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Notes on Ponomarev-systems

Nguyen Van Dung

Mathematics Faculty, Dongthap University, 783 Pham Huu Lau, Ward 6, Caolanh City,
Dongthap Province, Vietnam

E-mail: nguyendungtc@yahoo.com

Abstract Let (f, M, X,P) be a Ponomarev-system. We prove that f is a sequence-covering

(resp., pseudo-sequence-covering, subsequence-covering) map iff P is a strong cs-network

(resp., strong cs∗-network, pseudo-strong cs∗-network) for X. Moreover, “subsequence-

covering” can be replaced by “sequentially-quotient”, and “pseudo-strong cs∗-network” can

be replaced by “pseudo-strong cs-network”. As applications of these results, we get many

well-known results on images of metric spaces and more.

Keywords compact map, s-map, cs-map, strong s-map, sequence-covering map, pseudo-

sequence-covering map, sequentially-quotient map, subsequence-covering map, Ponomarev-

system

§1. Introduction

Spaces with point-countable cfp-networks (resp., point-countable cs-networks, point-coun-
table cs∗-networks) can be characterized as s-images of a metric space M under a covering-map
f , and many results have been proved ([1], [10], [11], [14]). Recently, some authors have tried
to generalize these results ([5], [12], [15]). In [5], Y. Ge and J. Shen have obtained the following.

Theorem 1.1. ([5], Theorem 2.1) Let (f,M,X,P) be a Ponomarev-system, then f is a
compact-covering map iff P is a strong k-network for X.

Take Theorem 1.1 into account, and note that compact-covering maps, sequence-covering
maps, pseudo-sequence-covering maps, subsequence-covering maps and sequentially-quotient
maps have a closed relation ([3], [4], [14]), the following question naturally arises.

Question 1.2. Let (f,M,X,P) be a Ponomarev-system. What is the necessary and
sufficient condition such that f is a sequence-covering (pseudo-sequence-covering, subsequence-
covering, sequentially-quotient) map?

In this paper, we introduce definitions of strong cs-network, strong cs∗-network, pseudo-
strong cs-network and pseudo-strong cs∗-network as modifications of strong k-network in [5] to
give necessary and sufficient conditions such that f is sequence-covering (resp., pseudo-sequence-
covering, subsequence-covering, sequentially-quotient) where (f,M,X,P) is a Ponomarev-syste-
m. As applications of these results, we get many well-known results on images of metric spaces
and more.

Throughout this paper, all spaces are assumed to be regular and T1, all maps are assumed
continuous and onto, N denotes the set of all natural numbers, ω denotes N∪{0} and convergent
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sequence includes its limit point. Let f : X → Y be a map and P be a collection of subsets of
X, we denote

⋃P =
⋃{P : P ∈ P} and f(P) = {f(P ) : P ∈ P}.

Definition 1.3. Let A be a subset of a space X and P be a collection of subsets of X.

(1) P is a network at x in X, if x ∈ P for every P ∈ P and whenever x ∈ U with U open
in X, then x ∈ P ⊂ U for some P ∈ P.

(2) P is a network for X, if whenever x ∈ U with U open in X, then x ∈ P ⊂ U for some
P ∈ P.

(3) P is a k-network for X, if whenever K ⊂ U with K compact and U open in X, then
K ⊂ ⋃F ⊂ U for some finite F ⊂ P.

(4) P is a cfp-cover for A in X, if P is a cover for A in X such that it can be precisely
refined by some finite cover consisting of closed subsets of A.

(5) P is a cfp-network for A in X, if whenever K is a compact subset of A and K ⊂ U

with U open in X, there exists a subfamily F of P such that F is a cfp-cover for K in A and⋃F ⊂ U . A such P in [5] is called to have property cc for A.

(6) P is a strong k-network for X, if whenever K is a compact subset of X, there exists a
countable subfamily PK of P such that PK is a cfp-network for K in X. Note that there is a
different definition of strong k-network in [1].

(7) P is a cs-network for A in X, if whenever S is a convergent sequence in A converging
to x ∈ A ∩ U with U open in X, then S is eventually in P ⊂ U for some P ∈ P.

(8) P is a cs∗-network for A in X, if whenever S is a convergent sequence converging to
x ∈ A ∩ U with U open in X, then S is frequently in P ⊂ U for some P ∈ P.

(9) P is compact-countable, if {P ∈ P : K ∩ P 6= ∅} is countable for each compact subset
K of X.

(10) P is point-finite, if {P ∈ P : x ∈ P} is finite for each point x ∈ X.

(11) P is locally finite, if for each point x ∈ X, there is a neighborhood U of X such that
U meets only finitely many members of P.

(12) P is σ-locally finite, if P =
⋃{Pn : n ∈ N} where each Pn is a locally finite collection.

(13) P is point-countable, if {P ∈ P : x ∈ P} is countable for each point x ∈ X. Note
that every point-finite (locally countable, compact-countable) collection is a point-countable
collection.

(14) If A = X, then a cs-network (resp., cs∗-network, cfp-cover, cfp-network) for A in X

is called a cs-network (resp., cs∗-network, cfp-cover, cfp-network) for X (see [5], [12]).

Definition 1.4. Let f : X → Y be a map.

(1) f is a compact-covering map, if each compact subset of Y is the image of some compact
subset of X.

(2) f is an s-map, if whenever y ∈ Y , then f−1(y) is a separable subset of X.

(3) f is a strong s-map, if for each y ∈ Y , there exists a neighborhood V of y in Y such
that f−1(V ) is a separable subset of X.

(4) f is a cs-map, if whenever K is a compact subset of Y , then f−1(K) is a separable
subset of X.

(5) f is a compact map, if whenever y ∈ Y , then f−1(y) is a compact subset of X.
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(6) f is a σ-map, if there is a base B for X such that f(B) is a σ-locally finite collection of
subsets of Y .

(7) f is a sequence-covering map, if each convergent sequence in Y is the image of some
convergent sequence in X.

(8) f is a pseudo-sequence-covering map, if each convergent sequence in Y is the image of
some compact subset of X.

(9) f is a sequentially-quotient map, if for each convergent sequence S in Y , there is a
convergent sequence L in X such that f(L) is a subsequence of S.

(10) f is a subsequence-covering map, if for each convergent sequence S in Y , there is a
compact subset K of X such that f(K) is a subsequence of S.

Definition 1.5. [14] Let X be a space.
(1) X is an ℵ0-space, if X has a countable cs-network. Note that “cs-” can be replaced by

“k-” or “cs∗-”.
(2) X is an ℵ-space, if X has a σ-locally finite cs-network. Note that “cs-” can be replaced

by “k-” or “cs∗-”.
(3) X is a Fréchet space, if whenever x ∈ A with A ⊂ X, then there is a sequence in A

converging to x.
(4) X is a sequential space, if whenever A is a non closed subset of X, then there is a

sequence in A converging to a point not in A.
Definition 1.6. [5] Let P be a network for a space X. Assume that P is closed under

finite intersections, and there exists a countable subfamily Px of P such that Px is a network
at x in X for every x ∈ X. Put P = {Pβ : β ∈ Γ}. For every n ∈ N, put Γn = Γ and endowed
Γn with the discrete topology. Put

M =
{

b = (βn) ∈
∏

n∈N
Γn : {Pβn

: n ∈ N} forms a network at some point xb ∈ X
}

.

Then M , which is a subspace of the product space
∏

n∈N
Γn, is a metric space and xb is

unique for every b ∈ M . Moreover xb =
⋂

n∈N
Pβn

. Define f : M → X by f(b) = xb, then f is a

map and (f,M,X,P) is called a Ponomarev-system.
Remark 1.7. If P is a point-countable network for X, then Px = {P ∈ P : x ∈ P} ⊂ P

is a countable network at x in X for every x ∈ X. It implies that the Ponomarev-system
(f,M,X,P) exists.

For terms which are not defined here, please refer to [2] and [14]

§2. Results

In the following, (f,M,X,P) denotes a Ponomarev-system where f and M are defined in
Definition 1.6.

Firstly we introduce some definitions.
Definition 2.1. Let P be a cs-network for a convergent sequence S in X where S ⊂ U

with U open in X, then a subfamily F of P has property cs(S,U) if it satisfies the following.
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(1) F is finite,
(2) ∅ 6= F ∩ S ⊂ F ⊂ U for every F ∈ F ,
(3) If x ∈ S, then there is a unique F ∈ F such that x ∈ F ,
(4) If F ∈ F contains the limit point of S, then S − F is finite.
The following lemma proves that a family having property cs(S,U) exists.
Lemma 2.2. If P is a cs-network for a convergent sequence S in X where S ⊂ U with U

open in X, then there is a subfamily F of P such that F has property cs(S,U).
Proof. Let S = {xm : m ∈ ω} converging to x0 ∈ X. Since P is a cs-network for S

in X, there is P0 ∈ P such that S is eventually in P0 and P0 ⊂ U . Because S − U is finite,
S−U = {xmi : i = 1, · · · , k} for some k ∈ N. For every i ∈ {1, · · · , k}, note that U−(

S−{xmi}
)

is an open neighborhood of xmi
in X, so there is Pi ∈ P such that xmi

∈ Pi ⊂ U−(
S−{xmi

}).
Put F = {Pi : i = 0, · · · , k}, then F satisfies required conditions.

Definition 2.3. Let P be a cs∗-network for a convergent sequence S in X where S ⊂ U

with U open in X, then a subfamily F of P has property cs∗(S,U) if it satisfies the following.
(1) F is finite,
(2) ∅ 6= F ∩ S ⊂ F ⊂ U for every F ∈ F ,
(3) If x ∈ S, then there is some F ∈ F such that x ∈ F ,
(4) F ∩ S is closed for every F ∈ F .
The following lemma proves that a family having property cs∗(S,U), if P is point-countable.
Lemma 2.4. If P is a point-countable cs∗-network for a convergent sequence S in X

where S ⊂ U with U open in X, then there is a subfamily F of P such that F has property
cs∗(S,U).

Proof. Let S = {xn : n ∈ ω} converging to x0 ∈ X. Since P is point-countable cs∗-
network for S in X, {P ∈ P : x0 ∈ P ⊂ U} is non-empty and countable. Put {P ∈ P : x0 ∈
P ⊂ U} = {Pi : i ∈ N}. We shall show that there exists an n0 ∈ N such that xn ∈

n0⋃

i=1

Pi for all

but finitely many n ∈ N. If not, we can choose a subsequence {xnk
: k ∈ N} of {xn : n ∈ N} as

follows.
xn1 ∈ (S − P1) ∩ Pn1 for some Pn1 ∈ P,

xnk
∈ (S −

nk−1⋃

i=1

Pi) ∩ Pnk
for some Pnk

∈ P, for all k > 1.

So each Pi only includes finitely many elements of {xnk
: k ∈ N}. But P is a cs∗-network for S in

X, then there is P ∈ P such that {x0}∪{xnk
: k ∈ N} is frequently in P . Thus P = Pm for some

m ∈ N. Hence Pm includes infinitely many elements of {xnk
: k ∈ N}, a contradiction. Then we

can put S−
n0⋃

i=1

Pi = {xni : i = 1, · · · , k} for some k ∈ N. For each i ∈ {1, · · · , k} there is Fi ∈ P

such that xni
∈ Fi ⊂

(
U − (S − {xni

})). Put F = {Fi : i = 1, · · · , k} ∪ {Pi : i = 1, · · · , n0},
then F satisfies required conditions.

The following notions are modifications of the strong k-network in [5].
Definition 2.5. Let P be a collection of subsets of a space X.
(1) P is a strong cs-network for X, if whenever S is a convergent sequence in X, then there

exists a countable subfamily PS of P such that PS is a cs-network for S in X.
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(2) P is a strong cs∗-network for X, if whenever S is a convergent sequence in X, then
there exists a countable subfamily PS of P such that PS is a cs∗-network for S in X.

(3) P is a pseudo-strong cs-network for X, if whenever S is a convergent sequence in X,
then there exists a countable subfamily PS of P such that PS is a cs-network in X for some
convergent subsequence T of S.

(4) P is a pseudo-strong cs∗-network for X, if whenever S is a convergent sequence in X,
then there exists a countable subfamily PS of P such that PS is a cs∗-network in X for some
convergent subsequence T of S.

Remark 2.6. We have following implications from the above definitions.
(1) Strong cs-network ⇒ cs-network.
(2) Strong cs-network ⇒ strong cs∗-network (pseudo-strong cs-network) ⇒ pseudo-strong

cs∗-network ⇒ cs∗-network.
The following example proves that some inverse implications in Remark 2.6 do not hold.
Example 2.7. There exists a Ponomarev-system (f,M,X,P) such that P is a cs-network

for X, but P is not a strong cs-network for X.
Proof. Let X be the sequential fan space Sω [8], then X has not any countable base at

x0, where x0 is the non-isolated point in X. Put P = {U ⊂ X : U is open in X} ∪ {{x0}
}
,

then P is a network for X, and there exists a countable subfamily Px of P such that Px is a
network at x in X for every x ∈ X. Therefore the Ponomarev-system (f,M,X,P) exists.

Since P contains a base of X, P is a cs-network for X. We shall prove that P is not a
strong cs-network for X. Let S be a non-trivial convergent sequence converging to x0. If P
is a strong cs-network for X, there exists a countable subfamily PS of P such that PS is a
cs-network for S in X. Note that every element of PS −

{{x0}
}

is open in X and PS −
{{x0}

}

is a countable network at x0 in X. Therefore PS −
{{x0}

}
is a countable neighborhood base at

x0 in X. This contradicts that X has not any countable neighborhood base at x0. It implies
that P is not a strong cs-network for X.

Remark 2.8. Similarly, we get that there exists a Ponomarev-system (f,M,X,P) such
that P is a cs∗-network for X, but P is not a pseudo-strong cs∗-network for X where X and
P are the same in example 2.7. Moreover P is not neither a pseudo-strong cs-network for X

nor a strong cs∗-network for X by remark 2.6. But we don’t know whether remaining inverse
implications in remark 2.6 do not hold.

The following lemma establishes a equivalent condition between a strong cs-network and
a cs-network.

Lemma 2.9. If P is a point-countable family consisting of subsets of a space X, then the
following are equivalent.

(1) P is a strong cs-network for X,
(2) P is a cs-network for X.
Proof. (1) ⇒ (2). By Remark 2.6.
(2) ⇒ (1). Let S be a convergent sequence in X. Since P is point-countable, then PS =

{P ∈ P : P ∩ S 6= ∅} is countable. Obviously PS is a cs-network for S in X. It implies that P
is a strong cs-network for X.

Moreover we get that.
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Lemma 2.10. Let P be a point-countable cs-network for X. If each compact subset of X

is first-countable, then P is a cfp-network for X.
Proof. Let K be a compact subset of X and K ⊂ U with U open in X. It follows from

Lemma 1.2 in [9] that there are Px, Qx ∈ P such that x ∈ intK(Qx ∩ K) ⊂ Gx ⊂ clKGx ⊂
intK(Px∩K) ⊂ Px ⊂ U with some Gx open in K for every x ∈ K. Since K is compact, there is
a finite subset F of K such that {Gx : x ∈ F} covers K. Then F = {Px : x ∈ F} is a cfp-cover
for K in X with

⋃F ⊂ U . It implies that P is a cfp-network for X.
We also have a equivalent condition for a strong cs∗-network, pseudo-strong cs∗-network

and a cs∗-network as follows.
Lemma 2.11. If a family P is a point-countable family consisting of subsets of a space

X, then the following are equivalent.
(1) P is a strong cs∗-network for X ,
(2) P is a pseudo-strong cs∗-network for X,
(3) P is a cs∗-network for X.
Proof. (1) ⇒ (2) ⇒ (3). By Remark 2.6.
(3) ⇒ (1). Let S be a convergent sequence in X. Since P is point-countable, then PS =

{P ∈ P : P ∩ S 6= ∅} is countable. Obviously PS is a cs∗-network for S in X. It implies that
P is a strong cs∗-network for X.

Regarding the relations between covering-maps we have the following.
Lemma 2.12. {[3], Remark 1.8} Let f : X → Y be a map.
(1) If f is quotient and X is sequential, then f is sequentially-quotient.
(2) If Y is sequential and f is sequentially-quotient, then f is quotient.
Lemma 2.13. {[4], Remark 5} Let f : X → Y be a map.
(1) If f is compact-covering or sequence-covering, then f is pseudo-sequence-covering.
(2) If f is pseudo-sequence-covering or sequentially-quotient, then f is subsequence-covering.
Moreover we get that.
Lemma 2.14. Let f : X → Y be a map. If X is sequential and f is subsequence-covering,

then f is sequentially-quotient.
Proof. Let S be a convergent sequence converging to a point y ∈ Y . Since f is

subsequence-covering, there is a compact subset K in X such that f(K) is a convergent subse-
quence of S. Put f(K) = {y}∪{yn : n ∈ N} where {yn : n ∈ N} converges to y. For each n ∈ N
pick xn ∈ f−1(yn)∩K, then {xn : n ∈ N} ⊂ K. Note that K is a compact subset in a sequential
space, K is sequentially compact. So there is a convergent subsequence {x} ∪ {xnk

: k ∈ N} of
{x} ∪ {xn : n ∈ N} that converges to x ∈ f−1(y). Then {y} ∪ {f(xnk

) : k ∈ N} is a convergent
subsequence of {y}∪{yn : n ∈ N}. Therefore {y}∪{f(xnk

) : k ∈ N} is a convergent subsequence
of S. This proves that f is sequentially-quotient.

Now we establish a relation between covers and map in a ponomarevsystem.
Lemma 2.15. Let (f,M,X,P) be a Ponomarev-system, then the following hold.
(1) f is a compact map iff P is point-finite.
(2) f is an s-map iff P is point-countable.
(3) f is a cs-map iff P is compact-countable.
(4) f is a strong s-map iff P is locally countable.



Vol. 5 Notes Ponomarev-systems 7

Proof. (1) and (2). By Proposition 2.1 in [5].
(3) Necessary. Conversely, if P is not compact-countable, then there exists some compact

subset K of X such that Λ = {β ∈ Γ : Pβ∩K 6= ∅} is uncountable. Let x ∈ K and {Pβn : n ∈ N}
is a network at x in X. For every β ∈ Λ put cβ = (γn) where γ1 = β and γn = βn−1 for n > 1.
Then {Pγn

: n ∈ N} is a network at x, so cβ ∈ f−1(K). Put Uβ = {c = (γn) ∈ M : γ1 = β}
for every β ∈ Λ. We shall prove that {Uβ : β ∈ Λ} is an open cover for f−1(K) in M . Note
that every Uβ is open and non-empty, and if c = (γn) ∈ f−1(K), then {Pγn

: n ∈ N} ⊂ P is
a network at f(c) ∈ K. It implies that Pγ1 ∩ K 6= ∅. Then γ1 = β for some β ∈ Λ. Hence
{Uβ : β ∈ Λ} is an open cover for f−1(K) in M . Since f is a cs-map, f−1(K) is separable in
M . Then {Uβ : β ∈ Λ} has a countable subcover. It is a contradiction because Uβ ∩ Uγ = ∅
whenever β 6= γ.

Sufficiency. Let K be a compact subset of X. Since P is compact-countable, Λn = {β ∈
Γn : Pβ ∩ K 6= ∅} is countable for every n ∈ N. Then f−1(K) ⊂

∏

n∈N
Λn. Since

∏

n∈N
Λn is a

hereditarily separable space, it implies that f−1(K) is separable in M , i.e, f is a cs-map.
(4) It is similar to the proof of (3).
From Theorem 2.1 in [5] (see Theorem 1.1) the authors have obtained the following.
Corollary 2.16. {[5], Proposition 3.1} Let (f,M,X,P) be a Ponomarev-system, then the

following are equivalent.
(1) f is a compact-covering s-map,
(2) P is a point-countable strong k-network,
(3) P is a point-countable cfp-network.
Note that “s-” and “point-countable” in Corollary 2.16 can be replaced by “compact” and

“point-finite” respectively ([5], Remark 3.1.) Using Lemma 2.15 we get that “s-” and “point-
countable” in Corollary 2.16 can be also replaced by “cs-” and “compact-countable”, or “strong
s-” and “locally countable” respectively. Moreover, the following holds.

Corollary 2.17. {[12], Corollary 8} The following are equivalent for a space X.
(1) X is a compact-covering s-image of a metric space,
(2) X has a point-countable cfp-network.
Proof. (1) ⇒ (2). Let f : M → X be a compact-covering s-map from a metric space M

onto X. Since M is metric, M has a σ-locally finite base B. Then f(B) is a point-countable
cfp-network for X.

(2) ⇒ (1). Let P be a point-countable cfp-network for X. It follows from Remark 1.7 that
the Ponomarev-system (f,M,X,P) exists. Then f is a compact-covering s-map by Corollary
2.16. It implies that X is a compact-covering s-image of a metric space.

Next we give a technical lemma which plays an important role in the following parts.
Lemma 2.18. Let (f,M,X,P) be a Ponomarev-system, b = (βn) ∈ M where {Pβn

: n ∈
N} is a network at some xb ∈ X and

Un = {c = (γi) ∈ M : γi = βi for all i 6 n},

for every n ∈ N. Then we have.
(1) {Un : n ∈ N} is a base at b in M .
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(2) f(Un) =
n⋂

i=1

Pβi for every n ∈ N.

Proof. (1). By definition of the product topology of a countable family consisting of
discrete spaces.

(2). For each n ∈ N, let x ∈ f(Un). Then x = f(c) for some c = (γi) ∈ Un. It implies that

x =
⋂

i∈N
Pγi

⊂
n⋂

i=1

Pγi
=

n⋂

i=1

Pβi
, i.e, f(Un) ⊂

n⋂

i=1

Pβi
.

Conversely, let x ∈
n⋂

i=1

Pβi . Then x = f(c) with c = (γi) ∈ M . Note that for each i ∈ N

there exists some θn+i ∈ Γn+i such that θn+i = γi. Put d = (θi) with θi = βi for all i 6 n.

Then we get d ∈ Un and f(d) = x. It implies that
n⋂

i=1

Pβi
⊂ f(Un).

By the above we get f(Un) =
n⋂

i=1

Pβi
.

Now we give a necessary and sufficient condition such that f is a sequence-covering map.
Theorem 2.19. Let (f,M,X,P) be a Ponomarev-system, then the following are equiva-

lent.
(1) f is a sequence-covering map,
(2) P is a strong cs-network for X.
Proof. (1) ⇒(2). Let S be a convergent sequence in X, we shall prove that there is

a countable subfamily PS of P such that PS is a cs-network for S in X. Indeed, since f

is sequence-covering, there exists a convergent sequence C in M such that S = f(C). Put
Λ =

⋃
{pn(C) : n ∈ N}, where every pn :

∏

i∈N
Γi → Γn is a projection, then Λ is countable. Let

PS =
{ ⋂

β∈∆

Pβ : ∆ ⊂ Λ,∆ is finite
}
.

Since P is closed under finite intersections, PS is a countable subfamily of P. It suffices to
show that PS is a cs-network for S in X. Let L be a convergent sequence in S converging to
x ∈ U with U open in X. Since f is sequence-covering, there exists a convergent subsequence
T of C in M such that f(T ) = L. We get that T converges to some b ∈ f−1(x) ⊂ f−1(U). Let
b = (βn). For each n ∈ N put

Un = {c = (γi) ∈ M : γi = βi for all i 6 n}.

It follows from Lemma 2.18 that {Un : n ∈ N} is a base at b in M . Since T converges to
b ∈ f−1(U) which is open in M , T is eventually in some Un with Un ⊂ f−1(U). Therefore L is

eventually in f(Un) ⊂ U . Since f(Un) =
n⋂

i=1

Pβi
by Lemma 2.18 and

n⋂

i=1

Pβi
is an element of

PS , we get that PS is a cs-network for S in X.
(2) ⇒ (1). Let S = {xm : m ∈ ω} be a convergent sequence in X converging to x0. We

shall prove that S = f(C) for some convergent sequence C in M . Assume that all xm’s are
distinct. Since P is a strong cs-network for X, there exists a countable subfamily PS of P such
that PS is a cs-network for S. It follows from Lemma 2.2 that there exists a subfamily F of PS
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such that F has property cs(S,X). Since PS is countable, {F ⊂ PS : F has property cs(S,X)}
is countable by finiteness of F . Put

{F ⊂ P : F has property cs(S,X)} = {Fn : n ∈ N},

and put Fn = {Pβ : β ∈ ∆n} for every n ∈ N where ∆n is a finite subset of Γn. For every
m ∈ ω and n ∈ N, since Fn has property cs(S,X), there is a unique βn,m ∈ ∆n such that
xm ∈ Pβn,m

∈ Fn. Put bm = (βn,m) ∈
∏

n∈N
∆n and C = {bm : m ∈ ω}, we shall prove that C is

a convergent sequence in M and f(C) = S.
To show C ⊂ M and f(C) = S it suffices to prove that {Pβn,m : n ∈ N} is a network in X

at xm for every m ∈ ω. Indeed, let U be an open neighborhood of xm in X. We consider two
following cases.

(a) xm = x0.
We get that U ∩ S is a convergent sequence in X and (S ∩ U) ⊂ U . It follows from

Lemma 2.2 that there is a subfamily F of PS such that F to have property cs(S ∩U,U). Since
S − (S ∩ U) is finite, put S − (S ∩ U) = {xmi : i = 1, · · · , l}. For every i ∈ {1, . . . , l}, note
that X − (S − {xmi

}) is an open neighborhood of xmi
in X, so there is Pi ∈ PS such that

xmi
∈ Pi ⊂ X−(S−{xmi

}). It is easy to see that F ∪{Pi : i = 1, · · · , l} has property cs(S,X).
So there is k ∈ N such that F ∪ {Pi : i = 1, · · · , l} = Fk. Thus x0 ∈ Pβk,0 ∈ Fk. Note that
Pβk,0 must be an element of F which has property cs(S∩U,U). It implies that x0 ∈ Pβk,0 ⊂ U .

(b) xm 6= x0.
We get that S − {xm} is a convergent sequence in X and S − {xm} ⊂ X − {xm} with

X − {xm} open. It follows from Lemma 2.2 that there exists a subfamily F of PS such that
F has property cs(S − {xm}, X − {xm}). Note that U − (S − {xm}) is an open neighborhood
of xm, so there exists Pm ∈ PS such that xm ∈ Pm ⊂ U − (S − {xm}). It is easy to see
that F ∪ {Pm} has property cs(S,X). Hence there is k ∈ N such that F ∪ {Pm} = Fk, then
xm ∈ Pβk,m

= Pm ⊂ U .
By the above we get that xm ∈ Pβk,m

⊂ U for every m ∈ ω. Then {Pβn,m : n ∈ N} is a
network in X at xm for every m ∈ ω. It implies that C ⊂ M and f(C) = S. To complete
the proof we shall prove that C = {bm : m ∈ ω} converging to b0. For every k ∈ N there is
a unique βk,0 ∈ ∆k such that x0 ∈ Pβk,0 ∈ Fk. Since Fk has property cs(S,X), S − Pβk,0 is
finite. So there is mk ∈ N such that xm ∈ Pβk,0 for every m > mk. Note that xm ∈ Pβk,m

∈ Fk.
Thus βk,m = βk,0 for every m > mk. So {βk,m : m ∈ ω} converging to βk,0 as m →∞. Hence
C = {bm : m ∈ ω} is a convergent sequence in M converging to b0. It implies that S = f(C)
with C being a convergent sequence in M , i.e, f is a sequence-covering map.

By Theorem 2.19 we get nice characterizations of s-images of metric spaces which were
obtained in [9] as follows.

Corollary 2.20. {[9] Theorem 1.1} The following are equivalent for a space X.
(1) X is a sequence-covering s-image of a metric space,
(2) X has a point-countable cs-network.
Proof. (1) ⇒ (2). Let f : M → X be a sequence-covering s-map from a metric space M

onto X. Since M is metric, M has a σ-locally finite base B. Then f(B) is a point-countable
cs-network for X.
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(2) ⇒ (1). Let P be a point-countable cs-network for X. It follows from Remark 1.7 that
the Ponomarev-system (f,M,X,P) exists.

By Lemma 2.9, P is a strong cs-network for X. From Theorem 2.19 and Lemma 2.15 we
get that f is a sequence-covering s-map. It implies that X is a sequence-covering s-image of a
metric space.

Corollary 2.21. {[9], Theorem 1.4} The following are equivalent for a space X.
(1) X is a sequence-covering, compact-covering quotient s-image of a metric space,
(2) X is a sequential space having a point-countable cs-network.
Proof. (1) ⇒ (2). From Corollary 2.20, we only need to prove that X is sequential. It is

clear because f is a quotient map from a metric space onto X.
(2) ⇒ (1). Let P be a point-countable cs-network for X. As in the proof of Corollary 2.20,

then X is an image of a metric space M under a sequence-covering s-map f where (f,M,X,P)
is a Ponomarev-system. It follows from Lemma 2.12, Lemma 2.13 and Lemma 2.14 that f is
quotient. We shall prove that f is compact-covering by showing that P is a point-countable
cfp-network for X. Let K be a compact subset of X. Since X is sequential, K is sequential
compact. From Proposition 1.2 in [3], PK = {P ∩K : P ∈ P} is a point-countable k-network
for K. It follows from Theorem 3.3 in [6] that K is metrizable. Then P is a point-countable
cfp-network for X by Lemma 2.10. From Corollary 2.16, f is compact-covering.

The following is routine.
Corollary 2.22. The following are equivalent for a space X.
(1) X is a sequence-covering, compact-covering pseudo-open s-image of a metric space,
(2) X is a Fréchet space having a point-countable cs-network.
Moreover we get a mapping theorem on ℵ-spaces which belongs to [7].
Corollary 2.23. {[7], Theorem 3} The following are equivalent for a space X.
(1) X is an ℵ-space,
(2) X is a sequence-covering, compact-covering σ-image of a metric space,
(3) X is a compact-covering σ-image of a metric space,
(4) X is a sequence-covering σ-image of a metric space,
(5) X is a pseudo-sequence-covering σ-image of a metric space,
(6) X is a subsequence-covering σ-image of a metric space,
(7) X is a sequentially-quotient σ-image of a metric space.
Proof. (1) ⇒ (2). Since X is an ℵ-space, X has a σ-locally finite cs-network Q =

⋃{Qn :
n ∈ N} and a σ-locally finite k-network R =

⋃{Rn : n ∈ N} where every Qn and Rn is locally
finite and every elements of Q and R are closed. For each n ∈ N put Pn = Qn ∪ Rn, then
Pn is locally finite. Therefore X has a σ-locally finite cs- and k-network P =

⋃{Pn : n ∈ N}.
It follows from Remark 1.7 that the Ponomarev-system (f,M,X,P) exists. We shall prove
that f is a sequence-covering and compact-covering σ-map. From Lemma 2.9, P is a strong
cs-network for X. Hence f is a sequence-covering map by Theorem 2.19. Since P is a σ-locally
finite closed k-network, P is a cfp-network. Hence f is a compact-covering map by Corollary
2.16. To complete the proof it suffices to show that f is a σ-map. For each b = (βb

n) ∈ M where
{Pβb

n
: n ∈ N} is a network at some xb in X, put U b

n = {c = (γi) ∈ M : γi = βb
i for all i 6 n},

for each n ∈ N and Bb = {U b
n : n ∈ N}. It follows from Lemma 2.18 that B =

⋃{Bb : b ∈ M}
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is a base for M and f(U b
n) =

n⋂

i=1

Pβb
i
. Since P is σ-locally finite, f(B) is a σ-locally finite. It

implies that f is a σ-map.
(2) ⇒ (3), (2) ⇒ (4). Obviously.
(3) ⇒ (5), (4) ⇒ (5), (5) ⇒ (6). From Lemma 2.13.
(6) ⇒ (7). From Lemma 2.14.
(7) ⇒ (1). Let f : M → X be a sequentially-quotient σ-map from a metric space M onto

X. Since f is a σ-map, M has a base B such that f(B) is a σ-locally finite collection of subsets
of X. On the other hand f is sequentially-quotient, f(B) is a σ-locally finite cs∗-network for
X. It implies that X is an ℵ-space.

Next we give a necessary and sufficient condition such that f is a pseudo-sequence-covering
map.

Theorem 2.24. Let (f,M,X,P) be a Ponomarev-system, then the following are equiva-
lent.

(1) f is a pseudo-sequence-covering map,
(2) P is a strong cs∗-network for X.
Proof. (1) ⇒ (2). Let S be a convergent sequence in X, we shall prove that there is

a countable subfamily PS of P such that PS is a cs∗-network for S in X. Indeed, since f is
pseudo-sequence-covering, there exists a compact subset K in M such that S = f(K). Put
Λ =

⋃{pn(K) : n ∈ N}, where every pn :
∏

n∈N
Γn → Γn is a projection, then Λ is countable. Let

PS =
{ ⋂

β∈∆

Pβ : ∆ ⊂ Λ,∆ is finite
}
.

Since P is closed under finite intersections, PS is a countable subfamily of P. We shall prove
that PS is a cs∗-network for S in X. Let L be a convergent sequence in S converging to
x ∈ S ∩ U with U open in X. As in the proof of Lemma 2.14, there exists a convergent
subsequence T ⊂ K in M such that f(T ) is a convergent subsequence of L. We get that T

converges to b ∈ f−1(x) ⊂ f−1(U). Let b = (βn). For each n ∈ N put

Un = {c = (γi) ∈ M : γi = βi for all i 6 n}.

It follows from Lemma 2.18 that {Un : n ∈ N} is a base at b in M . Since T converges to
b ∈ f−1(U) which is open in M , T is eventually in some Un with Un ⊂ f−1(U). Therefore L

is eventually in f(Un) ⊂ U . From Lemma 2.18 f(Un) =
n⋂

i=1

Pβi
, and moreover

n⋂

i=1

Pβi
is an

element of PS , we get that PS is a cs∗-network for S in X.
(2) ⇒ (1). Let S = {xm : m ∈ ω} be a convergent sequence in X converging to x0. We

shall prove that S = f(K) for some compact subset K in M . Assume that all xm’s are distinct.
Since P is a strong cs∗-network for X, there exists a countable subfamily PS of P such that PS

is a cs∗-network for S. It follows from Lemma 2.4 that there exists a subfamily F of PS such
that F has property cs∗(S,X). Since PS is countable, {F ⊂ PS : F has property cs∗(S,X)} is
countable by finiteness of F . Put

{F ⊂ P : F has property cs∗(S,X)} = {Fn : n ∈ N},
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and put Fn = {Pβ : β ∈ ∆n} for every n ∈ N where ∆n is a finite subset of Γn.
Put

K =
{
b = (βn) ∈

∏

n∈N
∆n :

⋂

n∈N
(Pβn

∩ S) 6= ∅}.

Then we have that.
(a) K ⊂ M and f(K) ⊂ S.
Let b = (βn) ∈ K, then

⋂

n∈N
(Pβn

∩ S) 6= ∅. Thus there is xm ∈ S such that xm ∈
⋂

n∈N
Pβn

.

We shall prove that {Pβn : n ∈ N} is a network at xm in X. Indeed, let U be an any open
neighborhood of xm in X. We consider two following cases.

(i) xm = x0.
We get that U ∩ S is a convergent sequence in X and (U ∩ S) ⊂ U . It follows from

Lemma 2.4 that there exists a subfamily F of PS such that F has property cs∗(U ∩S,U). Since
S − (U ∩ S) is finite, S − (U ∩ S) = {xni : i = 1, · · · , l} for some l ∈ N. For every i = 1, · · · , l,
note that X − (

S − ({xni})
)

is an open neighborhood for xni in X, there exists Pi ∈ PS such
that xni

∈ Pi ⊂
(
X − (S − {xni

})). It is easy to see that F ∪ {Pi : i = 1, . . . , l} has property
cs∗(S,X). So there exists k ∈ N such that F ∪ {Pi : i = 1, . . . , l} = Fk. Since x0 6∈ Pi for
all i = 1, . . . , l and x0 ∈ Pβk

∈ Fk, then Pβk
∈ F . Note that F has property cs∗(S ∩ U,U),

Pβk
⊂ U . It implies that xm ∈ Pβk

⊂ U .
(ii) xm 6= x0.
We get that S − {xm} is a convergent sequence in X and S − {xm} ⊂ X − {xm} with

X − {xm} open. It follows from Lemma 2.4 that there exists a subfamily F of PS such that F
has property cs∗

(
S − {xm}, X − {xm}

)
. Note that

(
U − (S − {xm})

)
is an open neighborhood

of xm, so there exists Pm ∈ PS such that xm ∈ Pm ⊂ (
U − (S − {xm})

) ⊂ U . It is easy to see
that F ∪ {Pm} has property cs∗(S,X). So there exists k ∈ N such that F ∪ {Pm} = Fk. Since
xm 6∈ F for every F ∈ F and x ∈ Pβk

∈ Fk, then xm ∈ Pβk
= Pm ⊂ U .

From the above arguments (i) and (ii) we get that {Pβn : n ∈ N} is a net work at xm for
every m ∈ ω. It implies that b ∈ M and f(b) = xm ∈ S, i.e, K ⊂ M and f(K) ⊂ S.

(b) S ⊂ f(K).
Let x ∈ S. For every n ∈ N, pick βn ∈ ∆n such that x ∈ Pβn

, then x ∈
⋂

n∈N
(Pβn

∩ S) 6= ∅.

Put b = (βn), then b ∈ K. Using the argument in (a) we get x = f(b). It implies that S ⊂ f(K).
(c) K is a compact subset of M .
Since K is a subset of

∏

n∈N
∆n and

∏

n∈N
∆n is a compact subset by finiteness of each ∆n, it

suffices to prove that K is closed in
∏

n∈N
∆n. Let b = (βn) ∈

∏

n∈N
∆n−K, then

⋂

n∈N
(Pβn

∩S) = ∅.

Note that Pβn ∩ S is closed by property cs∗(S,X) of Fn for every n ∈ N . Since S is compact

in X and
⋂

n∈N
(Pβn

∩ S) = ∅,
n0⋂

n=1

(Pβn
∩ S) = ∅ for some n0 ∈ N. Put

W =
{
c = (γn) ∈

∏

n∈N
∆n : γn = βn if n 6 n0

}
,

then W is an open neighborhood of b in
∏

n∈N
∆n with W ∩K = ∅. So K is a closed subset of
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∏

n∈N
∆n. It implies that K is compact.

From (a), (b) and (c) we get that S = f(K) with K compact in M . It implies that f is a
pseudo-sequence-covering map.

In the following part, we give a necessary and sufficient condition such that f is a subsequence-
covering map or a sequentially-quotient map.

Theorem 2.25. Let (f,M,X,P) be a Ponomarev-system, then the following are equiva-
lent.

(1) f is a subsequence-covering map,
(2) f is a sequentially-quotient map,
(3) P is a pseudo-strong cs-network for X,
(4) P is a pseudo-strong cs∗-network for X.
Proof. (1) ⇒ (2). From Lemma 2.14.
(2) ⇒ (3). Let S be a convergent sequence in X, we shall prove that there is a countable

subfamily PS of P such that PS is a cs-network in X for some subsequence T of S. Indeed,
since f is sequentially-quotient, there exists a convergent sequence C in M such that T = f(C)
is a convergent subsequence of S. Put Λ =

⋃{pn(C) : n ∈ N}, where every pn :
∏

n∈N
Γn → Γn

is a projection, then Λ is countable. Let

PS =
{ ⋂

β∈∆

Pβ : ∆ ⊂ Λ,∆ is finite
}
.

