)
· √x + O

(
x

1
3

)
,

where ζ(n) is the Riemann zeta-function.

§2. Proof of the theorems

In this section, we shall using the elementary and the analytic methods to prove our
Theorems. First we give following two simple Lemmas:

Lemma 1. Let A denotes the set of all square-full numbers. Then for any real number
x > 1, we have the asymptotic formula

∑

n≤x
n∈A

1 =
ζ

(
3
2

)

ζ(3)
· x 1

2 +
ζ

(
2
3

)

ζ(2)
· x 1

3 + O
(
x

1
6

)
,

where ζ(s) is the Riemann zeta-function.
Lemma 2. Let B denotes the set of all cubic-full numbers. Then for any real number

x > 1, we have ∑

n≤x
n∈B

1 = N · x 1
3 + O

(
x

1
4

)
,

where N is a computable constant.
Proof. The proof of these two Lemmas can be found in reference [3].
Now we use these two simple Lemmas to complete the proof of our Theorems. In fact, for

any positive integer n > 1, from the definition of f(n) we have

∑

n≤x

f(n) = f(1) +
∑

n≤x
n∈A

f(n) +
∑

n≤x
n∈B

f(n), (3)

where A denotes the set of all square-full numbers. That is, n > 1, and for any prime p, if p | n,
then p2 | n. B denotes the set of all positive integers n > 1 with n /∈ A. Note that f(n) ¿ 1,
from the definition of A and Lemma 1 we have

∑

n≤x
n∈A

f(n) = O
(
x

1
2

)
. (4)

∑

n≤x
n∈B

f(n) =
∑

n≤x
n∈B

1
2

=
∑

n≤x

1
2
−

∑

n≤x
n∈A

1
2

=
1
2
· x + O

(
x

1
2

)
. (5)
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Now combining (3), (4) and (5) we may immediately get
∑

n≤x

f(n) = 1 +
∑

n≤x
n∈A

f(n) +
∑

n≤x
n∈B

f(n)

=
1
2
· x + O

(
x

1
2

)
.

This proves Theorem 1.
Now we prove Theorem 2. From the definition of f(n) and the properties of square-full

numbers we have

∑

n≤x

(
f(n)− 1

2

)2

=
1
4

+
∑

n≤x
n∈A

(
f(n)− 1

2

)2

+
∑

n≤x

n/∈A

(
f(n)− 1

2

)2

=
1
4

+
∑

n≤x
n∈A

(
f(n)− 1

2

)2

. (6)

where A also denotes the set of all square-full numbers. Let C denotes the set of all cubic-full
numbers. Then from the properties of square-full numbers, Lemma 1 and Lemma 2 we have

∑

n≤x
n∈A

(
f(n)− 1

2

)2

=
∑

n≤x

n∈A, f(n)= 1
3

(
1
3
− 1

2

)2

+
∑

n≤x
n∈C

(
f(n)− 1

2

)2

=
∑

n≤x
n∈A

(
1
3
− 1

2

)2

−
∑

n≤x
n∈C

(
1
3
− 1

2

)2

+ O




∑

n≤x
n∈C

1




=
ζ

(
3
2

)

ζ(3)
· x 1

2 + O
(
x

1
3

)
. (7)

where ζ(s) is the Riemann zeta-function.
Now combining (6) and (7) we have the asymptotic formula

∑

n≤x

(
f(n)− 1

2

)2

=
ζ

(
3
2

)

ζ(3)
· x 1

2 + O
(
x

1
3

)
.

This completes the proof of Theorem 2.
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§1. Introduction and result

For any positive integer m ≥ 2, let 1 < d1 < d2 < · · · < dm are m positive integers, then
we define the Smarandache multiplicative sequence Am as: If d1, d2, · · · , dm are the first
m terms of the sequence Am, then dk > dk−1, for k ≥ m + 1, is the smallest number equal
to dα1

1 · dα2
2 · · · dαm

m , where αi ≥ 1 for all i = 1, 2, · · · , m. For example, the Smarandache
multiplicative sequence A2 ( generated by digits 2, 3) is:

2, 3, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, · · · · · · .

The Smarandache multiplicative sequence A3 ( generated by digits 2, 3, 7 ) is:

2, 3, 7, 42, 84, 126, 168, 252, 294, 336, 378, 504, 588, 672, · · · · · · .

