


Vol. 7, No. 2, 2011                                 ISSN 1556-6706                                                                
 
 
 
 
 

 
SCIENTIA  MAGNA 

An international journal  
 
 
 
 
 

Edited by 
 
 

 
 

Department of Mathematics 
Northwest University 

Xi’an, Shaanxi, P.R.China 
 
 
 
 
 
 
 
 
 
 
 

 
 



 i 

 
 

Scientia Magna is published annually in 400-500 pages per volume and 1,000 copies. 
 
It is also available in microfilm format and can be ordered (online too) from: 
 

  Books on Demand 
ProQuest Information & Learning 
300 North Zeeb Road 
P.O. Box 1346 
Ann Arbor, Michigan 48106-1346, USA 
Tel.:  1-800-521-0600 (Customer Service) 
URL: http://wwwlib.umi.com/bod/ 
 
 
Scientia Magna is a referred journal: reviewed, indexed, cited by the following 
journals:  "Zentralblatt Für Mathematik" (Germany), "Referativnyi Zhurnal" and 
"Matematika" (Academia Nauk, Russia), "Mathematical Reviews" (USA), "Computing 
Review" (USA), Institute for Scientific Information (PA, USA), "Library of Congress 
Subject Headings" (USA). 
 
 
 
 
 
 
 
 
 
 

 
 

Printed in the United States of America 
Price: US$ 69.95 

 
 
 
 
 

http://www.umi.com/bod/


 ii 

Information for Authors 
 

Papers in electronic form are accepted.  They can be e-mailed in Microsoft 
Word XP (or lower), WordPerfect 7.0 (or lower), LaTeX and PDF 6.0 or lower.  

The submitted manuscripts may be in the format of remarks, conjectures, 
solved/unsolved or open new proposed problems, notes, articles, miscellaneous, etc.  
They must be original work and camera ready [typewritten/computerized, format: 
8.5 x 11 inches (21,6 x 28 cm)].  They are not returned, hence we advise the authors 
to keep a copy. 

 The title of the paper should be writing with capital letters.  The author's 
name has to apply in the middle of the line, near the title.  References should be 
mentioned in the text by a number in square brackets and should be listed 
alphabetically.  Current address followed by e-mail address should apply at the end 
of the paper, after the references. 

The paper should have at the beginning an abstract, followed by the keywords.  
All manuscripts are subject to anonymous review by three independent 

reviewers.  
Every letter will be answered. 
Each author will receive a free copy of the journal. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 iii 

Contributing to Scientia Magna 
Authors of papers in science (mathematics, physics, philosophy, psychology, 

sociology, linguistics) should submit manuscripts,  by email,  to the 
 Editor-in-Chief: 
 

Prof. Wenpeng  Zhang 
Department of Mathematics 
Northwest University 
Xi’an, Shaanxi, P.R.China  
E-mail:  wpzhang@nwu.edu.cn  

 
Or anyone of the members of  
 Editorial Board: 
 
Dr. W. B. Vasantha Kandasamy, Department of Mathematics, Indian Institute of 
Technology, IIT Madras, Chennai - 600 036, Tamil Nadu, India. 
 
Dr. Larissa Borissova and Dmitri Rabounski, Sirenevi boulevard 69-1-65, Moscow 
105484, Russia. 
 
Prof. Yuan Yi, Research Center for Basic Science, Xi’an Jiaotong University, 
Xi’an, Shaanxi, P.R.China.  
E-mail: yuanyi@mail.xjtu.edu.cn 
 
Dr. Zhefeng Xu, Department of Mathematic s, Northwest University, Xi’an, 
Shaanxi, P.R.China. E-mail: zfxu@nwu.edu.cn; zhefengxu@hotmail.com  
 
Prof. József Sándor, Babes-Bolyai University of Cluj, Romania.  
E-mail: jjsandor@hotmail.com; jsandor@member.ams.org 
 
Dr. Le Huan, Department of Mathematics, Northwest University, Xi’an, Shaanxi, 
P.R.China.  E-mail: huanle1017@163.com 
 
Dr. Jingzhe Wang, Department of Mathematics, Northwest University, Xi’an, 
Shaanxi, P.R.China.  E-mail: wangjingzhe729@126.com 
 
 

mailto:wpzhang@nwu.edu.cn
mailto:yuanyi@mail.xjtu.edu.cn
mailto:zfxu@nwu.edu.cn
mailto:zhefengxu@hotmail.com
mailto:jjsandor@hotmail.com
mailto:huanle1017@163.com


Contents

S. Panayappan, etc. : Weyl’s theorem and Tensor product for

m-quasi class Ak operators 1

J. Wei, etc. : A short interval result for the function log ρ(n) 11

W. Chen, etc. : On the mean value of the function (φ(n)
ρ(n) )

r 17

S. Chauhan and S. Kumar : Fixed points of occasionally weakly

compatible mappings in fuzzy metric spaces 22

S. Panayappan, etc. : Operators satisfying the condition
∥∥∥T 2+kx

∥∥∥
1

1+k ‖Tx‖ k
1+k ≥ ∥∥T 2x

∥∥ 32

S. Keawrahun and U. Leerawat : On isomorphisms of SU-algebras 39

S. Balasubramanian : rgα− separation axioms 45

R. Dhavaseelan, etc. : Intuitionistic fuzzy resolvable and intuitionistic

fuzzy irresolvable spaces 59

S. Keawrahun and U. Leerawat : Super Weyl transform and some

of its properties 68

M. Sang, etc. : A short interval result for the e-squarefree e-divisor

function 73

K. M. Nagaraja and P. S. K. Reddy : Log convexity and concavity

of some double sequences 78

S. Balasubramanian and P. A. S. Vyjayanthi: Almost contra

ν−continuity 82
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Abstract In this paper we generalize quasi class A operator and introduce m-quasi class Ak

operators, where k and m are positive integers, which coincides with quasi-class A operator for

k = 1 and m = 1. We prove that if T is a m-quasi class Ak operator, then T is of finite ascent,

T is an isoloid and Weyl’s theorem holds for T and f (T), where f is an analytic function in a

neighborhood of the spectrum of T . We also show that m-quasi classAk operators are closed

under tensor product.

Keywords Class Ak, quasi-class Ak, m-quasi class Ak, Weyl’s theorem, Tensor product.

§1. Introduction and preliminaries

Let T ∈ B(H) be the Banach Algebra of all bounded linear operators on a non-zero
complex Hilbert space H. By an operator T, we mean an element from B(H). If T lies
in B(H), then T ∗ denotes the adjoint of T in B(H). An operator T is called paranormal if∥∥T 2(x)

∥∥ ≥ ‖Tx‖2 for every unit vector x ∈ H. An operator T belongs to class A, if
∣∣T 2

∣∣ ≥ |T |2.
An operator T is called n-perinormal for positive integer n such that n ≥ 2, if T ∗nTn ≥ (T ∗T )n.
An operator T is called k-paranormal for positive integer k, if

∥∥T k+1x
∥∥ ≥ ‖Tx‖k+1 for every

unit vector x in H. For 0 < p < 1, an operator T is said to be p-hyponormal if (T ∗T )p ≥
(TT ∗)p. If p = 1, T is called hyponormal. An operator T is called log-hyponormal if T is
invertible and log(T ∗T ) ≥ log(TT ∗). An operator T is said to be of class A(k) for k > 0, if
(T ∗ |T |2k

T )
1

k+1 ≥ |T |2 . An operator T is called quasi-class (A, k), if T ∗k
∣∣T 2

∣∣ T k ≥ T ∗k |T |2 T k

and quasi-class A if T ∗
∣∣T 2

∣∣ T ≥ T ∗ |T |2 T. An operator T is called normaloid if r(T ) = ‖T‖,
where r(T ) = sup{|λ| : λ ∈ σ(T )} and isoloid if every isolated point of σ(T ) is an eigenvalue of
T .