Since P is closed under finite intersections, PS is a countable subfamily of P. As in the proof
(1) ⇒ (2) of Theorem 2.19 we get that PS is a cs-network for T in X. It implies that P is a
pseudo-strong cs-network for X.

(3) ⇒(4). From Remark 2.6.
(4) ⇒(1). Let S be a convergent sequence in X, we shall prove that there is a compact

subset K in M such that f(K) is a convergent subsequence of S. Indeed, since P is a pseudo-
strong cs∗-network for X, there exists a countable subfamily PS of P such that PS is a cs∗-
network in X for some convergent subsequence T of S. As in the proof (2) ⇒ (1) of Theorem
2.24 we get that there is a compact subset K in M such that f(K) = T . It implies that f is a
subsequence-covering map.

By Theorem 2.24 and Theorem 2.25 we get a nice characterization of pseudo-sequence-
covering (subsequence-covering, sequentially-quotient) s-images of metric spaces as follows.

Corollary 2.26. The following are equivalent for a space X.
(1) X is a pseudo-sequence-covering s-image of a metric space,
(2) X is a subsequence-covering s-image of a metric space,
(3) X is a sequentially-quotient s-image of a metric space,
(4) X has a point-countable cs∗-network.
Proof. (1) ⇒ (2). From Lemma 2.13.
(2) ⇒ (3). From Lemma 2.14.
(3) ⇒ (4). Let f : M → X be a sequentially-quotient s-map from a metric space M

onto X. Since M is metric, M has a σ-locally finite base B. Then f(B) is a point-countable
cs∗-network for X.
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(4) ⇒ (1). Let P be a point-countable cs∗-network for X. It follows from Remark 1.7 that
the Ponomarev-system (f,M,X,P) exists. By Lemma 2.11, P is a strong cs∗-network for X.
From Theorem 2.24 and Lemma 2.15 we get that f is a pseudo-sequence-covering s-map. It
implies that X is a pseudo-sequence-covering s-image of a metric space.

From Corollary 2.26 we get a nice characterization of pseudo-sequence-covering quotient
s-images (quotient s-images) of metric spaces due to [6] and [13] as follows.

Corollary 2.27. {[6], Theorem 6.1 and [13], Theorem 2.3} The following are equivalent
for a space X.

(1) X is a pseudo-sequence-covering quotient (resp., pseudo-open) s-image of a metric
space,

(2) X is a quotient (resp., pseudo-open) s-image of a metric space,
(3) X is a sequential (resp., Fréchet) space having a point-countable cs∗-network.
Finally we consider a particular case when M is separable.
Lemma 2.28. Let (f,M,X,P) be a Ponomarev-system, then the following are equivalent.
(1) M is separable,
(2) P is countable.
Proof. (1) ⇒ (2). If P is not countable, then Γ is uncountable. For each β ∈ Γ put

Uβ = {c = (γn) ∈ M : γ1 = β}. Then each Uβ is a non-empty open subset of M . We shall
prove that {Uβ : β ∈ Γ} covers M . Indeed, if c = (γn) ∈ M , then {Pγn

: n ∈ N} ⊂ P is a
network at f(c). Pick β = γ1 ∈ Γ1 = Γ then c ∈ Uβ . It implies that {Uβ : β ∈ Γ} is an open
cover for M . Since M is separable, {Uβ : β ∈ Γ} has a countable subcover. It is a contradiction
because Uβ ∩ Uγ = ∅ whenever β 6= γ.

(2) ⇒ (1). Obviously.
From the above we get a mapping theorem on ℵ0-spaces which belongs to [4].
Corollary 2.29. {[4], Theorem 12} The following are equivalent for a space X.
(1) X is an ℵ0-space,
(2) X is a sequence-covering, compact-covering image of a separable metric space,
(3) X is a compact-covering image of a separable metric space,
(4) X is a sequence-covering image of a separable metric space,
(5) X is a pseudo-sequence-covering image of a separable metric space,
(6) X is a subsequence-covering image of a separable metric space,
(7) X is a sequentially-quotient image of a separable metric space.
Proof. (1)⇒ (2). Since X is an ℵ0-space, X has a countable cs-networkQ and a countable

k-network R. Note that all elements of Q and R can be chosen closed. Put P = Q∪R, then P
is a countable cs- and k-network for X. It follows from Remark 1.7 that the Ponomarev-system
(f,M,X,P) exists. Since P is countable, M is separable by Lemma 2.28. From Lemma 2.9, P
is a strong cs-network for X. Hence f is a sequence-covering map by Theorem 2.19. On the
other hand, P is a countable closed k-network, P is a cfp-network for X. Hence f is a compact-
covering map by Corollary 2.16. It implies that f is a compact-covering and sequence-covering
map from a separable metric space M onto X.

(2) ⇒ (3), (2) ⇒ (4). Obviously.
(3) ⇒ (5 ), (4) ⇒ (5), (5) ⇒ (6). From Lemma 2.13.
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(6) ⇒ (7). From Lemma 2.14.
(7) ⇒ (1). Let f : M → X be a sequentially-quotient map from a separable metric space

M onto X. Since M is separable metric, M has a countable base B. Then f(B) is a countable
cs∗-network for X. It implies that X is an ℵ0-space.

Remark 2.30. If one of the above results contains “point-countable” and “s-image”, then
it is possible to replace them by “point-finite” and “compact image”, “compact-countable”
and “cs-image”, or “locally countable” and “strong s-image” respectively. Therefore we get
characterizations of compact images of metric spaces, characterizations of cs-images of metric
spaces, and characterizations of strong s-images of metric spaces.
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Abstract. A bitopologiacl space (X, TP , TQ) generated by probabilistic-quasi-pseudo-metric

P is quasi-pseudo-metrizable if and only if there exists a quasi-pseudo-metric which induces

those two topologies. In this paper, we consider a problem of quasi-pseudo-metrization of

PqpM -spaces.
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§1. Introduction

A topological space (X, τ) is said to be metrizable if there exists a metric d : X2 → R
which generates a topology Td equivalent to τ .

For PqpM -spaces (X, P, ∗), the problem leads to finding a quasi-pseudo-metric p : X2 → R
such that it induces a topology Tp equivalent to TP and its conjugate quasi-pseudo-metric q

generates a topology Tq equivalent to TQ. In other words, a bitopological space (X, TP , TQ) is
quasi-pseudo-metrizable if and only if there exists a quasi-pseudo-metric p which induces those
two topologies.

In section 2, we define the so-called (PE)-spaces and show their properties. Also, we show
that a (PE)-space generates a quasi-uniform structure on the underlying set (cf., Fletcher and
Lindgren [1]), which is quasi-pseudo-metrizable.

Next, we establish a number of relationships between (PE) and PqpM -spaces.
In section 3, some conditions for the quasi-pseudo-metrizability of a PqpM -space are given.
Finally, in section 4, we consider the problem of pseudo-metrization in PqpM -spaces.

§2. Preliminaries

We shall now consider functions defined on the extended real line R with values in the
complete lattice (I,≤). Note that the family (IR,≤) is also a complete lattice. The following
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subsets of IR will be used in the sequel

∆(R) = {F ∈ IR;F is nondecreasing, left-continuous on R,

F (−∞) = 0 and F (+∞) = 1},
U(R) = {ua ∈ ∆(R); ua = 1(a,+∞) for any a ∈ R}.

Note that u−∞ is the greatest element in ∆(R) and u+∞ is the smallest in it. Furthermore,
we define

∆+(R) = {F ∈ ∆(R) : F (0) = 1},
∆+(R) = {F ∈ ∆+(R) : lim

t→+∞
F (t) = 1}.

The family ∆+(R) is a sublatices at ∆(R) with the bounds u{−∞} and u0.

Definition 2.1. Let (S,≤, 0, 1) be a set partially ordered with bounds 0 and 1. A function
∗ : S2 → S is called a tS-norm it the following condition holds: for all a, b, c, d ∈ S,

(S1) a ∗ b = b ∗ a,
(S2) a ∗ 1 = a,
(S3) (a ∗ b) ∗ c = a ∗ (b ∗ c),
(S4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Let T (S, ∗) denote the family of all tS-norm ∗ on the set S. Then the relation ≤ defined
by the formula:

∗1 ≤ ∗2 ⇐⇒ a ∗1 b ≤ a ∗2 b, ∀a, b ∈ S, (2.1)

is a partially order in the family T (S, ∗).
Second relation in the family T (S, ∗) is defined as follows:

∗1 À ∗2 ⇐⇒ ((a ∗2 c) ∗1 (b ∗2 d) ≥ ((a ∗1 b) ∗2 (c ∗1 d)), ∀a, b, c, d ∈ S.

By putting b = c = 1 in (2.1), we obtain a ∗1 d ≥ a ∗2 d for a, b ∈ S and hence ∗1 ≥ ∗2
follows. Thus we know that ∗1 À x2 implies ∗1 ≥ ∗2.

According to the Definition 2.1, a tI -norm (see [2] and [3]) T : I2 → I is in interval
I = [0, 1] an abelian semigroup with unit, and the tI -norm T is nondecreasing with respect to
each variable.

Definition 2.2. Let T be a tI -norm.
(1) T is called a continuous tI -norm if the function T is continuous with respect to the

product topology on the set I × I.
(2) T is said to be left-continuous if, for every x, y ∈ (0, 1], the following holds:

T (x, y) = sup{T (u, v) : 0 < u < x, 0 < v < y}.

(3) T is said to be-right-continuous if, for every x, y ∈ [0, 1), the following conditions holds:

T (x, y) = sup{T (u, v) : x < u < 1, y, v < 1}.



18 Yeol Je Cho, Mariusz T. Grabiec and Reza Saadati No. 1

We shall now establish the notation related to a few most important tI -norm defined in
Definition 2.2:

(1) M(x, y) = min(x, y), for all x, y ∈ I. M is continuous and positive.
(2) Π(x, y) = x · y, x, y ∈ I. π is strictly increasing and continuous.
(3) W (x, y) = max(x + y − 1, 0) for all x, y ∈ I. W is continuous tI -norm.

(4) Z(x, y) =





x, if x ∈ I and y = I,

y, if x = 1 and y ∈ I,

0, if x, y ∈ (0, 1).

The function Z is right-continuous, but it fails to be left-condition. We give the following
relations among tI -norms defined above:

M ≥ Π ≥ W ≥ Z, (2.2)

M À Π À W À Z (2.3)

We shall now present some properties of the tS-norm defined on ∆+(R). According to
Definition 2.1. the ordered pair (∆+, ∗) is an abelian semigroup with the unit u0 ∈ ∆+ and the
operation ∗ : ∆+ ×∆+ → ∆+ is a nondecreasing function. We notes that u∞ ∈ ∆+ is a zero
∆+. Indeed, by (S4) and (S2), we obtain

u∞ ≤ u∞ ∗ F ≤ u∞ ∗ u0 = u∞, ∀F ∈ ∆+.

Let T be a left-continuous tI -norm. Then the functiona Π : ∆+ ×∆+ → ∆+ defined by

T (F, G)(t) = T (F (t), G(t)), ∀t ∈ [0,+∞) (2.4)

is a t∆+ -norm on the set ∆+.
For every t∆+ -norm ∗, the following inequality holds ∗ ≤ M , where M is the tI -norm of

(1).
If T is left-continuous tI -norm, then the function ∗T : ∆+ ×∆+ → ∆+ defined by

F ∗T G(t) = sup{T (F (u), G(s)) : u + s = t, u, s > 0} (2.5)

is a t∆+ -norm on ∆+.
Let T be a continuous tI -norm. Then the t∆+ -norms ∗T and T are uniformly continuous

on (∆+, dL), where dL is a Modified Lévy metric (see [7, Definition 4.2.1]).
We finish this section by showing a few properties of the relation defined in Definition 2.2

in the context of t∆+ -norms. It T1 and T2 are continuous tI -norms, then

T1 À T2 ⇐⇒ ∗T1 À ∗T2 . (2.6)

If T is a continuous tI -norm and T is the t∆+ -norm of (2.5) then,
(i) T À ∗T ,

(ii) M À ∗ for all t∆+ -norms ∗.
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§3. Probabilistic-quasi-pseudo-metric space (PqpM-space)

Definition 3.1. Let X be a nonempty set, P : X2 → D and T in the tI -norm. The triple
(X, P, T ) is called a quasi-pseudo-Menger space if it satisfies the following axioms:

(M1) Pxx = u0 for all x ∈ X,
(M2) Pxz(t1 + t2) ≥ T (Pxy(t1), Pyz(t2)) for all x, y, z ∈ X and t1, t2 > 0.
If P satisfies also the additional condition:
(M3) Pxy 6= u0 if x 6= y, the (X, P, T ) is quasi-Menger space.

Moreover, if P satisfies the condition of symmetry Pxy = Pyx, then (X, P, T ) is called a
Menger-space.

Definition 3.2. Let (X, P, T ) be a probabilistic quasi-Menger space (PqM) and the
function Q : X2 → D be defined by

Qxy = Pyx, ∀x, y ∈ X.

Then the ordered triple (X, Q, T ) is also PqM -space. The function Q is called a conjugate
Pqp-metric of the P . By (X, P, Q, T ) we denote the structure generated by the Pqp-metric P

on X.

Definition 3.3. ([2]) By probabilistic quasi pseudo-metric space (PqpM -space), we mean
an ordered triple (X, P, ∗), where X is a nonempty set, the operation ∗ is a t∆+ -norm and
P : X2 → D satisfies the following conditions: for all x, y, z ∈ X,

(P1) Pxx = u0,
(P2) Pxz ≥ Pxy ∗ Pyz.
Generally, P is called a Pqp-metric. If P satisfies also the additional condition:
(P3) Pxy 6= u0 if x 6= y, then (X, P, ∗) is called a probabilistic quasi-metric space (PqM -

space).
Note that if, moreover, P satisfies the condition of symmetry
(P4) Pxy = Pyz, for all x, y ∈ X, then (X, P, ∗) is a probabilistic metric space (PM -space).

Definition 3.4. Let (X, P, ∗) be a PqpM -space and the function Q : X2 → D be defined
by

Qxy = Pyx, ∀x, y ∈ X.

Then the triple (X, Q, x) is also a PqpM -space. The function Q is called a conjugate Pqp-metric
of the P . Let P (X, T, Q, ∗) denote the structure generated by the Pqp-metric P on X.

Definition 3.5. Let (X, P, ∗) be PqpM -space. For all x ∈ X and t > 0, a P -neighborhood
of the point x is the set

UP
x (t) = {y ∈ X : Pxy(t) > 1− t} = {y ∈ X : dL(Pxy,y0) < t}. (3.1)

Theorem 3.6. Let (X, P, ∗) be PqpM -space ander a uniformly continuous t∆+ -norm ∗.
Then the family {Up

x (t) : t ∈ R+}x∈X forms a complete system of neighborhoods in X (topolog
τP on X).
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Also, the Pqp-metric Q which is a conjugate of P generate a topology τQ. Thus the natural
topological structure associated with a Pqp-metric is a bitopolocal space (X, τP , τQ).

Lemma 3.7. Let (X, P, Q, τ) be a structure defined by a Pqp-metric P . Suppose that
τ À ∗ and then function F 2 : X2 → ∆+ is defined by

F τ
xy = PxyτQxy ∀x, y ∈ X. (3.2)

Then the ordered triple (X, F τ , ∗) is a Probabilistic pseudo Metric-space. If additionally P

satisfies the condition:

Pxy 6= u or Qzy 6= 0, ∀x, y ∈ X (x 6= y) (3.3)

then (X, F τ , ∗) is a probabilsitc metric space.

Remark 3.8. For an arbitrary ∆+-norm ∗, we know that M À τ and we have

FM (x, y) ≥ F τ (x, y), ∀x, y ∈ X. (3.4)

The function FM will be called the natural probabilistic pseudo-metric generated by the Pqp-
metric P . It is the “greatest” among all the probabilistic pseudo-metrics generated by P .

§4. Properties of (PE)(PE)(PE)-spaces

Definition 4.1. (Fletcher and Lindgren, [1]) A quasi-uniform structure on a nonempty
set X is a filter U in X ×X satisfying the following conditions:

(a) Each element U ∈ U includes the set ∆ = {(x, x) : x ∈ X},
(b) For every U ∈ U, there exists V ∈ U such that V ◦ V ⊂ U .
The pair (X,U) is called a quasi-iniform space.

If U is a quasi-uniform structure in X, then the family U−1 = {U−1 : U ∈ U} is also
a quasi-uniform structure in X which is a conjugate of U. A quasi-uniform structure U is a
uniform structure if U = U−1.

Definition 4.2. (Fletcher and Lindgren, [1]). A subfamily B of U is called a base of the
quasi-uniform structure if, for all U ∈ U, there exists a V ∈ B such that V ⊂ U .

A subfamily S ⊂ U is called a subbase of U if the family of all finite intersections U1 ∩U1 ∩
· · · ∩ Uk, where Ui ∈ S for i = 1, 2, · · · , k, is a base of U.

Example 4.3. The discrete quasi-uniformity on a set X in fact a uniformity: It is the
quasi-uniformity D induced by the basis consisting of the diagonal set of X ×X only. Generally,
finite sets are implicitly equipped with the discrete uniformity.

A basis of a quasi-uniformity is symmetrical if all its elements are symmetrical. The
quasi-uniformity generated by a symmetrical basis is actually a uniformity. If B is a basis of
a quasi-uniformity U , the entourages U∗ for U ∈ B form a symmetrical basis of a uniformity
U∗ which is the smallest uniformity containing U . In particular U∗ is also generated by the
entourages U∗ for U ∈ U .
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Let (X,U) be a quasi-uniform space. The intersection ≤U of the elements of U forms a
reflexive transitive relation on X that is a quasi order. We also denote by U the equivalence
relation on X associated with the quasi order ≤U and given by x ⇔U y if and only if x ≤Uy
and y ≤Ux. If U is a uniformity then ≤U and ⇔U coincide.

If (X,U) and (Y,V) are quasi-uniform spaces, a mapping f : X → Y is said to be (U , V)−
uniformly continuous (or uniformly continuous if there is no ambiguity) if, for each entourage
V ∈ V, there exists an entourage U ∈ U such that

(x, y) ∈ U ⇒ (f(x), f(y)) ∈ V.

In particular, such a mapping is monotonous if

x ≤U y ⇒ f(x) ≤V f(y).

For each x ∈ X, let

Ux = {U(x) : U ∈ U}.

There exists a unique topology on X, called the topology induced by U , for which Ux is the filter
of neighborhoods of x for each x ∈ X. Note that this topology is not necessarily Hausdorff: if the
pair (x, y) of elements of X lies in each entourage U , that is, x ≤U y, then each neighborhood
of x contains y.

We implicitly assume that the set X ×X is endowed with the product topology.
Let (X,U) be a uniform space. A filter F on X is a Cauchy filter if for each entourage

U ∈ U there exists F ∈ F such that F ×F ∈ V The uniform space
(
X,U)

is said to be complete
if each Cauchy filter on X is convergent. The Hausdorff completion

(
X̂, Û)

of a uniform space
(X,U) and the uniformly continuous mapping on X are uniquely defined up to isomorphism
by the following universal property: every uniformly continuous mapping f from (X,U) into
a Hausdorff complete uniform space (Y,U) induces a unique uniformly continuous mapping f̂ :
X̂ → Y such that f̂(x) = f(x) for all x ∈ X.

Let us now consider a quasi-uniform space (X,U) . We define the Hausdorff completion(
X̂, Û)

of (X,U) to be the Hausdorff completion of the uniform space (X,U∗).
Definition 4.4. A pair (X, E) is called a probabilistic E-space (shortly, (PE)-space) if

X is a nonempty set and E : X2 → ∆+ is a function which satisfies the following conditions:
for all x, y, z ∈ X,

E(x, x) = u0, (4.1)

For each t > 0, there exists k > 0 such that, if Exy(k) > 1− k (4.2)

and Exz(k) > 1− k, then Exz(t) > 1− t.

Theorem 4.5. Let (X, E) be a (PE)-space. Then the family B = {U(t) : t > 0}, where
U(t) is defined by

U(t) = {(x, y) ∈ X2 : Exy(t) > 1− t}, (4.3)

is a base of a quasi-uniform structure on X.
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Proof. For every t > 0, by (4.3), the diagonal ∆ is a subset of U(t). Next, let 0 < t1 < t2

and let (x, y) ∈ U(t1). By (4.2) and the fact that Exy ∈ ∆+ is nondecreasing, we infer that

Exy(t2) ≥ Exy(t1) > 1− t2.

Thus we have (x, y) ∈ U(t2), which implies that U(t1) ⊂ U(t2).
Finally, for all t1, t2 > 0, we obtain

U(min(t1, t2)) = U(t1) ∩ U(t2).

It follows directly from (4.2) that, for each t > 0, there exists k > 0 such that

U(k) ◦ U(k) ⊂ U(t).

Thus the condition (b) of Definition 4.1 holds true. This completes the proof.

Corollary 4.6. If U is a quasi-uniform structure with a base B defined in Theorem 4.1,
then the family

B∞ =
{

U
( 1

n

)
: n ∈ N

}
,

where U
(

1
n

)
is defined by (4.3), is a countable base of U.

Proof. It suffices to observe that, for every t > 0, there exists n ∈ N such that

U
( 1

n

)
⊂ U(t).

Indeed, for every t > 0, there exists a natural number n such that

t ≥ 1
n

.

Since the functions Exy ∈ ∆+ are nondecreasing, we have

Exy(t) ≥ Exy

( 1
n

)
> 1− 1

n
> 1− t.

This means that, if (x, y) ∈ U
(

1
n

)
, then it also belongs to U(t), which shows that

U
( 1

n

)
⊂ U(t), ∀t > 0.

This completes the proof.

Lemma 4.7. Let (X, E) be a (PE)-space and let E−1 : X2 → ∆+ be defined by

E−1(x, y) = E(y, x)∀x, y ∈ X.

Then (X, E−1) is also a (PE)-space that generates a quasi-uniform structure U−1 which is a
conjugate of U. A base of this structure is a countable family B−1

∞ consisting of the sets of the
form U−1( 1

n ), where U( 1
n ) ∈ B∞.

Lemma 4.8. Let (X, E) be a (PE)-space and let E ∨ E−1 : X2 → ∆+ be given by

E ∨ E−1(x, y) = min(E(x, y), E−1(x, y)), ∀x, y ∈ X.
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Then the pair (X, E ∨ E−1) is a (PE)-space satisfying the symmetry condition, i.e., for all
x, y ∈ X, E ∨ E−1(x, y) = E ∨ E−1(y, x). Thus E ∨ E−1 generates a uniform structure on X

for which the family B ∪ B−1 is a countable base.

Remark 4.9. Note that, in the proofs of Theorem 4.5 and Lemma 4.8, we have used the
monotonicity of Exy. However, we have not utilized the left-continuity of these functions. We
thus conclude that the codomain of E of Definition 4.4 can be extended to the family ∆+

1 of all
nondecreasing functions F : [0,+∞] → [0, 1] such that F (0) = 0 and F (∞) = 1. The obtained
function E : X2 → ∆+

1 also generates some quasi-uniform structure on X.

Theorem 4.10. Let U be a quasi-uniform structure defined by a (PE)-space (X, E).
For all x ∈ X and U ∈ U, let U [x] = {y ∈ X : (x, y) ∈ U}. Then the family

TE = { G ⊂ X : for each x ∈ G, there exists U ∈ U such that U [x] ⊂ G}

forms a topology on X. The family

BT = { G ⊂ X : for each x ∈ G, there is U(t) ∈ B such that U(t)[x] ⊂ G}

is a base of the topology TE .
Proof. By the definition of TE , it follows that a union of an arbitrary subfamily of TE

belongs to TE . If G1, G2 ∈ TE and x ∈ G1 ∩G2, then there are U1, U2 ∈ U such that

U1[x] ⊂ G1, U2[x] ⊂ G2.

By Definition 4.1, it follows that

U = U1 ∩ U2 ∈ U.

Since U [x] = U1 ∩ U2[x] ∩G1 ∩G2, we have

G1 ∩G2 ∈ TE ,

which implies that TE is a topology on X.
The second part of the proof immediately follows from the definition of a base of a topo-

logical space and from Definition 4.2. This completes the proof.

Theorem 4.11. Every quasi-uniform structure U generated from a space (X, E) is quasi-
pseudo-metrizable. This means that there exists a quasi-pseudo-metric p which generates a
quasi-uniform structure U.

Proof. By Corollary 4.6, U has a countable base B∞. The assertion now follows directly
from a theorem by ([3], Theorem 13).

Remark 4.12. If p is a quasi-pseudo-metric which generates a quasi-uniform structure U,
then the conjugate structure U−1 generates a quasi-pseudo-metric q which is a conjugate of p.
The uniform structure U ∨ U−1 of Lemma 4.8 generates a pseudo-metric p ∨ q = max(p, q). It
follows that, if U = U−1, then the generating function is a pseudo-metric. In (PE)-spaces, this
holds if and only if E satisfies the symmetry condition.
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§5. Relationships between (PE) and PqpM-spaces

Relationships between probabilistic quasi-pseudo-metric spaces and probabilistic E-spaces
are given by the following theorems.

Lemma 5.1. Let (X, P, T ) be a quasi-pseudo-Menger space. Let the tI -norm T satisfy
the condition:

sup{T (x, x) : x < 1} = 1. (5.1)

Then (X, P ) is a (PE)-space.
Proof. Let t > 0. Then, by (5.1), there is k < t

2 such that

T (1− k, 1− k) > 1− t.

By (P2), we get

Pxz(t) ≥ T
(
Pxy

( t

2

)
, Pyz

( t

2

))

≥ T (Pxy(k), Pyz(k))

≥ T (1− k, 1− k)

> 1− t.

This means that (2.3.2) holds true. Hence (X, P ) is a (PE)-space. This completes the proof.

Lemma 5.2. Let (X, P, ∗) be a PqpM -space. Assume additionally that the t∆+ -norm ∗
is continuous at the point (u0, u0). Then (X, P ) is a (PE)-space.

Proof. It suffices to verify the triangle condition. Let t > 0. Then there exists k > 0 such
that

dL(G1 ∗G2, u0) < t

whenever
dL(G1, u0) < k

and
dL(G2, u0) < k.

Then, by (P2) and (2.5), we infer that

dL(Pxy ∗ Pyz, u0) < t.

This completes the proof.

An immediate consequence of Theorem 4.11 and Lemma 5.1 as well as of the Remark 4.12,
we have the following:

Theorem 5.3. Let (X, P, ∗) be a PqpM -space with t∆+ -norm ∗ being continuous at
(u0, u0) ∈ ∆+×∆+. Then the bitopological space (X, TU, TU−1) generated from a quasi-uniform
structure U is quasi-pseudo-metrizable. The topological space (X, TU∨U−1) generated from the
uniform structure U ∨ U−1 is pseudo-metrizable. This means that, if a quasi-pseudo-metric p
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induces the topology TU, then the quasi-pseudo-metric q, which is a conjugate of p, induces
TU−1 .

Lemma 5.4. If (X, P, T ) is a quasi-pseudo-Menger space, then the bitopological space
(X, TU, TU−1) is quasi-pseudo-metrizable whenever the tI -norm T satisfies the condition (5.1).

Remark 5.5. Note that (3.1) and (4.3) yield the equality

NP
x (t) = U(t)[x], ∀t > 0.

We thus infer that the bitopological spaces (X, TP , TQ) and (X, TU, TU−1) defined, respectively,
in Theorem 5.3 and Lemma 5.4 are identical and so we can replace the continuity assumption
about the t∆+ -norm ∗ by the continuity assumption at the point (u0, u0).

On the other hand, as demonstrated by Muštari and Šerstnev ([5, Counterexample 6) for
probabilistic metric spaces, if the t∆+ -norm is not continuous at (u0, u0), then the family of
sets defined in (3.1) does not determine a topology on X, i.e., the following condition fails:

For each y ∈ NP
x (t), there exists NP

y (t1) such that

NP
y (t1) ⊂ NP

x (t).

Definition 5.6. For a probabilistic quasi-pseudo-metric space (X, P ) and s, t > 0, we
define a subset of X2 by

UP (s, t) = {(x, y) ∈ X2 : Pxy(s) > 1− t}. (5.2)

Theorem 5.7. Let (X, P ) be a probabilistic quasi-pseudo-metric space. Then the “quasi”-
tI -norm TP∨Q = M(TP , TQ), where TP = I2 → I is defined by

TP (a, b) = inf{Pxz(t1 + t2) : Pxy(t1) ≥ a, Pyz(t2) ≥ b}

and for all tI -norms T ≤ TP∨Q has the property:

sup{TP∨Q(t, t) : 0 ≤ t < 1} = 1

if and only if, for each t > 0, there is t1 > 0 such that, for all s1, s2 > 0,

UP (s1, t1) ◦ UP (s2, t1) ⊂ UP (s1 + s2, t). (5.3)

Proof. For arbitrary t > 0, we select t1 > 0 such that

TP∨Q(1− t1, 1− t1) > 1− t.

Next, suppose that Pxy(s) > 1− t1 and Pyz(s2) > 1− t1. Then, for TP∨Q, we obtain

Pxz(s1 + s2) ≥ TP∨Q(Pxy(s1), Pyz(s2))

≥ TP∨Q(1− t1, 1− t1)

> 1− t.
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On the other hand, for any t > 0, by (5.3), choose t1 > 0. Then, for each t1 > k > 0, let
Pxy(s2) > 1− k and Pyz(s2) > 1− k. Then we have

Pxz(s1 + s2) > 1− t.

Hence, by Lemma 5.1, we have

TP∨Q(1− k, 1− k) > 1− t.

This completes the proof.

Theorem 5.8. If (X, P ) is a statistical quasi-pseudo-metric space, then the family U =
{UP (s, t) : s, t > 0} is a base of a quasi-uniform structure on X if and only if, for each pair
(s, t), there exists a pair (s1, t1) such that

UP (s1, t1) ◦ UP (s1, t1) ⊂ UP (s, t). (5.4)

The fact that the quasi-uniform structure generated by U has a countable base yields the
following:

Corollary 5.9. A quasi-uniform space (X, U) generated by a statistical quasi-pseudo-
metrizable if and only if the condition (5.4) holds.

Remark 5.10. Let (X, P ) be a statistical quasi-pseudo-metric space. Then the quasi-
uniform structures generated by bases defined in (4.3) and (5.2) are equivalent.

Indeed, we have

UP (t, t) = U(t), U(min(s, t)) ⊂ UP (s, t), ∀s, t > 0.

Remark 5.11. The following example shows that the condition (5.4) is essentially weaker
than the condition (5.2). Let X = [0, 1] and P : X2 → ∆+ be given by

Pxy =





u 1
2
, if x = 0 and x 6= y,

u|x−y|, otherwise.

Let s =
8
10

and t > 0. Then, for x =
1
10

and z = 1, we have

Pxy(0, 2) = u 1
10

(0, 2) = 1

and
Pyz(0, 6) = u 1

2
(0, 6) = 1.

However, we have

Pxz

( 2
10

+
6
10

)
= u 9

10
(0, 8) = 0.

Thus (5.3) does not hold.
Now let s > 0 and t > 0. It suffices to select numbers s1 > s2 and t1 = t in order for (5.4)

to hold. Thus (X, P ) is a (PE)-space by Remark 5.11. Notice also that (X, P ) fails to be a
statistical quasi-pseudo-metric space.
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§6. Pseudo-metrization in PqpM-spaces

The problem of pseudo-metrization of probabilistic quasi-pseudo-metric spaces is charac-
terized by the following result, which is a consequence of Theorem 5.3.

Theorem 6.1. Let (X, P, ∗) be a PqpM -space such that P satisfies the symmetry condi-
tion and the t∆+ -norm ∗ is continuous at (u0, u0). Then the topology Tp is pseudo-metrizable.
The topology TP is metrizable if the function P satisfies the condition (P3) of Definition 3.3.

Proof. If P is symmetric, then we have the quasi-uniform structure U = U−1 and U =
U ∨ U−1. The assertion is an immediate consequence of Theorem 5.3. For the proof of the
second part of the theorem, notice that it follows from Definition 3.1 that x 6= y if and only if
Pxy 6= u0. This means that ⋂

t>1

U(t) = ∆.

Indeed, let x 6= y. Then we have

dL(Pxy, u0) = t1 > 0,

which implies that (x, y) 6∈ U(t1) and hence (x, y) does not belong to
⋂

t>1 U(t). It follows that
U is a Hausdorff uniform structure. Thus the topology generated by it is a Hausdorff topology.
This completes the proof.

Remark 6.2. A metrization theorem for Menger spaces was proved by Schweizer and
Sklar [6, Theorem 2]. Such a theorem for probabilistic metric spaces with a continuous tI -norm
∗ goes back to Schweizer and Sklar [7, Theorem 12.1.6, p. 194].

Theorem 6.3. Let (X, P, ∗) be a PqpM -space such that the t∆+ -norm ∗ is continuous at
(u0, u0). If the topology TP is stronger than TQ, then (X, TP ) is pseudo-metrizable.

Proof. Let TP∨Q be the topology generated by the probabilistic pseudo-metric FP∨Q.
Topology TP∨Q is the smallest topology containing TP and TQ. Thus we have

TP = TP∨Q.

The assertion now follows immediately by the Definition 5.6. This completes the proof.

Theorem 6.4. Let (X, P, ∗) be a PqpM -space such that the t∆+ -norm ∗ is continuous at
(u0, u0). If P satisfies the condition:

If PxA = u0, then QxA = u0 for any x ∈ X and A ⊂ X, (6.1)

then (X, TP ) is pseudo-metrizable.
Proof. Let A be Q-closed and let z ∈ A

P
. Then we have PxA = u0. By (6.1), it follows

that also QxA = u0, which means that x ∈ A
Q

= A. We infer that each Q-closed set A is P -
closed. Thus TP is stronger than TQ. The assertion follows from Theorem 5.8. This completes
the proof.

Theorem 6.5. Let (X, P, ∗) be a PqpM -space such that the t∆+ -norm ∗ is continuous
at (u0, u0). If gx : X → [0, 1] defined by gx(y) = dL(Pxy, u0) is Q-continuous, then the space
(X, T0) is pseudo-metrizable.



28 Yeol Je Cho, Mariusz T. Grabiec and Reza Saadati No. 1

Proof. If gx is Q-continuous, then NP
x (t) ∈ TQ. Then TQ is stronger than TP by applying

Theorem 5.8.

Theorem 6.6. Let (X, P, ∗) be a PqpM -space such that the t∆+ -norm ∗ continuous. Then
(X, TP ) is metrizable provided that (X, TQ) is compact.

Proof. Let G be a Q-open set and take y ∈ G. The bitopological space (X, TP , TQ)
generated by the probabilistic quasi-metric P is a pairwise Hausdorff space (see [8]). This
means that, for every x ∈ X −G, there exist a Q-open set U and a P -open set V such that

x ∈ U, y ∈ V, U ∩ V = ∅.

Observe that the family {U : x ∈ X−G} is a Q-open cover of x−G. By our assumption, there
exists a finite subcover {U1, · · · , Un}. Let V =

⋂{Vi : i = 1, · · · , n}. Then we have y ∈ V ⊂ G.
Thus every Q-open set is also P -open, i.e., TP is stronger than TQ. The assertion now follows
from Definition 5.6. This completes the proof.
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Abstract Smarandache LCM function and LCM ratio are already defined in [1]. This paper

gives some additional properties and obtains interesting results regarding the figurate numbers.

In addition, the various sequaences thus obtained are also discussed with graphs and their

interpretations.

Keywords Smarandache LCM Function, Smarandache LCM ratio.

§1. Introduction

Definition 1.1. Smarandache LCM Function is defined as SL(n) = k, where SL : N −→
N

(1) n divides the least common multiple of 1, 2, 3, · · · , k,

(2) k is minimum.

Definition 1.2. The Least Common Multilpe of 1, 2, 3, · · · , k is denoted by [1, 2, 3, · · · , k],
for example SL(1) = 1, SL(3) = 3, SL(6) = 3, SL(10) = 5, SL(12) = 4, SL(14) =
7, SL(15) = 5, · · · .

Definition 1.3. Smarandache LCM ratio is defined as

SL(n, r) =
[n, n− 1, n− 2, · · · , n− r + 1]

[1, 2, 3, · · · , r]
.

Example.
SL(n, 1) = n,

SL(n, 2) =
n.(n− 1)

2
, n ≥ 2,

SL(n, 3) =





n(n− 1)(n− 2)
6

, if n is odd, n ≥ 3
n(n− 1)(n− 2)

12
, if n is even, n ≥ 3

Proof. Here we use two results:
1. Product of LCM and GCD of two numbers = Product of these two numbers,
2. [1, 2, 3, · · · , n] = [[1, 2, 3, · · · , p], [p + 1, p + 2, p + 3, · · · , n]].
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Now,

SL(n, 3) =
[n, n− 1, n− 2]

[1, 2, 3]
, (1)

Here, [n, n− 1, n− 2] =
[
n,

(n− 1)(n− 2)
(n− 1, n− 2)

]
.

But (n− 1, n− 2) = GCD of n-1 and n-2, which is always 1.
Hence, [n, n− 1, n− 2] = [n, (n− 1)(n− 2)] and clearly [1, 2, 3] = 6.

At n = 3 : (1) ⇒ SL(3, 3) =
[3, 2, 1]
[1, 2, 3]

=
3× 2× 1

6
=

6
6

= 1.

At n = 6 : (1) ⇒ SL(6, 3) =
[6, 5, 4]

[1, 2, 3, 4]
=

6× 5× 4
12

= 10.

Hence, SL(n, 3) =





n(n− 1)(n− 2)
6

, if n is odd
n(n− 1)(n− 2)

12
, if n is even

is proved.

Similarly SL(n, 4) =





[n, n− 1, n− 2, n− 3]
[1, 2, 3, 4]

, for n ≥ 4

n.(n− 1).(n− 2).(n− 3)
24

, if 3 does not divides n
n.(n− 1).(n− 2).(n− 3)

72
, if 3 divides n

Similarly, SL(n, 5) =
n.(n− 1).(n− 2).(n− 3).(n− 4)

360
, with other conditions also.

Here, we have used only the general valuesof LCM ratios given in ([2] and [3]).
The other results can be obtained similarly.

§2. Sets of SL(n, r) [2]

(1) SL(n, 1) = {1, 2, 3, 4, 5, 6, · · · , n, · · · } It is a set of natural numbers.

(2) SL(n, 2) = {1, 3, 6, 10, · · · ,
n(n− 1)

2
, · · · } It is a set of triangular numbers.

(3) SL(n, 3) = {1, 2, 10, 10, 35, 28, 84, · · · ,
n(n− 1)(n− 2)

12
, · · · }.