The Smarandache multiplicative sequence A4 ( generated by digits 2, 3, 5, 7 ) is:

2, 3, 5, 7, 210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, · · · · · · .

In the book “Sequences of Numbers Involved Unsolved Problems”, Professor F.Smarandache
introduced many sequences, functions and unsolved problems, one of them is the Smarandache
multiplicative sequence, and he also asked us to study the properties of this sequence. About
this problem, it seems that none had studied it yet, at least we have not seen any related
papers before. The problem is interesting, because there are close relationship between the
Smarandache multiplicative sequence and the geometric series. In this paper, we shall use
the elementary method to study the convergent properties of some infinite series involving the
Smarandache multiplicative sequence, and get some interesting results. For convenience, we
use the symbol am(n) denotes the n-th term of the Smarandache multiplicative sequence Am.
The main purpose of this paper is to study the convergent properties of the infinite series

∞∑
n=1

1
as

m(n)
, (1)
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and prove the following:
Theorem. For any positive integer m ≥ 2, let 1 < d1 < d2 < · · · < dm are m positive

integers, and Am denotes the Smarandache multiplicative sequence generated by d1, d2, · · · ,
dm. Then for any real number s ≤ 0, the infinite series (1) is divergent; For any real number
s > 0, the series (1) is convergent, and

∞∑
n=1

1
as

m(n)
=

m∏

i=1

1
ds

i − 1
+

m∑

i=1

1
ds

i

.

From our Theorem we may immediately deduce the following two corollaries:
Corollary 1. Let A2 be the Smarandache multiplicative sequence generated by 2 and 3,

then we have the identity
∞∑

n=1

1
a2(n)

=
4
3
.

Corollary 2. Let A3 be the Smarandache multiplicative sequence generated by 3, 4 and
5, then we have the identity

∞∑
n=1

1
a3(n)

=
13
20

.

Similarly, we can also introduce another sequence called the Smarandache additive sequence
as follows: Let 1 ≤ d1 < d2 < · · · < dm are m positive integers, then we define the Smarandache
additive sequence Dm as: If d1, d2, · · · , dm are the first m terms of the sequence Dm, then
dk > dk−1, for k ≥ m + 1, is the smallest number equal to α1 · d1 + α2 · d2 + · · · · · ·+ αm · dm,
where αi ≥ 1 for all i = 1, 2, · · · , m. It is clear that this sequence has the close relationship
with the coefficients of the power series ( xd1 + xd2 + · · ·+ xdm < 1)

∞∑
n=1

(
xd1 + xd2 + · · ·+ xdm

)n
=

xd1 + xd2 + · · ·+ xdm

1− xd1 − xd2 − · · · − xdm
.

For example, the Smarandache additive sequence D2 ( generated by digits 3, 5 ) is:

3, 5, 8, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, · · · · · · .

It is an interesting problem to study the properties of the Smarandache additive sequence.

§2. Proof of the theorem

In this section, we shall prove our Theorem directly. First note that for any positive integer
k > m, we have

am(k) = dα1
1 · dα2

2 · · · dαm
m ,

where αi ≥ 1, i = 1, 2, · · · , m. So for any real number s > 1, we have
∞∑

n=1

1
as

m(n)
=

m∑

i=1

1
as

m(i)
+

∞∑
α1=1

∞∑
α2=1

· · ·
∞∑

αm=1

1
(dα1

1 · dα2
2 · · · dαm

m )s

=
m∑

i=1

1
as

m(i)
+

( ∞∑
α1=1

1
dα1s
1

)
·
( ∞∑

α2=1

1
dα2s
2

)
· · ·

( ∞∑
αm=1

1
dαms

m

)
. (2)
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It is clear that for any real number s ≤ 0, the series
∞∑

αi=1

1
dαis

i

is divergent, and for any real

number s > 0, the series
∞∑

αi=1

1
dαis

i

is convergent, and more

∞∑
αi=1

1
dα2s

i

=
1

ds
i − 1

.

So from (2) we know that the series
∞∑

n=1

1
as

m(n)
is also convergent, and

∞∑
n=1

1
as

m(n)
=

m∏

i=1

1
ds

i − 1
+

m∑

i=1

1
ds

i

.

This completes the proof of our Theorem.
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