Furuta et al [4] have proved that every log-hyponormal is a class A operator and every class
A operator is a paranormal operator. We define an operator [24] T ∈ B(H) as class Ak for a

positive integer k, if
∣∣T k+1

∣∣ 2
k+1 ≥ |T |2. If k = 1, then class Ak coincides with class A operator.

We have also proved the following results.
Theorem 1.1.[24] If T is a p-hyponormal or a log-hyponormal operator, then T is class

Ak operator, for each positive integer k.



2 S. Panayappan, N. Jayanthi and D. Sumathi No. 2

Theorem 1.2.[24] Let T be an invertible and class A operator. Then

1. T is of class Ak operator for every positive integer k.

2. classA1 ⊆ classA2 ⊆ classA3 ⊆ ...

3. For all positive integer n, Tn is of class Ak operator for every positive integer k.

4. T−1 is of class Ak operator for every positive integer k.

Theorem 1.3.[24] If T is of class Ak for some positive integer k, then T is k-paranormal.
An operator T is called a Fredholm operator if the range of T denoted by ran(T ) is closed

and both kerT and kerT ∗ are finite dimensional. The index of a Fredholm operator is an
integer defined as index(T ) = dimKerT − dimKerT ∗. The ascent of T ∈ B(H), denoted by
asc(T) is the least non-negative integer n such that kerTn = kerTn+1. We say that T is of
finite ascent, if asc(T − λ) < ∞, for all λ ∈ C. An operator T ∈ B(H) is called Weyl if
it is Fredholm of index 0. The spectrum of T is denoted by σ(T ) and the set of all isolated
eigenvalues of finite multiplicity is denoted by π00. The essential spectrum of T is defined
as σe(T ) = {λ ∈ C : T − λI is not Fredholm} . The Weyl spectrum of T is defined as
w(T ) = {λ ∈ C : T − λI is not Weyl} . When the space is infinite dimensional w(0) = 0
and w(T ) = {0}, if T is compact. H. Weyl has shown that λ ∈ σ(T + K) for every compact
operator k if and only if λ is not an isolated eigenvalue of finite multiplicity in σ(T ). We say that
Weyl’s theorem holds for T [3] if T satisfies the equality σ(T ) − ω(T ) = π00(T ). Let H(σ(T ))
be the set of all analytic functions on an open neighbourhood of σ(T ). The spectral picture [19]

of an operator T ∈ B(H), denoted by SP (A) consists of the set σe(T ), the collection of holes
and pseudoholes in σe(T ), and the indices associated with these holes and pseudoholes.

In this paper, we discuss the class of operators called m-quasi class Ak operators for positive
integers k and m, which is a superclass of p-hyponormal, log-hyponormal and class Ak operators.
We prove that if T is a m-quasi class Ak operator, then T is an isoloid, T is of finite ascent and
Weyl’s theorem holds for both T and f(T ), where f is an analytic function in a neighborhood
of the spectrum of T . We also prove that the the class of m-quasi class Ak operator is closed
under tensor product.

§2. Definition and examples

Definition 2.1. An operator T ∈ B(H) is defined to be of m-quasi class Ak, if T ∗m(
∣∣T k+1

∣∣ 2
k+1

− |T |2)Tm ≥ 0, where k and m are positive integers. If k = 1 and m = 1, then m-quasi class
Ak operators coincides with quasi-class A operators.

Obviously, 1− quasiclassAk ⊆ 2− quasiclassAk ⊆ 3− quasiclassAk ⊆ · · ·
Example 2.2. Let H be the direct sum of a denumerable number of copies of two

dimensional Hilbert space R × R. Let A and B be two positive operators on R × R. For any
fixed positive integer n, define an operator T = TA,B,n on H as follows:

T ((x1, x2, . . .)) = (0, A(x1), A(x2), . . . , A(xn), B(xn+1), . . .).
Its adjoint T ∗ is given by:
T ∗((x1, x2, . . .)) = (A(x2), A(x3), . . . , A(xn+1), B(xn+2), . . .).
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For n ≥ k, TA,B,n is of m-quasi classAk if and only if A and B satisfies:

Am(Ak−i+1B2iAk−i+1)
1

k+1 Am ≥ A2+2m for i = 1, 2, . . . , k.

If A =


 1/2 0

0 0


 and B =


 1 1

1 1


 , then TA,B,n is of m-quasi classAk, for every

positive integer k.

Since S ≥ 0 implies T ∗ST ≥ 0, the following result is trivial.
Theorem 2.3. If T belongs to class Ak, for some positive integer k ≥ 1, then T belongs

to m-quasi classAk, for every positive integer m.

From Theorems 1.2 and 2.3, we get the following results.
Theorem 2.4. Let T be an invertible and class A operator. Then for each positive integer

m,

1. T is of m-quasi classAk operator for every positive integer k.

2. m− quasi classA1 ⊆ m− quasi classA2 ⊆ m− quasi classA3 ⊆ ....

3. For all positive integers n, Tn is of m-quasi classAk operator for every positive integer k.

4. T−1 is of m-quasi classAk operator for every positive integer k.

§3. Matrix representation

Matrix representation of operators is used to study various properties of an operator. Class

Ak operators have the matrix representation [24] T =


 A S

0 0


 with respect to direct sum

of closure of range of T and kernel of T ∗. The next theorem gives the matrix representation for
m-quasi classAk operators.

Proposition 3.1. (Hansen Inequality [6]) If A,B ∈ B(H) satisfy A ≥ 0 and ‖B‖ ≤ 1,
then (B∗AB)δ ≥ B∗AδB for all δ ∈ (0, 1].

Theorem 3.2. Assume that T ∈ B(H) is a m-quasi class Ak operator for positive integers
k and m, T has no dense and T has the following representation:

T =


 T1 T2

0 T3


 onH = ran(Tm)⊕ ker(Tm∗).

Then T1 is class Ak operator on ran(Tm) and T3 is nilpotent. Furthermore, σ(T ) =
σ(T1) ∪ {0} .

Proof. Let P be the orthogonal projection onto ran(Tm). Then

 T1 0

0 0


 = TP = PTP.
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Since T is m-quasi classAk operator,

P (
∣∣T 1+k

∣∣ 2
1+k − |T |2)P ≥ 0.

By Hansen’s inequality,

P (
∣∣T 1+k

∣∣) 2
1+k P = P (T ∗1+kT 1+k)

1
1+k P ≤ (PT ∗1+kT 1+kP )

1
1+k =




∣∣T 1+k
1

∣∣ 2
1+k 0

0 0




and P (|T |2)P = PT ∗TP =


 |T1|2 0

0 0


. Therefore,




∣∣T 1+k
1

∣∣ 2
1+k 0

0 0


 ≥ P (

∣∣T 1+k
∣∣) 2

1+k P ≥

P (|T |2)P =


 |T1|2 0

0 0


. Hence,

∣∣T 1+k
1

∣∣ 2
1+k ≥ |T1|2 . Hence T1 is class Ak operator on

ran(Tm).