This set, with more elements, is {1, 2, 10, 10, 35, 28, 84, 60, 165, 110, 286, 182, 455,

280, 680, 408, 969, 570, 1330, 770, 1771, 1012, 2300, 1300, 2925, 1638, 3654, 2030, 4495, 2480,

5456, 2992, 6545, 3570, 7770, 4218, 9139, 4940, 10660, 5740, 12341, 6622, 14190, · · · }.

Its generating function is
x4 + 2x3 + 6x2 + 2x + 1

(1− x2)4
.
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Graph of SL(n,3)

Physical Interpretation of Graph of SL(n,3): This graph, given on the next page, represents the
V-I characteristic of two diodes in forward bias mode. It is represented by the equation:
I = I0{exp( eV

kBT )− 1}, a rectifier equation, where,
I0 = total saturation current,
e = charge on electron,
V = applied voltage,
kB = Boltzman’s constant, and
T = temperature.
Here V is positive. X-axis represents voltage V and Y-axis is current in mA.
Also, this graph represents harmonic oscillator: Kinetic energy along Y -axis and velocity along
X-axis.
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Graph of SL(n,4)

(4) SL(n, 4) = {1, 5, 5, 35, 70, 42, · · · ,
n(n− 1)(n− 2)(n− 3)

72
, . . .},

This set, to certain terms is {1, 5, 5, 35, 70, 42, 210, 330, 165, 715, 1001, 455,

1820, 2380, 1020, 3876, 4845, 1995, 7315, 8855, 3542, 12650, 14950, 5850, 20475, 23751, 9135,

31465, 35960, 13640, 46376, 52360, 19635, 66045, 73815, 27417, 91390, 101270, 37310, 123410, · · · }.
Physical Interpretation of Graph of SL(n,4): This graph, the image of graph about a line

of symmetry y = x, is a temperature-resistance characteristic of a thermister.
Its equation is R = R0. exp[β( 1

T − 1
T0

)], where
R0 = resistance of room temperature,
R = resistance at different temperature,
β = constant,
T0 = room temperature.
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Graph of SL(n,5)

Temperature T , in Kelvin units, along X-axis and resistance R, in ohms, along Y-axis, β

value lies between 3000 and 4000.

The above equation can be put as R = C.e
β
T .

Its another representation is potential energy (in ergs, along Y-axis) of system of spring
against extension (in cetimeters along X-axis) for different weights.

The second graph below is characteristic curve of VCE against ICE at constant base current
IB .

(5) SL(n, 5) = {1, 1, 1, 7, 14, 42, 42, · · · ,
n(n− 1)(n− 2)(n− 3)(n− 4)

360
, · · · } This set, to

certain terms, is {1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428 · · · }
Physical Interpretation of Graph of SL(n,5): The second graph of {SL(n, 5)}, given above,

represents the V-I characteristic of two diodes in reverse bias mode. It is represented by the
same equation mentioned in graph of SL(n, 3) with a change that V is negative.

Hence, −V ≥ 4kBT
e , and that exp(−eV

kBT ) ≤ 1, so that I = I0.

This shows that the current is in reverse bias and remains constant at I0, the saturation
current, until the junction breaks down. Axes parameters are as above.

Similarly for the other sequences.
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§3. Properties [3]

Murthy [1] formed an interserting triangle of the above sequences by writing them verti-
cally, as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 2 1

1 5 10 10 5 1

1 6 15 10 5 1 1

1 7 21 35 35 7 7 1

1 8 28 28 70 14 14 2 1

1 9 36 84 42 42 42 6 3 1

1 10 45 60 210 42 42 6 3 1 1

1. Here, the first column and the leading diogonal contains all unity.

The second column contains the elements of sequence SL(n, 1).

The third column contains the elements of sequence SL(n, 2).

The fourth column contains the elements of sequence SL(n, 3).

and similarly for other columns.

2. Consider that row which contains the elements 1 1 only as first row.

If p is prime, the sum of all elements of pth row ≡ 2(mod p).

If p is not prime, the sum of all elements of 4th row ≡ 2(mod 4).

The sum of all elements of 6th row ≡ 3(mod 6).

The sum of all elements of 8th row ≡ 6(mod 8).

The sum of all elements of 9th row ≡ 5(mod 5).

The sum of all elements of 10th row ≡ 1(mod 10).

§4. Difference

We have,
SL(n, 2)− SL(n− 1, 2) = SL(n− 1, 1).
This needs no verification.

Also, SL(n, 3)− SL(n− 1, 3) =
n(n− 1)(n− 2)

6
− (n− 1)(n− 2)(n− 3)

6

=
(n− 1)(n− 2)

2
= SL(n− 1, 2).
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Similarly,

SL(n, 4)− SL(n− 1, 3) = SL(n− 1, 3)

SL(n, 5)− SL(n− 1, 5) = SL(n− 1, 4).

Hence, in general,

SL(n, r)− SL(n− 1, r) = SL(n− 1, r − 1), r < n.

§5. Summation

Adding the above results, we get,

∞∑
r=2

SL(n, r) = n− 1, n > 1.

§6. Ratio

We have,
SL(n, 3)
SL(n, 2)

=
n− 2

3
,

SL(n, 4)
SL(n, 3)

=
n− 3

4
,
SL(n, 5)
SL(n, 4)

=
n− 4

5
.

In general,
SL(n, r + 1)

SL(n, r)
=

n− r

r + 1
.

§7. Sum of reciprocals of two cosecutive LCM ratios

We have,
1

SL(n, 2)
+

1
SL(n, 3)

=
n + 1

3 · SL(n, 3)
,

1
SL(n, 3)

+
1

SL(n, 4)
=

n + 1
4 · SL(n, 4)

,
1

SL(n, 4)
+

1
SL(n, 5)

=
n + 1

5 · SL(n, 5)
.

In general,
1

SL(n, r)
+

1
SL(n, r + 1)

=
n + 1

(r + 1) · SL(n, r + 1)
.
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§8. Product of two cosecutive LCM ratios

1. SL(n, 1) · SL(n, 2) =
n2(n− 1)

2!

2. SL(n, 2) · SL(n, 3) =
n2(n− 1)2(n− 2)

2! · 3!

3. SL(n, 3) · SL(n, 4) =
n2(n− 1)2(n− 2)2(n− 3)

3! · 4!

4. SL(n, 4) · SL(n, 5) =
n2(n− 1)2(n− 2)2(n− 3)2(n− 4)

4! · 5!

In general,

SL(n, r) · SL(n, r + 1) =
n2 · (n− 1)2 · (n− 2)2 · (n− 3)2 · · · · · (n− r + 1)2 · (n− r)

r! · (r + 1)!
.
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Abstract In this paper based on the group characters there are certain graphs constructed.

The properties are analysed with examples.
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§1. Introduction

This paper is the outcome of the author in throwing some more light on the relative
character Graphs Γ(G,H) (RC-graphs) originally studied by T. Gnanaseelan in his Ph.D work
[2].

It may be recalled that in the early 1940’s R. Brauer while studying the ’ordinary’ (complex)
irreducible representation and the ρ-modular irreducible representation of a finite group G,
constructed a finite simplex graph which was later called the Brauer Graph B(G) and was
extensively studied especially when G is a finite Chevalley group, or more generally, a simple
group of his type [1].

Both these graphs have the same vertex set namely, the set IrrG of complex irreducible
Characters of G. In the Brauer group case, case vertices Φ, ψ are adjacent if and only if their
reduction modulo a prime ρ dividing O(G) contains at least one ρ-modular irreducible character
in common. In the case of the RC-graph Φ and ψ are meant to be adjacent if and only if the
restriction ΦH and ψH to a given subgroup H of G contain at least one irreducible character
of H in common. Clearly Γ(G,H) is a simple graph.

We shall highlight some of the basic properties obtained by Gnanaseelan and others. This
paper is a continuation of the earlier works deals with connectivity properties of the complement
Γ(G,H).

§2. Basic properties of RC-graphs

We need the following base minimum from character theory. For details, we refer to M.
Isaac’s book [3].

Given two characters Φ, ψ of G, let (Φ, ψ) = 1/0(G)ΣΦ(s)ψ(s). Then, Q is irreducible if
and only if (Φ,Φ) = 1 and if Φ and ψ are two distinct irreducible, then (Φ, ψ) = 0.
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In terms of this scalar product the adjacent condition can be given as follows:

Φ, ψ ∈ IrrG are adjacent if and only if (Φ, ψ)H =
1

O(H)

∑

s∈H

Φ(s)(ψ(s)) > 0

Induced characters: Given any character Q of a subgroup H, the induced character QG of
G is defined as
QG(s) =

1
O(H)

∑
g ∈ GQ0(gsg−1), where

Q0(gsg−1) = Q(gsg−1) if gsg−1 ∈ H and

= 0, otherwise.

Frobenius Reciprocity Formula:
If Q ∈ IrrH and Φ ∈ IrrG, then (ΦH , Q) = (Φ, QG)G.

Proposition 1. Two elements Φ, ψ of IrrG are adjacent iff Φ ∈ ψχ where χG = 1H .
For details and proofs of the following results, we refer to [2], [4] and [8].
Proposition 2. (G,H) is connected if and only if coreGH = (1) where coreGH is the

largest normal subgroup of GG contained in H. In particular if G is simple or if H is simple,
then Γ(G,H) is connected.

For the above proposition and for further results, we need the path lemma: Given any F

in the connected component containing 1G,Φ in connected to 1G by a path of length s if and
only if Φ ⊂ χs, s ≥ 1.

Proposition 3. Γ(G,H) is a tree if and only if G = NH is a Frobenius group with kernel
N and complement H and N is unique minimal elementary abelian of order pm(ρ, aprime) and
0(H) = pm − 1. In this case, the tree is always a ’star’.

Proposition 4. Φ, ψ ∈ IrrG lie in the same connected components of Γ(G,H) if and only
if Φ ⊂ ψχs for some integer s ≥ 1.

Proposition 5. If Γ(G,H) is connected then it is always triangulated . (A tree is ’trivially’
triangulated)

§3. Complements of RC-graphs

If H is a subgroup of G, it is very rare that the complements Γ(G,H) of Γ(G,H) is of the
form Γ(G,H) for some subgroup K.

Problem 1. Characterize all groups G with the property that there exists a pair of
subgroups H and K such that

Γ(G,H) = Γ(G,H).

In this connection the following results of Gnanaseelan is interesting proposition 6: If g = NH

is a semi direct product with N normal and H non-normal, then Γ(G,N) = Γ(G,H) if and
only if G is Frobenius with kernel N and complement H.

We shall now focus on the connectivity of Γ(G,H) and Γ(G,H) (also see [9]).
At the outset, if a graph Γ is disconnected then Γ is connected. However, if Γ is connected,

then Γ may be connected or not, as seen from the following examples:
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G = S  ,  H = H  .4 3

(G, H)Γ

1G

(G, H)Γ (G, H)Γ

(G, H)Γ

G = S  ,  H = (s).3

Problem 2. Given any finite group G, find all subgroups H such that Γ(G,H) is connected.
(we can assume coreGH = (1)).

Problem 3. Find all finite groups G such that whenever H 6= (1), then Γ(G,H) is
connected.

Note that this includes the class of all finite abelian groups, because, if G is abelian of order
g and H is a subgroup of order h, then Γ(G,H) is disconnected with exactly h components
each component being complete with g/h vertices.

Theorem 1. Let H be a subgroup of G such that the right action of G on G/H is doubly
transitive. If Γ(G,H) is not a tree and if q <= n − 1C2, then Γ(G,H) is connected (where n

and q are the number of vertices and number of edges of Γ(G,H) respectively.)
Proof of Theorem 1. If Γ(G,H) is disconnected then Γ(G,H) is always connected.

Hence we assume that Γ(G,H) is connected and is of the form:
1G

Λ

Since the action of G on G/H is doubly Transitive,

χ = 1G
H = 1G + Λ, Λ ∈ IrrG.

Let J denote the sub graph Γ(G,H)− 1G. Then J has n− 1 vertices and q − 1 edges. By
Frobenuis reciprocity formula we have,

ΛH = 1H + ΣriQi, Qi ∈ IrrH, ri > 0

We shall prove that there is at least one Φ ∈ IrrG, Φ 6= 1G which is not adjacent to Λ.
For any Q ∈ IrrH, let I(Q) denote the set of distinct irreducible characters occurring in QG.
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First suppose that there exists Q ∈ IrrH such that I(Q) ⊆ J and σH is irreducible for
every σ ∈ I(Q). In other words, σH = Q for every σ ∈ I(Q). Then clearly any Φ ∈ I(Q)
is such that ΦH does not contain Q and hence I(Q) is a connected component of Γ(G,H),
contradicting our assumption that Γ(G,H), is connected.

Next, we shall prove that if σ ∈ J is not Irreducible, then σ ⊂ σΛ. In fact,

(σ, σx) =
1

O(G)

∑

s∈G

σ(s)σ(s)χ(s)

1
O(G)

[
k∑

i=1

∑

s∈Ci

σ(s)σ(s)χ(s)

]

(Where C1, C2, . . . , Ck are the conjugacy classes of G)

=
1

O(G)

k∑

i=1

σ(s)σ(s)χ(s)|Ci|

(Where s runs through a set of class representatives)

=
1

O(G)

k∑

i=1

σ(s)σ(s)|Ci ∩H|χ(1)

(using the relation |Ci ∩H|χ(1) = |Ci|χ(s)

=
1

O(G)
χ(1)

∑

s∈H

σ(s)σ(s)

=
χ(1)
O(G)

O(H)(σ, σ)H

= d > 1

since σH is not irreducible using χ = 1G + Λ, this gives (σ, σΛ) > 0, which means σ ⊂ σΛ.
Already by assumption σ and Λ are adjacent, which is by path lemma, gives σ ⊂ Λ2. Using
these 2 relations, we get σ ⊂ σΛ ⊂ Λ3. Hence by path lemma, we get a path of length 3 from
σ to 1G, which must pass through Λ. Hence we get a cycle ΛσµΛ for some µ ∈ J . Repeating
this process over and over again, we see that σ is adjacent to any Φ in J .

Now Suppose, for any Q ∈ IrrH, there exists σ ∈ I(Q) such that σH is not irreducible.
Then from the above argument, it follows that σ is adjacent to any Φ in J . Then J is a complete
graph and hence q = n − 1C2 + 1 (including the edge 1GΛ) which is a contradiction to our
assumption that q ≤ n− 1C2.

Hence there must exist a vertex Φ not adjacent to Λ. In the complement, therefore, Φ and
Λ are adjacent. Also, since Λ is the only vertex adjacent to 1G in Γ(G,H), all other vertices
(including Φ) are adjacent to 1G in Γ(G,H). Thus Γ(G,H) is connected.

Remarks 1.

1. The assumption that q ≤ n− 1C2 is necessary as we see from the following graph. Take
G = A5 and H = A4.
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1G

Λ

(G, H)Γ

Here n = 5 and q = 7, which is > 4C2 = 6 of course Γ(G,H) is disconnected.

2. The condition that Γ(G,H) is not a tree is necessary, for otherwise, Γ(G,H) would be a
rooted tree (star) and hence Λ would be isolated in the complement.

Problem 4. Characterize all subgroups H of a given group G such that both Γ(G,H) and
Γ(G,H) are connected.

Theorem 2. Γ(G,H) is connected if and only if for every σ ∈ I(1H) there exists a
Φ ∈ V − 1(1H) such that σ and Φ are not adjacent in Γ(G,H).

Proof of Theorem 2. First assume that Γ(G,H) is connected. Let σ ∈ I(1H). Suppose
σ is adjacent to all Φ ∈ V − I(1H) in Γ(G,H). Since already σ is adjacent to all ψ ∈ I(1H),
as I(1H) is complete, σ is adjacent to all vertices in Γ(G,H). Hence σ is an isolated vertex in
Γ(G,H), contradiction.

For the converse part, assume the given condition. Since 1G is not adjacent to any vertex
in V − I(1H), 1G is adjacent to every vertex in V − I(1H) in Γ(G,H). By the assumption, if
σ ∈ I(1H) and Φ ∈ V − I(1H), σ and Φ are adjacent in Γ(G,H) . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

Also 1G is adjacent to all vertices in V − I(1H) in Γ(G,H). In fact, no vertex Φ can be
adjacent to 1G without belonging to I(1H). Therefore, if Φ ∈ V −I(1H), then Φ is not adjacent
to 1G in Γ(G,H). Hence Φ is adjacent to 1G in Γ(G,H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Now take any two α, β in γ.
Case 1: Both α and β belong to I(1H). By (2), there exist ξ1, ξ2 in V − I(1H), such that α is
adjacent to ξ1 and β is adjacent to ξ2 in Γ(G,H). But by (1), 1G is adjacent to both ξ1 and ξ2

in Γ(G,H). Then we get a path between α and β. (see figure 1).

1G

ξ 1

ξ 2α

β

Figure 1:

Case 2: Let α ∈ I(1H) and β ∈ V − I(1H), By (1), 1G is adjacent to β in Γ(G,H), and
by (2), their exists ξ ∈ V − I(1H) such that α is adjacent to ξ in Γ(G,H). This shows that
there is a path between α and β in Γ(G,H). (see figure 2).

Case 3: Both α and β do not lie in I(1H). By (1), 1G is adjacent to α and β in Γ(G,H);
hence there is a path between α and β in Γ(G,H). (see figure 3).
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1G

β

α

ξ

Figure 2:

1G

α

β

Figure 3:

The above arguments prove that Γ(G,H) is connected. Hence the theorem.
Theorem 3. Let the right action of G and G/H be doubly transitive. Then Γ(G,H) is

connected if and only if diamΓ(G,H) ≥ 3.
Proof of Theorem 3. Due to doubly transitivity, I(1H) = 1G+λ, Λ ∈ IrrG, and hence is

the unique vertex adjacent to 1G. First let diamΓ(G,H) ≥ 3. Then their exists Φ ∈ V − I(1H)
whose distance from Λ is at least 2. Therefore, given Λ ∈ I(1H) we can find Φ ∈ V − I(1H)
such that Λ and Φ are not adjacent. Hence by theorem 2, Γ(G,H) is connected.

Conversely, assume that Γ(G,H) is connected. Hence by the same theorem, their exists
Φ ∈ V − I(1H) such that Λ and Φ are not adjacent. Therefore, dist.(Λ,Φ) ≥ 2. Hence
diamΓ(G,H) ≥ 3. This proves the theorem.

Proposition 6.

(i) If G = NH is Frobenius, then r(Γ(G,H)) = 1. As an example Γ(D10, C2) is the following.

1G

Of course there are cases when r(Γ(G,H)) > 1. For instance, when G = S4 and H = S3,
Γ(G,H) is the graph.

1G

Whose domination number is 2. For details on domination theory of RC-graphs, we refer
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to [5], [8].

(ii) RC-graphs as signed graphs. There is a natural sign attached to the edges. If Φ, ψ are
the vertices and ΦH = ΣmiGi and ψH = ΣniQi, so that (Φ, ψ)H = Σmini, the edge Φψ

gets a + sign if Σmini is even and a - sign if Σmini is odd. The first author has initiated
a study on RC-graphs as signed graphs following the work of B.D. Acharya et al. (see
[6]).

(iii) Among the many products occurring in graph theory the one that suits our RC-graph is
the ’strong direct product’. The domination number of a strong direct product cannot be
greater than that of the more fancied Cartesian product

If Γ1 and Γ2 are two (connected) graphs then we have the famous vizings conjecture:
γ(Γ1 × Γ2) ≥ γ(Γ1)γ(Γ2). A variation of the above conjunctive for RC-graphs and strong
direct products fails. (For details see [7]).

Conclusion

Graph - theorists have already shown interest in RC-graphs as they provide some relief
from the monotonous ’edge - dot’ study! The authors believe that the pictorial description of
character theory could help people to understand representation theory in a better way. (The
restriction behavior of an irreducible G - character to a subgroup H, apart from Clifford’s
theory when H is normal, is not completely understood). Last but not the least many new
perhaps hitherto unseen, subgroups have already been located in an arbitrary finites groups
using RC-graphs such as almost - normal subgroups, dominate subgroups, domination - free
subgroups etc, whose definition and details are omitted here for want of time and space.

References

[1] R. Brauer, On the connection between the ordinary and modular characters of groups
of finite order, Ann. of Math., 42 (1941), 926-935.

[2] T. Gnanaseelan, Studies in Group Representation, Ph. D. Thesis, Madurai Kamaraj
University 2000.

[3] M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.
[4] A.V. Jeyakumar, Construction of some new finite graphs using group representations,

Proceedings of the Conference on Graphs, Combinatorics, Algorithms and Applications A.
Kalasalingam College, Narosa Publication, 2005.

[5] Mohammed Sheriff, Ph.D. Thesis, Madurai Kamaraj University, 2005.
[6] R. Stella Maragatham, Studies in Group Algebras and Representations, Ph. D. Thesis,

Madurai Kamaraj University, 2003.



Scientia Magna
Vol. 5 (2009), No. 1, 44-46

Class A weighted composition operators

D. Senthilkumar† and K. Thirugnanasambandam ‡

† Department of Mathematics, Government Arts College (Autonomous), Coimbatore-641 018.
‡ Department of Mathematics, Sri Ramakrishna Engineering College, Coimbatore-641 022,

India.
E-mail: senthilsenkumhari@gmail.com kthirugnanasambandam@gmail.com

Abstract In this paper Class A weighted composition operators on L2 - spaces are charac-

terized and their various properties are studied.

Keywords Composition operators, class A operators.

§1. Preliminaries

Let (X, Σ, λ) be a sigma-finite measure space and let T : X → X be a non-singular
measurable transformation. Let L2 = L2(X, Σ, λ). Then the composition transformation CT is
defined by CT f = f◦ T for every f in L2(λ). If CT happens to be a bounded operator on L2,
then we call it the composition operator induced by T .

CT is a bounded linear operator on L2 precisely when (i) the measure λT−1 is abso-
lutely continuous with respect to λ and (ii) the Radon-Nikodym derivative dλT−1/dλ is in
L∞(X, Σ, λ). Let R(CT ) denote the range of CT and C∗T , the adjoint of CT .

A weighted composition operator is a linear transformation acting on a set of complex
valued Σ mesurable functions of the form Wf = wf ◦ T, where w is a complex valued Σ
measurable function. In case w = 1 a.e., W becomes a composition operator, denoted by CT .

To examine the weighted composition operators efficiently, Lambert [1], associated with
each transformation T , the so called conditional expectation operator E(•|T−1Σ) = E(•). More
generally, E(f) may be defined for bounded measurable function f or non-negative measurable
functions f ; for details on the properties of E, see [4], [5], [6].

As an operator on LP , E is the projection onto the closure of the range of CT . E is the
identity on LP if and only if T−1Σ = Σ.

The Radon-Nikodym derivative of λT−1 with respect to λ is denoted by h and that of
λT−k with respect to λ is denoted by hk where T k is obtained by composing T with itself k

times. Let wk denote w(w ◦ T ) (w◦T2) · · · (w◦Tk−1) so that W kf = wk(f◦T)k.

§2. Class A composition operators

Let B(H) denote the Banach algebra of all bounded linear operators on a Hilbert space H.
An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ TT ∗, T is said to be p-hyponormal [2]
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if (T ∗T )p - (TT ∗)p ≥ 0 , 0 < p < 1. For a p-hyponormal operator T = U |T | Aluthge introduced
the operator T̃= |T |1/2 U |T |1/2 which is called Aluthge transformation and Aluthge showed
very interesting results on T . The operator T is said to be w - hyponormal [3] if | T̃ | ≥ |T | ≥
| T̃ ∗|. T is paranormal if ‖T 2x ‖ ‖x‖ ≥ ‖Tx‖2; T is quasihyponormal if ‖T ∗T‖ ≤ ‖T 2x‖ for all
x in H or equivalently T ∗2T 2 - (T ∗T )2 ≥ 0.

An operator T belongs to class A [7] if |T 2| ≥ |T |2. Furuta, Masatoshi Ito and Takeaki
Yamazaki have characterized class A operators as follows. An operator T belongs to class A if
and only if (T ∗ |T |2T )1/2 ≥ T ∗T.

§3. Previous results on M-paranormal composition opera-

tors

Panayappan and Veluchamy [9] have characterized M -paranormal composition operators
as follows.

Theorem 3.1. Let CT ∈ B(L2(λ). Then CT is M -paranormal if and only if M2h0 + 2kf0
+ k2 ≥ 0 a.e., for all k ∈ R, where f0 is the Radon-Nikodym derivative of λT−1 with respect
to λ and h0 is the Radon-Nikodym derivative of λ(T◦T)−1 with respect to λ.

Also Panayappan [8] generalized the above result to the weighted composition operators
as follows.

Theorem 3.2. W is M -paranormal if and only if M2h2 E(w2
2)◦T−2 ≥ h2 [E(w2)◦T−1]2

a.e..
The aim of the paper is to characterize class A weighted composition operators and also

to show that class A and paranormal operators coincide in the case of weighted composition
operators.

§4. Weighted class A composition operators

Theorem 4.1. W is of class A if and only if h2E(w2
2)◦T−2 ≥ h2[ E(w2)◦T−1]2 a.e..

Proof. We have, W kf = wk(f◦Tk) and W ∗f = hk E(wkf)◦T−k

and so W∗2W2f = W∗2(w2(f◦T2))
= h2 E(w2

2f◦T2)◦T−2

= h2 E(w2
2)◦T−2f.

Also W ∗Wf = hE(w2) ◦ T−1f.

Then W is of class A

⇐⇒ (W∗ |W|2 W)1/2 ≥ W∗W
that is (W ∗ |W|2 W) ≥ (W∗W)2

if and only if (W∗(W∗W)W) ≥(W∗W)2

⇐⇒ W∗2W2 ≥ (W∗W)2

⇐⇒ 〈 (W∗2W2 - (W∗W)2)f, f) 〉 ≥ 0 for every f ∈ Σ
⇐⇒ ∫

E

h2 E(w2
2)◦T−2 - (h E(w2)◦T−1)2 |f|2 dλ ≥ 0 for every E ∈ Σ

⇐⇒ h2E(w2
2)◦T−2 ≥ h2(E(w2)◦T−1)2 a.e.
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Theorem 4.2. Let W be a weighted composition operator with weight w > 0. Then the
following are equivalent
(i) W is paranormal;
(ii) W is class A;
(iii) W is quasihyponormal.

Proof. (i) ⇒ (ii)
Suppose W is paranormal. Then by Theorem 2.3 [8]
h2 E(w2

2)◦T−2 ≥ h2 (E(w2)◦ T−1)2 a.e.
W is class A.
(ii) ⇒(iii)
Suppose W is class A. Then by Theorem 4.1, h2 E(w2

2)◦T−2 ≥ h2 (E(w2)◦T−1)2 a.e..
Therefore by Corollary 2.2 [8], W is quasihyponormal.
(iii) ⇒ (i)
Suppose W is quasihyponormal, then
h2 E(w2

2) ◦ T−2 ≥ h2 (E(w2) ◦ T−1)2 a.e.
Therefore by Corollary 2.4, [8], W is paranormal.
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§1. Introduction and preliminaries

In the existing literature, it can be seen that, most of classical differential geometry topics
have been extended to Lorentzian manifolds. In this process, generally, researchers used a
standard moving Frenet frame. Some of kinematical models were adapted on this moving
frame, due to tranformation matrix among derivative vectors and frame vectors. Thereafter,
researchers aimed to have an alternative frame for curves and other applications. Bishop frame,
which is also called alternative or parallel frame of the curves, was introduced by L.R. Bishop
in 1975. And, this frame have been used in many research papers, in classical manner or
Lorentzian manifolds, etc.

In this work, we consider a space-like curve with a space-like binormal. Then, with the
notion of Bishop frame, we investigate position vectors of some special space-like curves in
Minkowski space E3

1 .
To meet the requirements in the next sections, here, the basic elements of the theory of

curves in the space E3
1 are briefly presented. (A more complete elementary treatment can be

found in [2] and [4].)
The Minkowski 3-space E3

1 is the Euclidean 3-space E3 provided with the standard flat
metric given by

〈, 〉 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since 〈, 〉 is an indefinite metric,

recall that a vector v ∈ E3
1 can have one of three Lorentzian characters: it can be space-like

if 〈v, v〉 > 0 or v = 0, time-like if 〈v, v〉 < 0 and null if 〈v, v〉 = 0 and v 6= 0. Similarly, an
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arbitrary curve ϕ = ϕ(s) in E3
1 can locally be space-like, time-like or null (light-like), if all of its

velocity vectors ϕ′ are respectively space-like, time-like or null (light-like), for every s ∈ I ⊂ R.
The pseudo-norm of an arbitrary vector a ∈ E3

1 is given by ‖a‖ =
√
|〈a, a〉|. ϕ is called an unit

speed curve if velocity vector v of ϕ satisfies ‖v‖ = ±1. For vectors v, w ∈ E3
1 it is said to be

orthogonal if and only if 〈v, w〉 = 0.
Denote by {T,N, B} the moving Frenet frame along the curve ϕ in the space E3

1 . For a
space-like curve ϕ with first and second curvature, κ and τ in the space E3

1 , the following Frenet
formulae are given in [4].

Let ϕ be a space-like curve with a space-like binormal, then the Frenet formulae read



T ′

N ′

B′


 =




0 κ 0

κ 0 τ

0 τ 0







T

N

B


 , (1)

where

〈N, N〉 = −1, 〈T, T 〉 = 〈B,B〉 = 1,
〈T, N〉 = 〈T, B〉 = 〈T, N〉 = 〈N, B〉 = 0.

The Bishop frame is due to L.R. Bishop [3]. This frame or parallel transport frame is an
alternative approach to defining a moving frame that is well defined even the space-like curve
with a space-like binormal has vanishing second derivative [1]. He used tangent vector and any
convenient arbitrary basis for the remainder of the frame. Then, the Bishop frame is expressed
as [1] 


T ′

N ′
1

N ′
2


 =




0 k1 −k2

k1 0 0

k2 0 0







T

N1

N2


 , (2)

where
κ(s) =

√
|k2

1 − k2
2|, τ(s) =

dθ

ds

θ(s) = arg tanh
k2

k1

. (3)

Here, we shall call k1 and k2 as Bishop curvatures.

§2. Main results

Let ψ = ψ(s) be a space-like curve with a space-like binormal. We can write position
vector with respect to Bishop frame as

ψ = ψ(s) = γT + δN1 + λN2. (4)

Differentiating both sides of (4) and considering system (2), we have a system of differential
equation as follows:

γ′ + δk1 + λk2 − 1 = 0

δ′ + γk1 = 0

λ′ − γk2 = 0

. (5)
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This system of ordinary differential equations is a characterization for the curve ψ = ψ(s).
Position vector of a space-like curve can be determined by means of solution of it. However,
general solution have not been found. Owing to this, we give some special values to components
and Bishop curvatures.

Case I. γ = 0. In this case ψ = ψ(s) lies fully in N1N2 subspace. Thus, we have other
components

δ = constant = c1

λ = constant = c2

. (6)

System (5) and (6) yield the following linear relation among Bishop curvatures

c1k1 + c2k2 − 1 = 0. (7)

Since, we immediately arrive the following results.
Theorem 1. Let ψ = ψ(s) be a space-like curve with a space-like binormal and lies fully

in N1N2.
i) If one the second and third components of the position vector of ψ on Bishop axis is

zero, then ψ transforms to a line.
ii) There is a relation among Bishop curvatures as (7).
iii) Position vector of ψ can be written as

ψ = ψ(s) = c1N1 + c2N2. (8)

Case II. δ = constant 6= 0. In this case, first we have by (5)2 γ = 0 and λ = constant.
Suffice it to say that this case is congruent to case I.

Case II. a. Let us suppose δ = 0. Thus, γ = 0 and λ = constant, and so k2 is constant.
This case yields a line equation as follows

ψ = ψ(s) = λN2. (9)

Case III. The case λ = constant 6= 0 is also congruent to case I.
Case III. a. λ = 0. Then, we easily have k1 and δ are constants. This result follows a

line equation as
ψ = ψ(s) = δN1. (10)
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§1. Introduction and results

The classical gamma function

Γ(x) =
∫ ∞

0

tx−1e−tdt (x > 0)

is one of the most important functions in analysis and its applications. The logarithmic deriva-
tive of the gamma function can be expressed in terms of the series

ψ(x) =
Γ′(x)
Γ(x)

= −γ +
∞∑

n=0

(
1

1 + n
− 1

x + n

)
(1)

(x > 0; γ = 0.57721566490153286 · · · is the Euler’s constant), which is known in literature as
psi or digamma function. We conclude from (1) by differentiation

ψ(k)(x) = (−1)k+1k!
∞∑

n=0

1
(x + n)k+1

(x > 0; k = 1, 2, · · · ), (2)

ψ(k) are called polygamma functions.
H. Minc and L. Sathre [1] proved that the inequality

n

n + 1
<

n
√

n!
n+1

√
(n + 1)!

< 1 (3)

is valid for all natural numbers n. The inequality (3) can be refined and generalized as (see [2],
[3], [4])

n + k + 1
n + m + k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏

i=k+1

i

)1/(n+m)

≤
√

n + k

n + m + k
, (4)
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where k is a nonnegative integer, n and m are natural numbers. For n = m = 1, the equality
in (4) is valid. The inequality (4) can be written as

n + k + 1
n + m + k + 1

<
[Γ(n + k + 1)/Γ(k + 1)]1/n

[Γ(n + m + k + 1)/Γ(k + 1)]1/(n+m)
≤

√
n + k

n + m + k
. (5)

In 1985, D. Kershaw and A. Laforgia [5] showed the function [Γ(1 + 1
x )]x is strictly decreasing

and x[Γ(1 + 1
x )]x strictly increasing on (0,∞), from which the inequalities (3) can be derived.

In 2003, B. -N. Guo and F. Qi [2] proved that the function

f(x) =
[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1

is decreasing in x ≥ 1 for fixed y ≥ 0, from which the left-hand side inequality of (5) can be
obtained.

In this paper, our Theorem 1 considers the monotonicity and logarithmic convexity of the
function f on (0,∞). This extends and generalizes Guo and Qi’s result.

Theorem 1. Let s ≥ 0 be real number, then the function

f(x) =
[Γ(x + s + 1)/Γ(s + 1)]1/x

x + s + 1

is strictly decreasing and strictly logarithmically convex on (0,∞). Moreover,

lim
x→0

f(x) = eψ(s+1)/(s + 1) and lim
x→∞

f(x) = e−1.

Theorem 2. Let s ≥ 0 be real number, then the function

g(x) =
[Γ(x + s + 1)/Γ(s + 1)]1/x

√
x + s + 1

is strictly increasing on (0,∞).
The following corollaries are obvious.
Corollary 1. Let s ≥ 0 be a real number, then for all real numbers x > 0,

e−1 <
[Γ(x + s + 1)/Γ(s + 1)]1/x

x + s + 1
<

eψ(s+1)

(s + 1)
. (6)

Both bounds in (6) are best possible.
Corollary 2. Let α > 0 and s ≥ 0 be real numbers, then for all real numbers x > 0,

x + s + 1
x + α + s + 1

<
[Γ(x + s + 1)/Γ(s + 1)]1/x

[Γ(x + α + s + 1)/Γ(s + 1)]1/(x+α)
<

√
x + s + 1

x + α + s + 1
. (7)

In particular, taking in (7) x = n, s = 0 and α = 1, we obtain

n + 1
n + 2

<
n
√

n!
n+1

√
(n + 1)!

<

√
n + 1
n + 2

. (8)

The inequality (8) is an improvement of (3).
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§2. Proof of the theorems

Proof of Theorem 1. Define for x > 0,

u(x) = x2 f ′(x)
f(x)

= − ln
Γ(x + s + 1)

Γ(s + 1)
+ xψ(x + s + 1)− x2

x + s + 1
,

v(x) = x3 d2[ln f(x)]
dx2

= 2 ln
Γ(x + s + 1)

Γ(s + 1)
− 2xψ(x + s + 1)

+ x2ψ′(x + s + 1) +
x3

(x + s + 1)2
.

Differentiation of u(x) gives

1
x

u′(x) = ψ′(x + s + 1)− 1
x + s + 1

− s + 1
(x + s + 1)2

=
∞∑

n=1

1
(x + s + n)2

−
∞∑

n=1

[
1

x + s + n
− 1

x + s + n + 1

]

−
∞∑

n=1

[
s + 1

(x + s + n)2
− s + 1

(x + s + n + 1)2

]

= −
∞∑

n=1

[
s

(x + s + n)2
+

1
(x + s + n)(x + s + n + 1)

− s + 1
(x + s + n + 1)2

]

= −
∞∑

n=1

(2s + 1)(x + s + n) + s

(x + s + n)2(x + s + n + 1)2
< 0.

Hence, the function u(x) is strictly decreasing and u(x) < u(0) = 0 for x > 0, which yields the
desired result that f ′(x) < 0 for x > 0.

Using the asymptotic expansion [6, p. 257]

ln Γ(x) =
(
x− 1

2

)
lnx− x + ln

√
2π +

1
12x

+ O(x−3) (x →∞),

we conclude from

ln f(x) =
1
x

[ln Γ(x + s + 1)− ln Γ(s + 1)]− ln(x + s + 1) (9)

that

lim
x→∞

f(x) = e−1.

By L’ Hospital rule, we conclude from (9) that

lim
x→0

f(x) =
eψ(s+1)

s + 1
.
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Differentiation of v(x) yields

1
x2

v ′(x) = ψ′′(x + s + 1) +
1

(x + s + 1)2
+

2(s + 1)
(x + s + 1)3

= −
∞∑

n=1

2
(x + s + n)3

+
∞∑

n=1

[
1

(x + s + n)2
− 1

(x + s + n + 1)2

]

+
∞∑

n=1

[
2(s + 1)

(x + s + n)3
− 2(s + 1)

(x + s + n + 1)3

]

=
∞∑

n=1

3(2s + 1)(x + s + n)2 + (6s + 1)(x + s + n) + 2s

(x + s + n)3(x + s + n + 1)3
> 0.

Hence, the function v(x) is strictly increasing and v(x) > v(0) = 0 for x > 0, which yields the
desired result that d2[ln f(x)]

dx2 > 0 for x > 0.
Proof of Theorem 2. Define for x > 0,

p (x) = x2 g′(x)
g(x)

= − ln
Γ(x + s + 1)

Γ(s + 1)
+ xψ(x + s + 1)− x2

2(x + s + 1)
.

Differentiation of p (x) gives

1
x

p ′(x) = ψ′(x + s + 1)− 1
2(x + s + 1)

− s + 1
2(x + s + 1)2

=
∞∑

n=1

1
(x + s + n)2

− 1
2(x + s + 1)

− s + 1
2(x + s + 1)2

>

∫ ∞

1

dt

(x + s + 1)2
− 1

2(x + s + 1)
− s + 1

2(x + s + 1)2

=
x

2(x + s + 1)2
> 0.

Hence, the function p (x) is strictly increasing and p (x) > p (0) = 0 for x > 0, which yields the
desired result that g ′(x) > 0 for x > 0.

References

[1] H. Minc and L. Sathre, Some inequalities involving (r!)1/r, Proc. Edinburgh Math.
Soc., 14(1964/65), 41-46.

[2] B.-N. Guo and F. Qi, Inequalities and monotonicity for the ratio of gamma functions,
Taiwanese J. Math., 7(2003), No.2, 239-247.