For any x =


 x1

x2


 ∈ H, 〈Tm

3 x2, x2〉 = 〈Tm(I − P )x, (I − P )x〉 = 〈(I − P )x, Tm∗(I − P )x〉

= 0. Hence Tm
3 = 0. By [ [5], corollary 7], σ(T1)

⋃
σ(T3) = σ(T )

⋃
τ, where τ is the union of

certain of the holes in σ(T ) which happen to be a subset of σ(T1)
⋂

σ(T3), and σ(T1)
⋂

σ(T3)
has no interior points. Therefore σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0} .

Since class Ak operators are isoloid [24], we immediately have the following corollary.
Corollary 3.3. Assume that T ∈ B(H) is a m-quasi class Ak operator for positive integers

k and m, T has no dense range and T has the following representation:

T =


 T1 T2

0 T3


 onH = ran(Tm)⊕ ker(T ∗m).

Then T1 is isoloid and T3 is nilpotent. Furthermore, σ(T ) = σ(T1) ∪ {0} .

§4. Some properties of m-quasi class Ak

Theorem 4.1. If T ∈ B(H) is m-quasi classAk operator for some positive integers k and
m, then T is isoloid.

Proof. Let T =


 T1 T2

0 T3


 on H = ran(Tm)⊕ kerT ∗m. Let λ0 be an isolated point of

σ(T ). Then either λ0 = 0 or 0 6= λ0 ∈ isoσ(T1). Since T1 is isoloid [Cor 3.3], if λ0 ∈ isoσ(T1),
then λ0 ∈ σp(T1) and hence λ0 ∈ σp(T ). On the contrary, if λ0 = 0 and 0 /∈ σ(T1), then T1 is
invertible. Also dim kerT3 6= 0. Hence there exists x 6= 0 in kerT3 such that T (−T−1

1 T2x⊕x) =
0. Hence −T−1

1 T2x ⊕ x ∈ kerT. Hence in both cases, λ0 is an eigenvalue of T. Therefore T is
isoloid.

Theorem 4.2. If T ∈ B(H) is m-quasi class Ak operator for positive integers k and

m, 0 6= λ ∈ σp(T ) and T is of the form T =


 λ T2

0 T3


 on ker(T − λ)⊕ ker(T − λ)⊥, then
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1. T2 = 0 and

2. T3 is m-quasi class Ak.

Proof. Let P be the orthogonal projection of H onto ker(T − λ). Since T is m-quasi
classAk, T satisfies

T ∗m(
∣∣T k+1

∣∣ 2
k+1 − |T |2)Tm ≥ 0,

where k and m are positive integers. Hence P (
∣∣T k+1

∣∣ 2
k+1 − |T |2)P ≥ 0,

where P |T |2 P =


 |λ|2 0

0 0


 and

(
P

∣∣T k+1
∣∣2 P

)
=


 |λ|2(k+1) 0

0 0


 .

Therefore,

 |λ|2 0

0 0


 =

(
P

∣∣T k+1
∣∣2 P

) 1
k+1 ≥ P

∣∣T k+1
∣∣ 2

k+1 P ≥ P |T |2 P =


 |λ|2 0

0 0


 .

Therefore,

P
∣∣T k+1

∣∣ 2
k+1 P =


 |λ|2 0

0 0


 = P |T |2 P.

Hence
∣∣T k+1

∣∣ 2
k+1 is of the form

∣∣T k+1
∣∣ 2

k+1 =


 |λ|2 A

A∗ B


 .

Since


 |λ|2(k+1) 0

0 0


 = P

(∣∣T k+1
∣∣2

)
P = P

(∣∣T k+1
∣∣ 2

k+1
)k+1

P , we can easily show that

A = 0.

Therefore,
∣∣T k+1

∣∣ 2
k+1 =


 |λ|2 0

0 B


 and hence

∣∣T k+1
∣∣2 =


 |λ|2(k+1) 0

0 B(k+1)


 .

This implies that λkT2 + λk−1T2T3 + · · ·+ T2T
k
3 = 0 and B =

∣∣T k+1
3

∣∣ 2
k+1 . Therefore,

0 ≤ T ∗m
(∣∣T k+1

∣∣ 2
k+1 − |T |2

)
Tm =


 X Y

Y ∗ Z


 ,

where X = 0, Y = −λ
m+1

T2T
m
3 and Z = −(λ

m−1
T ∗2 +· · ·+T ∗3

m−1T ∗2 )λT2T
m
3 −λT ∗3

mT ∗2 (λm−1T2+

· · ·+ T2T
m−1
3 )− T ∗3

m |T2|2 Tm
3 + T ∗3 m

(∣∣T k+1
3

∣∣ 2
k+1 − |T3|2

)
Tm

3 .

A matrix of the form


 X Y

Y ∗ Z


 ≥ 0 if and only if X ≥ 0, Z ≥ 0 and Y = X1/2WZ1/2,

for some contraction W . Therefore, T2T
m
3 = 0. This together with λkT2 + λk−1T2T3 + · · · +

T2T
k
3 = 0 gives that T2 = 0 and T3 is m-quasi class Ak.

Corollary 4.3. If T ∈ B(H) is m-quasi class Ak operator for positive integers k and m

and (T − λ)x = 0 for λ 6= 0 and x ∈ H, then (T − λ)∗x = 0.
Theorem 4.4. Let T ∈ B(H) be a m-quasi class Ak operator for positive integers k and

m, then T satisfies
∥∥T k+1+mx

∥∥ ‖Tmx‖k ≥ ∥∥Tm+1
∥∥k+1.
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Proof. Using McCarthy inequality [18], for each x ∈ H,

0 ≤
〈
T ∗m(

∣∣T 1+k
∣∣ 2
1+k − |T |2)Tmx, x

〉

≤
〈∣∣T 1+k

∣∣2 Tmx, Tmx
〉 1

1+k ‖Tmx‖2(1− 1
1+k ) −

〈
|T |2 Tmx, Tmx

〉

=
∥∥T 1+k+mx

∥∥ 2
1+k ‖Tmx‖ 2k

1+k − ∥∥Tm+1x
∥∥2

.

Hence
∥∥T k+1+mx

∥∥ ‖Tmx‖k ≥ ∥∥Tm+1x
∥∥k+1, for every x ∈ H. Hence the required result.

Theorem 4.5. If T ∈ B(H) is m-quasi class Ak operator for positive integers m and k,

then T is of finite ascent.
Proof. By Corollary 4.3, for λ 6= 0, ker(T − λ) ⊂ ker(T − λ)∗. Hence ker(T − λ)2 =

ker(T − λ). If λ = 0, let 0 6= x ∈ kerT k+1+m. By Theorem 4.4, x ∈ kerTm+1 ⊂ kerT k+m.
Hence kerT k+1+m = kerT k+m. Hence asc(T − λ) < ∞, for all λ ∈ C.

§5. Weyl’s theorem

Theorem 5.1. If T ∈ B(H) is m-quasi class Ak operator for some positive integers k and
m, then Weyl’s theorem holds for T.