[3] F. Qi, Inequalities and monotonicity of sequences involving n
√

(n + k)!/k!, Soochow J.
Math., 29(2003), No.4, 353-361.

[4] F. Qi and Q.-M. Luo, Generalization of H. Minc and J. Sathre’s inequality, Tamkang
J. Math., 31(2000), No.2, 145-148.

[5] D. Kershaw and A. Laforgia, Monotonicity results for the gamma function, Atti Accad.
Sci. Torino Cl. Sci. Fis. Mat. Natur., 119(1985), 127-133.

[6] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathe-
matics Series 55(1965), 4th printing, with corrections, Washington.



Scientia Magna
Vol. 5 (2009), No.1, 54-57

On ideas and congruences in KU-algebras

Chanwit Prabpayak† and Utsanee Leerawat‡

† Faculty of Science and Technology Rajamangala University of Technology Phra Nakhon,
Bangkok, Thailand

‡ Department of Mathematics Kasetsart University, Bangkok, Thailand
E-mail: chnwt.p@gmail.com fsciutl@ku.ac.th

Abstract In this paper, we will introduce some kind of algebras which is called KU-algebras.

We define ideals and study congruences on KU-algebras, and also investigate some related

properties.

Keywords ideals, congruences, KU-algebras

§1. Preliminaries

Several authors ([1],[2],[3],[4],[5]) introduced some structures of algebras such as BCK, BCC
and BCI-algebras. In [2], C.S. Hoo introduced the notions of filters and commutative ideals
in BCI-algebras. [1] and [3] introduced a concept of ideals in BCC and BCK-algebras. W. A.
Dudek and X. Zhang gave connections between ideals and congruences in BCC-algebras. The
objective of this paper is to introduce KU-algebras and also study ideals and congruences in
KU-algebras. Moreover, we investigate some of its properties.

By an algebra G = (G, ·, 0) we mean a non-empty set G together with a binary operation,
multiplication and a some distinguished element 0. In the sequel a multiplication will be denoted
by juxtaposition.

Definition 1. An algebra G = (G, ·, 0) is called a KU-algebra if it satisfies the following
conditions:

(1) (xy)((yz)(xz)) = 0

(2) 0x = x,

(3) x0 = 0,

(4) xy = 0 = yx implies x = y

for all x, y, z ∈ G.

By (1), we get (00)((0x)(0x)) = 0. It follows that xx = 0 for all x ∈ G. And if we put
y = 0 in (1), then we obtain z(xz) = 0 for all x, z ∈ G.

Example 1. Let G = {0, 1, 2, 3} and H = {0, 1, 2, 3, 4}. Let the multiplication of G and
H be defined by Table 1 and Table 2 respectively. Then it is easily checked that G and H are
KU-algebras.
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· 0 1 2 3

0 0 1 2 3

1 0 0 0 2

2 0 2 0 1

3 0 0 0 0

Table 1.

· 0 1 2 3 4

0 0 1 2 3 4

1 0 0 0 3 4

2 0 1 0 3 4

3 0 0 0 0 4

4 0 0 0 0 0

Table 2.

§2. Ideals

Definition 2. Let A be a non-empty subset of a KU-algebra G. Then A is said to be an
ideal of G if it satisfies the following conditions:

(i) 0 ∈ A,

(ii) for all x, y, z ∈ G, x(yz) ∈ A and y ∈ A imply xz ∈ A.

Example 2. In example 1, let A = {0, 2} and B = {0, 1} be subsets of a KU-algebra H.
Then A is an ideal of H but B is not an ideal of H.

Putting x = 0 in Definition 2 we obtain the following Proposition:

Proposition 1. Let A be an ideal of a KU-algebra G. Then for all x, y ∈ G, xy ∈ A and
x ∈ A imply y ∈ A.

Definition 3. Let (G, ·, 0) be a KU-algebra. Then a non-empty subset S of G is said to
be a KU-subalgebra of G if (S, ·, 0) is KU-algebra.

Note that S is a KU-subalgebra of G if and only if xy ∈ S for all x, y ∈ S.

Proposition 2. Let A be an ideal of KU-algebra G. Then A is a KU-subalgebra of G.

Proof of Proposition 2. Let x, y ∈ A. Then (x0)((0y)(xy)) = 0. Hence y(xy) ∈ A.
Since A is an ideal of G and y ∈ A, xy ∈ A. Therefore, A is a KU-algebra of G.

Proposition 3. Let G be a KU-algebra and A a non-empty subset of G with 0. Then A

is an ideal of G if and only if x ∈ A, yz /∈ A imply y(xz) /∈ A for all x, y, z ∈ G.

Proof of Proposition 3. Let A be an ideal of G and let x ∈ A, yz /∈ A. Suppose that
y(xz) ∈ A. Since A is an ideal, yz ∈ A, a contradiction.

Conversely, assume that x ∈ A, yz /∈ A imply y(xz) /∈ A for all x, y, z ∈ G. Let x, y, z ∈ G

be such that x(yz) ∈ A and y ∈ A. It is clear that xz ∈ A.
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Corollary 1. Let G be a KU-algebra and A a non-empty subset of G with 0. Then A is
an ideal of G if and only if x ∈ A, y /∈ A imply yx /∈ A for all x, y ∈ G.

On KU-algebra (G, ·, 0). We define a binary relation ≤ on G by putting x ≤ y if and only if
yx = 0. Then (G;≤) is a partially ordered set and 0 is its smallest element. Thus a KU-algebra
G satisfies conditions: (yz)(xz) ≤ xy, 0 ≤ x, x ≤ y ≤ x implies x = y.

§3. Congruences

In this topic, we describe congruences on KU-algebras. We start with the following:
Definition 4. Let A be an ideal of KU-algebra G. Define the relation ∼ on G by

x ∼ y iff xy ∈ A and yx ∈ A

Theorem 1. If A is an ideal of KU-algebra G, then the relation ∼ is a congruence on G.
Proof of Theorem 1. It is clear that this relation is reflexive and symmetric. Let

x, y, z ∈ G be such that x ∼ y and y ∼ z. Then xy, yx, yz, zy ∈ A and (xy)((yz)(xz)) = 0 ∈ A.
By Proposition 1, xz ∈ A. Similarly, (zy)((yx)(zx) = 0 ∈ A. Thus x ∼ z. Therefore, ∼ is an
equivalenec relation.

If x ∼ u and y ∼ v for x, y, u, v ∈ G, then xu, ux, yv, vy ∈ A and (xu)((uy)(xy)) = 0 ∈ A.
By Proposition 1, (uy)(xy) ∈ A. Similarly (xy)(uy) ∈ A. Thus xy ∼ uy. On the other hand
(uy)((yv)(uy)) = 0 ∈ A and yv ∈ A imply (uy)(uv) ∈ A. Similarly, if (uv)((vy)(uy)) = 0 ∈ A

and vy ∈ A we obtain (uv)(uy) ∈ A. Thus uy ∼ uv. Since ∼ is transitive, xy ∼ uv. Hence ∼
is a congruence.

Proposition 4. If ∼ is a congruence on a KU-algebra G, then C0 = {x ∈ G | x ∼ 0} is an
ideal of G.

Proof of Proposition 4. Obviously 0 ∈ C0. If x(yz) ∈ C0 and y ∈ C0, then x(yz) ∼ 0
and y ∼ 0. Since x ∼ x and z ∼ z, x(yz) ∼ x(0z). Thus xz ∼ 0. Hence xz ∈ C0. So C0 is an
ideal of G.

Let ∼ be a congruence relation on a KU-algebra G and let Cx = {y ∈ G | y ∼ x}. Then
the family {Cx : x ∈ G} gives a partition of G which is denoted by G/∼. For any x, y ∈ G, we
define Cx ∗Cy = Cxy. Since ∼ has the substitution property, the operation * is well-defined. It
is easily checked that (G/∼, ∗, C0) is a KU-algebra.

Definition 5. Let (G, ·, 0) and (H, ∗, 0) be KU-algebras. A homomorphism is a map
f : G → H satisfying f(x · y) = f(x) ∗ f(y) for all x, y ∈ G. An injective homomorphism is
called monomorphism and a surjective homomorpism is called epimorphism.

The kernel of the homomorphism f , denoted by kerf , is the set of elements of G that map
to 0 in H.

If f is a homomorphism from a KU-algebra G into a KU-algebra H, then we define kernel
kerf = f−1(0) as in [1] and we can prove the following result:

Theorem 2. Let G be a KU-algebra and A an ideal of G. Let G/∼ be a KU-algebra
determined by A. Then the canonical mapping f : G → G ∼ defined by f(x) = Cx is an
epimorphism and kerf is an ideal of G.
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Proof of Theorem 2. Let x, y ∈ G. If x = y, then Cx = Cy. Thus f(x) = f(y). Since
f(xy) = Cxy = Cx ∗Cy = f(x)∗f(y), f is a homomorphism. Let Cx ∈ G/∼. We get f(x) = Cx.
That is f is an epimomorphism.

Since f(0) = C0, kerf 6= φ. If x(yz) ∈kerf and y ∈kerf . Then f(x(yz)) = f(y) = C0.
Thus C0 = f(x) ∗ (f(y) ∗ f(z)) = f(x) ∗ (C0 ∗ f(z)) = f(x) ∗ f(z) = f(xz). Thus xy ∈kerf . It
follows that kerf is an ideal of G.
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§1. Introduction

H.Weyl [22] examined the spectra of all compact perturbations of a hermitian operator on
Hilbert space and found in 1909 that their intersection consisted precisely of those points of the
spectrum which were not isolated eigenvalues of finite multiplicity. This “ Weyl’s theorem ” has
since been extended to hyponormal and to Toeplitz operators ( Coburn [8] ), to seminormal and
other operators ( Berberian [2], [3] ) and to Banach spaces operators ( Istrătescu [11], Oberai
[17] ). Variants have been discussed by Harte and Lee [10] and Rakoc̆evic̀ [18], M.Berkani and
J.J.Koliha [6]. In this note we show how generalized Weyl’s theorem follows from the equality
of the Drazin spectrum and a variant of the Weyl’s spectrum.

Recall that the “ Weyl’s spectrum ” of a bounded linear operator T on a Banach space X

is the intersection of the spectra of its compact perturbations:

σw(T ) =
⋂
{σ(T + K) : K ∈ K(X)} . (1)

Equivalently λ ∈ σw(T ) iff T − λI fails to be Fredholm of index zero. The “ Browder spectrum
” is the intersection of the spectra of its commuting compact perturbations:

σb(T ) =
⋂
{σ(T + K) : K ∈ K(X) ∩ comm(T )} . (2)

Equivalently λ ∈ σb(T ) iff T −λI fails to be Fredholm of finite ascent and descent. “ the Weyl’s
theorem holds ” for T iff

σ(T )\σw(T ) = π00(T ) , (3)

where we write
π00(T ) = {λ ∈ iso σ(T ) : 0 < dimN(T − λI) < ∞} (4)

for the isolated points of the spectrum which are eigenvalues of finite multiplicity. Harte and
Lee [10] have discussed a variant of Weyl’s theorem: “ the Browder’s theorem holds ” for T iff

σ(T ) = σw(T ) ∪ π00(T ) . (5)
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What is missing is the disjointness between the Weyl spectrum and the isolated eigenvalues of
finite multiplicity: equivalently

σw(T ) = σb(T ) . (6)

For a bounded linear operator T and a nonnegative integer n define T[n] to be the restriction
of T to R(Tn) viewed as a map from R(Tn) into R(Tn) ( in particular T[0] = T ). If for
some integer n the range space R(Tn) is closed and T[n] is upper (resp.a lower) semi-Fredholm
operator, then T is called an upper (resp.lower) semi-B-Fredholm operator. Moreover if T[n] is
a Fredholm(Weyl or Browder) operator, then T is called a B-Fredholm (B-Weyl or B-Browder)
operator. Similarly, we can define the upper semi-B-Fredholm, B-Fredholm, B-Weyl, and B-
Browder spectrums σSF+(T ), σBF (T ), σBW (T ), σBB(T ). A semi-B-Fredholm operator is an
upper or a lower semi-B-Fredholm operator.

(See [14]) Let T ∈ B(X) and let

4(T ) = {n ∈ N : ∀m ∈ N,m ≥ n ⇒ [R(Tn) ∩N(T )] ⊆ [R(Tm) ∩N(T )]}.

Then the degree of stable iteration dis(T) of T is defined as dis(T ) = inf 4 (T ).
Let T be a semi-B-Fredholm operator and let d be the degree of the stable iteration of T .

It follows from [4, Proposition 2.1] that if T[d] is a semi-Fredholm operator, and ind(T[m]) =
ind(T[d]) for each m ≥ d. This enables us to define the index of a semi-B-Fredholm operator T

as the index of the semi-Fredholm operator T[d].
In the case of a normal operator T acting on a Hilbert space, Berkani [5, Theorem 4.5]

showed that
σBW (T ) = σ(T )\E(T ),

E(T ) is the set of all eigenvalues of T which are isolated in the spectrum of T . This result gives
a generalization of the classical Weyl’s theorem. We say T obeys generalized Weyl’s theorem if
σBW (T ) = σ(T )\E(T )( [6, Definition 2.13]).

In this paper, we describe Browder’s theorem and generalized Weyl’s theorem using two
new spectrum sets which we define in section 2.

§2. Browder’s theorem and generalized Weyl’s theorem

Using Corollary 4.9 in [9], we can say that σBB(T ) = σD(T ), where σD(T ) = {λ ∈ σ(T ) : λ

is not a pole of T }. We call σD(T ) the Drazin spectrum of T . We can prove that the Drazin
spectrum satisfies the spectral mapping theorem, and the Drazin spectrum of a direct sum is
the union of the Drazin spectrum of the components.

In this section, our first result is:

Theorem 2.1. Browder’s theorem holds for T if and only if σBW (T ) = σD(T ).

Proof. Suppose that Browder’s theorem holds for T . We only need to prove that σD(T ) ⊆
σBW (T ). If λ0 is not in σBW (T ), then T−λ0I is B-Weyl operator, and, in particular, an operator
of topological uniform descent. [7, Remark iii] asserts that there exists ε > 0 such that T − λI



60 Junhong Tian and Wansheng He No. 1

is Weyl if 0 < |λ − λ0| < ε. Since Browder’s theorem holds for T , it follows that T − λI is
Browder operator if 0 < |λ− λ0| < ε. Then λ0 is a boundary of σ(T ). [9, Corollary 4.9.] tells
us that λ0 is not in σD(T ). Conversely, Suppose that σBW (T ) = σD(T ). We need to prove
that σb(T ) = σw(T ). Suppose that T − λ0I is Weyl. Then λ0 is not in σD(T ), which means
that λ0 ∈ isoσ(T ). Thus T − λ0I is Browder. This proves that Browder’s theorem holds for T .

Theorem 2.2. If Browder’s theorem holds for T ∈ B(X) and S ∈ B(X), and p is a
polynomial, then Browder’s theorem holds for

p(T ) ⇐⇒ p(σBW (T )) = σBW (p(T ));

Browder’s theorem holds for

T ⊕ S ⇐⇒ σBW (T ⊕ S) = σBW (T ) ∪ σBW (S).

Proof. Browder’s theorem holds for p(T ) if and only if σBW (p(T )) = σD(p(T )) =
p(σD(T )) = p(σBW (T )) and Browder’s theorem holds for T ⊕ S if and only if σBW (T ⊕ S) =
σD(T ⊕ S) = σD(T ) ∪ σD(S) = σBW (T ) ∪ σBW (S).

Theorem 2.3. If T ∈ B(X), then

ind(T − λI)ind(T − µI) ≥ 0 for each pairλ, µ ∈ C\σe(T )

if and only if
p(σBW (T )) = σBW (p(T )) for each polynomial p.

Proof. By [7, Remark iii], ind(T − λI)ind(T − µI) ≥ 0 for each pairλ, µ ∈ C\σe(T ) if
and only if ind(T −λI)ind(T −µI) ≥ 0 for each pair λ, µ ∈ C\σBF (T ). From [7, Corollary 3.3]
and [5, Theorem 3.2], the spectral mapping theorem for the B-Weyl spectrum may be rewritten
as the implication, for arbitrary n ∈ N and λi ∈ C,

(T − λ1I)(T − λ2I) · · · (T − λnI) B−Weyl =⇒ T − λjI B−Weyl for each j = 1, 2, · · · , n.

Now if ind(T − λI) ≥ 0 on C\σBF (T ), then we have

n∑

j=1

ind(T − λjI) = ind
n∏

j=1

(T − λjI) = 0 =⇒ ind(T − λjI) = 0(j = 1, 2, · · · , n),

and similarly if ind(T − λI) ≤ 0 on C\σBF (T ). If conversely there exist λ, µ ∈ C\σe(T ) for
which ind(T − λI) = −m < 0 < k = ind(T − µI), then p(T ) = (T − λI)k(T − µI)m is a Weyl
operator whose factors are not B-Weyl. It is a contradiction. The proof is completed.

We turn to a variant of the Weyl spectrum, involving a condition introduced by Saphar
[20] and the “ zero jump ” condition of Kato [12]. Let:

ρ1(T ) = {λ ∈ C : there exists ε > 0 such that T − µI is Weyl and

N(T − µI) ⊆
∞⋂

n=1

R[(T − µI)n] if 0 < |µ− λ| < ε}

and let ρD(T ) = C\σD(T ), ρ(T ) = C\σ(T ), σ1(T ) = C\ρ1(T ). Then ρ(T ) ⊆ ρD(T ) ⊆ ρ1(T ).
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T is called isoloid if λ ∈ isoσ(T ) =⇒ N(T − λI) 6= {0}.
Theorem 2.4. T ∈ B(X) is isoloid and generalized Weyl’s theorem holds for T if and

only if σ1(T ) = σD(T ).

Proof. Suppose T is isoloid and generalized Weyl’s theorem holds for T . We only need to
prove σD(T ) ⊆ σ1(T ). Let λ0 ∈ σD(T ) and suppose λ0 ∈ ρ1(T ). Then there exists ε > 0 such

that T − λI is Weyl and N(T − λI) ⊆
∞⋂

n=1
R[(T − λI)n] if 0 < |λ− λ0| < ε. Since generalized

Weyl’s theorem implies Weyl’s theorem for T ([6, Theorem 3.9]), it follows that T − λI is

Browder and therefor N(T − λI) = N(T − λI) ∩
∞⋂

n=1
R[(T − λI)n] = {0} for 0 < |λ− λ0| < ε,

which means that T − λI is invertible if 0 < |λ− λ0| < ε. Then λ0 is an isolated point in σ(T ).
Thus λ0 ∈ E(T ) = σ(T )\σBW (T ) because T is isoloid. [9, Corollary 4.9] asserts that λ0 is not
in σD(T ), it is a contradiction.

Conversely, Suppose σ1(T ) = σD(T ). By E(T ) ⊆ ρ1(T ) = ρD(T ), we get E(T ) ⊆
σ(T )\σBW (T ). Conversely, let λ0 ∈ σ(T )\σBW (T ), that is T − λ0I is B-Weyl, then there

exists ε > 0 such that T − λI is Weyl and N(T − λI) ⊆
∞⋂

n=1
R[(T − λI)n] if 0 < |λ − λ0| < ε,

then λ0 ∈ ρ1(T ) = ρD(T ). Thus λ0 ∈ E(T ). In the following, we will prove T is isoloid. Let
λ0 ∈ isoσ(T ), then λ0 ∈ ρ1(T ) = ρD(T ), thus λ0 is a pole of T , so N(T − λ0I) 6= {0}, which
means that T is isoloid.

Corollary 2.5. Suppose T, S ∈ B(X) are all isoloid. If generalized Weyl’s theorem holds
for T and S and if p is a polynomial, then generalized Weyl’s theorem holds for

p(T ) ⇐⇒ σ1(p(T )) = p(σ1(T ))

and generalized Weyl’s theorem holds for

T ⊕ S ⇐⇒ σ1(T ⊕ S) = σ1(T ) ∪ σ1(S).

Proof. If T and S are isoloid, then p(T ) and T ⊕ S are isoloid. Then generalized Weyl’s
theorem holds for p(T ) ⇐⇒ σ1(p(T )) = σD(p(T )) = p(σD(T )) = p(σ1(T )) and generalized
Weyl’s theorem holds for T⊕S ⇐⇒ σ1(T⊕S) = σD(T⊕S) = σD(T )∪σD(S) = σ1(T )∪σ1(S).

In the following, we suppose that H(T ) ( H(σ(T )) ) is the class of all complex-valued
functions which are analytic on a neighborhood ( region ) of σ(T ).

Theorem 2.6. T ∈ B(X), then

ind(T − λI)ind(T − µI) ≥ 0 for each pairλ, µ ∈ C\σe(T )

if and only if
f(σ1(T )) ⊆ σ1(f(T )) for anyf ∈ H(T ).

Proof. Suppose ind(T − λI)ind(T − µI) ≥ 0 for each pair λ, µ ∈ C\σe(T ). For any f ∈
H(T ), let µ0 ∈ f(σ1(T )) and suppose µ0 = f(λ0), where λ0 ∈ σ1(T ). If µ0 is not in σ1(f(T )),

then there exists δ > 0 such that f(T )− µI is Weyl and N(f(T )− µI) ⊆
∞⋂

n=1
R[(f(T )− µI)n]
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if 0 < |µ − µ0| < δ. Then µ ∈ ρk(f(T )), where ρk(f(T )) = {λ ∈ C : R(f(T ) − λI) is

closed and N(f(T ) − λI) ⊆
∞⋂

n=1
R[(f(T ) − λI)n]}, which is defined by T.Kato in [14]. In the

following we will prove that λ0 ∈ ρ1(T ). By continuity of f(λ), there exists ε > 0 such that
0 < |f(λ′0) − f(λ0)| = |f(λ′0) − µ0| < δ if 0 < |λ′0 − λ0| < ε. Then f(T ) − f(λ′0)I is Weyl and

N(f(T )− f(λ′0)I) ⊆
∞⋂

n=1
R[(f(T )− f(λ′0)I)n]. Thus f(λ′0) is not in σk(f(T )) = f(σk(T )) ([21,

Satz 6]). So λ′0 ∈ ρk(T ), which means that N(T−λ′0I) ⊆
∞⋂

n=1
R[(T−λ′0I)n]. Clearly, λ0 is not an

isolated point of σ(T ). Suppose λ′0 ∈ σ(T ) satisfies 0 < |λ′0− λ0| < ε. Let h(λ) = f(λ)− f(λ′0).
Then h(λ) 6= 0 for all λ ∈ σk(T ). Clearly, h has zeros in σ(T ). [21, Satz 3] asserts now that h

has only a finite number of zeros in σ(T ). Let λ′0, λ
′
1, · · · , λ′m be these zeros (λi 6= λj for i 6= j)

and n0, n1, n2, · · · , nm be their respective orders. Then we can denote f(T )− f(λ′0)I by

f(T )− f(λ′0)I = (T − λ′0I)n0(T − λ′1I)n1 · · · (T − λ′mI)nmg(T ) ,

where g(T ) is invertible and λi 6= λj for i, j = 0, 1, 2, · · · ,m. Since f(T ) − f(λ′0)I is Weyl, it

follows that T −λ′iI is Fredholm and 0 = ind[f(T )−f(λ′0)I] =
m∑

i=0

ind(T −λ′iI)ni . Thus T −λ′iI

is Weyl. We now get that there exists ε > 0 such that T − λ′0I is Weyl and N(T − λ′0I) ⊆
∞⋂

n=1
R[(T − λ′0I)n] if 0 < |λ′0 − λ0| < ε. Then λ0 ∈ ρ1(T ). It is in contradiction to the fact

λ0 ∈ σ1(T ). Then f(σ1(T )) ⊆ σ1(f(T )) for any f ∈ H(T ).
For the converse, if there exist λ, µ ∈ C\σe(T ) for which ind(T − λI) = −m < 0 < k =

ind(T − µI), let f(T ) = (T − λI)k(T − µI)m. Then 0 ∈ f(σ1(T )) but 0 is not in σ1(f(T )). It
is a contradiction. The proof is completed.

Corollary 2.7. If T ∈ B(X) is isoloid and generalized Weyl’s theorem holds for T , then
the following statements are equivalent:

(1) ind(T − λI)ind(T − µI) ≥ 0 for each pair λ, µ ∈ C\σe(T );
(2) σBW (f(T )) = f(σBW (T )) for every f ∈ H(σ(T ));
(3) generalized Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T ));
(4) σ1(f(T )) = f(σ1(T )) for every f ∈ H(σ(T )).
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Abstract In this study two parameter motion is given by using the rank of rotation matrix

in Lorentzian space. It is shown locus of instantaneous screw axis is a ruled surface at any

position of (λ, µ) = (0, 0).
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§1. Introduction and preliminaries

Let IRn = {(r1, r2, · · · , rn) | r1, r2, ..., rn ∈ IR}be a n−dimensional vector space, r =
(r1, r2, · · · , rn) and s = (s1, s2, · · · , sn) be two vectors in IRn, the Lorentz scalar product of r

and s is defined by
〈r, s〉L = −r1s1 + r2s2 + · · ·+ rnsn .

Ln = (IRn, 〈, 〉L) is called n−dimensional Lorentz space, or Minkowski n−space. We denote
Lnas (IRn, 〈, 〉L) . For any r = (r1, r2, r3), s = (s1, s2, s3) ∈ L3, in the meaning Lorentz vector
product of r and s is defined by

r ∧L s = (r2s3 − r3s2, r1s3 − r3s1, r2s1 − r1s2) ,

where e1 ∧L e2 = −e3, e2 ∧L e3 = e1vector, a lightlike vector or a timelike vector if 〈r, r〉L > 0,
〈r, r〉L = 0 or 〈r, r〉L < 0 respectively. For r ∈ Ln, the norm of r defined by ‖r‖L =

√
|〈r, r〉L|,

and r is called a unit vector if ‖r‖L = 1 [5]. In the Minkowski n-space, the two parameter
motion of a rigid body is defined by

Y (λ, µ) = A(λ, µ)X + C(λ, µ), (1.1)

where A ∈ SO(n, 1) is a positive semi orthogonal matrix, C ∈ IRn
1 is a column matrix, Y and

X are position vectories of the same point B respectively, for the fixed and moving space with
respect to semi orthonormal coordinate systems. The two parameter motion is given by (1.1),
for (λ, µ) = (0, 0), we have

A(0, 0) = A−1(0, 0) = AT (0, 0) = I
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and
C(0, 0) = 0.

Then fixed and moving space is coincided. If λ = λ(t), µ = µ(t), then one parameter motion is
obtained from two parameter motion. Since A ∈ SO(n, 1), we have

AT (λ, µ)εA(λ, µ)ε = A(λ, µ)εAT (λ, µ)ε = In,where ε =




−1 0 . 0 0

0 1 . . .

. . . . .

0 . . . 0

0 . . 0 1




nxn

.

For the sake of the short we shall take as AT (λ, µ) = AT and A(λ, µ) = A.
Definition 1. Taking the derivation with respect to t in equation Y (λ, µ) = A(λ, µ)X +

C(λ, µ) where let λ = λ(t) and µ = µ(t), then it follows that

.

Y = Yλ

.

λ + Yµ
.
µ,

.

A = Aλ

.

λ + Aµ
.
µ,

.

C = Cλ

.

λ + Cµ
.
µ,

.

Y =
.

AX +
.

C + A
.

X.

So
.

Y ,
.

AX+
.

C, A
.

X are called absolutely sliding and relative velocities of the point B has position
vectories

−→
b , respectively. Let X be solution of system of

−→
Vf =

.

AX +
.

C = 0 and the solution
is constant on the fixed and moving space at position t. These points X is called instantaneous
pole points at every position t.

Definition 2. If rank
.

A = n − 1 = r be an even number on the two parameter motion
given by equation Y (λ, µ) = A(λ, µ)X +C(λ, µ), then at any position of points the locus having
a velocity vector with stationary norm is a line. The line is called instantaneous screw axis and
denoted by I.S.A. [2]. Furthermore the moving space screw axis is defined by X = P + σ E

where P is a particular solution of equation
.

AX +
.

C = 0 and E represent a bases of solution
space of homogeneous equation

.

AX = 0.

§2. The instantaneous screw axes of two parameter motions

Theorem 1. Let A ∈ SO(n, 1) and let n be an odd number. Then the rank of Aλ and
Aµ are even.

Proof. Since
AT (λ, µ)εA(λ, µ)ε = A(λ, µ)εAT (λ, µ)ε = In

and A(0, 0) = AT (0, 0) = I, then

AλεAT ε + AεAT
λ ε = 0, ε2 = In
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Aλ + εAT
λ ε = 0

and
AµεAT ε + AεAT

µ ε = 0

Aµ + εAT
µ ε = 0.

Thus Aλ and Aµ are semi skew-symmetric matrices. Since n is an odd number it follows that

det Aλ = 0,

det Aµ = 0.

Thus it must be rank (Aλ) = r (even) and rank (Aµ) = r (even).
Theorem 2. Let A ∈ SO(n, 1). Then

rank Aλλ = 0 ⇔ rank Aλ = 0

and
rank Aµµ = 0 ⇔ rank Aµ = 0.

Proof. Since
A(λ, µ)εAT (λ, µ)ε = In (2.1)

it takes derivation with respect to λ, it follows that

AλεAT ε + AεAT
λ ε = 0

AλλεAT ε + AλεAT
λ ε + AλεAT

λ ε + AεAT
λλε = 0

AλλAT + 2AλεAT
λ ε + AεAT

λλε = 0. (2.2)

Since rank Aλλ = 0, we get Aλλ = 0 and AT
λλ = 0. We have following that (2.1)

AλεAT
λ ε = 0 ⇒ AλεAT

λ = 0.

For every x ∈ IR1
n, we have (

AλεAT
λ

)
xT = (0) xT

(
AλεAT

λ

)
xT = 0

x
(
AλεAT

λ

)
xT = 0

(xAλ) ε (xAµ)T = 0.

So that 〈xAλ, xAλ〉L = 0 (from the non-degenere property), xAλ = 0. Since it is true for every
x ∈ IR1

n , so we get Aλ = 0 and rank (Aλ) = 0. It takes derivation with respect to µ in the
equation (2.1) similarly it follows that

AµεAT ε + AεAT
µ ε = 0,

AµµεAT ε + AµεAT
µ ε + AµεAT

µ ε + AεAT
µµε = 0,

AµµεAT ε + 2AµεAT
µ ε + AεAT

µµε = 0.
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Since rank (Aµµ) = 0, we get Aµµ = 0 and AT
µµ = 0, thus we have

AµεAT
µ ε = 0 ⇒ AµεAT

µ = 0.

Since it is true for every x ∈ IR1
n, we have the following

(
AµεAT

µ

)
xT = (0) xT

(
AµεAT

µ

)
xT = 0

x
(
AµεAT

µ

)
xT = 0

(xAµλ) ε (xAµ)T = 0.

Hence
〈xAµ, xAµ〉L = 0

xAµ = 0.

For every x ∈ IR1
n it is true, we get Aµ = 0 and rank (Aµ) = 0. Conversely it is obviously to

see.

§3. Special case n = 3

SinceAλ and Aµ are semi skew-symmetric matrices especially

Aλ =




0 j3 −j2

j3 0 −j1

−j2 j1 0


 , Aµ =




0 i3 −i2

i3 0 −i1

−i2 i1 0


 .

Let Aλ = −εAT
λ ε,Aµ = −εAT

µ ε. The equation X = A−1(λ, µ)Y (λ, µ) is obtained from the
equation of Y (λ, µ) = A(λ, µ)X. By differentiating the equation Y (λ, µ) = A(λ, µ)X with
respect to t , we have

Yλ

.

λ + Yµ
.
µ =

(
Aλ

.

λ + Aµ
.
µ
)

X

=
(
Aλ

.

λ + Aµ
.
µ
)

A−1(λ, µ)Y (λ, µ).

In the position (λ, µ) = (0, 0), we have

Yλ

.

λ + Yµ
.
µ =

(
Aλ

.

λ + Aµ
.
µ
)

Y (λ, µ)

= ΩY (λ, µ).

Since Aλ and Aµ are semi skew-symmetric matrices, we get

Ω =




0
(
j3

.

λ + i3
.
µ
)

−
(
j2

.

λ + i2
.
µ
)

(
j3

.

λ + i3
.
µ
)

0 −
(
j1

.

λ + i1
.
µ
)

−
(
j2

.

λ + i2
.
µ
) (

j1
.

λ + i1
.
µ
)

0



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and also angular velocity matrix is an semi skew-symmetric. Since A matrix is semi orthogonal,
we have the following equation

A(λ, µ)εAT (λ, µ)ε = I.

Now differentiating with respect to t, it follows that
(
Aλ

.

λ + Aµ
.
µ
)

εAT (λ, µ)ε + A(λ, µ)ε
(
AT

λ

.

λ + AT
µ

.
µ
)

ε = 0.

For (λ, µ) = (0, 0), we obtain

(
Aλ

.

λ + Aµ
.
µ
)

+ ε
(
Aλ

.

λ + Aµ
.
µ
)T

ε = 0.

Since Ω = Aλ

.

λ + Aµ
.
µ, it follows that

Ω + ε ΩT ε = 0,

where Ω is semi skew-symmetric matrix. Since pole points which are the points of sliding
velocity is zero given by

−→
Vf =

(
Aλ

.

λ + Aµ
.
µ
)

X +
(
Cλ

.

λ + Cµ
.
µ
)

is pole points of two parameter motion by

Y (λ, µ) = A(λ, µ)X + C(λ, µ).

The equation (
Aλ

.

λ + Aµ
.
µ
)

X +
(
Cλ

.

λ + Cµ
.
µ
)

= 0 (3.1)

can be solution it must be rank
(
Aλ

.

λ + Aµ
.
µ
)

= rank Ω = 2. It follows that

Y (λ, µ) = A(λ, µ)X + C(λ, µ)

A(λ, µ)X = Y (λ, µ)− C(λ, µ)

A−1(λ, µ)A(λ, µ)X = A−1(λ, µ) (Y (λ, µ)− C(λ, µ))

X = A−1(λ, µ) (Y (λ, µ)− C(λ, µ)) .

If we get write this value of X in the equation (3.1), we have
(
Aλ

.

λ + Aµ
.
µ
) [

A−1(λ, µ) (Y (λ, µ)− C(λ, µ))
]
+

(
Cλ

.

λ + Cµ
.
µ
)

= 0. (3.2)

In the position (λ, µ) =(0, 0), we have
(
Aλ

.

λ + Aµ
.
µ
)

A−1(λ, µ) =
(
Aλ

.

λ + Aµ
.
µ
)

= Ω.

And if we say
Y (λ, µ)− C(λ, µ) = Y ∗(λ, µ),

then the equation (3.2) form

Ω ∧L Y ∗(λ, µ) +
(
Cλ

.

λ + Cµ
.
µ
)

= 0. (3.3)
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The solution of equation (3.3) gives fixed pole points of the motion. For the solution of equation
(3.3) it must be verified the condition

〈Ω, Cλ

.

λ + Cµ
.
µ〉L = 0.

In generally, this condition can’t verify. But we can separate two composite velocities
Cλ

.

λ + Cµ
.
µ either orthogonal

−→
Ω or parallel. If W is angular velocity matrix of moving space,

then it can find W = A−1(λ, µ)Ω. Since A−1(0, 0) = I, we have W = Ω in the position
(λ, µ) = (0, 0).
Let

E =
Ω

‖Ω‖L

and
E∗ =

W

‖W‖L

.

Then we have E∗ = ηAE, where η ∈ IR. For (λ, µ) = (0, 0) and η = 1, it follows that

E∗ = E.

We can separate two components of the velocity Cλ

.

λ + Cµ
.
µ which form

U =
(
Cλ

.

λ + Cµ
.
µ
)
− 〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L Ω

and

V =
〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L Ω,

one is orthogonal to vector
−→
Ω , another is parallel to vector

−→
Ω respectively, in which

Cλ

.

λ + Cµ
.
µ =

(
Cλ

.

λ + Cµ
.
µ
)
− 〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L Ω +
〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L Ω.

That is

〈Ω, U〉L =

〈
Ω,

(
Cλ

.

λ + Cµ
.
µ
)
− 〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L Ω

〉

L

=
〈
Ω, Cλ

.

λ + Cµ
.
µ
〉

L
− 〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L 〈Ω,Ω〉L

=
〈
Ω, Cλ

.

λ + Cµ
.
µ
〉

L
−

〈
Ω, Cλ

.

λ + Cµ
.
µ
〉

L

= 0

and

V =
〈Ω, Cλ

.

λ + Cµ
.
µ〉L

〈Ω,Ω〉L
= σ

−→
Ω.
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If we write velocity U replacing Cλ

.

λ+Cµ
.
µ in equation (3.3), we have this condition 〈Ω, U〉L = 0

is verified in this equation. Let rank Ω = 2 ,then the system can be solution. Now we get the
solution of the equation

Ω ∧L Y ∗(λ, µ) + U = 0.

Here ~a ∧L (~b ∧L ~c) = 〈−→a ,
−→
b 〉L−→c − 〈−→a ,−→c 〉L−→b . It follows that

Ω ∧ LY ∗(λ, µ) + U = 0,

Ω ∧L (Ω ∧L Y ∗(λ, µ) + U) = 0,

Ω ∧L (Ω ∧L Y ∗(λ, µ)) + Ω ∧L U = 0,

〈Ω,Ω〉L Y ∗(λ, µ)− 〈Ω, Y ∗(λ, µ)〉L Ω + Ω ∧L Y = 0,

Y ∗(λ, µ) =
〈Ω, Y ∗(λ, µ)〉L

〈Ω,Ω〉L
Ω− Ω ∧L U

〈Ω,Ω〉L
,

Y ∗(λ, µ) = −Ω ∧L U

〈Ω,Ω〉L
+ σ Ω.

If we write the last equation replacing by the equation

Y ∗(λ, µ) = Y (λ, µ)− C(λ, µ),

so we have
Y (λ, µ) = −Ω ∧L U

〈Ω,Ω〉L
+ C(λ, µ) + σ Ω.

Hence we get
Y (λ, µ) = Q + σ Ω, σ ∈ IR. (3.4)

This means that it is a line which is passes though point Q and straight Ω. The line is called
fixed pole axis in the fixed space, the expression of the fixed pole axis in the moving space find
to write instead of value Y (λ, µ) in the equation (1.1), it follows that

−Ω ∧L U

〈Ω,Ω〉L
+ C(λ, µ) + σ Ω = A(λ, µ)X + C(λ, µ),

−Ω ∧L U

〈Ω,Ω〉L
+ σ Ω = A(λ, µ)X,

X = −A−1(λ, µ)
Ω ∧L U

〈Ω,Ω〉L
+ A−1(λ, µ)σ Ω.

In the position (λ, µ) = (0, 0), it follows that

X = −Ω ∧L U

〈Ω,Ω〉L
+ σ Ω,

X = P + σ Ω.

If the pole axis of fixed and moving space coincide in the position (λ, µ) = (0, 0), we have P = Q

and C(0, 0) = 0 . Thus lines passes though points Q and P is straight
−→
Ω , which are the pole
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axis in fixed and moving space. In the position (λ, µ) of motion the lines have a velocity vector
with stationary norm, locus of the lines which called instantaneous screw axis. The equations

Y = Q + σ Ω, σ ∈ IR

X = P + σ Ω, σ ∈ IR

depend only on parameters
.

λ and
.
µ. Thus there is ∞2 the one parameter motion. There are

∞ instantaneous screw axis since the parameters
.

λ and
.
µ depend only on t [1]. The locus of

this screw axis is a ruled surface. Indeed the following equations determine a ruled surface,

Y (t, σ) = Q(t) + σ Ω(t), σ ∈ IR

X(t, σ) = P (t) + σ Ω(t), σ ∈ IR.
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Abstract In this paper, we study the interior structures of Girard quantale and the cyclic

dualizing elements of Girard quantale. some equivalent descriptions for Girard quantale are

given and an example which shows that the cyclic dualizing element is not unique is given.
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§1. Preliminaries

Quantales were introduced by C.J. Mulvey in [1] with the purpose of studying the spectrum
of C∗-algebras and the foundations of quantum mechanics. The study of such partially ordered
algebraic structures goes back to a series of papers by Ward and Dilworth [2, 3] in the 1930s.
It has become a useful tool in studying noncommutative topology, linear logic and C∗-algebra
theory [4-6]. Following Mulvey, various types and aspects of quantales have been considered
by many researchers [7-9]. The importance of quantales for linear logic is revealed in Yetter’s
work [10]. Yetter has clarified the use of quantales in linear logic and he has introduced the
term “Girard quantale”. In [11], J. Paseka and D. Kruml have shown that any quantale can be
embedded into a unital quantale. In [12], K.I. Rosenthal has proved that every quantale can
be embedded into a Girard quantale. Thus, it is important to study Girard quantale. This is
the motivation for us to investigate Girard quantale. In the note, we shall study the interior
structures of Girard quantale and the cyclic dualizing element in Girard quantales.

We use 1 to denote the top element and 0 the bottom element in a complete lattice. For
notions and concepts, but not explained, please to refer to [12].

Definition 1.1. A quantale is a complete lattice Q with an associative binary operation
“&” satisfying:

a&(
∨

bα) =
∨

(a&bα) and (
∨

bα)&a =
∨

(bα&a)

for all a ∈ Q, {bα} ⊆ Q.

1This work was supported by the National Natural Science Foundation of China(Grant No.10871121) and

the Research Award for Teachers in Nangyang Normal University, China( nynu200749)
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An element e ∈ Q is called a unit if a&e = e&a = a for all a ∈ Q. Q is called unital if Q

has the unit e.
Since a&− and −&a preserve arbitrary sups for all a ∈ Q, they have right adjoints

and we shall denote them by a −→r − and a −→l − respectively.
Proposition 1.2. Let Q be a quantale, a, b, c ∈ Q. Then
(1) a&(a −→r b) ≤ b;
(2) a −→r (b −→r c) = b&a −→r c;
Again, analogous results hold upon replacing −→r by −→l .

Definition 1.3. Let Q be a quantale, An element c of Q is called cyclic, if a −→r c = a −→l

c for all a ∈ Q. d ∈ Q is called a dualizing element, if a = (a −→l d) −→r d = (a −→r d) −→l d

for all a ∈ Q.
Definition 1.4. A quantale Q is called a Girard quantale if it has a cyclic dualizing

element d.
Let Q be a Girard quantale with cyclic dualizing element d and a, b ∈ Q, define the binary

operation “‖ ” by a‖b = (a⊥&b⊥)⊥, then we can prove that a‖− and −‖a preserve arbitrary infs
for all a ∈ Q, hence they have left adjoints and we shall denote them by a 7−→r and a 7−→l

respectively. If a −→r d =a −→l d, we shall denote it by a −→ d, or more frequently by a⊥ if
d is a cyclic dualizing element.

§2. The equivalent descriptions for Girard quantale

In this section, we shall study the interior structures of Girard quantale and give some
equivalent descriptions for Girard quantale. According to the above, we know that there are six
binary operations on a Girard quantale such as & , −→r , −→l , ‖ , 7−→r , 7−→l ,
we shall respectively call them multiplying, right implication, left implication, Par operation,
dual right implication and dual left implication for convenience.

Theorem 2.1. Let Q be a unital quantale, ⊥ : Q −→ Q an unary operation on Q. Then
Q is a Girard quantale if and only if

(1) a −→l b = (a&b⊥)⊥; (2) a −→r b = (b⊥&a)⊥.
Proof. The necessity is obvious. Sufficiency: suppose (1) and (2) hold, a ∈ Q. Denote

the unit element by e on Q, then a = e −→l a = (e&a⊥)⊥ = (a⊥)⊥. Thus a = a⊥⊥, hence

a −→l e⊥ = (a&e⊥⊥)⊥ = (a&e)⊥ = a⊥.

Similarly we get a⊥ = a −→r e⊥. Take d = e⊥, thus d is a cyclic element of Q. Again
∀a ∈ Q, (a −→ e⊥) −→ e⊥ = a⊥ −→ e⊥ = (a⊥)⊥ = a. This proves d = e⊥ is a dualizing
element on Q. Thus the proof is completed.

Theorem 2.2. Let Q be a complete lattice. −→r : Q×Q −→ Q is a binary operation
on Q, a −→r : Q −→ Q and −→r a : Q −→ Qop preserve arbitrary sups for all a ∈ Q.
⊥ : Q −→ Q is a unary operation on Q, e ∈ Q. For all a, b, c ∈ Q,

(1) e −→r a = a; a −→r e⊥ = a⊥;
(2) (a⊥)⊥ = a; a ≤ b =⇒ b⊥ ≤ a⊥;
(3) (a −→r b⊥)⊥ −→r c = a −→r (b −→r c);
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(4) c ≤ a −→r b⊥ ⇐⇒ a ≤ b −→r c⊥.

Then Q is a Girard quantale and −→r is the right implication operation.
Proof. Define the binary operation a&b = (b −→r a⊥)⊥ for all a, b ∈ Q.

& satisfies associative law: In fact, for all a, b, c ∈ Q,

(a&b)&c = (b −→r a⊥)⊥&c = (c −→r (b −→r a⊥))⊥.

Using the condition (3), we have (c −→r (b −→r a⊥))⊥ = ((c −→r b⊥)⊥ −→r a⊥)⊥. By the
definition of the binary operation & we can get

a&(b&c) = a&(c −→r b⊥)⊥ = ((c −→r b⊥)⊥ −→r a⊥)⊥.

So (a&b)&c = a&(b&c).
Using the condition (4), we have a&b ≤ c ⇐⇒ (b −→r a⊥)⊥ ≤ c ⇐⇒ c⊥ ≤ b −→r a⊥ ⇐⇒

b ≤ a −→r c for all a, b, c ∈ Q.

For any a ∈ Q, {bi}i∈I ⊆ Q. If I = ∅, then a&0 = (a −→r 0⊥)⊥ = (a −→r 1)⊥, since
again (a −→r 1)⊥ ≤ 0 ⇐⇒ 1 ≤ a −→r 1 ⇐⇒ a&1 ≤ 1, the last inequality obviously holds. So
a&0 = 0. Thus a& preserves empty-sups. If I 6= ∅, then

a&(
∨

i∈I bi) = ((
∨

i∈I bi) −→r a⊥)⊥

= (
∧

i∈I(bi −→r a⊥))⊥

=
∨

i∈I(bi −→r a⊥)⊥

=
∨

i∈I(a&bi).

Hence a& preserves arbitrary sups for all a ∈ Q. Similarly, we can prove &a preserves arbitrary
sups for all a ∈ Q. Thus (Q,&) is a quantale.

In accordance with the condition (1), we know e is the unit element corresponding to &
on Q and a −→r e⊥ = a⊥. Denote by a −→l the right adjoint of &a. Then

a −→l e⊥ =
∨{x ∈ Q|x ≤ a −→l e⊥}

=
∨{x ∈ Q|x&a ≤ e⊥}

=
∨{x ∈ Q|(a −→r x⊥)⊥ ≤ e⊥}

=
∨{x ∈ Q|e ≤ a −→r x⊥}

=
∨{x ∈ Q|a&e ≤ x⊥}

=
∨{x ∈ Q|a ≤ x⊥}

=
∨{x ∈ Q|x ≤ a⊥}

= a⊥.

This show e⊥ is a cyclic element in Q. Using conditions (1) and (2) we know e⊥ is also a
dualizing element on Q. Hence (Q,&,⊥) is a Girard quantale. We can easily prove −→r is
the right implication operation on Q by the above consideration.

Theorem 2.3. Let Q be a complete lattice. 7−→r : Q×Q −→ Q is a binary operation
in Q, a 7−→r : Q −→ Q and 7−→r a : Qop −→ Q preserve arbitrary sups for all a ∈ Q.
⊥ : Q −→ Q is an unary operation in Q, d ∈ Q. For all a, b, c ∈ Q,
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(1) d 7−→r a = a; a 7−→r d⊥ = a⊥;
(2) (a⊥)⊥ = a; a ≤ b =⇒ b⊥ ≤ a⊥;
(3) (a 7−→r b)⊥ 7−→r c = a 7−→r (b⊥ 7−→r c);
(4) c ≥ a 7−→r b ⇐⇒ b⊥ ≥ c 7−→r a⊥.

Then Q is a Girard quantale and 7−→r is the dual right implication operation.
Proof. Define binary operation a&b = (b⊥ 7−→r a) for all a, b ∈ Q,

(i) The binary operation & is associative: Since ∀a, b, c ∈ Q,

(a&b)&c = (b⊥ 7−→r a)&c

= c⊥ 7−→r (b⊥ 7−→r a)

= (c⊥ 7−→r b)⊥ 7−→r a

= a&(c⊥ 7−→r b)

= a&(b&c).

(ii) Using the condition (2), we can prove

(
∨

i∈I

ai)⊥ =
∧

i∈I

(ai)⊥; (
∧

i∈I

ai)⊥ =
∨

i∈I

(ai)⊥

for any set I and {ai}i∈I ⊆ Q.

(iii) For all a ∈ Q, {bi}i∈I ⊆ Q, we have

a&(
∨

i∈I

bi) = (
∨

i∈I

bi)⊥ 7−→r a =
∧

i∈I

(bi)⊥ 7−→r a =
∨

i∈I

(b⊥i 7−→r a) =
∨

i∈I

(a&bi).

Similarly we have (
∨

i∈I bi)&a =
∨

i∈I(bi&a). Hence (Q,&)is a quantale. Since a&d⊥ =
(d⊥)⊥ 7−→r a = d 7−→r a = a; d⊥&b = b⊥ 7−→r d⊥ = b, thus (Q,&) is a unit quantale
with unit element d⊥.

(iv) If a ∈ Q, we have

a −→l d =
∨{x ∈ Q|x ≤ a −→l d}

=
∨{x ∈ Q|x&a ≤ d}

=
∨{x ∈ Q|a⊥ 7−→r x ≤ d}

=
∨{x ∈ Q|d 7−→r a ≤ x⊥}

=
∨{x ∈ Q|x ≤ a⊥}

= a⊥.

Similarly, a −→r d = a⊥, hence d is a cyclic element in Q. d is also a dual element in Q by
condition (2). Thus (Q, &) is a Girard quantale with cyclic dual element d. We easily know
7−→r is the dual right implication operation in Q by the definition of &.

Obviously, Theorem 2.2 and Theorem 2.3 also hold if −→r and 7−→r are substituted by
−→l and 7−→l respectively, “right” and “left” replace each other.

Theorem 2.4. Let Q be a unital quantale with a unary operation ⊥ satisfying the
condition

CN : (a⊥)⊥ = a and a −→r b = b⊥ −→l a⊥

for all a, b ∈ Q. Then Q is a Girard quantale.
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§3. The cyclic dualizing element of Girard quantale

According to the definition of Girard quantale, we know that the cyclic dualizing element
plays an important role in Girard quantale, so we shall discuss the cyclic dualizing element in
this section. We shall account for whether the cyclic dualizing element is unique in a Girard
quantale; when it is unique; whether these Girard quantales determined by different cyclic
dualizing elements are different. Let us see the following example

Example 3.1. Let Q = {0, a, b, c, 1}, the partial order on Q be defined as Fig 1, the
operator & on Q be defined by Table 1. Then we can prove that Q is a commutative Girard
quantale. And we can prove that a, b and c are cyclic dualizing elements of Q.

•
1

¡
¡• •

@
@•

@
@

¡
¡•
0

Fig 1

a b c

& 0 a b c 1

0 0 0 0 0 0

a 0 b c a 1

b 0 c a b 1

c 0 a b c 1

1 0 1 1 1 1

Table 1

Proposition 3.2. Let Q be a unital quantale with the unit element e. ⊥1 and ⊥2 satisfy
the condition CN in Theorem 2.4. Then e⊥1 = e⊥2 if and only if ⊥1 =⊥2 .

Proposition 3.3. Let Q be a quantale, d1, d2 are cyclic dualizing elements of Q, ⊥1 ,⊥2

are unary operations on Q induced by d1, d2 respectively. Then d1 = d2 if and only if ⊥1 =⊥2 .

Theorem 3.4. Let Q be a Girard quantale. Then there is a one-to-one correspondence
between the set of cyclic dualizing elements in Q and the set of unary operations satisfying the
condition CN in Theorem 2.4.

Proposition 3.5. Let Q be a Girard quantale. If 0 is a cyclic dualizing element of Q,
then Q is strictly two-sided.

Proof. Assume 0 is a cyclic dualizing element in Q. Then 0⊥ = 0 −→ 0 = 1 is the unit
of Q, hence ∀a ∈ Q, a&1 = 1&a = a, this finished the proof.

Proposition 3.6. If Q is a two-sided Girard quantale, then the unique cyclic dualizing
element is the least element 0.

Proof. If Q is a two-sided Girard quantale, then we have a = a&e ≤ a&1 ≤ a for all
a ∈ Q. Similarly, we have 1&a = a. Thus Q is strictly two-sided. Suppose d is a cyclic dual
element in Q, ⊥ is the unary operation induced by d, then we have d = 1 −→ d = 1⊥ = 0. the
proof is finished.

Corollary 3.7. Let Q be a Girard quantale with cyclic dualizing element 0. Then the
cyclic dualizing element of Q is unique.

Theorem 3.8. Any complete lattice implication algebra is a Girard quantale with unique
cyclic dualizing element 0.

According the above conclusions, we have a question : Whether the cyclic dualizing element
must be the least element 0 if a Girard quantale has an unique cyclic dualizing element. The
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answer is negative. Let us see the following example.
Example 3.9. Let Q = {0, e, 1}, the partial order on Q be defined by 0 < e < 1, the

binary operation & be defined by Table 2

& 0 e 1

0 0 0 0

e 0 e 1

1 0 1 1

Table 2

It is immediate to verify Q being a Girard quantale with the unique cyclic dualizing element
e.

Question 3.10. What is the necessary condition when the cyclic dualizing element of
Girard quantale is unique?
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Abstract In this paper ν−compactness and ν−Lindeloffness in topological space are intro-

duced, obtained some of its basic properties and interrelations are verified with other types of
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§1. Introduction

After the introduction of semi open sets by Norman Levine various authors have turned
their attentions to this concept and it becomes the primary aim of many mathematicians to
examine and explore how far the basic concepts and theorems remain true if one replaces open
set by semi open set. The concept of semi compactness was introduced by C. Dorsett in 1980.
After him Reilly and Vamanamurthy studied about semi compactness during 1984. U.N. B.
Dissanayake and K. P. R. Sastry introduced locally Lindeloff spaces. In the present paper we
introduce the concepts of compactness and lindeloffness using ν−open sets in topological spaces.

Throughout the paper a space X means a topological space (X, τ). The class of ν−open
sets is denoted by ν − O(X, τ) respectively. The interior, closure, ν−interior, ν−closure are
defined by Ao, A−, νAo, νA− .

In section 2 we discuss the basic definitions and results used in this paper. In sections 3
and 4 we discuss about the ν−compact and ν−Lindeloffness in the topological space and obtain
their basic properties.

§2. Preliminaries

A subset A of a topological space (X, τ) is said to be regularly open if A = ((A)−)o, semi
open(regularly semi open or ν−open) if there exists an open(regularly open) set O such that
O ⊂ A ⊂ (O)− and ν−closed if its complement is ν−open. The intersection of all ν−closed
sets containing A is called ν−closure of A, denoted by ν(A)−. The class of all ν−closed sets are
denoted by ν −CL(X, τ). The union of all ν−open sets contained in A is called the ν−interior
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of A,denoted by ν(A)o. A function f : (X, τ) → (Y, σ) is said to be ν−continuous if the inverse
image of any open[closed]set in Y is a ν−open[ν−closed]set in X. ν−irresolute if the inverse
image of any ν−open[ν−closed]set in Y is a ν−open[ν−closed] set in X. ν−open[ν−closed]
if the image of every ν−open[ν−closed]set is ν−open[ν−closed]. ν−homeomorphism if f is
bijective, ν−irresolute and ν−open. Let x be a point of (X, τ) and V be a subset of X, then V

is said to be ν−neighbourhood of x if there exists a ν−open set U of X such that x ∈ U ⊂ V .
x ∈ X is said to be ν−limit point of U iff for each ν−open set V containing x V ∩(U−{x}) 6= φ.

The set of all ν−limit points of U is called ν−derived set of U and is denoted by Dν(U).
Note 1. Clearly every regularly open set is ν−open and every ν−open set is semi-open

but the reverse implications do not holds good. that is, RO(X)⊂ ν −O(X) ⊂SO(X).
Theorem 2.1. If x is a ν−limit point of any subset A of the topological space (X, τ),

then every ν−neighbourhood of x contains infinitely many distinct points.
Theorem 2.2. (i) union and intersection of any two ν−open sets is not ν−open.
(ii) Intersection of a regular open set and a ν−open set is ν−open.
(iii) If B ⊂X such that A ⊂ B ⊂ (A)− then B is ν−open iff A is ν−open.
(iv) If A and R are regularly open and S is ν−open such that R ⊂ S ⊂ (R)−. Then A∩R

= φ ⇒ A ∩ S = φ.
Theorem 2.3. In a semi regular space, int ν −O(X, τ) generates topology.
Theorem 2.4. (i) Let A ⊆ Y ⊆ X and Y is regularly open subspace of X then A is

ν−open in X iff A is ν−open in τ/Y .
(ii) Let Y ⊆ X and A ∈ ν −O(Y, τ/Y ) then A∈ ν−O(X,τ) iff Y is ν−open in X.
(iii) Let Y ⊆ X and Ais a ν−neighborhood of x in . Then A is a ν−neighborhood of x in

Y iff Y is ν−open in X.
Theorem 2.5. An almost continuous and almost open map is ν−irresolute.
Example 1. Identity map is ν−irresolute.
Remark 1. For any topological space we have the following interrelations.
(i) compact ⇒ nearly-compact ⇒ almost compact ⇒ weakly compact.
(ii)compact ⇒ semi-compact where none of the implications is reversible.

§3. ν−Compact spaces

Definition 3.1. A space X is said to be
(i) ν−compact space if every ν−open cover of it has a finite sub cover.
(ii) Countably ν−compact space if every countable ν−open cover of it has a finite sub

cover.
(iii) σ − ν−compact if it is the countable union of ν−compact spaces.
Theorem 3.1. Let (X, τ) be a topological space and A ⊆ X. Then A is ν−compact

subset of X iff the subspace (A, τ/A) is ν−compact.
Theorem 3.2. (i) ν−closed subset of a (countably) ν−compact space is (countably)

ν−compact.
(ii) A ν−irresolute image of a (countably) ν−compact space is (countably) ν−compact.
(iii) countable product of (countably) ν−compact spaces is (countably) ν−compact.
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(iv) countable union of (countably) ν−compact spaces is (countably) ν−compact.
Remark 2. (countably) ν−compactness is a weakly hereditary property.
Theorem 3.3. For a ν − T1 topological space X the following statements are equivalent
(i) X is countably ν−compact.
(ii)Every countable family of ν−closed subsets of X which has the finite intersection prop-

erty has a non-empty intersection.
(iii)Every infinite subset has an ν−accumulation point.
(iv) Every sequence in X has a ν−limit point.
(v) Every infinite ν−open cover has a proper sub cover

Theorem 3.4. Every ν−irresolute map from a ν−compact space into a ν − T2−space is
ν−closed.

Proof. Suppose f : X → Y is ν−irresolute where X is ν−compact and Y is ν − T2. Let
C be any ν−closed subset of X. Then C is ν−compact and so f (C) is ν−compact. But then
f (C) is ν−closed in Y (by Theorem 3.2). Hence the image of any ν−closed set in X is ν−closed
set in Y . Thus f is ν−closed.

Theorem 3.5. An ν−continuous bijection from a ν−compact space onto a ν − T2−space
is a ν−homeomorphism.

Proof. Let f : X → Y be a ν−continuous bijection from a ν−compact space onto a ν−T2-
space. Let G be an ν−open subset of X. Then X-G is ν−closed and hence f (X-G) is ν−closed
(by Th 3.2). Since f is bijective f(X −G) = Y − f(G). Therefore f (G) is ν−open in Y implies
f is ν−open. Hence f is bijective ν−irresolute and ν−open. Thus f is ν−homeomorphism.

Definition 3.2. A space X is said to be Locally ν−compact space if every x ∈ X has a
ν− neighborhood whose closure is νcompact.

Note 2. Every ν−compact space is locally ν−compact.
Theorem 3.6. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is locally ν− compact,

then so is Y.
Proof. Let y ∈ Y . Then ∃x ∈ X 3 f(x) = y. Since X is locally ν−compact x has a

ν−compact neighborhood V Then by ν−irresolute, ν−open of f, f(V ) is a ν−compact neigh-
borhood of y. Hence Y is ν− compact.

Corollary 1. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is ν− compact, then Y

is Locally ν−compact.
Proof. Obvious from above two theorems.
Theorem 3.7. Let (X, τ) be a topological space and A ⊆ X. Then A is locally ν−compact

subset of X iff the subspace (A, τ/A) is locally ν−compact.
Theorem 3.8. (i) ν−closed subset of a locally ν−Compact space is locally ν−Compact.
(ii) countable product of locally ν−Compact spaces is locally ν−Compact.
(iii) countable union of locally ν−Compact spaces is locally ν−Compact.
Theorem 3.9. For a topological space X, the following are equivalent
(i) X is ν−compact.
(ii) Every family of ν−closed subsets of X, having empty intersection has a finite subclass

with empty intersection.
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(iii) Every family of ν−closed subsets of X which has the finite intersection property(f.i.p)
has a non-empty intersection.

Theorem 3.10. Every ν−compact, ν−Hausdorff space is almost ν−regular.
Theorem 3.11. Every pair of disjoint ν−compact subsets of a Hausdorff space have

disjoint ν−open neighbourhoods.
From the definitions and remark 1, we have the following:
Remark 3. For any topological space

nearly-compact ⇒ ν−compact ⇒ semi-compact but the converse is not true in general.
Weakening covering condition from finite cover to countable cover, we have the following

as a easy consequence of the above section.

§4. ν−Lindeloff and locally ν−Lindeloff spaces

In this section we define Lindeloffness using ν−open sets their properties and characteri-
zations are verified

Definition 4.1. A space (X, τ) is said to be
(i) ν−Lindeloff space if every ν−open cover of it has a countable sub cover.
(ii) σ − ν−Lindeloff if it is the countable union of ν−Lindeloff spaces.
Theorem 4.1. Let (X, τ) be a topological space and A ⊆ X. Then A is ν−Lindeloff

subset of X iff the subspace (A, τ/A) is ν−Lindeloff.
Theorem 4.2. (i) ν−closed subset of a ν−Lindeloff space is ν−Lindeloff.
(ii) countable product of ν−Lindeloff spaces is ν−Lindeloff.
(iii) countable union of ν−Lindeloff spaces is ν−Lindeloff.
Definition 4.2. A space (X, τ) is said to be locally ν−Lindeloff space if every x ∈ X has

a ν−Lindeloff neighborhood.
Note 3. Every ν−Lindeloff space is locally ν−Lindeloff.
Theorem 4.3. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is locally ν−Lindeloff,

then so is Y .
Proof. Let y ∈ Y . Then ∃x ∈ X 3 f (x) = y. Since X is locally ν−Lindeloff x has

a ν−Lindeloff neighborhood V Then by ν−irresolute, ν− open of f, f(V ) is a ν−Lindeloff
neighborhood of y. Hence Y is ν−Lindeloff.

Corollary 2. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is ν−Lindeloff, then Y
is Locally ν−Lindeloff.

Theorem 4.4. Let (X, τ) be a topological space and A ⊆ X. Then A is locally ν−Lindeloff
subset of X iff the subspace (A, τ/A) is locally ν−Lindeloff.

Theorem 4.5. (i) ν−closed subset of a locally ν−Lindeloff space is locally ν−Lindeloff
(ii) countable product of locally ν−Lindeloff spaces is locally ν−Lindeloff.
(iii) countable union of locally ν−Lindeloff spaces is locally ν−Lindeloff.
Theorem 4.6. For a Topological space X, the following are equivalent
(i) X is ν−Lindeloff.
(ii) Every family of ν− closed subsets of X, having empty intersection has a countable

subclass with empty intersection.
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(iii) Every family of ν−closed subsets of X which has the countable intersection condi-
tion(c.i.c) has a non-empty intersection.

Remark 4. For any topological space we have the following interrelations.
(i) Lindeloff ⇒ nearly-Lindeloff ⇒ almost Lindeloff ⇒ weakly Lindeloff.
(ii)Lindeloff ⇒ semi-Lindeloff where none of the implications is reversible.
Remark 5. For any topological space

nearly-Lindeloff ⇒ ν−Lindeloff ⇒ semi-Lindeloff but the converse is not true in general.
Remark 6.
ν−compact ⇒ ν−Lindeloff

⇓ ⇓
locally ν−compact ⇒ locally ν−Lindeloff.

none is reversible
Conclusion.
In this paper we defined new compact and lindeloff axioms using ν−open sets and studied

their interrelations with other compact and lindeloff axioms.
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§1. Introduction

In 1997, Professor Á. Császár [1] nicely presented the open sets and all weak forms of open
sets in a topological space X in terms of monotonic functions defined on ℘(X), the collection
of all subsets of X. For each such function γ, he defined a collection µ of subsets of X, called
the collection of γ−open sets. A is said to be γ−open if A ⊂ γ(A). B is said to be γ−closed
if its complement is γ−open. With respect to this collection µ of subsets of X, for A ⊂ X, the
γ−interior of A, denoted by iγ(A), is defined as the largest γ−open set contained in A and the
γ−closure of A, denoted by cγ(A), is the smallest γ−closed set containing A. It is established
that µ is a generalized topology [3]. In [5], γ−semiopen sets are defined and discussed. In [7],
γα−open sets, γ−preopen sets and γβ−open sets are defined and discussed. γb−open sets are
defined in [6]. If α is the family of γα−open sets, σ is the family of all γ−semiopen sets, π is
the family of all γ−preopen sets, b is the family of all γb−open sets and β is the family of all
γβ−open sets, then each collection is a generalized topology. Since every topological space is
a generalized topological space, we prove that some of the results established for topological
spaces are also true for the generalized topologies Ω = {µ, α, σ, π, b, β}. In section 2, we
list all the required definitions and results. In section 3, we define the ∧κ and ∨κ operators
for each κ ∈ Ω and discuss its properties. Then, we define ∧κ−sets, ∨κ−sets, g. ∧κ −sets and
g.∨κ−sets and characterize these sets. In section 4, for each κ ∈ Ω, we define and characterize
the separation axioms κ− Ti, i = 0, 1, 2 and κ−Ri, i = 0, 1.
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§2. Preliminaries

Let X be a nonempty set and Γ = {γ : ℘(X) → ℘(X) | γ(A) ⊂ γ(B) whenever A ⊂ B}.
For γ ∈ Γ, a subset A ⊂ X is said to be γ−open [1] if A ⊂ γ(A). The complement of a γ−open
set is said to be a γ−closed set. A family ξ ⊂ ℘(X) is said to be a generalized topology [3] if
∅ ∈ ξ and ξ is closed under arbitrary union. The family of all γ−open sets, denoted by µ, is a
generalized topology [4]. A ⊂ X, is said to be γ−semiopen [5] if there is a γ−open set G such
that G ⊂ A ⊂ cγ(G) or equivalently, A ⊂ cγiγ(A) [8, Theorem 2.4]. A is said to be γ−preopen
[7] if A ⊂ iγcγ(A). A ⊂ X, is said to be γα−open [7] if A ⊂ iγcγiγ(A). A is said to be γβ−open
[7] if A ⊂ cγiγcγ(A). A is said to be γb−open [6] if A ⊂ iγcγ(A) ∪ cγiγ(A). In [4], [5], [6] and
[7], it is established that each κ ∈ Ω is a generalized topology and so cκ and iκ can be defined,
similar to the the definition of cγ and iγ . In this paper, for κ ∈ Ω, the pair (X, κ) is called a
generalized topological space or simply a space. For each γ ∈ Γ, a mapping γ? : ℘(X) → ℘(X)
[1] is defined by γ?(A) = X−γ(X−A). Clearly, γ? ∈ Γ. The following lemmas will be useful in
the sequel. Moreover, one can easily prove the following already established results of Lemma
2.1.

Lemma 2.1. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following hold.
(a) A ⊂ cκ(A) for every subset A of X.
(b) If A ⊂ B, then cκ(A) ⊂ cκ(B).
(c) For every subset A of X, x ∈ cκ(A) if and only if there exists a κ−open set G such that

A ∩G 6= ∅ ( For κ = µ, it is established in Lemma 2.1 of [2]).
(d) A is κ−closed if and only if A = cκ(A).
(e) cκ(A) is the intersection of all κ−closed sets containing A.
Lemma 2.2. Let X be a nonempty set and γ ∈ Γ(X). Then X is γ−semiopen [5,

Proposition 1.2].

§3. ∨−sets and ∧−sets

In this section, for the space (X, κ), κ ∈ Ω, we define ∨−sets, ∧−sets, g. ∨ −sets and
g. ∧ −sets. For σ ∈ Ω, ∨−sets and ∧−sets are defined in [5]. For A ⊂ X, we define ∧κ(A) =
∩{U ⊂ X | A ⊂ U and U ∈ κ} and ∨κ(A) = ∪{U ⊂ X | U ⊂ A and U is κ−closed }. The
following Theorem 3.1 gives the properties of the operator ∧κ. Example 3.2 below shows that
the two sets in 3.1(e) are not equal.

Theorem 3.1. Let A, B and {Cι | ι ∈ ∆} be subsets of X, γ ∈ Γ and κ ∈ Ω. Then the
following hold.

(a) If A ⊂ B, then ∧κ(A) ⊂ ∧κ(B).
(b)A ⊂ ∧κ(A).
(c)∧κ(∧κ(A)) = ∧κ(A).
(d)∧κ(∪{Cι | ι ∈ ∆}) = ∪{∧κ(Cι) | ι ∈ ∆}.
(e)∧κ(∩{Cι | ι ∈ ∆}) ⊂ ∩{∧κ(Cι) | ι ∈ ∆}.
(f) If A ∈ κ, then ∧κ(A) = A.

(g)∧κ(A) = {x | cκ({x}) ∩A 6= ∅}.
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(h)y ∈ ∧κ({x}) if and only if x ∈ cκ({y}).
(i)∧κ({x}) 6= ∧κ({y}) if and only if cκ({x}) 6= cκ({y}).
Proof.

(a). Suppose x 6∈ ∧κ(B). Then there exists G ∈ κ such that B ⊂ G and x 6∈ G. Since
A ⊂ B, there exists G ∈ κ such that A ⊂ G and x 6∈ G and so x 6∈ ∧κ(A) which proves (a).

(b). The proof follows from the definition of ∧κ.

(c). By (b), A ⊂ ∧κ(A) and so by (a), ∧κ(A) ⊂ ∧κ(∧κ(A)). Let x 6∈ ∧κ(A). then there
exists G ∈ κ such that A ⊂ G and x 6∈ G which implies that ∧κ(A) ⊂ G and x 6∈ G. Therefore,
x 6∈ ∧κ(∧κ(A)) which implies that ∧κ(∧κ(A)) ⊂ ∧κ(A). This completes the proof.

(d) Clearly, by (a), ∪{∧κ(Cι) | ι ∈ ∆} ⊂ ∧κ(∪{Cι | ι ∈ ∆}). Conversely, suppose x 6∈
∪{∧κ(Cι) | ι ∈ ∆}. Then x 6∈ ∧κ(Cι) for every ι ∈ ∆. Therefore, for every ι ∈ ∆, there
exists Gι ∈ κ such that Cι ⊂ Gι and x 6∈ Gι. Let G = ∪{Gι | ι ∈ ∆}. Then x 6∈ G and
∪{Cι | ι ∈ ∆} ⊂ G which implies that x 6∈ ∧κ(∪{Cι | ι ∈ ∆}). This completes the proof.

(e) The proof follows from (a).

(f) The proof follows from the definition of ∧κ.

(g) Let x ∈ ∧κ(A). If cκ({x}) ∩ A = ∅, then X − cκ({x}) is a κ−open set such that
A ⊂ X−cκ({x}) and x 6∈ X−cκ({x}). Therefore, x 6∈ ∧κ(A), a contradiction to the assumption
and so cκ({x}) ∩ A 6= ∅. Hence ∧κ(A) ⊂ {x | cκ({x}) ∩ A 6= ∅}. Conversely, suppose for
x ∈ X, cκ({x}) ∩A 6= ∅. If x 6∈ ∧κ(A), then there exists a κ−open set G such that A ⊂ G and
x 6∈ G. Therefore, x ∈ X −G which implies that cκ({x}) ⊂ cκ(X −G) = X −G ⊂ X −A and
so cκ({x})∩A = ∅, a contradiction. Therefore, {x | cκ({x})∩A 6= ∅} ⊂ ∧κ(A). This completes
the proof.

(h) Suppose y ∈ ∧κ({x}). Then y ∈ G whenever G is a κ−open set containing x. Suppose
x 6∈ cκ({y}), then there is a κ−closed set F such that {y} ⊂ F and x 6∈ F. Since X − F is a
κ−open set containing x, y ∈ F and so cκ({y}) ⊂ cκ(F ) = F which implies that cκ({y})∩{x} =
∅. By (g), y 6∈ ∧κ({x}), a contradiction. Hence x ∈ cκ({y}).
Conversely, suppose x ∈ cκ({y}). If y 6∈ ∧κ({x}), there exists a κ−open set G containing x such
that y 6∈ G. Now y ∈ X − G implies that cκ({y}) ⊂ cκ(X − G) = X − G ⊂ X − {x} and so
cκ({y})∩{x} = ∅ which implies that x 6∈ cκ({y}), a contradiction to the hypothesis. Therefore,
y ∈ ∧κ({x}). This completes the proof.

(i) Suppose ∧κ({x}) 6= ∧κ({y}). Assume that z ∈ ∧κ({x}) and z 6∈ ∧κ({y}). Then by (h)
and (g), x ∈ cκ({z}) and {y} ∩ cκ({z}) = ∅ and so cκ({x}) ⊂ cκ({z}) and {y} ∩ cκ({z}) = ∅.
Therefore, cκ({x}) ∩ {y} = ∅ which implies that cκ({x}) 6= cκ({y}).
Conversely, suppose cκ({x}) 6= cκ({y}). Assume that z ∈ cκ({x}) and z 6∈ cκ({y}). By (h),
x ∈ ∧κ({z}) and y 6∈ ∧κ({z}) and so ∧κ({x}) ⊂ ∧κ({z}) and {y} ∩ ∧κ({z}) = ∅ which implies
that {y} ∩ ∧κ({x}) = ∅. Therefore, ∧κ({y}) 6= ∧κ({x}) which completes the proof.

Example 3.2. Let X = {a, b} and γ : ℘(X) → ℘(X) be defined by γ(∅) = ∅, γ({a}) =
{b}, γ({b}) = {b}, γ(X) = X. Then µ = {∅, {b}, X}. If A = {a}, B = {b}, then ∧µ(A) =
X, ∧µ(B) = B and ∧µ(A ∩ B) = ∧µ(∅) = ∅. Since ∧µ(A) ∩ ∧µ(B) = B, ∧µ(A) ∩ ∧µ(B) 6=
∧µ(A ∩B).

The proof of the following Theorem 3.3 is similar to that of Theorem 3.1 and hence the
proof is omitted. Example 3.4 shows that the two sets in 3.3(d) are not equal. Theorem 3.5
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below gives the relation between the operators ∧κ and ∨κ.

Theorem 3.3. Let A, B and {Cι | ι ∈ ∆} be subsets of X, γ ∈ Γ and κ ∈ Ω. Then the
following hold.

(a) If A ⊂ B, then ∨κ(A) ⊂ ∨κ(B).

(b)∨κ(A) ⊂ A.

(c)∨κ(∨κ(A)) = ∨κ(A).

(d)∨κ(∪{Cι | ι ∈ ∆}) ⊃ ∪{∨κ(Cι) | ι ∈ ∆}.
(e)∨κ(∩{Cι | ι ∈ ∆}) = ∩{∨κ(Cι) | ι ∈ ∆}.
(f) If A is κ−closed, then ∨κ(A) = A.

Example 3.4. Let X = {a, b, c, d} and γ : ℘(X) → ℘(X) be defined by γ(∅) =
∅, γ({a}) = {b}, γ({b}) = {c}, γ({c}) = {b}, γ({d}) = {d}, γ({a, b}) = {b, c}, γ({a, c}) =
{b}, γ({a, d}) = {b, d}, γ({b, c}) = {b, c}, γ({b, d}) = {c, d}, γ({c, d}) = {b, d}, γ({a, b, c}) =
{b, c}, γ({b, c, d}) = {b, c, d}, γ({a, c, d}) = X, γ({a, b, d}) = {b, c, d} and γ(X) = X. Then
µ = {∅, {d}, {b, c}, {a, c, d}, {b, c, d}, X}. If A = {a}, B = {d}, then ∨µ(A) = {a}, ∨µ(B) = ∅
and ∨µ(A∪B) = ∨µ({a, d}) = {a, d}. Since ∨µ(A)∪∨µ(B) = A, ∨µ(A)∪∨µ(B) 6= ∨µ(A∪B).
If A = {a, c, d}, then ∨µ(A) = A but A is not µ−closed. This shows that the reverse direction
of Theorem 3.3 (f) is not true.

If A = {c, d}, then ∧µ(A) = A but A is not µ−open. This shows that the reverse direction
of Theorem 3.1(f) is not true.

Theorem 3.5. Let A be a subset of X, γ ∈ Γ and κ ∈ Ω. Then the following hold.

(a)∧κ(X −A) = X − ∨κ(A).

(b)∨κ(X −A) = X − ∧κ(A).

(c) (∧κ)? = ∨κ.

(d)(∨κ)? = ∧κ.

Proof. (a) and (b) follow from the definitions of ∧κ and ∨κ.

(c) If A ⊂ X, then (∧κ)?(A) = X−∧κ(X−A) = X−(X−∨κ(A)) = ∨κ(A) and so (∧κ)? = ∨κ.

(d) The proof is similar to the proof of (c).