Theorem 5.2. If T ∈ B(H) is m-quasi class Ak operator for some positive integers k and
m, then Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

To prove these theorems, we need the following results.
Proposition 5.3.[15] (Theorem 6) For given operators A,B, C ∈ B(H), there is an equality

w(A)
⋃

w(B) = w(MC)
⋃

τ, where MC =


 A C

0 B


 and τ is the union of certain holes in

w(MC) which happen to be a subset of w(A)
⋂

w(B).
Proposition 5.4.[24] (Lemma 5.7) If T is a class Ak operator for some positive integer k,

then f(w(T )) = w(f(T )) for every f ∈ H(σ(T )).
Proposition 5.5.[15] (Corollary 11) Suppose A ∈ B(H) and B ∈ B(K) are isoloids. If

Weyl’s theorem holds for A and B, and if w(A)
⋂

w(B) has no interior points, then Weyl’s

theorem holds for


 A 0

0 B


 .

Proposition 5.6.[16] If either SP (A) or SP (B) has no pseudoholes and if A is an isoloid
operator for which Weyl’s theorem holds, then for every C ∈ B(K,H), Weyl’s theorem holds

for


 A 0

0 B


 ⇒ Weyl’s theorem holds for


 A C

0 B


 .

Proposition 5.7.[7] (Theorem 5) If T ∈ B(H) then the following are equivalent:

1. ind(T − λI)ind(T − µI) ≥ 0 for each pair λ, µ ∈ C − σe(T ).

2. f(w(T )) = w(f(T )) for every f ∈ H(σ(T )).

Proposition 5.8.[17] (Lemma) If T ∈ B(H) is isoloid, then

f(σ(T )− π00(T )) = σ(f(T ))− π00(f(T )), for every f ∈ H(σ(T)).
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Lemma 5.9. If T is a m-quasi class Ak operator for some positive integers k and m, then
f(w(T )) = w(f(T )) for every f ∈ H(σ(T )).

Proof. By Theorem 3.2, if


 T1 T2

0 T3


 on H = ran(Tm)⊕ kerT ∗m, then T1 is class Ak

operator on ran(Tm) and T3 is nilpotent. Furthermore, σ(T ) = σ(T1)
⋃ {0} . By Proposition

5.4, f(w(T1)) = w(f(T1)). Hence by Proposition 5.3,

w(f(T )) = w(f(T1)) ∪ w(f(T3)) = f(w(T1)) ∪ f(w(T3)) = f(w(T1) ∪ w(T3)) = f(w(T )).

Lemma 5.10. If T is m-quasi class Ak operator for some positive integers k and m, then
ind(T − λI) ≤ 0 for all complex numbers λ.

Proof. Since T is of finite ascent by theorem 4.5, by[ [8] , Proposition 3.5], ind(T −λ) ≤ 0
for all complex numbers λ.

By Theorem 4.1 and Proposition 5.8, we get the following result immediately.
Lemma 5.11. If T is a m-quasi class Ak operator for some positive integers k and m,

then f(σ(T )− π00(T )) = σ(f(T ))− π00(f(T )), for every f ∈ H(σ(T )).
By Lemma 5.10 and Proposition 5.7, the following result is trivial.
Lemma 5.12. If T is a m-quasi class Ak operator for some positive integers k and m,

then f(w(T )) = w(f(T )) for every f ∈ H(σ(T )).

Proof of Theorem 5.1. By Theorem 3.2, if T =


 T1 T2

0 T3


 on H = ran(Tm) ⊕

kerT ∗m, then T1 is class Ak operator on ran(Tm) and T3 is nilpotent. Also by [24], T1 is
isoloid and weyl’s theorem holds for T1, since 0 /∈ w(T1). Hence by Proposition 5.5, Weyl’s

theorem holds for


 T1 0

0 T3


 . Therefore by Proposition 5.6, Weyl’s theorem holds for T =


 T1 T2

0 T3


 .

Proof of Theorem 5.2. By Lemma 5.11, Theorem 5.1 and Lemma 5.12, for every
f ∈ H(σ(T )), σ(f(T )) − π00(f(T )) = f(σ(T ) − π00(T )) = f(w(T )) = w(f(T )). Hence Weyl’s
theorem holds for f(T ), for every f ∈ H(σ(T )).

§6. Tensor product

Let H and K denote the Hilbert spaces. For given non-zero operators T ∈ B(H) and
S ∈ B(K), T ⊗ S denotes the tensor product on the product space H ⊗ K. The normaloid
property is invariant under the tensor products [20]. T ⊗S is normal if and only if T and S are
normal [12,21]. There exist paranormal operators T and S such that T ⊗S is not paranormal [1].
In [3], B. P. Duggal showed that for non-zero T ∈ B(H) and S ∈ B(K), T ⊗S is p-hyponormal
if and only if T and S are p-hyponormal. This result was extended to p-quasi hyponormal
operators, class A operators , quasi-class A and class Ak operators in [10], [11], [13] and [24]
respectively.
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In this section, we prove an analogous result for quasi-class Ak operators. Tensor product
of two non-zero operators satisfy:

1. (T ⊗ S)∗(T ⊗ S) = T ∗T ⊗ S∗S.

2. |T ⊗ S|p = |T |p ⊗ |S|p , for any positive real number p.

In [21], J. Stochel has proved the following result.
Proposition 6.1. Let A1, A2 ∈ B(H), B1, B2 ∈ B(K) be non-negative operators. If A1

and B1 are non-zero, then the following assertions are equivalent:

1. A1 ⊗B1 ≤ A2 ⊗B2.

2. there exists c > 0 such that A1 ≤ cA2 and B1 ≤ c−1B2.

Theorem 6.2. If T ∈ B(H) and S ∈ B(K) are non-zero operators. Then T ⊗S is m-quasi
class Ak operator if and only if one of the following holds:

1. T and S are m-quasi class Ak operators.

2. Tm+1 = 0 or Sm+1 = 0.

Proof. Consider

(T ⊗ S)∗m
(∣∣(T ⊗ S)k+1

∣∣ 2
k+l − |T ⊗ S|2

)
(T ⊗ S)m

= (T ⊗ S)∗m
(∣∣T k+1 ⊗ Sk+1

∣∣ 2
k+1 − |T |2 ⊗ |S|2

)
(T ⊗ S)m

= (T ⊗ S)∗m
((∣∣T k+1

∣∣ 2
k+1 − |T |2

)
⊗ ∣∣Sk+1

∣∣ 2
k+1 + |T |2 ⊗

(∣∣Sk+1
∣∣ 2

k+1 − |S|2
))

(T ⊗ S)m

= T ∗m
(∣∣T k+1

∣∣ 2
k+1 − |T |2

)
Tm ⊗ S∗m

∣∣Sk+1
∣∣ 2

k+l Sm + T ∗m |T |2 Tm ⊗ S∗m

(∣∣Sk+1
∣∣ 2

k+1 − |S|2
)

Sm,

Hence, if either (i) T and S are m-quasi class Ak operators or (ii) Tm+1 = 0 or Sm+1 = 0,

then T ⊗ S is m- quasi class Ak operator.
Conversely, suppose that T ⊗ S is m-quasi class Ak operator. Then by the above equality,

T ∗m(
∣∣T k+1

∣∣ 2
k+1 − |T |2)Tm ⊗ S∗m

∣∣Sk+1
∣∣ 2

k+1 Sm

+T ∗m |T |2 Tm ⊗ S∗m(
∣∣Sk+1

∣∣ 2
k+1 − |S|2)Sm ≥ 0.