If X is a nonempty set, γ ∈ Γ(X) and κ ∈ Ω, a subset A of X is said to be a ∨κ−set
if A = ∨κ(A) and A is said to be a ∧κ−set if A = ∧κ(A). In any space (X, κ), the following
Theorem 3.6 lists out the ∨κ−sets and the ∧κ−sets.

Theorem 3.6. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following hold.

(a) ∅ is a ∧κ−set.

(b) A is a ∧κ−set if and only if X −A is a ∨κ−set.

(c) X is a ∨κ−set.

(d) The union of ∧κ−sets is again a ∧κ−set.

(e) The union of ∨κ−sets is again a ∨κ−set.

(f) The intersection of ∧κ−sets is again a ∧κ−set.

(g) The intersection of ∨κ−sets is again a ∨κ−set.

(h) If κ ∈ Ω1 = Ω− {µ, α, π}, then X is a ∧κ−set and so ∅ is a ∨κ−set.

Proof.

(a) follows from Theorem 3.1(f) since ∅ ∈ κ for every κ ∈ Ω.
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(b) Suppose A is a ∧κ−set. Then A = ∧κ(A). Now X − A = X − ∧κ(A) = ∨κ(X − A),
by Theorem 3.5(b). Therefore, X − A is a ∨κ−set. The proof of the converse is similar with
follows from Theorem 3.5(a).

(c) follows from (a) and (b).
(d) Let {Aι | ι ∈ ∆} be a family of ∧κ−sets. Therefore, Aι = ∧κ(Aι) for every ι ∈ ∆.

Now ∧κ(∪{Aι | ι ∈ ∆}) = ∪{∧κ(Aι) | ι ∈ ∆}, by Theorem 3.1(d) and so ∧κ(∪{Aι | ι ∈ ∆}) =
∪{Aι | ι ∈ ∆}.

(e) Let {Aι | ι ∈ ∆} be a family of ∨κ−sets. Therefore, Aι = ∨κ(Aι) for every ι ∈ ∆.

Now ∪{Aι | ι ∈ ∆} = ∪{∨κ(Aι) | ι ∈ ∆} ⊂ ∨κ(∪{Aι | ι ∈ ∆}) by Theorem 3.3(d) and so
∨κ(∪{Aι | ι ∈ ∆}) = ∪{Aι | ι ∈ ∆} by Theorem 3.3(b).

(f) Let {Aι | ι ∈ ∆} be a family of ∧κ−sets. Therefore, Aι = ∧κ(Aι) for every ι ∈ ∆.

Now ∩{Aι | ι ∈ ∆} = ∩{∧κ(Aι) | ι ∈ ∆} ⊃ ∧κ(∩{Aι | ι ∈ ∆}) by Theorem 3.1(e) and so
∧κ(∩{Aι | ι ∈ ∆}) = ∩{Aι | ι ∈ ∆} by Theorem 3.1(b).

(g) Let {Aι | ι ∈ ∆} be a family of ∨κ−sets. Therefore, Aι = ∨κ(Aι) for every ι ∈ ∆.

Now ∨κ(∩{Aι | ι ∈ ∆}) = ∩{∨κ(Aι) | ι ∈ ∆}, by Theorem 3.3(e) and so ∨κ(∩{Aι | ι ∈ ∆}) =
∩{Aι | ι ∈ ∆}.

(h) Since X ∈ σ by Lemma 2.2, X ∈ κ for every κ ∈ Ω1 and so the proof follows from (a)
and (b).

Remark 3.7. Let τκ = {A ⊂ X | A = ∧κ(A)} and τκ = {A ⊂ X | A = ∨κ(A)}. Then
τκ and τκ are topologies by Theorem 3.6, such that arbitrary intersection of τκ−open sets is a
τκ−open set and an arbitrary intersection of τκ−open sets is a τκ−open set.

Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. A subset A of X is called a generalized
∧κ−set (in short, g. ∧κ −set) if ∧κ(A) ⊂ F whenever A ⊂ F and F is κ−closed. B is called a
generalized ∨κ−set (in short, g. ∨κ −set) if X − B is a g. ∧κ −set. We will denote the family
of all g. ∧κ −sets by D∧κ and the family of all g. ∨κ −sets by D∨κ . The following Theorem 3.8
shows that D∧κ is closed under arbitrary union and D∨κ is closed under arbitrary intersection.
Theorem 3.9 below gives a characterization of g. ∨κ −sets.

Theorem 3.8. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following hold.
(a) If Bι ∈ D∧κ for every ι ∈ ∆, then ∪{Bι | ι ∈ ∆} ∈ D∧κ .

(b) If Bι ∈ D∨κ for every ι ∈ ∆, then ∩{Bι | ι ∈ ∆} ∈ D∨κ .

Proof. (a) Let Bι ∈ D∧κ for every ι ∈ ∆. Then each Bι is a g. ∧κ −set. Suppose F is
κ−closed and ∪{Bι | ι ∈ ∆} ⊂ F. Then for every ι ∈ ∆, Bι ⊂ F and F is κ−closed. By
hypothesis, for every ι ∈ ∆, ∧κ(Bι) ⊂ F and so ∪{∧κ(Bι) | ι ∈ ∆} ⊂ F. By Theorem 3.1(d),
∧κ(∪{Bι | ι ∈ ∆}) ⊂ F and so ∪{Bι | ι ∈ ∆} ∈ D∧κ .

(b) Let Bι ∈ D∨κ for every ι ∈ ∆. Then each Bι is a g. ∨κ −set and so X − Bι ∈ D∧κ

for every ι ∈ ∆. Now X − (∩{Bι | ι ∈ ∆}) = ∪({X − Bι | ι ∈ ∆}) ∈ D∧κ , by (a). Therefore,
∩{Bι | ι ∈ ∆} ∈ D∨κ .

Theorem 3.9. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then a subset A of X is
a g. ∨κ −set if and only if U ⊂ ∨κ(A) whenever U ⊂ A and U is κ−open.

Proof. Suppose A is a g. ∨κ −set. Let U be a κ−open set such that U ⊂ A. Then
X −U is a κ−closed set such that X −U ⊃ X −A and so ∧κ(X −U) ⊃ ∧κ(X −A). Therefore,
X −U ⊃ ∧κ(X −A) = X −∨κ(A) and so U ⊂ ∨κ(A). Conversely, suppose the condition holds.
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Let A be a subset of X. Let F be a κ−closed subset of X such that X−A ⊂ F. Then X−F ⊂ A

and so by hypothesis, X − F ⊂ ∨κ(A). Then X − ∨κ(A) ⊂ F and so ∧κ(X − A) ⊂ F which
implies that X −A is a g. ∧κ −set. Therefore, A is a g. ∨κ −set.

The remaining theorems in this section give some properties of g.∨κ−sets and g.∧κ−sets.
Theorem 3.10. Let x ∈ X, γ ∈ Γ(X) and κ ∈ Ω. Then the following hold.
(a) {x} is either a κ−open set or X − {x} is a g. ∧κ −set.
(b) {x} is either a κ−open set or a g. ∨κ −set.
Proof. (a) Suppose {x} is not a κ−open set. Then X is the only κ−closed set containing

X − {x} and so ∧κ(X − {x}) ⊂ X. Therefore, X − {x} is a g. ∧κ −set.
(b) Suppose {x} is not a κ−open set. By (a), X − {x} is a g. ∧κ −set and so {x} is a

g. ∨κ −set.
Theorem 3.11. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. If B is a g.∨κ−set and

F is a κ−closed set such that ∨κ(B) ∪ (X −B) ⊂ F, then F = X.

Proof. Since B is a g. ∨κ −set, X − B is a g. ∧κ −set such that X − B ⊂ F. Therefore,
∧κ(X−B) ⊂ F which implies that X−F ⊂ ∨κ(B). Also, ∨κ(B) ⊂ F and so X−F ⊂ X−∨κ(B).
Hence X − F ⊂ ∨κ(B) ∩ (X − ∨κ(B)) = ∅. Therefore, F = X.

Corollary 3.12. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. If B is a g. ∨κ −set
such that ∨κ(B) ∪ (X −B) is κ−closed, then B is a ∨κ−set.

Proof. By Theorem 3.11, ∨κ(B) ∪ (X − B) = X and so X − (∨κ(B) ∪ (X − B)) = ∅
which implies that (X − ∨κ(B)) ∩ B = ∅. Therefore, B ⊂ ∨κ(B) and so by Theorem 3.3(b),
B = ∨κ(B).

Theorem 3.13. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. If A and B are subsets
of X such that A ⊂ B ⊂ ∧κ(A) and A is a g. ∧κ −set, then B is a g. ∧κ −set. In particular, if
A is a g. ∧κ −set, then ∧κ(A) is a g. ∧κ −set.

Proof. Since A ⊂ B ⊂ ∧κ(A), ∧κ(A) ⊂ ∧κ(B) ⊂ ∧κ(∧κ(A)) = ∧κ(A) and so ∧κ(A) =
∧κ(B). If F is any κ−closed set such that B ⊂ F, then A ⊂ F and so ∧κ(B) = ∧κ(A) ⊂ F.

Therefore, B is a g. ∧κ −set.
Corollary 3.14. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. If A and B are subsets

of X such that ∨κ(A) ⊂ B ⊂ A and A is a g. ∨κ −set, then B is a g. ∨κ −set. In particular, if
A is a g. ∨κ −set, then ∨κ(A) is a g. ∨κ −set.

§4. Some separation axioms in generalized topological spaces

Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is called a κ − T1 space if
for all x, y ∈ X, x 6= y, there exists a κ−open set G such that x ∈ G and y 6∈ G and there
exists a κ−open set H such that x 6∈ H and y ∈ H. σ−T1 space is defined in [5]. The following
Theorem 4.1 gives a characterization of κ − T1 spaces in terms of κ−closed sets and Theorem
4.2 gives a characterization of κ− T1 spaces in terms of ∧κ−sets.

Theorem 4.1. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a κ − T1

space if and only if every singleton set is a κ−closed set.
Proof. Suppose (X, κ) is a κ − T1 space. Let x ∈ X. If y ∈ X − {x}, then x 6= y. By

hypothesis, there exists a κ−open set Hy such that y ∈ Hy and x 6∈ Hy and so y ∈ Hy ⊂ X−{x}.
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Hence X−{x} = ∪{Hy | y ∈ X−{x} } is κ−open and so {x} is κ−closed. Conversely, suppose
each singleton set is a κ−closed set. Let x, y ∈ X such that x 6= y. Then X −{x} and X −{y}
are κ−open sets such that y ∈ X − {x} and x ∈ X − {y}. Therefore, (X, κ) is a κ− T1 space.

Theorem 4.2. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a κ− T1

space if and only if every subset of X is a ∧κ−set.
Proof. Suppose (X, κ) is a κ − T1 space. Let A be subset of X. By Theorem 3.1(b),

A ⊂ ∧κ(A). Suppose x 6∈ A. Then X − {x} is a κ−open set such that A ⊂ X − {x} and so
∧κ(A) ⊂ X − {x}. Hence every subset of X is a ∧κ−set. Conversely, suppose every subset of
X is a ∧κ−set and so ∧κ({x}) = {x} for every x ∈ X. Let x, y ∈ X such that x 6= y. Then
y 6∈ ∧κ({x}) and x 6∈ ∧κ({y}). Since y 6∈ ∧κ({x}), there is a κ−open set U such that x ∈ U

and y 6∈ U. Similarly, since x 6∈ ∧κ({y}), there is a κ−open set V such that y ∈ V and x 6∈ V.

Therefore, (X, κ) is a κ− T1 space.
Corollary 4.3. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are

equivalent.
(a) (X, κ) is a κ− T1 space.
(b) Every subset of X is a ∧κ−set.
(c) Every subset of X is a ∨κ−set.
Proof. (a) and (b) are equivalent by Theorem 4.2.

(b) and (c) are equivalent by Theorem 3.5(b).
Theorem 4.4. Let X be a nonempty set, γ ∈ Γ(X), κ ∈ Ω and A ⊂ X. Then the following

hold.
(a) If A is a ∧κ−set, then A is a g. ∧κ −set.
(b) If A is a ∨κ−set, then A is a g. ∨κ −set. The reverse directions are true if (X, κ) is a

κ− T1 space.
Proof.

(a) Suppose A is a ∧κ−set. Then A = ∧κ(A). If A ⊂ F where F is κ−closed, then
A = ∧κ(A) ⊂ F. Therefore, A is a g. ∧κ −set.

(b) The proof is similar to the proof of (a).
The reverse directions follow from Corollary 4.3.
Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. (X, κ) is said to be a κ − T0 space if for

distinct points x and y in X, there exists a κ−open set G containing one but not the other.
Clearly, every κ − T1 space is a κ − T0 space. Since every topology is a generalized topology
and in a topological space, T0 spaces need not be T1 spaces, κ− T0 spaces need not be κ− T0

spaces. Theorem 4.5 gives a characterization of κ− T0 spaces. The easy proof of Corollary 4.6
is omitted.

Theorem 4.5. Let (X, κ) be a κ−space where γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a
κ− T0 space if and only if distinct points of X have distinct κ−closures.

Proof. Suppose (X, κ) is a κ − T0 space. Let x and y be points of X such that x 6= y.

Then there exists a κ−open set G containing one but not the other, say x ∈ G and y 6∈ G. Then
y 6∈ cκ({x}) and so cκ({x}) 6= cκ({y}). Conversely, suppose distinct points of X have distinct
κ−closures. Let x and y be points of X such that x 6= y. Then cκ({x}) 6= cκ({y}). Suppose
z ∈ cκ({x}) and z 6∈ cκ({y}). If x ∈ cκ({y}), then cκ({x}) ⊂ cκ({y}) and so z ∈ cκ({y}), a
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contradiction. Therefore, x 6∈ cκ({y}) which implies that x ∈ X − cκ({y}) and X − cκ({y}) is
κ−open. Hence (X, κ) is a κ− T0 space.

Corollary 4.6. Let (X, κ) be a κ−space where γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a
κ− T0 space if and only if for distinct points x and y of X, either x 6∈ cκ({y}) or y 6∈ cκ({x}).

Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. (X, κ) is said to be a κ − T2 space if for
distinct points x and y in X, there exist disjoint κ−open sets G and H such that x ∈ G and
y ∈ H. Clearly, every κ− T2 space is a κ− T1 space and the converse is not true. Theorem 4.7
below gives characterizations of κ− T2 spaces.

Theorem 4.7. In a κ−space (X, κ), where γ ∈ Γ(X) and κ ∈ Ω, the following statements
are equivalent.

(a) (X, κ) is a κ− T2 space.

(b) For each x ∈ X and y 6= x, there exists a κ−open set U such that x ∈ U and y 6∈ cκ(U).

(c) For every x ∈ X, {x} = ∩{cκ(U) | x ∈ U and U is κ− open}.
Proof. (a)⇒(b). Let x, y ∈ X such that y 6= x. Then, there exists disjoint κ−open sets

U and H such that x ∈ U and y ∈ H. Then X −H is a κ−closed set such that U ⊂ X −H

and so cκ(U) ⊂ X −H. U is the required κ−open set such that x ∈ U and y 6∈ cκ(U).
(b)⇒(c). Let x ∈ X. If y ∈ X such that x 6= y, by (b), there exists a κ−open set U such that
x ∈ U and y 6∈ cκ(U). Clearly, {x} = ∩{cκ(U) | x ∈ U and U is κ− open}.
(c)⇒(a). Let x, y ∈ X such that y 6= x. Then y 6∈ {x} = ∩{cκ(U) | x ∈ U and U is κ−open},
by (c). Therefore, y 6∈ cκ(U) for some κ−open set containing x. U and X − cκ(U) are the
required disjoint κ−open sets containing x and y respectively.

Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is said to be a κ− R0 space
if every κ−open subset of X contains the κ−closure of its singletons. (X, κ) is said to be a
κ−R1 space if for x, y ∈ X with cκ({x}) 6= cκ({y}), there exist disjoint κ−open sets G and H
such that cκ({x}) ⊂ G and cκ({y}) ⊂ H. Clearly, every κ−R1 space is a κ−R0 space but the
converse is not true. The following Theorem 4.8 follows from Theorem 4.1. Theorem 4.9 below
gives a characterization of κ−R0 spaces.

Theorem 4.8. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then every κ− T1 space
is a κ−R0 space.

Theorem 4.9. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a κ−R0

space if and only if every κ−open subset of X is the union of κ−closed sets.

Proof. Suppose (X, κ) is a κ−R0 space. If A is κ−open, then for each x ∈ A, cκ({x}) ⊂ A

and so ∪{clκ{x} | x ∈ A} ⊂ A. It follows that A = ∪{clκ{x} | x ∈ A}. Conversely, suppose A is
κ−open and x ∈ A. Then by hypothesis, A = ∪{Bι | ι ∈ ∆} where each Bι is κ−closed. Now
x ∈ A, implies that x ∈ Bι for some ι ∈ ∆. Therefore, cκ({x}) ⊂ Bι ⊂ A and so (X, κ) is a
κ−R0 space.

Theorem 4.10. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a κ−R0

space if and only if for x, y ∈ X, cκ({x}) 6= cκ({y}) implies that cκ({x}) ∩ cκ({y}) = ∅.
Proof. Suppose (X, κ) is a κ − R0 space. Let x, y ∈ X, such that cκ({x}) 6= cκ({y}).

Suppose z ∈ cκ({x}) and z 6∈ cκ({y}). Since z 6∈ cκ({y}), there exists a κ−open set G containing
z such that y 6∈ G. Since z ∈ cκ({x}), x ∈ G. Since y 6∈ G, it follows that x 6∈ cκ({y}) and so
x ∈ X−cκ({y}). By hypothesis,cκ({x}) ⊂ X−cκ({y}) and so cκ({x})∩cκ({y}) = ∅. Conversely,
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suppose the condition holds. Let G be a κ−open set such that x ∈ G. If y 6∈ G, then x 6= y and
so x 6∈ cκ({y}) which implies that cκ({x}) 6= cκ({y}). By hypothesis, cκ({x})∩ cκ({y}) = ∅ and
so y 6∈ cκ({x}). Hence cκ({x}) ⊂ G which implies that (X, κ) is a κ−R0 space.

Theorem 4.11. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then (X, κ) is a κ−R0

space if and only if for x, y ∈ X, ∧κ({x}) 6= ∧κ({y}) implies that ∧κ({x}) ∩ ∧κ({y}) = ∅.
Proof. Suppose (X, κ) is a κ − R0 space. Let x, y ∈ X such that ∧κ({x}) 6= ∧κ({y}).

Suppose that z ∈ ∧κ({x}) ∩ ∧κ({y}). Then z ∈ ∧κ({x}) and z ∈ ∧κ({y}). By Theorem 3.1(h),
x ∈ cκ({z}) and y ∈ cκ({z}) and so cκ({x})∩cκ({z}) 6= ∅ and cκ({y})∩cκ({z}) 6= ∅. By Theorem
4.10, cκ({x}) = cκ({z}) and cκ({y}) = cκ({z}) and so cκ({x}) = cκ({y}). By Theorem
3.1(i),∧κ({x}) = ∧κ({y}), a contradiction. Therefore, ∧κ({x}) ∩ ∧κ({y}) = ∅. Conversely,
suppose the condition holds. Let x, y ∈ X such that cκ({x}) 6= cκ({y}). Suppose that z ∈
cκ({x}) ∩ cκ({y}). Then z ∈ cκ({x}) and z ∈ cκ({y}). By Theorem 3.1(h), x ∈ ∧κ({z})
and y ∈ ∧κ({z}) and so ∧κ({x}) ∩ ∧κ({z}) 6= ∅ and ∧κ({y}) ∩ ∧κ({z}) 6= ∅. By hypothesis,
∧κ({x}) = ∧κ({z}) and ∧κ({y}) = ∧κ({z}) and so ∧κ({x}) = ∧κ({y}). By Theorem 3.1(i),
cκ({x}) = cκ({y}), a contradiction. Therefore, cκ({x})∩ cκ({y}) = ∅. By Theorem 4.10, (X, κ)
is a κ−R0 space.

Theorem 4.12. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are
equal.

(a) (X, κ) is a κ−R0 space.

(b) For any nonempty set A and a κ−open set G such that A ∩ G 6= ∅, there exists a
κ−closed set F such that A ∩ F 6= ∅ and F ⊂ G.

(c) If G is κ−open, then G = ∪{F | F ⊂ G and F is κ−closed}.
(d) If F is κ−closed, then F = ∩{G | F ⊂ G and G is κ−open}.
(e) For every x ∈ X, cκ({x}) ⊂ ∧κ({x}).
Proof. (a)⇒(b). Suppose (X, κ) is a κ−R0 space. Let A be a nonempty set and G be a

κ−open set such that A∩G 6= ∅. If x ∈ A∩G, then x ∈ G and so by hypothesis, cκ({x}) ⊂ G.

If F = cκ({x}), then F is the required κ−closed set such that A ∩ F 6= ∅ and F ⊂ G.

(b)⇒(c). Let G be κ−open. Clearly, G ⊃ ∪{F | F ⊂ G and F is κ−closed}. If x ∈ G, then
{x} ∩G 6= ∅ and so by (b), there is a κ−closed set F such that {x} ∩ F 6= ∅ and F ⊂ G which
implies that x ∈ {F | F ⊂ G and F is κ−closed}. Therefore, G ⊂ {F | F ⊂ G and F is
κ−closed}. This completes the proof.
(c)⇒(d). Let F be κ−closed. By (c), X − F = ∪{K | K ⊂ X − F and K is κ−closed} and so
F = ∩{X −K | F ⊂ X −K and X −K is κ−open}.
(d)⇒(e). Let x ∈ X. If y 6∈ ∧κ({x}), then by Theorem 3.1(g), {x} ∩ cκ({y}) = ∅. By (d),
cκ({y}) = ∩{G | cκ({y}) ⊂ G and G is κ−open}. Therefore, there is a κ−open G such that
cκ({y}) ⊂ G and x 6∈ G which implies that y 6∈ cκ({x}). Therefore, cκ({x}) ⊂ ∧κ({x}).
(e)⇒(a). Let G be a κ−open set such that x ∈ G. If y ∈ cκ({x}), then by (e), y ∈ ∧κ({x}).
Since ∧κ({x}) ⊂ ∧κ(G) = G, y ∈ G. Hence (X, κ) is a κ−R0 space.

Corollary 4.13. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are
equivalent.

(a) (X, κ) is a κ−R0 space.

(b) For every x ∈ X, cκ({x}) = ∧κ({x}).
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Proof. (a)⇒(b). Let x ∈ X. By Theorem 4.12, cκ({x}) ⊂ ∧κ({x}). To prove the direction,
assume that y ∈ ∧κ({x}). By Theorem 3.1(h), x ∈ cκ({y}) and so cκ({x}) ⊂ cκ({y}) which
implies that cκ({x}) ∩ cκ({y}) 6= ∅. By Theorem 4.10, cκ({x}) = cκ({y}) and so y ∈ cκ({x}).
Hence cκ({x}) = ∧κ({x}).
(b)⇒(a). The proof follows from Theorem 4.12.

Theorem 4.14. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are
equivalent.

(a) (X, κ) is a κ−R0 space.
(b) For all x, y ∈ X, x ∈ cκ({y}) if and only if y ∈ cκ({x}).
Proof. (a)⇒(b). Let x, y ∈ X such that x ∈ cκ({y}). By Corollary 4.13, x ∈ ∧κ({y})

and so by Theorem 3.1(h), y ∈ cκ({x}). Thus x ∈ cκ({y}) implies that y ∈ cκ({x}). Similarly,
we can prove that y ∈ cκ({x}) implies that x ∈ cκ({y}).
(b)⇒(a). Conversely, suppose the condition holds. Let x ∈ X. If y ∈ cκ({x}), then by hypothe-
sis, x ∈ cκ({y}) and so by Theorem 3.1(h), y ∈ ∧κ({x}) which implies that cκ({x}) ⊂ ∧κ({x}).
By Theorem 4.12(e), (X, κ) is a κ−R0 space.

The following Theorem 4.15 gives a characterization of κ − R1 space and Theorem 4.16
gives a characterization of κ− T2 space.

Theorem 4.15. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are
equivalent.

(a) (X, κ) is a κ−R1 space.
(b) For x, y ∈ X such that ∧κ({x}) 6= ∧κ({y}), there exist disjoint κ−open sets G and H

such that cκ({x}) ⊂ G and cκ({y}) ⊂ H.

Proof. (a)⇒(b). Let x, y ∈ X such that ∧κ({x}) 6= ∧κ({y}). Then by Corollary 4.13,
since (X, κ) is a κ − R0 space, cκ({x}) 6= cκ({y}) and so there exists disjoint κ−open sets G
and H such that cκ({x}) ⊂ G and cκ({y}) ⊂ H.

(b)⇒(a). Let x, y ∈ X such that cκ({x}) 6= cκ({y}). By Theorem 3.1(i), ∧κ({x}) 6= ∧κ({y}). By
hypothesis, there exist disjoint κ−open sets G and H such that cκ({x}) ⊂ G and cκ({y}) ⊂ H

and so (X, κ) is a κ−R1 space.
Theorem 4.16. Let X be a nonempty set, γ ∈ Γ(X) and κ ∈ Ω. Then the following are

equivalent.
(a)(X, κ) is a κ− T2 space.
(b)(X, κ) is both a κ−R1 space and a κ− T1 space.
(c)(X, κ) is both a κ−R1 space and a κ− T0 space.
Proof. (a)⇒(b). Suppose (X, κ) is a κ− T2 space. Clearly, (X, κ) is a κ− T1 space and

so singletons are κ−closed sets, by Theorem 4.1. If x, y ∈ X with cκ({x}) 6= cκ({y}), then
x 6= y and so there exist disjoint κ−open sets G and H such that x ∈ G and y ∈ H. Therefore,
cκ({x}) ⊂ G and cκ({y}) ⊂ H which implies that (X, κ) is a κ−R1 space.
(b)⇒(c). The proof is clear.
(c)⇒(a). Let x, y ∈ X such that x 6= y. Since (X, κ) is a κ − T0 space, by Theorem 4.5,
cκ({x}) 6= cκ({y}). Since (X, κ) is a κ − R1 space, there exist disjoint κ−open sets G and H
such that cκ({x}) ⊂ G and cκ({y}) ⊂ H. Therefore, (X, κ) is a κ− T2 space.
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Abstract Quaternion operators have an important role as a screw and a rotation operator in

Euclidean motion. We introduce a new operator similar to quaternion operator in Galilean

motion. This operator is defined as a dual quaternion operator by using some information in

[1]. Then, we have geneneralized this operator for n-dimensional Galilean space.

Keywords Galilean transformation, dual complex numbers, Quaternion operators, lie group.

§1. Introduction

A unit real quaternion is a rotation operator on rigid body motion in Euclidean space. Unit
dual quaternions are also used both as rotation and screw operators. Unit dual quaternions are
seen as screw operator especially in Mechanics and Kinematics. Galilean geometry of motions
was studied in [3]. n- dimensional dual complex numbers was given in [4]. These numbers are
viewed as analysis. Galilean transformations are given as shear motion on plane [2]. Shear
motion in Galiean space G3 was given [2]. Moreover, union of shear motion and Euclidean
motions was introduced. Galilean transformation ( shear motion) was given by quaternions
( in dual quaternion form) [1]. Here, we redefine dual quaternions in a new way for the first
time. We work out Majernik’s work in a new point of view by using structures of Lie groups
and algebras. These are subgroups of Heisenberg Lie groups. We obtain elements of groups by
the exponential expansion of quaternion forms of an element of Lie algebra. And we extended
the work to the Galilean space Gn. Finally, we give Galilean transformation as dual quaternion
operators.

§2. Galilean transformations in galilean space G2

Galilean transformations were examined widely in [2]. Let X ∈ Rn and Gn be Galilean
space (Rn, ‖‖) with

‖X‖ =




|x1| , x1 6= 0
√

x2
2 + x2

3 + ... + x2
n, x1 = 0
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for n = 2, 3, 4. We redefine Galilean transformation by using quaternion operators. For any
X = (x, y) ∈ G2, Galilean transformation (shear motion) is defined as the following:

f : G2 → G2 , X → f(X) = (x, υx + y),

f is a linear transformation, so f has the matrices form as the following

f(X) =


 1 0

υ 1





 x

y


 .

Lemma 2.1. Let f be a linear transformation. Then f is a Galilean transformation, where

f : G2 → G2, X → f(X) = (x, υx + y).

Proof. For x 6= 0 and x = 0 , we have

‖X‖ = |x| = ‖f(X)‖

and
‖X‖ = |y| = ‖f(X)‖ .

f is a Galilean transformation, because the linear function f is a isometry.
Theorem 2.1. Let Gal(2) be a Lie group. Then Gal(2) and g(2) are Lie algebras of

Gal(2), where

Gal(2) =






 1 0

υ 1


 : υ ∈ R



 , g(2) =






 0 0

υ1 0


 : υ1 ∈ R



 .

§3. Dual numbers and galilean transformation in G2

Every vector X = (x, y) in R2 can be written as X = x+εy with ε2 = 0. So sp {1, ε} = R2.

The form of x + εy is called dual quaternion form of X.
Lemma 3.1. Dual quaternion Q = 1 + ευ is a Galilean transformation in G2.

Proof. Since Q = 1 + ευ , we have

QX = (1 + ευ)(x + εy) = x + ε(y + υx)

and
‖QX‖ = ‖X‖ .

So, Q is a Galilean transformation in G2. By using exponential map from Lie algebra to Lie
group, on g ∈ g(2) as in g = ευ1 form :

e : g(2) → Gal(2)

g → eg = eευ1 = 1 + ευ1.

Corollary 3.1. Q = eg = 1 + ευ1 is a dual quaternion operator. Thus dual quaternion
operator Q is a Galilean transformation.
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§4. Galilean transformation(shear motion) in galilean space

G3

In this section shear motion on Galilean spaces G3, Lie group structure of this motion and
exponential form are given.

Theorem 4.1. f is a Galilean transformation(shear motion), where

f : G3 → G3

X → f(X) = (x, ax + y, bx + z)

=




1 0 0

a 1 0

b 0 1







x

y

z


 .

Proof. For x 6= 0 and x = 0 , we have

‖f(X)‖ = |x| = ‖X‖
and

‖f(X)‖ =
√

y2 + z2 = ‖X‖ .

So, f is a Galilean transformation.
Theorem 4.2. Gal(3) is a Lie group and the g(3) is a Lie algebra of Gal(3), where

Gal(3) =





A =




1 0 0

a 1 0

b 0 1


 |a, b ∈ R





,

g(3) =





a =




0 0 0

a1 0 0

b1 0 0


 |a1, b1 ∈ R





.

§5. Heisenberg lie group

The set of matrices

H =








1 x1 x3

0 1 x2

0 0 1


 : xi ∈ R, i = 1, 2, 3





is a Lie group with repect to the matrix multiplication. This Heisenberg group has many
important applications on Sub-Riemannian geometry and has very important role in physics.

Lemma 5.1. Gal(3) is a subgroup of Heisenberg Lie group.
Proof. Gal(3) is obtained from Heissenberg Lie group by taking x2 = 0.
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§6. Dual Quaternions and galilean transformation in G3

Every vector X in R3 can be written as X = x + iy + jz , where i2 = j2 = ij = ji = 0
and sp {1, i, j} = R3. The form X = x + iy + jz is called as dual quaternion form of X ∈ R3.

Lemma 6.1. Q = 1 + ai + bj is a Galilean transformation in G3.
Proof. Since Q = 1 + ai + bj, we have

QX = (1 + ai + bj)(x + iy + jz)

= x + (ax + y)i + (bx + z)j

and

‖QX‖ = ‖X‖ .

Thus the Q is a Galilean transformation.Furthermore, we can write g ∈ g(3) as g = a1i+ b1j.
So we can write an exponential map as follows:

e : g(3) → Gal(3)

g → eg = ea1i+b1j = 1 + a1i + b1j.

Corollary 6.1. eg = Q = 1 + a1i + b1j is a dual quaternion operator. Thus the dual
quaternion operator Q is a Galilean transformation.

§7. Galilean transformations in galilean space G4

In this part shear motion is defined in Galilean spaces G4. Structure of Lie group of this
motion and exponential form are given.

Theorem 7.1. f is a Galilean transformation(shear motion), where

f : G4 → G4

X → f(X) = (x, ax + y, bx + z, cx + l)

=




1 0 0 0

a 1 0 0

b 0 1 0

c 0 0 1







x

y

z

l




.

Proof. For x 6= 0 and x = 0, we have

‖f(X)‖ = |x| = ‖X‖

and

‖f(X)‖ =
√

y2 + z2 + l2 = ‖X‖ .

So, f is isometry and Galilean transformation.
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Theorem 7.2. Gal(4) is a Lie group and g(4) is a Lie algebra of the Gal(4), where

Gal(4) =





A =




1 0 0 0

a 1 0 0

b 0 1 0

c 0 0 1



|a, b, c ∈ R





,

g(4) =





a =




0 0 0 0

a1 0 0 0

b1 0 0 0

c1 0 0 0



|a1, b1, c1 ∈ R





.

§8. Dual Quaternions and galilean transformations in G4

In this part, we reviewed study in [1]. Every vector X in R3 can be written as the form
X = x + iy + jz + kl , where

i2 = j2 = k2 = ij = ji = ik = ki = kj = jk = 0

and

sp {1, i, j, k} = R4.

The form X = x + iy + jz + kl is called as dual quaternion form of X ∈ R4.

Lemma 8.1. Q = 1 + ai + bj + dk is a Galilean transformation in G4.

Proof. Since Q = 1 + ai + bj + dk , we have

QX = (1 + ai + bj + dk)(x + iy + jz + kl)

= x + (ax + y)i + (bx + z)j + (dx + l)k

and

‖QX‖ = ‖X‖ .

Thus, Q is a Galilean transformation. Furthermore, we can write g ∈ g(3) as g = a1i + b1j +
d1k. So we can write an exponential map as follows:

e : g(4) → Gal(4)

g → eg = ea1i+b1j+d1k = 1 + a1i + b1j + d1k.

Corollary 8.1. Q = eg = 1 + a1i + b1j + d1k is a dual quaternion operator. Thus dual
quaternion operator Q is a Galilean transformation.
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§9. Galilean transformations in galilean space Gn

In this part, Galilean transformation generalized to Galilean spaces Gn, by using Galilean
transformation in spaces G2, G3 and G4 .

Theorem 9.1. f is a Galilean transformation, where

f : Gn → Gn

X → f(X) = (x1, υ1x1 + x2, ..., υn−1x1 + xn)

=




1 0 0 0 0

υ1 1 0 0 0

υ2 0 1 0 0

. . . . .

υn−1 0 0 0 1







x1

x2

x3

.

xn




.

Proof. For x1 6= 0 and x1 = 0, we have

‖f(X)‖ = |x1| = ‖X‖

and

‖f(X)‖ =
√

x2
2 + x3

2 + · · ·+ xn
2 = ‖X‖ .

Then, f is isometry, thus f is a Galilean transformation.

Theorem 9.2. Gal(n) is a Lie group and g(n) is a Lie algebra of Gal(4), where

Gal(n) =








1 0 0 0 0 0

υ1 1 0 0 0 0

υ2 0 1 0 0 0

. . . . . .

. . . . . .

υn−1 0 0 0 0 1




|υ1, υ2, ..., υn−1 ∈ R





,

g(n) =








0 0 0 0 0 0

a1 0 0 0 0 0

a2 0 0 0 0 0

. . . . . .

. . . . . .

an−1 0 0 0 0 0




|a1, a2, · · · , an−1 ∈ R





.
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§10. Dual Quaternions and galilean transformation in Gn

In this part, every vector X in Rn is written in form X = x1 +x2i1 +x3i2 + · · ·+xnin−1,
where x1, x2, · · · , xn are real numbers. The components of X and i1, i2, · · · , in−1 are units
which satisfy the relations i21 = i22 = · · · = i2n−1 = 0 and ijik = ikij = 0, 1 ≤ k, j ≤ n− 1.
Also, sp {1, i1, i2, · · · , in−1} = Rn, X = x1 + x2i1 + x3i2 + · · · + xnin−1 is called as dual
quaternion form of X ∈ Rn.

Lemma 10.1. Dual quaternion operator Q = 1+υ1i1 +υ2i2 + · · ·+υn−1in−1 is a Galilean
transformation.

Proof. Since Q = 1 + υ1i1 + υ2i2 + · · ·+ υn−1in−1, we have

QX = (1 + υ1i1 + υ2i2 + · · ·+ υn−1in−1)(x1 + x2i1 + x3i2 + · · ·+ xnin−1)

= x1 + (υ1x1 + x2)i1 + (υ2x1 + x3)i2 + · · · (υn−1x1 + xn)in−1

and
‖QX‖ = ‖X‖ .

So, the dual quaternion operator Q is a Galilean transformation. For any element from Lie
algebra , a ∈ g(n), a = a1i1 + a2i2 + · · ·+ an−1in−1 ∈ g(n) by using exponential map, we have

e : g(n) → Gal(n)

a → ea = ea1i1+a2i2+···+an−1in−1

= 1 + a1i1 + a2i2 + · · ·+ an−1in−1.

Corollary 10.1. The transformation Q is a dual quaternion operator. So, dual quaternion
operator Q is a Galilean transformation.

Corollary 10.2. Let a, b ∈ g(n), then Q(a) = ea ∈ Gal(n) and Q(b) = eb ∈ Gal(n).
Furthermore Q(a)Q(b) = eaeb = ea+b = Q(a + b). This implies the addition theorem for

the velocity on a Galilean transformation.
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Abstract This paper introduces the concept of fuzzy number valued Lebesgue outer measure.

A non-negative countably subadditive function m∗ on the power set of a set X by means of

a given additive function on an algebra of subsets of X, and a new collection of measurable

sets E are constructed , where E satisfy the relation m∗(A) = m∗(A∩E)+m∗(A∩ (X\E) ),

for any subset A of X .
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§1. Introduction

There are articles in the literature associated with fuzzy outer measure [3]. We construct
fuzzy number valued outer measures and measurable sets that is similar to that of Carathrodory
construction. In section 3 we deal with fuzzy number valued Lebesgue outer measure in the real
line R and in section 4, the results obtained in section 3 are carried to arbitrary fuzzy number
valued measure space (X, Ω,m).

In section 2 we give preliminary ideas relevant to fuzzy numbers.

§2. Basic Definitions

Definition 2.1. Let F = {ñ\ñ : R → [0, 1]} . For every ñ ∈ F, ñ is called a fuzzy number
if it satisfies the following properties:

a) ñ is normal i.e there exists an x ∈ R such that ñ(x) = 1

b) whenever λ ∈ [0, 1] , the λ−cut , nλ = {x : ñ ≥ λ} is a closed interval denoted by
[n−λ , n+

λ ] We denote the set of all fuzzy numbers on R by F ∗.

Remark 2.2. By decomposition theorem of fuzzy sets ñ =
⋃

λ∈[0,1]

λ[n−λ , n+
λ ].

Remark 2.3. The fuzzy number [a, b] is defined by [a, b](x) = 1, iff x ∈ [a, b] and [a, b](x) =
0, iff x /∈ [a, b]. Similarly we can define (a, b).

If a = b then [a, b] is simply denoted by ȧ. i.e ȧ is defined as ȧ(x) = 1, iff x = a and
ȧ(x) = 0 iff x 6= a. Obviously then [a, b], ȧ ∈ F ∗.
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Further [a, b] =
⋃

λ∈[0,1]

λ[a, b]. and ȧ =
⋃

λ∈[0,1]

λ[a, a].

Remark 2.4. A fuzzy number ñ which is increasing in the interval (a, b), ñ([b, c]) = 1
and is decreasing in the interval (b, c) is simply denoted by (a, b, c, d). Here ñ([b, c]) = 1 means
ñ(x) = 1 for every x ∈ [b, c].

The fuzzy number (a, b, c, c + ε) where ε > 0 is denoted by (a, [b, c]) and the fuzzy number
(a− ε, a, b, c) where ε > 0 is denoted by ([a, b], c).

Similarly the fuzzy number (a, b, b, b + ε) where ε > 0 is denoted by (a, ḃ) and the fuzzy
number (a− ε, a, a, b) where ε > 0 is denoted by (ȧ, b).

Definition 2.5. For every ã, b̃ ∈ F ∗ the sum ã + b̃ is defined as c̃ where c−λ = a−λ + b−λ and
c+
λ = a+

λ + b+
λ for every λ ∈ (0, 1].

Definition 2.6. For every ã, b̃ ∈ F ∗ we writeã ≤ b̃ if a−λ ≤ b−λ and a+
λ ≤ b+

λ for every
λ ∈ (0, 1].

§3. Fuzzy number valued Lebesgue outer measure

Definition 3.1. Let µ : R → [0, 1] be a fuzzy subset of the real line. The fuzzy number
valued Lebesgue outer measure for the fuzzy subset µ is defined as m∗(µ) = (0, K̇) where

K = inf
∞∑

n=1

(
sup
x∈In

µ(x)
)

l(In) and the infimum is taken over all countable collection (In) of

open intervals covering R.
Proposition 3.2. If µ1 ≤ µ2, then m∗(µ1) ≤ m∗(µ2).

Proof. m∗(µ1) = (0, K̇1) where K1 = inf
∞∑

n=1

(
sup
x∈In

µ1(x)
)

l(In) ≤ (0, K̇2) where

K2 = inf
∞∑

n=1

(
sup
x∈In

µ2(x)
)

l(In) = m∗(µ2).

Lemma 3.3. If µ1 and µ2 are any two fuzzy sets and µ = µ1 ∨ µ2, then

m∗(µ) ≤ m∗(µ1) + m∗(µ2).

Proof. If m∗(µ1) = (0, ∞̇) or m∗(µ2) = (0, ∞̇) then the lemma is trivial.

Suppose that m∗(µ1) 6= (0, ∞̇) and m∗(µ2) 6= (0, ∞̇). Let K1 = inf
∞∑

n=1

(
sup
x∈I′n

µ1(x)

)
l(I

′
n)

and K2 = inf
∞∑

n=1

(
sup
x∈I”

n

µ2(x)

)
l(I”

n)

Choosing ε > 0 we can find countable covers {I ′1, I
′
2, · · · } and {I”

1 , I”
2 , · · · } of open intervals

for R such that
∞∑

n=1

(
sup
x∈I′n

µ1(x)

)
l(I

′
n) < K1 + ε/4 and

∞∑
n=1

(
sup
x∈I”

n

µ2(x)

)
l(I”

n) < K2 + ε/4.

Set another sequence {J ′1, J
′
2, · · · } of pairwise disjoint open intervals such that R−

∞⋃
n=1

J
′
n = T

(say) is countable and such that each J
′
n is contained in some I

′
i and I”

j . Choose a sequence of
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open intervals J”
1 , J”

2 , · · · such that
∞∑

n=1
l(J”

n) < ε/4 and T ⊆
∞⋃

n=1
J”

n.

Setting {I1, I2, · · · } = {J ′1, J”
1 , J

′
2, J

”
2 · · · } we can find {I1, I2, · · · } is a cover of R.

Also

∞∑
n=1

(
sup
x∈In

µ1(x)
)

l(In)

≤
∞∑

n=1

(
sup
x∈J′n

µ1(x)

)
l(J

′
n) +

∞∑
n=1

(
sup
x∈J”

n

µ1(x)

)
l(J”

n)

≤
∞∑

n=1

(
sup
x∈I′n

µ1(x)

)
l(I

′
n) +

∞∑
n=1

l(J”
n)

≤ K1 + ε/4 + ε/4 = K1 + ε/2.

Similarly we find
∞∑

n=1

(
sup
x∈In

µ2(x)
)

l(In) ≤ K2 + ε/2.

If K = inf
∞∑

n=1

(
sup
x∈In

µ(x)
)

l(In), then

K ≤
∞∑

n=1

(
sup
x∈In

µ(x)
)

l(In)

≤
∞∑

n=1

(
sup
x∈In

µ1(x)
)

l(In) +

∞∑
n=1

(
sup
x∈In

µ2(x)
)

l(In)

≤ K1 + ε/2 + K2 + ε/2

and hence K ≤ K1 + K2.

Therefore

m∗(µ) = (0, K̇) ≤ (0, ˙K1 + K2) = (0, K̇1) + (0, K̇2) = m∗(µ1) + m∗(µ2)

Remark 3.4. By using the induction on n the result of above lemma can be extended as
m∗(µ) ≤ m∗(µ1) + m∗(µ2) + · · ·m∗(µn) whenever µ = µ1 ∨ µ2 ∨ · · · ∨ µn.

Lemma 3.5. m∗(µ) = (0, K̇) where K = inf
∞∑

n=1

(
sup

x∈An

µ(x)
)

m(An) and the infimum is

taken over all sequences (An) of Lebesgue measurable subsets of R such that R =
∞⋃

n=1
An.

Proof. Let K = inf
∞∑

n=1

(
sup
x∈In

µ(x)
)

l(In) and K
′
= inf

∞∑
n=1

(
sup

x∈An

µ(x)
)

m(An)

We have to prove that K = K
′
for which it is enough to show that K ≤ K

′
.

Suppose that K
′
< ∞. Choosing ε > 0, we can find a sequence {εn} with εn > 0 for all n

such that
∞∑

n=1
εn < ε/4. Accordingly we can have a sequence of Lebesgue measurable subsets of

R such that R =
∞⋃

n=1
An and such that

∞∑
n=1

(
sup

x∈An

µ(x)
)

m(An) < K
′
+ ε/4.
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To each n, find a sequence of pairwise disjoint open intervals such that m

(( ∞⋃
k=1

Ink

)
\An

)
<

εn and such that
∞⋃

k=1

Ink
4 An = Mn (say) is countable.

Finding a sequence {Jn} of open intervals such that
∞⋃

n=1
Mn ⊆

∞⋃
n=1

Jn and such that
∞∑

n=1
l(Jn) < ε/4.

Clearly {Ink
, Jn : k = 1, 2, · · · , n = 1, 2, · · · } is a cover for R and we have

∞∑
n=1

∞∑

k=1

(
sup

x∈Ink

µ(x)

)
l(Ink

) +
∞∑

n=1

(
sup
x∈Jn

µ(x)
)

l(Jn)

≤
∞∑

n=1

(
sup

x∈An

µ(x)
)

(m(An) + εn) +
∞∑

n=1

l(Jn)

≤ K
′
+

∞∑
n=1

εn + ε/4 ≤ K
′
+ ε

as 0 ≤ µ(x) ≤ 1,m

(( ∞⋃
k=1

Ink

)
\An

)
< εn and {Ink

}, k = 1, 2 · · · are pairwise disjoint for
every n.

Therefore K = K
′
. and hence the result follows.

Theorem 3.6. If E is a Lebesgue measurable subset of the real line and µ is a fuzzy subset
of R then m∗(µ) = m∗(µ ∩ E) + m∗(µ ∩ Ec).

Proof.

m∗(µ) = m∗(µ ∩ (E ∪ Ec)) = m∗((µ ∩ E) ∪ (µ ∩ Ec))

≤ m∗(µ ∩ E) + m∗(µ ∩ Ec).

Suppose that m∗(µ) = (0, K̇),m∗(µ ∩ E) = (0, K̇1) and m∗(µ ∩ Ec) = (0, K̇2).
If K = ∞, the result is trivial.

Suppose that K 6= ∞. Choosing ε > 0 we can find a sequence {An} of pairwise disjoint

measurable subsets of R such that
∞⋃

n=1
An = R and

∞∑
n=1

(
sup

x∈An

µ(x)
)

m(An) < K + ε.



Vol. 5 On fuzzy number valued Lebesgue outer measure 105

Therefore by previous lemma,

K1 + K2 ≤
∞∑

n=1

(
sup

x∈An∩E
µ(x) ∧ χE(x)

)
m(An ∩ E) +

∞∑
n=1

(
sup

x∈An∩Ec

µ(x) ∧ χE(x)
)

m(An ∩ Ec) +

∞∑
n=1

(
sup

x∈An∩E
µ(x) ∧ χEc(x)

)
m(An ∩ E) +

∞∑
n=1

(
sup

x∈An∩Ec

µ(x) ∧ χEc(x)
)

m(An ∩ Ec)

=
∞∑

n=1

(
sup

x∈An∩E
µ(x)

)
m(An ∩ E) +

∞∑
n=1

(
sup

x∈An∩Ec

µ(x)
)

m(An ∩ Ec)

≤
∞∑

n=1

(
sup

x∈An

µ(x)
)

m(An) ≤ K + ε.

Therefore

m∗(µ ∩ E) + m∗(µ ∩ Ec) = (0, K̇1) + (0, K̇2) = (0, ˙K1 + K2) ≤ (0, K̇) = m∗(µ).

Hence the result.
Remark 3.7. Using above theorem we can define Lebesgue measurable fuzzy subset λ as

follows:
A fuzzy subset λ is Lebesgue measurable iff m∗(µ) = m∗(µ ∩ λ) + m∗(µ ∩ λc) for some

complement λc of λ.

§4. General Fuzzy number valued Lebesgue outer measure

We shall assume X as a nonempty set, Ω denotes a σ− algebra of subsets of X and m

denotes a positive measure on Ω.

Definition 4.1. Let µ : X → [0, 1] be a fuzzy subset of X. The fuzzy number valued outer

measure for the fuzzy subset µ is defined as m∗(µ) = (0, K̇) where K = inf
∞∑

n=1

(
sup

x∈An

µ(x)
)

m(An)

and the infimum is taken over all countable collection (An) in Ω which cover X.
The following result can be proved that is analogous to lemma 3.3.
If µ1, µ2, · · ·µn are fuzzy subsets of X and if µ = µ1∨µ2∨· · ·∨µn then m∗(µ) ≤ m∗(µ1)+

m∗(µ2) + · · ·m∗(µn).
Let Ω1 = E ⊆ X : m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec) for every A ⊆ X. Then Ω1 is σ−

algebra, Ω1 ⊆ Ω. If m(A) = m∗(A) for every A ∈ Ω1 then m is a positive measure on Ω1. If
m∗ is finite(σ− finite) then m is finite(σ− finite). We use m(A) instead of m∗(A) whenever
A ∈ Ω1.
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Lemma 4.2. If µ is fuzzy set on X then m∗(µ) = (0, K̇), where

K = inf
∞∑

n=1

(
sup

x∈An

µ(x)
)

m(An) and the infimum is taken over all sequences (An) of sets in

Ω1 such that X =
∞⋃

n=1
An.

Proof. The proof is similar to that of lemma 3.5 with the following modifications.

To each n, such that sup
x∈An

µ(x) 6= 0, choose a sequence such that An ⊆
∞⋃

k=1

Ank
, Ank

∈
Ω, Ank

are pairwise disjoint, and

m

(( ∞⋃

k=1

Ank

)
\An

)
< εn.

Let B be the set obtained from X after removing all Ank
. Then

{Ank
: k = 1, 2, · · · } ∪ {B} is a cover for X which leads to the conclusion of the as in lemma

3.5.
Theorem 4.3. If E ∈ Ω1 and µ is a fuzzy subset of X , then

m∗(µ) = m∗(µ ∩ E) + m∗(µ ∩ Ec)

Proof. Analogous to the proof in lemma 3.6
Remark 4.4. Using above theorem if we wish to define measurable fuzzy subset λ of X

as those λ which satisfies m∗(µ) = m∗(µ ∩ λ) + m∗(µ ∩ λc) for some complement λc of λ then
λ must be Ω1− measurable.
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Abstract In this paper we prove that the “intermediate point” ξ of Lagrange mean value

theorem is a function, furthermore, we study its monotonicity, continuity and derivable prop-

erty. For application, we give an example to show the incorrect for a proof method in course

of calculus teaching.

Keywords Lagrange mean value theorem, “intermediate point” ξ , monotonicity, continu-

ity, derivable property

§1. Introduction

Lagrange mean value theorem is one of most important theorems in calculus. It is an
important tool to study the property of function. It sets up a “bridge” between function and
derivable function. But Lagrange mean value theorem only affirms existence of “intermediate
point” ξ , not states its other properties. Recently, some people have studied asymptotic
qualities of ξ and obtained good results. In this paper, on the base of summarizing related
results, we study the monotonicity, continuity and derivable property of ξ .

§2. Several lemmas

Lemma 1. (Lagrange mean value theorem) Assume that f(x) is continuous on the closed
interval [a, b] and derivable on the open interval (a, b). Then for ∀x ∈ (a, b], there at least
exists a point ξ ∈ (a, x), such that

f ′(ξ) =
f(x)− f(a)

x− a
, (1)

In reference[1-4], they obtain some important results, among them the most typical result
is as follows.

Lemma 2. Assume that f(x) is a first-order continuous and derivable function on interval
[a, b], and f ′(x) − f ′(a) is α-order infinitesimal of x − a, where α > 0. Then ξ with (1) has
asymptotic estimator

lim
b→a

ξ − a

b− a
=

(
1

a + 1

) 1
a

. (2)

1This work is supported by the Gansu Provincial Education Department Foundation 0608-04.
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§3. Main results and their proofs

Assume that f(x) satisfies the conditions of lemma 1 when x ∈ [a, b], then for ∀x ∈ (a, b],
when a is fixed, the “intermediate point” ξ changes with x and ξ has important properties as
follows.

Theorem. Assume that f(x) is continuous on the closed interval [a, b] and derivable on
the open interval (a, b), and f(x) is second-order continuous and derivable in interval (a, b),
f ′(x) is strictly monotone in interval(a, b) , f ′′(x) is always positive or always negative in
interval (a, b), then we have

(i) The point ξ with (1) is a uniform function about x, notes ξ = ξ(x);
(ii) ξ = ξ(x) is a monotone increasing function about x;
(iii) ξ = ξ(x) is a continuous function about x;
(iv) ξ = ξ(x) is a derivable function about x and

ξ′(x) =
f ′(x)− f ′(ξ(x))
(x− a)f ′′(ξ(x))

. (3)

Proof. (i) Because f ′(x) is strictly monotone in interval (a, b), we can easily prove that
(i) holds.

(ii) Assume that f ′(x) is monotone increasing in interval (a, b), for ∀x1, x2 ∈ (a, b) and
x1 < x2, by given condition and lemma 1 we have

f(x2)− f(a) = f ′(ξ(x2))(x2 − a), f(x1)− f(a) = f ′(ξ(x1))(x1 − a).
So f(x2)−f(x1) = [f ′(ξ(x2))−f ′(ξ(x1))](x1−a)+f ′(ξ(x2))(x2−x1). Also by f(x2)−f(x1) =
f ′(η)(x2 − x1), hence

[f ′(η)− f ′(ξ(x2))](x2 − x1) = [f ′(ξ(x2))− f ′(ξ(x1))](x1 − a),
where x1 < η < x2, a < ξ(x1) < x1, a < ξ(x2) < x2, a < x1 < x2 < b.Because f ′(x) is
monotone increasing, we have f ′(η) > f ′(ξ(x1)), and

f ′(η)− f ′(ξ(x2))(x2 − a) = f ′(η)(x2 − x1) + f ′(η)(x1 − a)− f ′(ξ(x2))(x2 − a)

> f ′(η)(x2 − x1) + f ′(ξ(x1))(x1 − a)− f ′(ξ(x2))(x2 − a).

But f ′(η)(x2 − x1) = f(x2)− f(x1),
f ′(ξ(x1))(x1 − a) = f(x1)− f(a),
f ′(ξ(x2))(x2 − a) = f(x2)− f(a),

So [f ′(η)− f ′(ξ(x2))](x2 − a) > 0,

f ′(η)− f ′(ξ(x2)) > 0,

f ′(ξ(x2))− f ′(ξ(x1)) > 0.

By monotone increasing f ′(x), we have
ξ(x2) > ξ(x1).

When f ′(x) is monotone decreasing in interval (a, b), the proof is same to above proof.
(iii) By given conditions and Lemma 1, we have

f ′(ξ(x)) =
f(x)− f(a)

x− a
,

and
f ′(ξ(x + h)) =

f(x + h)− f(a)
x + h− a

,

so
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f ′(ξ(x + h))− f ′(ξ(x)) =
(x− a)[f(x + h)− f(a)]− h[f(x)− f(a)]

(x + h− a)(x− a)
.

By (ii), we know that ξ = ξ(x) is a monotone function about x. When h 6= 0, also by Lemma
1, we have

f ′(ξ(x + h))− f ′(ξ(x)) = f ′′(η)[ξ(x + h)− ξ(x)],
where η lies between ξ(x + h) and ξ(x), so

lim
h→0

[ξ(x + h)− ξ(x)] = lim
h→0

(x− a)[f(x + h)− f(a)]− h[f(x)− f(a)]
f ′′(η)(x + h− a)(x− a)

= 0.

That is to say, ξ = ξ(x) is continuous in interval (a, b).
(iv) By definition of derivative, we have

ξ′(x) = lim
h→0

ξ(x + h)− ξ(x)
h

= lim
h→0

(x− a)
f(x + h)− f(x)

h
− [f(x)− f(a)]

f ′′(η)(x + h− a)(x− a)

=
(x− a)f ′(x)− f(x) + f(a)

f ′′(ξ(x))(x− a)2

=
f ′(x)− f ′(ξ(x))
(x− a)f ′′(ξ(x))

.

Thus, the proof is complete.
Finally, it deserves to mention that, in the course of teaching higher mathematics, some

people consider the application of this theorem as an incorrect proof method. In fact, this
thinking is not right. we give an example.

Example. Assume that f(x) is quadratic differentiable on the closed interval [a, b] and
f ′′(x) > 0, we try to prove that the function

g(x) =
f(x)− f(a)

x− a

is a monotone increasing function in the open interval (a, b). Proof By Lemma1, we have

f(x)− f(a) = f ′(ξ(x))(x− a), a < ξ(x) < x 6 b.

So

g(x) =
f(x)− f(a)

x− a
= f ′(ξ(x)).

By above theorem we know that ξ = ξ(x) is a monotone increasing and derivable function in
the open interval (a, b), also by derivative rules of compound function, we have

g′(x) = f ′′(ξ(x))ξ′(x),

but f ′(x) > 0 and ξ′(x) > 0, so

g′(x) = f ′′(ξ(x))ξ′(x) > 0.

Thus, the proof is complete.
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Abstract By two relations belonging to (∈) and quasi-coincidence (q) between fuzzy points

and fuzzy sets, we define the concept of (α, β)-fuzzy subalgebras where α, β are any two of

{∈, q,∈ ∨q,∈ ∧q} with α 6=∈ ∧q. We state and prove some theorems in (α, β)-fuzzy BG-

algebras.

Keywords BG-algebra, (α, β)-fuzzy subalgebra, fuzzy point.

§1. Introduction

Y. Imai and K. Iseki [3] introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class
of BCI-algebras. In [7] J. Neggers and H. S. Kim introduced the notion of d-algebras, which
is generalization of BCK-algebras and investigated relation between d-algebras and BCK-
algebras. Also they introduced the notion of B-algebras [6]. In [4] C. B. Kim, H. S. Kim
introduced the notion of BG-algebras which is a generalization of B-algebras. In 1980, P. M.
Pu and Y. M. Liu [8], introduced the idea of quasi-coincidence of a fuzzy point with a fuzzy set,
which is used to generate some different types of fuzzy subgroups, called (α, β)-fuzzy subgroups,
introduced by Bhakat and Das [2]. In particular, {∈,∈ ∨q}-fuzzy subgroup is an important
and useful generalization of Rosenfeld’s fuzzy subgroup. In this note we introduced the notion
of (α, β)-fuzzy BG-algebras. We state and prove some theorems discussed in (α, β)-fuzzy BG-
subalgebras and level subalgebras.

§2. Preliminary

Definition 2.1. [4] A BG-algebra is a non-empty set X with a consonant 0 and a binary
operation ∗ satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,
(III) (x ∗ y) ∗ (0 ∗ y) = x, for all x, y ∈ X.
For brevity we also call X a BG-algebra. In X we can define a binary relation ≤ by x ≤ y

if and only if x ∗ y = 0.
Theorem 2.2. [4] In a BG-algebra X, we have the following properties:
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Theorem 2.2. [4] In a BG-algebra X, we have the following properties:

For all x, y ∈ X,

(i) 0 ∗ (0 ∗ x) = x,

(ii) if x ∗ y = 0, then x = y,

(iii) if 0 ∗ x = 0 ∗ y, then x = y,

(iv) (x ∗ (0 ∗ x)) ∗ x = x.

Theorem 2.3. [4] A non-empty subset I of a BG-algebra X is called a subalgebra of X

if x ∗ y ∈ I for any x, y ∈ I.

A mapping f : X −→ Y of BG-algebras is called a BG-homomorphism if f(x ∗ y) =
f(x) ∗ f(y) for all x, y ∈ X.

We now review some fuzzy logic concepts (see [2] and [10]).

Let X be a set. A fuzzy set A on X is characterized by a membership function µA : X −→
[0, 1].

Let f : X −→ Y be a function and B a fuzzy set of Y with membership function µB . The
inverse image of B, denoted by f−1(B), is the fuzzy set of X with membership function µf−1(B)

defined by µf−1(B)(x) = µB(f(x)) for all x ∈ X.

Conversely, let A be a fuzzy set of X with membership function µA. Then the image of A,
denoted by f(A), is the fuzzy set of Y such that

µf(A)(y) =





sup
x∈f−1(y)

µA(x) if f−1(y) 6= ∅,

0 otherwise.

A fuzzy set µ of a set X of the form

µ(y) :=





t if y = x,

0 otherwise.

where t ∈ (0, 1] is called a fuzzy point with support x and value t and is denoted by xt.

Consider a fuzzy point xt, a fuzzy set µ on a set X and α ∈ {∈, q,∈ ∨q,∈ ∧q}, we define
xtαµ as follow:

(i) xt ∈ µ (resp. xtqµ) means that µ(x) ≥ t (resp. µ(x) + t > 1) and in this case we said
that xt belong to (resp. quasi-coincident with) fuzzy set µ.

(ii) xt ∈ ∨qµ (resp. xt ∈ ∧qµ) means that xt ∈ µ or xtqµ (resp. xt ∈ µ and xtqµ).

Definition 2.4. [1] Let µ be a fuzzy set of a BG-algebra X. Then µ is called a fuzzy
BG-algebra (subalgebra) of X if

µ(x ∗ y) ≥ min{µ(x), µ(y)}

for all x, y ∈ X.

Example 2.5. [1] Let X = {0, 1, 2, 3} be a set with the following table:
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∗ 0 1 2 3

0 0 1 2 3

1 1 0 1 1

2 2 2 0 2

3 3 3 3 0

Then (X, ∗, 0) is a BG-algebra. Define a fuzzy set µ : X → [0, 1] on X, by µ(0) = µ(1) = t0

and µ(2) = µ(3) = t1, for t0, t1 ∈ [0, 1] and t0 > t1. Then µ is a fuzzy BG-algebra of X.
Definition 2.6. [2] Let µ be a fuzzy set of X. Then the upper level set U(µ;λ) of X is

defined as following :
U(µ;λ) = {x ∈ X | µ(x) ≥ λ}.

Definition 2.7. Let f : X −→ Y be a function. A fuzzy set µ of X is said to be
f -invariant, if f(x) = f(y) implies that µ(x) = µ(y), for all x, y ∈ X.

§3. (α, β)-fuzzy BG-algebras

From now on X is a BG-algebra and α, β ∈ {∈, q,∈ ∨q,∈ ∧q} unless otherwise specified.
By xtαµ we mean that xtαµ does not hold.

Theorem 3.1. Let µ be a fuzzy set of X. Then µ is a fuzzy BG-algebra if and only if

xt1 , yt2 ∈ µ ⇒ (x ∗ y)min(t1,t2) ∈ µ, (1)

for all x, y ∈ X and t1, t2 ∈ [0, 1].
Proof. Assume that µ is a fuzzy BG-algebra. Let x, y ∈ X and xt1 , yt2 ∈ µ, for t1, t2 ∈

[0, 1] . Then µ(x) ≥ t1 and µ(y) ≥ t2, by hypothesis we can conclude that

µ(x ∗ y) ≥ min(µ(x), µ(y)) ≥ min(t1, t2).

Hence (x ∗ y)min(t1,t2) ∈ µ.
Conversely, Since xµ(x) ∈ µ and yµ(y) ∈ µ for all x, y ∈ X, then (x ∗ y)min(µ(x),µ(y)) ∈ µ.

Therefore µ(x ∗ y) ≥ min(µ(x), µ(y)).
Note that if µ is a fuzzy set of X defined by µ(x) ≤ 0.5 for all x ∈ X, then the set

{xt | xt ∈ ∧qµ} is empty.
Definition 3.2. A fuzzy set µ of X is said to be an (α, β)-fuzzy subalgebra of X, where

α 6=∈ ∧q, if it satisfies the following condition:

xt1αµ, yt2αµ ⇒ (x ∗ y)min(t1,t2)βµ

for all t1, t2 ∈ (0, 1].
Proposition 3.3. µ is an (∈,∈)-fuzzy subalgebra of X if and only if for all t ∈ [0, 1], the

nonempty level set U(µ; t) is a subalgebra of X.

Proof. The proof follows from Theorem 3.1.
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Example 3.4. Let X = {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Then (X, ∗, 0) is a BG-algebra. Let µ be a fuzzy set in X defined µ(0) = 0.6, µ(1) = 0.7 and
µ(2) = µ(3) = 0.3. Then µ is an (∈,∈ ∨q)-fuzzy subalgebra of X. But

(1) µ is not an (∈,∈)-fuzzy subalgebra of X since 10.62 ∈ µ and 10.66 ∈ µ, but (1 ∗
1)min(0.62,0.66) = 00.62∈µ.

(2) µ is not a (q,∈ ∨q)-fuzzy subalgebra of X since 10.41qµ and 20.77qµ, but (1∗2)min(0.41,0.77) =
30.41∈ ∨qµ.

(3) µ is not an (∈ ∨q,∈ ∨q)-fuzzy subalgebra of X since 10.5 ∈ ∨qµ and 30.8 ∈ ∨qµ, but
(1 ∗ 3)min(0.5,0.8) = 20.5∈ ∨qµ.

Theorem 3.5. Let µ be a fuzzy set. Then the following diagram shows the relationship
between (α, β)-fuzzy subalgebras of X, where α, β are one of ∈ and q.

(α, α ∧ β)
¡

¡
¡

¡¡µ
(α, α)

@
@

@
@@I

(α, β)
@

@
@

@@I

(α, α ∨ β)

¡
¡

¡
¡¡µ

and also we have

(∈ ∨q,∈ ∧q)
¡

¡
¡

¡¡µ
(∈ ∨q,∈)

@
@

@
@@I

(∈ ∨q, q)
@

@
@

@@I

(∈ ∨q,∈ ∨q)

¡
¡

¡
¡¡µ

Proof. The proof is easy.
Proposition 3.6. If µ is a nonzero (α, β)-fuzzy subalgebra of X, then µ(0) > 0.

Proof. Assume that µ(0) = 0. Since µ is non-zero, then there exists x ∈ X such that
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µ(x) = t > 0. Thus xtαµ for α =∈ or α =∈ ∨q, but (x ∗ x)min(t,t) = 0tβµ. This is a
contradiction. Also x1αµ where α = q, since µ(x) + 1 = t + 1 > 1. But (x ∗ x)min(1,1) = 01βµ,
which is a contradiction. Hence µ(0) > 0.

For a fuzzy set µ in X, we denote the support µ by, X0 := {x ∈ X | µ(x) > 0}.
Proposition 3.7. If µ is a nonzero (∈,∈ ∨q)-fuzzy subalgebra of X, then the set X0 is a

subalgebra of X.

Proof. Let x, y ∈ X0. Then µ(x) > 0 and µ(y) > 0. Suppose that µ(x ∗ y) = 0, then
xµ(x) ∈ µ and yµ(y) ∈ µ, but µ(x ∗ y) = 0 < min(µ(x), µ(y)) and µ(x ∗ y)+min(µ(x), µ(y)) ≤ 1,
i.e (x ∗ y)min(µ(x),µ(y))∈ ∨qµ, which is a contradiction . Hence x ∗ y ∈ X0. Therefore X0 is a
subalgebra of X.

Proposition 3.8. If µ is a nonzero (q,∈ ∨q)-fuzzy subalgebra of X, then the set X0 is a
subalgebra of X.

Proof. Let x, y ∈ X0. Then µ(x) > 0 and µ(y) > 0. Thus µ(x) + 1 > 1 and µ(y) + 1 > 1
imply that x1qµ and y1qµ. If µ(x∗y) = 0, then µ(x∗y) < 1 = min(1, 1) and µ(x∗y)+min(1, 1) ≤
1. Thus (x ∗ y)min(1,1)∈ ∨qµ, which is a contradiction. It follows that µ(x ∗ y) > 0 and so
x ∗ y ∈ X0.

Theorem 3.9. Let µ be a nonempty (α, β)-fuzzy subalgebra, where α, β ∈ {∈, q,∈ ∨q,∈
∧q} and α 6=∈ ∧q. Then X0 is a subalgebra of X.

Proof. The proof follows from Theorem 3.5 and Propositions 3.7 and 3.8.

Theorem 3.10. Any non-zero (q, q)-fuzzy subalgebra of X is constant on X0.

Proof. Let µ be a non-zero (q, q)-fuzzy subalgebra of X. On the contrary, assume that µ

is not constant on X0. Then there exists y ∈ X0 such that ty = µ(y) 6= µ(0) = t0. Suppose
that ty < t0 and so 1− t0 < 1− ty < 1. Thus there exists t1, t2 ∈ (0, 1) such that 1− t0 < t1 <

1− ty < t2 < 1. Then µ(0) + t1 = t0 + t1 > 1 and µ(y) + t2 = ty + t2 > 1. So 0t1qµ and yt2qµ.
Since

µ(y ∗ 0) + min(t1, t2) = µ(y) + t1 = ty + t1 < 1,

we get that (y ∗ 0)min(t1,t2)qµ, which is a contradiction. Now let ty > t0 and t0 6= 1. Then
µ(y) + (1− t0) = ty + 1− t0 > 1, i.e y1−t0qµ. Since

µ(y ∗ y) + (1− t0) = µ(0) + 1− t0 = t0 + 1− t0 = 1,

then we get that (y ∗ y)min(1−t0,1−t0)qµ, which is a contradiction. Therefore µ is constant on
X0.

Theorem 3.11. µ is a non-zero (q, q)-fuzzy subalgebra if and only if there exists subal-
gebra S of X such that

µ(x) =





t if x ∈ S

0 otherwise

for some t ∈ (0, 1].

Proof. Let µ be a non-zero (q, q)-fuzzy subalgebra. Then by Proposition 3.6 and Theorems
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3.9 and 3.10 we have µ(0) > 0, X0 is a subalgebra of X and

µ(x) =





µ(0) if x ∈ X0

0 otherwise

Conversely, let xt1qµ and yt2qµ, for t1, t2 ∈ (0, 1]. Then µ(x) + t1 > 1 and µ(y) + t2 > 1 imply
that µ(x) 6= 0 and µ(y) 6= 0. Thus x, y ∈ S and so x ∗ y ∈ S. Hence µ(x ∗ y) + min(t1, t2) =
t + min(t1, t2) > 1. Therefore µ is a (q, q)-fuzzy subalgebra of X.

Theorem 3.12. µ is a non-zero (q, q)-fuzzy subalgebra of X if and only if U(µ;µ(0)) = X0

and for all t ∈ [0, 1], the nonempty level set U(µ; t) is a fuzzy subalgebra of X.
Proof. Let µ be a non-zero (q, q)-fuzzy subalgebra. Then by Theorem 3.11 we have

µ(x) =





µ(0) if x ∈ X0

0 otherwise

So it is easy to check that U(µ;µ(0)) = X0. Let x, y ∈ U(µ; t), for t ∈ [0, 1]. Then µ(x) ≥ t and
µ(y) ≥ t. If t = 0, then it is clear that x ∗ y ∈ U(µ; 0). Now let t ∈ (0, 1]. Then x, y ∈ X0 and
so x ∗ y ∈ X0. Hence µ(x ∗ y) = µ(0) ≥ t. Therefore U(µ; t) is a subalgebra of X.
Conversely, since U(µ;µ(0)) = X0 and 0 ∈ U(µ;µ(0)), then X0 is a subalgebra of X. Also
U(µ;µ(0)) = X0 and X 6= ∅ imply that µ is non-zero. Now let x ∈ X0. Then µ(x) ≥ µ(0) and
µ(x) > 0. Since U(µ;µ(x)) 6= ∅, so U(µ;µ(x)) is a subalgebra of X. Then 0 ∈ U(µ;µ(x)) imply
that µ(0) ≥ µ(x). Hence µ(x) = µ(0), for all x ∈ X0 i.e

µ(x) =





µ(0) if x ∈ X0

0 otherwise

Therefore by Theorem 3.11 µ is a (q, q)-fuzzy subalgebra of X.
Example 3.13. Let X = {0, 1, 2, 3} be BG-algebra in Example 3.3. Define fuzzy set µ on

X by
µ(0) = 0.6, µ(1) = µ(2) = µ(3) = 0.3.

Then X0 = X, U(µ;µ(0)) = {0} 6= X0 and also

U(µ; t) =





X if 0 ≤ t ≤ 0.3

{0} if 0.3 < t ≤ 0.6

∅ if t > 0.6

is a subalgebra of X, while by Theorem 3.11, µ is not a (q, q)-fuzzy subalgebra.
Theorem 3.14. Every (q, q)-fuzzy subalgebra is an (∈,∈)-fuzzy subalgebra.
Proof. The proof follows from Theorem 3.12 and Proposition 3.3.
Note that in Example 3.13 µ is an (∈,∈)-fuzzy subalgebra, while it is not a (q, q)-fuzzy

subalgebra. So the converse of the above theorem is not true in general.
Theorem 3.15. If µ is a non-zero fuzzy set of X. Then there exists subalgebra S of X

such that µ = χS if and only if µ is an (α, β)-fuzzy subalgebra of X, where (α, β) is one of the
following forms:
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(i) (∈, q), (ii) (∈,∈ ∧q),

(iii) (q,∈), (iv) (q,∈ ∧q),

(v) (∈ ∨q, q), (vi) (∈ ∨q,∈ ∧q),

(vii) (∈ ∨q,∈).

Proof. Let µ = χS . We show that µ is (∈,∈ ∧q)-fuzzy subalgebra. Let xt1 ∈ µ and
xt2 ∈ µ, for t1, t2 ∈ (0, 1]. Then µ(x) ≥ t1 and µ(y) ≥ t2 imply that x, y ∈ S. Thus
x ∗ y ∈ S, i.e µ(x ∗ y) = 1. Therefore µ(x ∗ y) ≥ min(t1, t2) and µ(x ∗ y) + min(t1, t2) > 1,
i.e (x ∗ y)min(t1,t2) ∈ ∧qµ. Similar to above argument, we can see that µ is an (α, β)-fuzzy
subalgebra of X, where (α, β) is one of the above forms.
Conversely, we show that µ = χX0 . Suppose that there exists x ∈ X0 such that µ(x) < 1. Let
α =∈, choose t ∈ (0, 1] such that t < min(1 − µ(x), µ(x), µ(0)). Then xtαµ and 0tαµ , but
(x ∗ 0)min(t,t) = xtβµ, where β = q or β =∈ ∧q. Which is a contradiction. If α = q, then
x1αµ and 01αµ, while (x ∗ 0)min(1,1) = x1βµ where β =∈ or β =∈ ∧q, which is a contradiction.
Now let α =∈ ∨q and choose t ∈ (0, 1] such that xt ∈ µ but xtqµ. Then xtαµ and 01αµ but
(x ∗ 0)min(t,1) = xtβµ for β = q or β =∈ ∧q, which is a contradiction. Finally we have x1 ∈ ∨qµ

and 01 ∈ ∨qµ but (x ∗ 0)min(1,1) = x1∈µ, which is a contradiction. Therefore µ = χX0 .

Theorem 3.16. Let S be a subalgebra of X and let µ be a fuzzy set of X such that

(a) µ(x) = 0 for all x ∈ X\S,

(b) µ(x) ≥ 0.5 for all x ∈ S.

Then µ is a (q,∈ ∨q)-fuzzy subalgebra of X.

Proof. Let x, y ∈ X and t1, t2 ∈ (0, 1] be such that xt1qµ and yt2qµ. Then we get that
µ(x) + t1 > 1 and µ(y) + t2 > 1. We can conclude that x ∗ y ∈ S, since in otherwise x ∈ X\S
or y ∈ X\S and therefore t1 > 1 or t2 > 1 which is a contradiction. If min(t1, t2) > 0.5, then
µ(x∗y)+min(t1, t2) > 1 and so (x∗y)min(t1,t2)qµ. If min(t1, t2) ≤ 0.5, then µ(x∗y) ≥ min(t1, t2)
and thus (x ∗ y)min(t1,t2) ∈ µ. Hence (x ∗ y)min(t1,t2) ∈ ∨qµ.

Theorem 3.17. Let µ be a (q,∈ ∨q)-fuzzy subalgebra of X such that µ is not constant
on the set X0. Then there exists x ∈ X such that µ(x) ≥ 0.5. Moreover, µ(x) ≥ 0.5 for all
x ∈ X0.

Proof. Assume that µ(x) < 0.5 for all x ∈ X. Since µ is not constant on X0, then
there exists x ∈ X0 such that tx = µ(x) 6= µ(0) = t0. Let t0 < tx. Choose δ > 0.5 such
that t0 + δ < 1 < tx + δ. It follows that xδqµ, µ(x ∗ x) = µ(0) = t0 < δ = min(δ, δ) and
µ(x∗x)+min(δ, δ) = µ(0)+ δ = t0 + δ < 1. Thus (x∗x)min(δ,δ)∈ ∨qµ, which is a contradiction.
Now, if tx < t0 then we can choose δ > 0.5 such that tx + δ < 1 < t0 + δ. Thus 0δqµ and
x1qµ, but (x ∗ 0)min(1,δ) = xδ∈ ∨qµ, because µ(x) < 0.5 < δ and µ(x) + δ = tx + δ < 1, which
is a contradiction. Hence µ(x) ≥ 0.5 for some x ∈ X. Now we show that µ(0) ≥ 0.5. On the
contrary, assume that µ(0) = t0 < 0.5. Since there exists x ∈ X such that µ(x) = tx ≥ 0.5, it
follows that t0 < tx. Choose t1 > t0 such that t0+t1 < 1 < tx+t1. Then µ(x)+t1 = tx+t1 > 1,
and so xtqµ. Thus we can conclude that

µ(x ∗ x) + min(t1, t1) = µ(0) + t1 = t0 + t1 < 1,
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and

µ(x ∗ x) = µ(0) = t0 < t1 = min(t1, t1).