Therefore for every x ∈ H and y ∈ K,
〈
T ∗m(

∣∣T k+1
∣∣ 2

k+1 − |T |2)Tmx, x
〉〈

S∗m
∣∣Sk+1

∣∣ 2
k+l Smy, y

〉

+
〈
T ∗m |T |2 Tmx, x

〉〈
S∗m(

∣∣Sk+1
∣∣ 2

k+1 − |S|2)Smy, y
〉
≥ 0.

It is sufficient to prove that either (i) or (ii) holds. Assume the contrary that, neither of
Tm and Sm is the zero operator and T is not m-quasi class Ak operator.

Then there exists xk ∈ H such that
〈
T ∗m(

∣∣T k+1
∣∣ 2

k+1 − |T |2)Tmxk, xk

〉
< 0 and

〈
T ∗m |T |2 Tmxk, xk

〉
> 0.
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Let α =
〈
T ∗m(

∣∣T k+1
∣∣ 2

k+1 − |T |2)Tmxk, xk

〉
and β =

〈
T ∗m |T |2 Tmxk, xk

〉
.

Then α
〈
S∗m

∣∣Sk+1
∣∣ 2

k+l Smy, y
〉

+ β
〈
S∗m(

∣∣Sk+1
∣∣ 2

k+1 − |S|2)Smy, y
〉
≥ 0

⇒ (α + β)
〈
S∗m

∣∣Sk+1
∣∣ 2

k+l Smy, y
〉
≥ β

〈
S∗m |S|2 Smy, y

〉
.

Since α+β < β, this implies that
〈
S∗m(

∣∣Sk+1
∣∣ 2

k+l − |S|2)Smy, y
〉
≥ 0. Hence S is m-quasi

class Ak operator.
Using Holder-McCarthy inequality,

〈
S∗m

∣∣Sk+1
∣∣ 2

k+1 Smy, y
〉

=
〈
(S∗(k+1)Sk+1)

1
k+1 Smy, Smy

〉

≤
〈
S∗(k+1)Sk+1Smy, Smy

〉 1
k+1 ‖Smy‖ 2k

k+1

=
∥∥Sk+1+my

∥∥ 2
k+1 ‖Smy‖ 2k

k+1

and 〈
S∗m |S|2 Smy, y

〉
=

〈
S1+my, S1+my

〉
=

∥∥Sm+1y
∥∥2

.

Therefore, (α + β)
∥∥Sk+1+my

∥∥ 2
k+1 ‖Smy‖ 2k

k+1 ≥ β
∥∥Sm+1y

∥∥2
.

Since S is m-quasi class Ak operator, S has a decomposition of the form

S =


 S1 S2

0 0


 onH = ran(Sm)⊕ ker(S∗m),

where S1 is class Ak operator on ran(Sm).

Hence (α + β)
∥∥Sk+1+m

1 ξ
∥∥ 2

k+1 ‖Sm
1 ξ‖ 2k

k+1 ≥ β
∥∥Sm+1

1 ξ
∥∥2

for all ξ ∈ ran(Sm). Since S1 is
normaloid [24],

(α + β) ‖S1‖
2(k+1+m)

(k+1) ‖S1‖
2km
(k+1) ≥ β ‖S1‖2(m+1)

i.e (α + β) ‖S1‖2(m+1) ≥ β ‖S1‖2(m+1)
.

Hence S1 = 0. Hence S2y = S1(Sy) = 0 for all y ∈ K. This is a contradiction to that S2 is
not a zero operator. Hence T must be m-quasi class Ak operator. In a similar manner, we can
show that S is m-quasi class Ak operator. Hence the result.

References

[1] T. Ando, Operators with a norm condition, Acta Sci. Math (Szeged), 33(1972), 169-178.
[2] L. A. Coburn, Weyls’s theorem for nonnormal operators, Michigan Math. J., 13(1966),

285-288.
[3] B. P. Duggal, Weyl’s theorem for totally hereditarily normaloid operators, Rendi. Cirolo

Mat. Palermo LIII, 2004.
[4] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class

of log-hyponormal and several related classes, Scientiae Mathematica, 1(1998), 389-403.
[5] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of upper triangular operator

matrices, Proc. Amer. Math. Soc., 128(1999), 119-123.
[6] F. Hansen, An equality, Math. Ann., 246(1980), 249-250.



10 S. Panayappan, N. Jayanthi and D. Sumathi No. 2

[7] R. E. Harte and W. Y. Lee, Another note on Weyl’s theorem, Trans. Amer. Math.
Soc., 349(1997), 2115-2124.

[8] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
[9] M. Ito, Several properties on class A including p-hyponormal and log-hyponormal op-

erators, Mathematical inequalities and Applications, 2(1999), No. 4, 569-578.
[10] I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, Jour.

Korean Math. Soc., 41(2004), 617-627.
[11] I. H. Jeon and I. H. Kim, On operators satisfying T ∗

∣∣T 2
∣∣ T ≥ T ∗ |T |2 T , Lin. Alg.

Appl., 418(2006), 854-862.
[13] Jin chuan Hou, On tensor products of operators, Acta. Math. Sinica (N.S), 9(1993),

195-202.
[13] I. H. Kim, Tensor products of log-hyponormal operators, Bull. Korean Math. Soc.,

42(2005), 269-277.
[14] I. H. Kim, Weyl’s theorem and tensor product for operators satisfying T ∗k

∣∣T 2
∣∣ T k ≥

T ∗k |T |2 T k, J. Korean Math. Soc., 47(2010), No. 2, 351-361.
[15] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc., 129(2001),

131-138.
[16] W. Y. Lee, Weyl’s theorem for operator matrices, Integr. Equ. Oper. Theory,

32(1998), 319-331.
[17] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow

Math. J., 38(1996), No. 1, 61-64.
[18] C. A. McCarthy, Cρ, Israel J. Math., 5(1967), 249-271.
[19] C. M. Pearcy, Some Recent Developments in Operator theory, CBMS 36, AMS, Prov-

idence, 1978.
[20] T. Saito, Hyponormal operators and Related topics, Lecture notes in Mathematics,

Springer-Verlag, 247(1971).
[21] J. Stochel, Seminormality of operators from their tensor product, Proc. Amer. Math.

Soc., 124(1996), 435-440.
[22] A. Uchiyama, Weyl’s theorem for class A operators, Mathematical inequalities and

Applications, 4(2001), No. 1, 143-150.
[23] T. Yamazaki, Extensions of the results on p-hyponormal and log-hyponormal operators

by Aluthge and Wang, SUT Journal of Mathematics, 35(1999), No. 1, 139-148.
[24] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl’s theoerem and Tensor Product

for class Ak operators to appear in Pure Mathematical sciences, 1(2012), No. 1, 13-23.



Scientia Magna
Vol. 7 (2011), No. 2, 11-16

A short interval result for the function log ρ(n)1

Jingmei Wei†, Mengluan Sang‡ and Yu Huang]

† ‡ School of mathematical Sciences, Shandong Normal University,
Jinan, 250014, P. R. China

] Network and Information Center, Shandong University,
Jinan, 250100, P. R. China

E-mail: weijingmei898@sina.com sangmengluan@163.com huangyu@sdu.edu.cn

Abstract let n > 1 be an integer, log ρ(n) denote the number of regular integers m(mod n)

such that1 ≤ m ≤ n. In this paper we shall establish a short interval result for the function

log ρ(n).