Therefore (x ∗ x)min(t1,t1)∈ ∨qµ, which is a contradiction. Thus µ(0) ≥ 0.5. Finally we prove
that µ(x) ≥ 0.5 for all x ∈ X0. On the contrary, let x ∈ X0 and tx = µ(x) < 0.5. Consider
0 < t < 0.5 such that tx + t < 0.5. Then µ(x) + 1 = tx + 1 > 1 and µ(0) + (0.5 + t) > 1, imply
that x1qµ and 00.5+tqµ. But (x ∗ 0)min(1,0.5+t) = x0.5+t∈ ∨qµ, since µ(x ∗ 0) = µ(x) < 0.5 + t

and µ(x)+0.5+ t = tx +0.5+ t < 0.5+0.5 = 1. Which is a contradiction. Therefore µ(x) ≥ 0.5
for all x ∈ X0.

Theorem 3.18. Let µ be a non-zero fuzzy set of X. Then µ is a (q,∈ ∨q)-fuzzy subalgebra
of X if and only if there exists subalgebra S of X such that

µ(x) =





a if x ∈ S

0 otherwise
or µ(x) =





≥ 0.5 if x ∈ S

0 otherwise

for some a ∈ (0, 1].
Proof. Let µ be a (q,∈ ∨q)-fuzzy subalgebra of X. If µ is constant on X0, then µ(x) =




µ(0) if x ∈ X0

0 otherwise
. If µ is not constant on X0, then by Theorem 3.17 we have µ(x) =





≥ 0.5 if x ∈ X0

0 otherwise
. Conversely, the proof follows from Theorems 3.11, 3.5 and 3.16.

Theorem 3.19. Let µ be a non-zero (q,∈ ∨q)-fuzzy subalgebra of X. Then the nonempty
level set U(µ; t) is a subalgebra of X, for all t ∈ [0, 0.5].

Proof. If µ is constant on X0, then by Theorem 3.11, µ is a (q, q)-fuzzy subalgebra. Thus
by Theorem 3.12 we have the nonempty level set U(µ; t) is a subalgebra of X, for t ∈ [0, 1].

If µ is not constant on X0, then by Theorem 3.17, we have µ(x) =





≥ 0.5 if x ∈ X0

0 otherwise
.

Now we show that the nonempty level set U(µ; t) is a subalgebra of X for t ∈ [0, 0.5]. If t = 0,
then it is clear that U(µ; t) is a subalgebra of X. Now let t ∈ (0, 0.5] and x, y ∈ U(µ; t). Then
µ(x), µ(y) ≥ t > 0 imply that x, y ∈ X0. Thus x ∗ y ∈ X0 and so µ(x ∗ y) ≥ 0.5 ≥ t. Therefore
x ∗ y ∈ U(µ; t).

Theorem 3.20. Let µ be a non-zero fuzzy set of X, U(µ; 0.5) = X0 and the nonempty
level set U(µ; t) is a subalgebra of X, for all t ∈ [0, 1]. Then µ is a (q,∈ ∨q)-fuzzy subalgebra
of X.

Proof. Since µ 6= 0 we get that X0 6= ∅. Thus by hypothesis we have U(µ; 0.5) 6= ∅ and
so X0 is a subalgebra of X. Also µ(x) ≥ 0.5, for all x ∈ X0 and µ(x) = 0, if x 6∈ X0. Therefore
by Theorem 3.16, µ is a (q,∈ ∨q)-fuzzy subalgebra of X.

Theorem 3.21. A fuzzy set µ of X is an (∈,∈ ∨q)-fuzzy subalgebra of X if and only if
µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5), for all x, y ∈ X.

Proof. Let µ be an (∈,∈ ∨q)-fuzzy subalgebra of X and x, y ∈ X. If µ(x) or µ(y) = 0,
then µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5). Now let µ(x) and µ(y) 6= 0. If min(µ(x), µ(y)) < 0.5, then
µ(x ∗ y) ≥ min(µ(x), µ(y)). Since, assume that µ(x ∗ y) < min(µ(x), µ(y)), then there exists
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t > 0 such that µ(x ∗ y) < t < min(µ(x), µ(y)). Thus xt ∈ µ and yt ∈ µ but (x ∗ y)min(t,t) =
(x∗y)t∈ ∨qµ, since µ(x∗y) < t and µ(x∗y)+ t < 1 < 2t < 1, which is a contradiction. Hence if
min(µ(x), µ(y)) < 0.5, then µ(x ∗ y) ≥ min(µ(x), µ(y)). If min(µ(x), µ(y)) ≥ 0.5, then x0.5 ∈ µ

and y0.5 ∈ µ. So we can get that

(x ∗ y)min(0.5,0.5) = (x ∗ y)0.5 ∈ ∨qµ.

Then µ(x ∗ y) > 0.5. Consequently, µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5), for all x, y ∈ X.
Conversely, let x, y ∈ X and t1, t2 ∈ (0, 1] be such that xt1 ∈ µ and yt2 ∈ µ. So µ(x) ≥ t1

and µ(y) ≥ t2. Then by hypothesis we have µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5) ≥ min(t1, t2, 0.5).
If min(t1, t2) ≤ 0.5, then µ(x ∗ y) ≥ min(µ(x), µ(y)). If min(t1, t2) > 0.5, then µ(x ∗ y) ≥ 0.5.
Thus µ(x ∗ y) + min(t1, t2) > 1. Therefore (x ∗ y)min(t1,t2) ∈ ∨qµ.

Theorem 3.22. Let µ be an (∈,∈ ∨q)-fuzzy subalgebra of X.
(i) If there exists x ∈ X such that µ(x) ≥ 0.5, then µ(0) ≥ 0.5;
(ii) If µ(0) < 0.5, then µ is an (∈,∈)-fuzzy subalgebra of X.
Proof. (i) Let µ(x) ≥ 0.5. Then by hypothesis we have µ(0) = µ(x∗x) ≥ min(µ(x), µ(x), 0.5) =

0.5.
(ii) Let µ(0) < 0.5. Then by (i) µ(x) < 0.5, for all x ∈ X. Now let xt1 ∈ µ and yt2 ∈ µ,

for t1, t2 ∈ (0, 1]. Then µ(x) ≥ t1 and µ(y) ≥ t2. Thus µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5) ≥
min(t1, t2, 0.5) = min(t1, t2). Therefore (x ∗ y)min(t1,t2) ∈ µ.

Lemma 3.23. Let µ be a non-zero (∈,∈ ∨q) fuzzy subalgebra of X. Let x, y ∈ X such
that µ(x) < µ(y). Then

µ(x ∗ y) =





µ(x) if µ(y) < 0.5 or µ(x) < 0.5 ≤ µ(y)

≥ 0.5 if µ(x) ≥ 0.5
.

Proof. Let µ(y) < 0.5. Then we have µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5) = µ(x). Also
µ(x) = µ((x ∗ y) ∗ (0 ∗ y)) ≥ min{µ(x ∗ y), µ(0 ∗ y), 0.5} (1)

Now we show that µ(0∗y) ≥ µ(y). Since µ(y) < 0.5, then µ(0) = µ(y∗y) ≥ min{µ(y), µ(y), 0.5} =
µ(y). Thus µ(0 ∗ y) ≥ min{µ(0), µ(y), 0.5} = µ(y). Hence (1) and hypothesis imply that
µ(x) ≥ min{µ(x∗y), µ(y)}. Since µ(x) < µ(y), then µ(x) ≥ µ(x∗y). Therefore µ(x∗y) = µ(x).
Now let µ(x) < 0.5 ≤ µ(y). Then similar to above argument µ(x ∗ y) ≥ µ(x) and µ(x) ≥
min{µ(x ∗ y), µ(0 ∗ y), 0.5}. Since µ(y) ≥ 0.5, then by Theorem 3.22(i), µ(0) ≥ 0.5. Thus
µ(0 ∗ y) ≥ min{µ(0), µ(y), 0.5} = 0.5. So by hypothesis we get that µ(x) ≥ min{µ(x ∗ y), 0.5}.
Thus µ(x) < 0.5 imply that µ(x) ≥ µ(x ∗ y). Therefore µ(x ∗ y) = µ(x). Let µ(x) ≥ 0.5. Then
µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5) = 0.5.

Theorem 3.24. Let µ be an (∈,∈ ∨q)-fuzzy subalgebra of X. Then for all t ∈ [0, 0.5],
the nonempty level set U(µ; t) is a subalgebra of X. Conversely, if the nonempty level set µ is
a subalgebra of X, for all t ∈ [0, 1], then µ is an (∈,∈ ∨q)-fuzzy subalgebra of X.

Proof. Let µ be an (∈,∈ ∨q)-fuzzy subalgebra of X. If t = 0, then U(µ; t) is a subalgebra
of X. Now let U(µ; t) 6= ∅, 0 < t ≤ 0.5 and x, y ∈ U(µ; t). Then µ(x), µ(y) ≥ t. Thus by
hypothesis we have µ(x ∗ y) ≥ min(µ(x), µ(y), 0.5) ≥ min(t, 0.5) ≥ t. Therefore U(µ; t) is a
subalgebra of X.
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Conversely, let x, y ∈ X. Then we have

µ(x), µ(y) ≥ min(µ(x), µ(y), 0.5) = t0.

Hence x, y ∈ U(µ; t0), for t0 ∈ [0, 1] and so x ∗ y ∈ U(µ; t0). Therefore µ(x ∗ y) ≥ t0 =
min(µ(x), µ(y), 0.5), i.e µ is an (∈,∈ ∨q)-fuzzy subalgebra of X.

Theorem 3.25. Let S be a subset of X. The characteristic function χS of S is an
(∈,∈ ∨q)-fuzzy subalgebra of X if and only if S is a subalgebra of X.

Proof. Let XS be an (∈,∈ ∨q)-fuzzy subalgebra of X and x, y ∈ S. Then χS(x) = 1 =
χS(y), and so x1 ∈ χS and y1 ∈ χS . Hence (x ∗ y)1 = (x ∗ y)min(1,1) ∈ ∨qχS , which implies that
χS(x ∗ y) > 0. Thus x ∗ y ∈ S. Therefore S is a subalgebra of X.

Conversely, if S is a subalgebra of X, then χS is an (∈,∈)-fuzzy subalgebra of X. So by
Theorem 3.5 we get that µ is an (∈,∈ ∨q)-fuzzy subalgebra of X.

Lemma 3.26. Let f : X → Y be a BG-homomorphism and G be a fuzzy set of Y with
membership function µG. Then xtαµf−1(G) ⇔ f(x)tαµG, for all α ∈ {∈, q,∈ ∨q,∈ ∧q}.

Proof. Let α =∈. Then

xtαµf−1(G) ⇔ µf−1(G)(x) ≥ t ⇔ µG(f(x)) ≥ t ⇔ (f(x))tαµG.

The proof of the other cases is similar to above argument.
Theorem 3.27. Let f : X → Y be a BG-homomorphism and G be a fuzzy set of Y with

membership function µG.
(i) If G is an (α, β)-fuzzy subalgebra of Y , then f−1(G) is an (α, β)-fuzzy subalgebra of X,
(ii) Let f be epimorphism. If f−1(G) is an (α, β)-fuzzy subalgebra of X, then G is an

(α, β)-fuzzy subalgebra of Y .
Proof. (i) Let xtαµf−1(G) and yrαµf−1(G), for t, r ∈ (0, 1]. Then by Lemma 3.26, we

get that (f(x))tαµG and (f(y))rαµG. Hence by hypothesis (f(x) ∗ f(y))min(t,r)βµG. Then
(f(x ∗ y))min(t,r)βµG and so (x ∗ y)min(t,r)βµf−1(G).

(ii) Let x, y ∈ Y . Then by hypothesis there exist x
′
, y
′ ∈ X such that f(x

′
) = x and f(y

′
) =

y. Assume that xtαµG and yrαµG, then (f(x
′
))tαµG and (f(y

′
))rαµG. Thus x

′
tαµf−1(G) and

y
′
rαµf−1(G) and therefore (x

′ ∗ y
′
)min(t,r)βµf−1(G). So

(f(x
′ ∗ y

′
))min(t,r)βµG ⇒ (f(x

′
) ∗ f(y

′
))min(t,r)βµG ⇒ (x ∗ y)min(t,r)βµG.

Theorem 3.28. Let f : X → Y be a BG-homomorphism and H be an (∈,∈ ∨q)-fuzzy
subalgebra of X with membership function µH . If µH is an f -invariant, then f(H) is an
(∈,∈ ∨q)-fuzzy subalgebra of Y .

Proof. Let y1 and y2 ∈ Y . If f−1(y1) or f−1(y2) = ∅, then µf(H)(y1∗y2) ≥ min(µf(H)(y1), µf(H)(y2), 0.5).
Now let f−1(y1) and f−1(y2) 6= ∅. Then there exist x1, x2 ∈ X such that f(x1) = y1 and
f(x2) = y2. Thus by hypothesis we have

µf(H)(y1 ∗ y2) = sup
t∈f−1(y1∗y2)

µH(t)

= sup
t∈f−1(f(x1∗x2))

µH(t)
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= µH(x1 ∗ x2) since µH is an f -invariant

≥ min(µH(x1), µH(x2), 0.5)

= min( sup
t∈f−1(y1)

µH(t), sup
t∈f−1(y2)

µH(t), 0.5)

= min(µf(H)(y1), µf(H)(y2), 0.5).

So by Theorem 3.21, f(H) is an (∈,∈ ∨q)-fuzzy subalgebra of Y .
Lemma 3.29. Let f : X → Y be a BG-homomorphism.
(i) If S is a subalgebra of X, then f(S) is a subalgebra of Y ;
(ii) If S

′
is a subalgebra of Y , then f−1(S

′
) is a subalgebra of X.

Proof. The proof is easy.
Theorem 3.30. Let f : X → Y be a BG-homomorphism . If H is a non-zero (q, q)-fuzzy

subalgebra of X with membership function µH , then f(H) is a non-zero (q, q)-fuzzy subalgebra
of Y .

Proof. Let H be a non-zero (q, q)-fuzzy subalgebra of X. Then by Theorem 3.10, we have

µH(x) =





µH(0) if x ∈ X0

0 otherwise
. Now we show that µf(H)(y) =





µH(0) if y ∈ f(X0)

0 otherwise
.

Let y ∈ Y . If y ∈ f(X0), then there exist x ∈ X0 such that f(x) = y. Thus µf(H)(y) =
sup

t∈f−1(y)

µH(t) = µH(0). If y 6∈ f(X0), then it is clear that µf(H)(y) = 0. Since X0 is subal-

gebra of X, then f(X0) is a subalgebra of Y . Therefore by Theorem 3.11, f(H) is a non-zero
(q, q)-fuzzy subalgebra of Y .

Theorem 3.31. Let f : X → Y be a BG-homomorphism . If H is an (α, β)-fuzzy subal-
gebra of X with membership function µH , then f(H) is an (α, β)-fuzzy subalgebra of Y , where
(α, β) is one of the following form

(i) (∈, q), (ii) (∈,∈ ∧q),

(iii) (q,∈), (iv) (q,∈ ∧q),

(v) (∈ ∨q, q), (vi) (∈ ∨q,∈ ∧q),

(vii) (∈ ∨q,∈), (viii) (q,∈ ∨q).

Proof. The proof is similar to the proof of Theorem 3.30, by using of Theorems 3.15 and
3.18.

Theorem 3.32. Let f : X → Y be a BG-homomorphism and H be an (∈,∈)-fuzzy
subalgebra of X with membership function µH . If µH is an f -invariant, then f(H) is an
(∈,∈)-fuzzy subalgebra of Y .

Proof. Let zt ∈ µf(H) and yr ∈ µf(H), where t, r ∈ (0, 1]. Then µf(H)(z) ≥ t and
µf(H)(y) ≥ r. Thus f−1(z), f−1(y) 6= ∅ imply that there exists x1, x2 ∈ X such that f(x1) = z

and f(x2) = y. since µH is an f -invariant, then µf(H)(z) ≥ t and µf(H)(y) ≥ r imply that
µH(x1) ≥ t and µH(x2) ≥ r. So by hypothesis we have
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µf(H)(z ∗ y) = sup
t∈f−1(z∗y)

µH(t)

= sup
t∈f−1(f(x1∗x2))

µH(t)

= µH(x1 ∗ x2)

≥ min(t, r).

Therefore (z ∗ y)min(t,r) ∈ µf(H), i.e f(H) is an (∈,∈)-fuzzy subalgebra of Y .
Theorem 3.33. Let {µi | i ∈ Λ} be a family of (∈,∈ ∨q)-fuzzy subalgebra of X. Then

µ :=
⋂

i∈Λ

µi is an (∈,∈ ∨q)-fuzzy subalgebra of X.

Proof. By Theorem 3.21 we have, for all i ∈ Λ

µi(x ∗ y) ≥ min(µi(x), µi(y), 0.5).

Therefore µ(x ∗ y) = inf
i∈Λ

µi(x ∗ y) ≥ inf
i∈Λ

min(µi(x), µi(y), 0.5)

= min(inf
i∈Λ

µi(x), inf
i∈Λ

µi(y), 0.5)

= min(µ(x), µ(y), 0.5).

Therefore by Theorem 3.21, µ is an (∈,∈ ∨q)-fuzzy subalgebra.
Theorem 3.34. Let {µi | i ∈ Λ} be a family of (∈,∈)-fuzzy subalgebra of X. Then

µ :=
⋂

i∈Λ

µi is an (∈,∈)-fuzzy subalgebra of X.

Proof. Let xt ∈ µ and yr ∈ µ, t, r ∈ (0, 1]. Then µ(x) ≥ t and µ(y) ≥ r. Thus for all
i ∈ Λ, µi(x) ≥ t and µi(y) ≥ r imply that µi(x ∗ y) ≥ min(t, r). Therefore µ(x ∗ y) ≥ min(t, r)
i.e (x ∗ y)min(t,r) ∈ µ.

Theorem 3.35. Let {µi | i ∈ Λ} be a family of (α, β)-fuzzy subalgebra of X. Then
µ :=

⋂

i∈Λ

µi is an (α, β)-fuzzy subalgebra of X, where (α, β) is one of the following form

(i) (∈, q), (ii) (∈,∧q),

(iii) (q,∈), (iv) (q,∈ ∧q),

(v) (∈ ∨q, q), (vi) (∈ ∨q,∈ ∧q),

(vii) (∈ ∨q,∈), (viii) (q,∈ ∨q),

(ix) (q, q).
Proof. We prove theorem for (q, q)-fuzzy subalgebra. The proof of the other cases is

similar, by using Theorems 3.15 and 3.18.
If there exists i ∈ Λ such that µi = 0, then µ = 0. So µ is a (q, q)-fuzzy subalgebra. Let

µi 6= 0 for all i ∈ Λ. Then by Theorem 3.10 we have µi(x) =





µi(0) if x ∈ Xi
0

0 otherwise
, for all



Vol. 5 Some properties of (α, β)-fuzzy BG-algebras 123

i ∈ Λ. So it is clear that µ(x) =





µ(0) if x ∈
⋂

i∈Λ

Xi
0

0 otherwise
. Since

⋂

i∈Λ

Xi
0 is a subalgebra of X,

then by Theorem 3.11 µ is a (q, q)-fuzzy subalgebra of X.

References

[1] S. S. Ahn and H. D. Lee, Fuzzy Subalgebras of BG-algebras, Commun. Korean Math.
Soc., 19 (2004) 243-251.

[2] S. K Bhakat and P. Das, (∈,∈ ∨q)-fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996),
359-368.

[3] Y. Imai and K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan
Academy, 42(1966), 19-22.

[4] C. B. Kim, H. S. Kim, On BG-algebras, (submitted).
[5] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moonsa, Seoul, Korea, 1994.
[6] J. Neggers and H. S. Kim, On B-algebras, Math. Vensik, 54(2002), 21-29.
[7] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, 49(1999), 19-26.
[8] P. M. Pu and Y. M. Liu, Fuzzy Topology I, Neighborhood structure of a fuzzy point

and Moore-Smith convergence, J. Math. Anal. Appl., 76(1980), 571-599.
[9] A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[10] L. A. Zadeh, Fuzzy Sets, Inform. Control, 8(1965), 338-353.



Scientia Magna
Vol. 5 (2009), No. 1, 124-127

On the Smarandache totient function
and the Smarandache power sequence
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Abstract For any positive integer n, let SP (n) denotes the Smarandache power sequence.

And for any Smarandache sequence a(n), the Smarandache totient function St(n) is defined

as ϕ(a(n)), where ϕ(n) is the Euler totient function. The main purpose of this paper is

using the elementary and analytic method to study the convergence of the function
S1

S2
, where

S1 =

n∑

k=1

(
1

St(k)

)2

, S2 =

(
n∑

k=1

1

St(k)

)2

, and give an interesting limit Theorem.

Keywords Smarandache power function, Smarandache totient function, convergence.

§1. Introduction and results

For any positive integer n, the Smarandache power function SP (n) is defined as the smallest
positive integer m such that n | mm, where m and n have the same prime divisors. That is,

SP (n) = min



m : n | mm, m ∈ N,

∏

p|n
p =

∏

p|m
p



 .

For example, the first few values of SP (n) are: SP (1) = 1, SP (2) = 2, SP (3) = 3, SP (4) = 2,
SP (5) = 5, SP (6) = 6, SP (7) = 7, SP (8) = 4, SP (9) = 3, SP (10) = 10, SP (11) = 11,
SP (12) = 6, SP (13) = 13, SP (14) = 14, SP (15) = 15, · · · . In reference [1], Professor
F.Smarandache asked us to study the properties of SP (n). It is clear that SP (n) is not a
multiplicative function. For example, SP (8) = 4, SP (3) = 3, SP (24) = 6 6= SP (3) × SP (8).
But for most n, we have SP (n) =

∏

p|n
p, where

∏

p|n
denotes the product over all different prime

divisors of n. If n = pα, k · pk + 1 ≤ α ≤ (k + 1)pk+1, then we have SP (n) = pk+1, where
0 ≤ k ≤ α − 1. Let n = pα1

1 pα2
2 · · · pαr

r , for all αi (i = 1, 2, · · · , r), if αi ≤ pi, then
SP (n) =

∏

p|n
p.

About other properties of the function SP (n), many authors had studied it, and gave some
interesting conclusions. For example, in reference [4], Zhefeng Xu had studied the mean value
properties of SP (n), and obtained a sharper asymptotic formula:

∑

n≤x

SP (n) =
1
2
x2

∏
p

(
1− 1

p(p + 1)

)
+ O

(
x

3
2 + ε

)
,
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where ε denotes any fixed positive number, and
∏
p

denotes the product over all primes.

On the other hand, similar to the famous Euler totient function ϕ(n), Professor F.Russo
defined a new arithmetical function called the Smarandache totient function St(n) = ϕ(a(n)),
where a(n) is any Smarandache sequence. Then he asked us to study the properties of these
functions. At the same time, he proposed the following:

Conjecture. For the Smarandache power sequence SP (k),
S1

S2
converges to zero as

n →∞, where S1 =
n∑

k=1

(
1

St(k)

)2

, S2 =

(
n∑

k=1

1
St(k)

)2

.

In this paper, we shall use the elementary and analytic methods to study this problem,
and prove that the conjecture is correct. That is, we shall prove the following:

Theorem. For the Smarandache power function SP (k), we have lim
n→∞

S1

S2
= 0, where

S1 =
n∑

k=1

(
1

ϕ(SP (k))

)2

, S2 =

(
n∑

k=1

1
ϕ(SP (k))

)2

.

§2. Some lemmas

To complete the proof of the theorem, we need the following two simple Lemmas:
Lemma 1. For any given real number ε > 0, there exists a positive integer N(ε), such

that for all n ≥ N(ε), we have ϕ(n) ≥ (1− ε)
c · n

ln lnn
, where c is a constant.

Proof．．． See reference [5]．
Lemma 2. For the Euler totient fuction ϕ(n), we have the asymptotic formula

∑

k≤n

1
ϕ(k)

=
ζ(2)ζ(3)

ζ(6)
lnn + A + O

(
lnn

n

)
,

where A = γ
∞∑

n=1

µ2(n)
nϕ(n)

−
∞∑

n=1

µ2(n) ln n

nϕ(n)
is a constant.

Proof．．． See reference [6]．

§3. Proof of the theorem

In this section, we shall prove our Theorem.
We separate all integer k in the interval [1, n] into two subsets A and B as follows: A : the

set of all square-free integers. B : the set of other positive integers k such that k ∈ [1, n]\A. So
we have

∑

k≤n

1
(ϕ(SP (k)))2

=
∑

k∈A

1
(ϕ(SP (k)))2

+
∑

k∈B

1
(ϕ(SP (k)))2

.

From the definition of the subset A, we may get

∑

k∈A

1
(ϕ(SP (k)))2

=
∑

k∈A

1

k2
∏

p|k

(
1− 1

p

)2 ≤
∞∑

k=1

1

k2
∏

p|k

(
1− 1

p

)2 ¿ 1.
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By Lemma 1, we can easily get
k

ϕ(k)
= O(ln ln k). Note that

∑

k≤n

µ2(k)
k2

= O(1). And if

k ∈ B, then we can write k as k = l ·m, where l is a square-free integer and m is a square-full

integer. Let S denote
∑

k∈B

1
(ϕ(SP (k)))2

, then from the properties of SP (k) and ϕ(k) we have

S ≤
∑

lm≤n

1

l2
∏

p|m
p2

∏

p|lm

(
1− 1

p

)2 =
∑

m≤n

1∏

p|m
p2

∑

l≤ n
m

µ2(l)
l2

· l2m2

ϕ2(lm)
= O


(ln lnn)2

∑

m≤n

1∏

p|m
p2


 .

Let U(k) =
∏

p|k
p, then

∑

m≤n

1∏

p|m
p2

=
∑

k≤n

a(k)
U2(k)

, where m is a square-full integer and the

arithmetical function a(k) is defined as follows:

a(k) =





1, if k is a square-full integer;

0, otherwise.

Note that
a(k)

U2(k)
is a multiplicative function. According to the Euler product formula (see

reference [3] and [5]), we have

A(s) =
∞∑

k=1

a(k)
U2(k)ks

=
∏
p

(
1 +

1
p2+s(ps − 1)

)
.

From the Perron formulas [5], for b = 1 +
1

lnn
, T ≥ 1, we have

∑

k≤n

a(k)
U2(k)

=
1

2πi

∫ b+iT

b−iT

A(s)
ns

s
ds + O

(
nbζ(b)

T

)
+ O

(
n min

(
1,

lnn

T

))
+

a(n)
2U2(n)

.

Taking T = n, we can get the estimate

O

(
nbζ(b)

T

)
+ O

(
n min

(
1,

lnn

T

))
+

a(n)
2U2(n)

= O(lnn).

Because the function A(s)
ns

s
is analytic in Re s > 0, taking c =

1
lnn

, then we have

1
2πi

(∫ b+iT

b−iT

A(s)
ns

s
ds +

∫ b−iT

c−iT

A(s)
ns

s
ds +

∫ c+iT

b+iT

A(s)
ns

s
ds +

∫ c−iT

c+iT

A(s)
ns

s
ds

)
= 0.

Note that
∫ c+iT

c−iT

A(s)
ns

s
ds = O

(∫ T

−T

dy√
c2 + y2

)
= O(lnn) and

∫ b−iT

c−iT

A(s)
ns

s
ds =

O

(∫ b

c

nσ

T
dσ

)
= O

(
1

lnn

)
. Similarly,

∫ b+iT

c+iT

A(s)
ns

s
ds = O

(
1

lnn

)
. Hence,

∑

k≤n

a(k)
U2(k)

=

O(lnn).
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So
∑

k≤n

1
(ϕ(SP (k)))2

= O(lnn · (ln lnn)2). (1)

Now we come to estimate
∑

k≤n

1
ϕ(SP (k))

, from the definition of SP (n), we may immediately

get that SP (n) ≤ n. Let n = pα1
1 pα2

2 · · · pαs
s denotes the factorization of n into prime powers,

then SP (n) = pβ1
1 pβ2

2 · · · pβs
s , where βi ≥ 1. Therefore, we can get that pβ1−1

1 (p1− 1)pβ2−1
2 (p2−

1) · · · pβs−1
s (ps − 1) ≤ pα1−1

1 (p1 − 1)pα2−1
2 (p2 − 1) · · · pαs−1

s (ps − 1), thus ϕ(pβ1
1 pβ2

2 · · · pβs
s ) ≤

ϕ(pα1
1 pα2

2 · · · pαs
s ). That is, ϕ(SP (n)) ≤ ϕ(n), according to Lemma 2, we can easily get

∑

k≤n

1
ϕ(SP (k))

≥
∑

k≤n

1
ϕ(k)

=
ζ(2)ζ(3)

ζ(6)
lnn + A + O

(
lnn

n

)
. (2)

Combining (1) and (2), we obtain

0 ≤

n∑

k=1

(
1

ϕ(SP (k))

)2

(
n∑

k=1

1
ϕ(SP (k))

)2 ≤
O

(
lnn · (ln lnn)2

)
(

ζ(2)ζ(3)
ζ(6)

lnn + A + O

(
lnn

n

))2 −→ 0, as n →∞.

This completes the proof of our Theorem.
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Abstract For any positive integer n, we define the arithmetical function F (n) as F (1) = 0.

If n > 1 and n = pα1
1 pα2

2 · · · pαk
k be the prime power factorization of n, then F (n) = α1p1 +

α2p2 + · · · + αkpk. Let S(n) be the Smarandache function. The main purpose of this paper

is using the elementary method and the prime distribution theory to study the mean value

properties of (F (n)− S(n))2, and give a sharper asymptotic formula for it.

Keywords Additive function, Smarandache function, Mean square value, Elementary method,

Asymptotic formula.

§1. Introduction and result

Let f(n) be an arithmetical function, we call f(n) as an additive function, if for any positive
integers m, n with (m, n) = 1, we have f(mn) = f(m) + f(n). We call f(n) as a complete
additive function, if for any positive integers r and s, f(rs) = f(r) + f(s). In elementary
number theory, there are many arithmetical functions satisfying the additive properties. For
example, if n = pα1

1 pα2
2 · · · pαk

k denotes the prime power factorization of n, then function Ω(n) =
α1 + α2 + · · · + αk and logarithmic function f(n) = lnn are two complete additive functions,
ω(n) = k is an additive function, but not a complete additive function. About the properties
of the additive functions, one can find them in references [1], [2] and [5].

In this paper, we define a new additive function F (n) as follows: F (1) = 0; If n > 1 and n =
pα1
1 pα2

2 · · · pαk

k denotes the prime power factorization of n, then F (n) = α1p1+α2p2+ · · ·+αkpk.
It is clear that this function is a complete additive function. In fact if m = pα1

1 pα2
2 · · · pαk

k

and n = pβ1
1 pβ2

2 · · · pβk

k , then we have mn = pα1+β1
1 pα2+β2

2 · · · pαk+βk

k . Therefore, F (mn) =
(α1 + β1)p1 + (α2 + β2)p2 + · · ·+ (αk + βk)pk = F (m) + F (n). So F (n) is a complete additive
function. Now we let S(n) be the Smarandache function. That is, S(n) denotes the smallest
positive integer m such that n divide m!, or S(n) = min{m : n | m!}. About the properties
of S(n), many authors had studied it, and obtained a series results, see references [7], [8] and
[9]. The main purpose of this paper is using the elementary method and the prime distribution
theory to study the mean value properties of (F (n) − S(n))2, and give a sharper asymptotic
formula for it. That is, we shall prove the following:

Theorem. Let N be any fixed positive integer. Then for any real number x > 1, we
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have the asymptotic formula

∑

n≤x

(F (n)− S(n))2 =
N∑

i=1

ci · x2

lni+1 x
+ O

(
x2

lnN+2√x

)
,

where ci (i = 1, 2, · · · , N) are computable constants, and c1 = π2

6 .

§2. Proof of the theorem

In this section, we use the elementary method and the prime distribution theory to complete
the proof of the theorem. We using the idea in reference [4]. First we define four sets A, B,
C, D as follows: A = {n, n ∈ N , n has only one prime divisor p such that p | n and p2 - n,
p > n

1
3 }; B = {n, n ∈ N , n has only one prime divisor p such that p2 | n and p > n

1
3 };

C = {n, n ∈ N , n has two deferent prime divisors p1 and p2 such that p1p2 | n, p2 > p1 > n
1
3 };

D = {n, n ∈ N , any prime divisor p of n satisfying p ≤ n
1
3 }, where N denotes the set of all

positive integers. It is clear that from the definitions of A, B, C and D we have

∑

n≤x

(F (n)− S(n))2 =
∑

n≤x
n∈A

(F (n)− S(n))2 +
∑

n≤x
n∈B

(F (n)− S(n))2

+
∑

n≤x
n∈C

(F (n)− S(n))2 +
∑

n≤x
n∈D

(F (n)− S(n))2

≡ W1 + W2 + W3 + W4. (1)

Now we estimate W1, W2, W3 and W4 in (1) respectively. Note that F (n) is a complete
additive function, and if n ∈ A with n = pk, then S(n) = S(p) = p, and any prime divisor q of
k satisfying q ≤ n

1
3 , so F (k) ≤ n

1
3 lnn. From the Prime Theorem (See Chapter 3, Theorem 2

of [3]) we know that

π(x) =
∑

p≤x

1 =
k∑

i=1

ci · x

lni x
+ O

(
x

lnk+1 x

)
, (2)

where ci (i = 1, 2, · · · , k) are computable constants, and c1 = 1. By these we have the
estimate:

W1 =
∑

n≤x
n∈A

(F (n)− S(n))2 =
∑

pk≤x

(pk)∈A

(F (pk)− p)2

=
∑

pk≤x

(pk)∈A

F 2(k) ¿
∑

k≤√x

∑

k<p≤ x
k

(pk)
2
3 ln2(pk) ≤ (lnx)2

∑

k≤√x

k
2
3

∑

k<p≤ x
k

p
2
3

¿ (lnx)2
∑

k≤√x

k
2
3

(x

k

) 5
3 1

ln x
k

¿ x
5
3 ln2 x. (3)
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If n ∈ B, then n = p2k, and note that S(n) = S(p2) = 2p, we have the estimate

W2 =
∑

n≤x
n∈B

(F (n)− S(n))2 =
∑

p2k≤x

p>k

(
F (p2k)− 2p

)2

=
∑

k≤x
1
3

∑

k<p≤
√

x
k

F 2(k) ¿
∑

k≤x
1
3

∑

k<p≤
√

x
k

k2

¿
∑

k≤x
1
3

k2 · x 1
2

k
1
2 lnx

¿ x
4
3

lnx
. (4)

If n ∈ D, then F (n) ≤ n
1
3 lnn and S(n) ≤ n

1
3 lnn, so we have

W4 =
∑

n≤x
n∈D

(F (n)− S(n))2 ¿
∑

n≤x

n
2
3 ln2 n ¿ x

5
3 ln2 x. (5)

Finally, we estimate main term W3. Note that n ∈ C, n = p1p2k, p2 > p1 > n
1
3 > k. If

k < p1 < n
1
3 , then in this case, the estimate is exact same as in the estimate of W1. If

k < p1 < p2 < n
1
3 , in this case, the estimate is exact same as in the estimate of W4. So by (2)

we have

W3 =
∑

n≤x
n∈C

(F (n)− S(n))2 =
∑

p1p2k≤x

p2>p1>k

(F (p1p2k)− p2)
2 + O

(
x

5
3 ln2 x

)

=
∑

k≤x
1
3

∑

k<p1≤
√

x
k

∑

p2≤ x
p1k

(
F 2(k) + 2p1F (k) + p2

1

)
+ O

(
x

5
3 ln2 x

)

=
∑

k≤x
1
3

∑

k<p1≤
√

x
k

∑

p1<p2≤ x
p1k

p2
1 + O




∑

k≤x
1
3

∑

k<p1≤
√

x
k

∑

p1<p2≤ x
p1k

kp1


 + O

(
x

5
3 ln2 x

)

=
∑

k≤x
1
3

∑

k<p1≤
√

x
k

p2
1

(
N∑

i=1

ci · x

p1k lni x
p1k

+ O

(
x

p1k lnN+1 x

))
+ O

(
x

5
3 ln2 x

)

−
∑

k≤x
1
3

∑

k<p1≤
√

x
k

p2
1

∑

p2≤p1

1 + O




∑

k≤x
1
3

∑

k<p1≤
√

x
k

∑

p1<p2≤ x
p1k

kp1


 . (6)

Note that ζ(2) = π2

6 , from the Abel’s identity (See Theorem 4.2 of [6]) and (2) we have

∑

k≤x
1
3

∑

k<p1≤
√

x
k

p2
1

∑

p≤p1

1 =
∑

k≤x
1
3

∑

k<p1≤
√

x
k

p2
1

[
N∑

i=1

ci · p1

lni p1

+ O

(
p1

lnN+1 p1

)]

=
N∑

i=1

∑

k≤x
1
3

∑

k<p1≤
√

x
k

ci · p3
1

lni p1

+ O




∑

k≤x
1
3

∑

k<p1≤
√

x
k

p3
1

lnN+1 p1




=
N∑

i=1

di · x2

lni+1 x
+ O

(
2N · x2

lnN+2 x

)
, (7)
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where di (i = 1, 2, · · · , N) are computable constants, and d1 = π2

6 .

∑

k≤x
1
3

∑

k<p1≤
√

x
k

∑

p1<p2≤ x
p1k

kp1 ¿
∑

k≤x
1
3

k
∑

p1≤
√

x
k

p1 · x

p1k lnx
¿

∑

k≤x
1
3

x
3
2√

k ln2 x
¿ x

5
3

ln2 x
. (8)

∑

k≤x
1
3

∑

k<p1≤
√

x
k

p1x

k lnN+1 x
¿

∑

k≤x
1
3

x2

k2 lnN+2 x
¿ x2

lnN+2 x
. (9)

From the Abel’s identity and (2) we also have the estimate

∑

k≤x
1
3

∑

k<p1≤
√

x
k

p2
1

x

p1k ln x
p1k

=
∑

k≤x
1
3

1
k

∑

k<p1≤
√

x
k

xp1

ln x
kp1

=
N∑

i=1

bi · x2

lni+1 x
+ O

(
x2

lnN+1 x

)
, (10)

where bi (i = 1, 2, · · · , N) are computable constants, and b1 = π2

3 .
Now combining (1), (3), (4), (5), (6), (7), (8)and(9) we may immediately deduce the

asymptotic formula:

∑

n≤x

(F (n)− S(n))2 =
N∑

i=1

ai · x2

lni+1 x
+ O

(
x2

lnN+2√x

)
,

where ai (i = 1, 2, · · · , N) are computable constants, and a1 = b1 − d1 = π2

6 .
This completes the proof of Theorem.
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