Keywords Regular integers (mod n), convolution method, short interval.

§1. Introduction

Let n > 1 be an integer. Consider the integers m for which there exists an integer x

such that m2x ≡ m (mod n). Let Regn= {m : 1 ≤ m ≤ n, m is regular (mod n)} and let
ρ(n) = #Regn denote the number of regular integers m(mod n) such that 1 ≤ m ≤ n. This
function is multiplicative and ρ(pv) = φ(pv)+1 = pv−pv−1+1 for every prime power pv(v ≥ 1),
where φ is the Euler function.

The average order of the function ρ(n) was consider in [4], [2]. One has

lim
n→∞

1
x2

∑

n≤x

ρ(n) =
1
2
A ≈ 0.4407, (1)

where

A =
∏
p

(
1− 1

p2(p + 1)

)
= ζ(2)

∏
p

(
1− 1

p2
− 1

p3
+

1
p4

)
≈ 0.8815 (2)

is the so called quadratic class -number constant. More exactly, V. S. Joshi [2] proved
∑

n≤x

ρ(n) =
1
2
Ax2 + R(x), (3)

where R(x) = O(x log3 x), This was improved into R(x) = O(x log2 x) in [3], and into R(x) =
O(x log x) in [5], using analytic methods. Also, R(x) = Ω±(x

√
log log x) was proved in [5].

László Tóth [1] proved the following three results:
∑

n≤x

ρ(n)
φ(n)

=
3
π2

x + O(log2 x), (4)

1This work is supported by N. N. S. F. of China (Grant Nos: 10771127, 11001154) and N. S. F. of Shandong

Province (Nos: BS2009SF018, ZR2010AQ009).
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∑

n≤x

φ(n)
ρ(n)

= Bx + O
(
(log x)5/3(log log x)4/3

)
, (5)

∑

n≤x

1
ρ(n)

= C1 log x + C2 + O

(
log9 x

x

)
, (6)

where C1 and C2 are constants,

C1 =
ζ(2)ζ(3)

ζ(6)

∏
p

(
1− p(p− 1)

p2 − p + 1

∞∑
v=1

1
pv − pv−1 + 1

)
.

Recently Lixia Li [6] proved a result about the mean value of log ρ(n):

∑

n≤x

log ρ(n) = x log x + Cx + O(x1/2 log3/2 x), (7)

where

C =
∑

p

(1− p−1)
∞∑

α=2

p−α log(1− p−1 + p−α). (8)

In this paper, we shall prove the following short interval result.

Theorem. If x
1
5+2ε ≤ y ≤ x, then

∑

x<n≤x+y

log ρ(n) = Cy +
∫ x+y

x

log t dt + O(yx−
ε
2 + x

1
5+ 3ε

2 ), (9)

where C is given by (8).

Notations. Throughout this paper, ε always denotes a fixed but sufficiently small positive
constant.

§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas and in the section we suppose
that u is a complete number such that Reu ≤ ε2.

Lemma 1. Suppose s is a complex number (Res > 1), then

∞∑
n=1

(ρ(n))u

ns
= ζ(s− u)ζ−u(2s− 2u + 1)G(s, u), (10)

where the Dirichlet series G(s, u) :=
∑∞

n=1
g(n,u)

ns is absolutely convergent for Res > Reu− 1
4 .
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Proof. Here (ρ(n))u is multiplicative and by Euler product formula we have for σ > 1
that,

∞∑
n=1

(ρ(n))u

ns
=

∏
p

(
1 +

(ρ(p))u

ps
+

(
ρ(p2)

)u

p2s
+

(
ρ(p3)

)u

p3s
+

(
ρ(p4)

)u

p4s
+ · · ·

)

=
∏
p

(
1 +

pu

ps
+

p2u(1− 1
p + 1

p2 )u

p2s
+

p3u(1− 1
p + 1

p3 )u

p3s
+ · · ·

)

=
∏
p

(
1 +

1
ps−u

+
1 + u(− 1

p + 1
p2 ) + u(u−1)

2 (− 1
p + 1

p2 )2 + · · ·
p2s−2u

+
1 + u(− 1

p + 1
p3 ) + u(u−1)

2 (− 1
p + 1

p3 )2 + · · ·
p3s−3u

+ · · ·
)

= ζ(s− u)
∏
p

(
1 +

u(− 1
p + 1

p2 ) + u(u−1)
2 (− 1

p + 1
p2 )2 + · · ·

p2s−2u

+
u(− 1

p2 + 1
p3 ) + u(u−1)

2 [(− 1
p + 1

p3 )2 − (− 1
p + 1

p2 )2] + · · ·
p3s−3u

+ · · ·
)

=
ζ(s− u)

ζu(2s− 2u + 1)

∏
p

(
1 +

u 1
p2 + u(u−1)

2 (− 1
p + 1

p2 )2 + · · ·
p2s−2u

+ · · ·
)

=
ζ(s− u)

ζu(2s− 2u + 1)
G(s, u).

So we get G(s, u) :=
∑∞

n=1
g(n,u)

ns and by the properties of Dirichlet series, it is absolutely
convergent for Res > Reu− 1

4 .
Lemma 2. ∑

n≤x

nu =
1

u + 1
xu+1 + O(1) + O(xReu). (11)

Proof. This is easily from partial summation formula.
Let f(n, u), h(n.u) be arithmetic functions defined by the following Dirichlet series (for

Res > 1):
∞∑

n=1

f(n, u)
ns

= ζ(s− u)G(s, u), (12)

∞∑
n=1

h(n, u)
n2s

= ζ−u(2s− 2u + 1). (13)

Lemma 3. Let f(n, u) be an arithmetic function defined by (12), then we have

∑

n≤x

f(n, u) =
xu+1

u + 1
G(u + 1, u) + O(1) + O(xReu). (14)

Proof. From Lemma 1 the infinite series
∑∞

n=1
g(n,u)

ns converges absolutely for σ > Reu− 1
4 ,

it follows that ∑

n≤x

g(n, u) ¿ 1.
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Therefore from the definition of f(n, u)and Lemma 2, we obtain
∑

n≤x

f(n, u) =
∑

n≤x

mug(k, u)

=
∑

k≤x

g(k, u)
∑

m≤ x
k

mu

=
∑

k≤x

g(k, u)
[

1
u + 1

(
x

k
)u+1 + O(1) + O(xReu)

]

=
1

u + 1
xu+1 + O(1) + O(xReu).

Lemma 4. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers and

B(x, y; k, ε) :=
∑

x < nmk ≤ x + y

m > xε

1.

Then we have
B(x, y; k, ε) ¿ yx−ε + x

1
2k+1 log x. (15)

Proof. This Lemma is very important when studying the short interval distribution of
l-free numbers; Using Lemma 1, see for example [7].

Next we prove our Theorem. From Lemma 4 and the definition of f(n, u), h(n, u), we get

h(n, u) = d−u(n)n2u−1 ¿ n2Reu+ε−1

and
ρu(n) =

∑

n=km2

f(k, u)h(m,u).

So we have

Q(x + y)−Q(x) =
∑

x<km2≤x+y

f(k, u)h(m,u)

=
∑
1

+O(
∑
2

), (16)

where
∑
1

=
∑

m≤xε

h(m,u)
∑

x
m2 <k≤ x+y

m2

f(k, u),

∑
2

=
∑

x < km2 ≤ x + y

m > xε

|f(k, u)h(m,u)|.

In view of Lemma 3,

∑
1

=
∑

m≤xε

h(m,u)
(

G(u + 1, u)
m2u+2

∫ x+y

x

tudt + O(1) + O
( xReu

m2Reu

))

=
G(u + 1, u)

ζu(3)

∫ x+y

x

tudt + O(yx−
ε
2 ) + O(xε). (17)
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By Lemma 4, we have

∑
2

¿ xε2
∑

x < km2 ≤ x + y

m > xε

1

¿ xε2(yx−ε + x
1
5+ε)

¿ yx−
ε
2 + x

1
5+ 3

2 ε. (18)

Now following, we obtain

∑

n<x≤x+y

ρu(n) =
G(u + 1, u)

ζu(3)

∫ x+y

x

tudt + O(yx−
ε
2 ) + O(x

1
5+ 3

2 ε)

= H(u)
∫ x+y

x

tudt + O(yx−
ε
2 ) + O(x

1
5+ 3

2 ε). (19)

where H(u) := G(u+1,u)
ζu(3) .

By differentiating (19) term by term, we derive

∑

n<x≤x+y

ρu(n) log ρ(n) = H ′(u)
∫ x+y

x

tudt + H(u)
∫ x+y

x

tu log tdt

+O(yx−
ε
2 ) + O(x

1
5+ 3

2 ε). (20)

Letting u = 0 in (20), we get

∑

n<x≤x+y

log ρ(n) = H ′(0)y + H(0)
∫ x+y

x

log tdt + O(yx−
ε
2 ) + O(x

1
5+ 3

2 ε). (21)

Now we evaluate H(0) and H ′(0). From the definition of H(u), we obtain

H(u) =
∏
p

(
1− 1

p

)(
1 +

1
p

+
∞∑

α=2

(1− p−1 + p−α)u

pα

)
, (22)

which immediately that H(0) = 1.

Taking the logarithm derivative from both sides of (22) we get

H ′(u)
H(u)

=
∑

p

∑∞
α=2 p−α(1− p−1 + p−α)u log(1− p−1 + p−α)

1 + p−1 +
∑∞

α=2
(1−p−1+p−α)u

pα

,

which together with H(0) = 1 gives

H ′(0) =
∑

p

(1− p−1)
∞∑

α=2

p−α log(1− p−1 + p−α). (23)

Now our theorem follows from (21) and (23).
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Abstract An integer a is called regular (mod n) if there is an integer x such that a2x ≡ a

(mod n). Let ρ(n) denote the number of regular integers a(mod n) such that 1 ≤ a ≤ n, φ(n)

is the Euler function. In this paper we investigate the mean value of the function (φ(n)
ρ(n)

)r,

where r > 1 is a fixed integer.

Keywords Regular integer(mod n), Euler’s function, Euler product, convolution method.

§1. Introduction

Let n > 1 be an integer. Consider the integer a for which there exist an x such that
a2x ≡ a (mod n). Properties of these integer were investigated by J. Morgado [1,2] who called
them regular (mod n).

Let Regn = {a : 1 ≤ a ≤ n, a is regular (mod n)} and let ρ(n) denote the number of
regular integers a(mod n) such that 1 ≤ a ≤ n. This function is multiplicate and ρ(pv) =
φ(pv) + 1 = pv − pv−1 + 1 for every prime power pv(v ≥ 1), where φ is the Euler function.

László Tóth [3] proved that

∑

n≤x

φ(n)
ρ(n)

= Cx + O((log x)5/3(log log x)4/3), (1)

where C is a constant.
Let r > 1 be a fixed integer. The aim of the short paper is to establish the following

asymptotic formula for the mean value of the function (φ(n)
ρ(n) )

r, which generalizes (1).

Theorem. Suppose r > 1 be a fixed integer, then

∑

n≤x

(
φ(n)
ρ(n)

)r = Arx + O(log2r x), (2)

where Ar is a constant.

1This work is supported by N. N. S. F. of China (Grant Nos: 10771127, 11001154) and N. S. F. of Shandong

Province (Nos: BS2009SF018, ZR2010AQ009).
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§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas, which can be found in Ivić
[4]. Form now on, suppose ζ(s) denotes the Riemann-zeta function.

Lemma 1. Suppose t ≥ 2, then uniformly for σ we have

ζ(σ + it) ¿





1, for σ ≥ 2;

log t, for 1 ≤ σ ≤ 2;

t(1−σ)/2 log t, for 0 ≤ σ ≤ 1.

ζ(σ + it)−1 ¿




1, for σ ≥ 2;

log t, for 1 ≤ σ ≤ 2.

Lemma 2. There exists an absolute constant c > 0 such that ζ(s) 6= 0 for σ > 1− c
log(|t|+2) .

Proof of the theorem.

Let

f(s) :=
∞∑

n=1

(φ(n)
ρ(n) )

r

ns
, Res > 1.

It is easy to see that (φ(n)
ρ(n) )

r is multiplicative, so by the Euler product formula, for Res > 1
we have

f(s) : =
∞∑

n=1

(φ(n)
ρ(n) )

r

ns

=
∏
p

(1 +
(φ(p)

ρ(p) )
r

ps
+

(φ(p2)
ρ(p2) )

r

p2s
+ · · · )

=
∏
p

(1 +
(p−1

p )r

ps
+

( p2−p
p2−p+1 )r

p2s
+ · · · )

=
∏
p

(1 +
(1 + 1

p−1 )−r

ps
+

(1 + 1
p2−p )−r

p2s
+ · · · )

=
∏
p

(1 +
(1 + 1

p (1 + 1
p + · · · ))−r

ps
+

(1 + 1
p (1 + 1

p2 + · · · ))−r

p2s
+ · · · )

=
∏
p

(1 +
1
ps
−

r
p (1 + 1

p + · · · )
ps

+ · · ·+ 1
p2s

−
r
p2 (1 + 1

p + · · · )
p2s

+ · · · )

= ζ(s)
∏
p

(1− 1
ps

)(1 +
1
ps
−

r
p (1 + 1

p + · · · )
ps

+ · · ·

+
1

p2s
−

r
p2 (1 + 1

p + · · · )
p2s

+ · · · )
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= ζ(s)
∏
p

(1−
r
p (1 + 1

p + · · · )
ps

+
r(r+1)

2p2 (1 + 1
p + · · · )2

ps
+ · · ·

+
r
p (1 + 1

p + · · · )
p2s

−
r
p2 (1 + 1

p + · · · )
p2s

+ · · · )

= ζ(s)
∏
p

(1− r

ps+1
+

r(r+1)
2 − r

ps+2
+ · · ·+ r

p2s+1
−

r(r+1)
2 + r

p2s+2
+ · · · )

=
ζ(s)

ζr(s + 1)

∏
p

(1 +
r

p2s+1
+

r(r+1)
2 − r

ps+2
−

r(r+1)
2 + r

p2s+2
+ · · · )

=
ζ(s)ζr(2s + 1)

ζr(s + 1)

∏
p

(1 +
r(r+1)

2 − r

ps+2
−

r(r+1)
2 + r2

p2s+2
+ · · · )

=
ζ(s)ζr(2s + 1)

ζr(s + 1)
G(s, r).

Write

G(s, r) :=
∏
p

(1 +
r(r+1)

2 − r

ps+2
−

r(r+1)
2 + r2

p2s+2
+ · · · ) =

∞∑
n=1

g(n)
ns

.

It is easy to check that Dirichlet series
∑∞

n=1
g(n)
ns is absolutely convergent for Res ≥ − 2

5 , so we
have ∑

n≤x

|g(n)| ¿ 1. (3)

Let
ζr(2s + 1)
ζr(s + 1)

=
∞∑

n=1

vr(n)
ns

,

then according to the Dirichlet convolution, we obtain

∑

n≤x

(
φ(n)
ρ(n)

)r =
∑

mkl≤x

g(k)vr(l)

=
∑

k≤x

g(k)
∑

l≤ x
k

vr(l)
∑

m≤ x
kl

1

=
∑

k≤x

g(k)
∑

l≤ x
k

vr(l)(
x

kl
+ O(1))

= x
∑

k≤x

g(k)
k

∑

l≤ x
k

vr(l)
l

+ O(
∑

k≤x

g(k)
∑

l≤ x
k

|vr(n)|). (4)

So it is reduced to compute
∑

l≤x vr(l) and
∑

l≤x |vr(l)|. Similar to the proof of the prime
number theorem, with the help of lemma 1, lemma 2 and perron’s formula we get

∑

l≤x

vr(l) = C + O(x−ε), (5)

where
C = Ress=0

ζr(2s + 1)
ζr(s + 1)

xs

s
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is a constant, ε is a small positive real number. By the partial summation, we get form (4) that

∑

l>x

vr(l)
l

¿ x−1, (6)

∑

l≤x

vr(l)
l

=
∞∑

l=1

vr(l)
l

−
∑

l>x

vr(l)
l

= C1 + O(x−1). (7)

Now we go on to bound the sum
∑

l≤x(|vr(l)|). Since for Res > 1,

∞∑

l=1

vr(l)
ls

=
ζr(2s + 1)
ζr(s + 1)

=
∞∑

m=1

µr(m)
ms+1

∞∑
n=1

dr(n)
n2s+1

=
∑
m,n

µr(m)dr(n)
(mn2)s(mn)

,

where dr(n) =
∑

n=n1···nr
1, µr(m) =

∑
m=m1···mr

µ(m1) · · ·µ(mr), we obtain

vr(l) =
∑

l=mn2

µr(m)dr(n)
mn

.

So
|vr(l)| ≤

∑

l=mn2

dr(m)dr(n)
mn

,

which combining the well-known estimate

∑

n≤x

dr(n) ¿ x logr−1 x

gives ∑

l≤x

|vr(l)| ¿ log2r x. (8)

Form (4)-(8), we obtain

∑

n≤x

(
φ(n)
ρ(n)

)r = x
∑

k≤x

g(k)
k

∑

l≤ x
k

vr(l)
l

+ O(
∑

k≤x

|g(k)|
∑

l≤ x
k

|vr(l)|)

= x
∑

k≤x

g(k)
k

(C1 + O((
x

k
)−1)) + O(

∑

k≤x

|g(k)|
∑

l≤ x
k

|vr(l)|)

= C1x
∑

k≤x

g(k)
k

+ O(
∑

k≤x

g(k)) + O(
∑

k≤x

|g(k)| log2r x

k
)

= C1x

∞∑

k=1

g(k)
k

+ O(x
∑

k>x

g(k)
k

+
∑

k≤x

g(k) +
∑

k≤x

|g(k)| log2r x

k
)

= Arx + O(log2r x),
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where

Ar = C1x
∞∑

k=1

g(k)
k

=
∞∑

l=1

vr(l)
l

∞∑

k=1

g(k)
k

is a constant.
This completes the proof of the theorem.
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Abstract In 2008, Al-Thagafi and Shahzad [7] introduced the notion of occasionally weakly

compatible mappings (shortly, owc maps) which is more general than the concept of weakly

compatible maps. In the present paper, we prove some common fixed point theorems for owc

maps in fuzzy metric spaces without considering the completeness of the whole space or any

subspace, continuity of the involved maps and containment of ranges amongst involved maps.

Keywords Triangle norm (t-norm), fuzzy metric space, weakly compatible maps, occasional

-ly weakly compatible maps.

§1. Introduction

In 1965, Zadeh [40] introduced the concept of fuzzy sets. Since then, to use this concept
in topology and analysis, many authors have expansively developed the theory of fuzzy sets
and applications. For example, Kramosil and Michálek [32], Erceg [21], Deng [20], Kaleva and
Seikkala [30], Grabiec [24], Fang [22], George and Veeramani [23], Mishra et al.[33], Subrahmanyam
[38], Gregori and Sapena [25] and Singh and Jain [37] have introduced the concept of fuzzy
metric spaces in different ways. In applications of fuzzy set theory, the field of engineering
has undoubtedly been a leader. All engineering disciplines such as civil engineering, electrical
engineering, mechanical engineering, robotics, industrial engineering, computer engineering,
nuclear engineering etc. have already been affected to various degrees by the new methodological
possibilities opened by fuzzy sets.

In 1998, Jungck and Rhoades [27] introduced the notion of weakly compatible mappings in
metric spaces. Singh and Jain [37] formulated the notion of weakly compatible maps in fuzzy
metric spaces. This condition has further been weakened by introducing the notion of owc maps
by Al-Thagafi and Shahzad [7]. While Khan and Sumitra [31] extended the notion of owc maps
in fuzzy metric spaces and proved some common fixed point theorems. It is worth to mention
that every pair of weak compatible self-maps is owc but the reverse is not always true. Many
authors proved common fixed point theorems for owc maps on various spaces (see [1-15, 17-19,
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28, 29, 31, 34, 35, 39]).
In this paper, we prove some common fixed point theorems for owc maps in fuzzy met-

ric spaces. Our results do not require the completeness of the whole space or any subspace,
continuity of the involved maps and containment of ranges amongst involved maps.

§2. Preliminaries

Definition 2.1.[36] A triangular norm ∗ (shortly t-norm) is a binary operation on the unit
interval [0, 1] such that for all a, b, c, d ∈ [0, 1] and the following conditions are satisfied:

1. a ∗ 1 = a,

2. a ∗ b = b ∗ a,

3. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d,

4. (a ∗ b) ∗ c = a ∗ (b ∗ c).

Two typical examples of continuous t-norms are a ∗ b = min{a, b} and a ∗ b = ab.
Definition 2.2.[32] A 3-tuple (X, M, ∗) is said to be a fuzzy metric space if X is an

arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying the
following conditions, for all x, y, z ∈ X, t, s > 0,

1. M(x, y, t) = 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s),

5. M(x, y, ·) : (0,∞) → (0, 1] is continuous.

Then M is called a fuzzy metric on X. Then M(x, y, t) denotes the degree of nearness between
x and y with respect to t.

Example 2.3.[23] Let (X, d) be a metric space. Denote a ∗ b = a.b (or a ∗ b = min{a, b})
for all a, b ∈ [0, 1] and let Md be fuzzy sets on X2 × (0,∞) defined as follows:

Md(x, y, t) = t
(t+d(x,y)) .

Then (X, Md, ∗) is a fuzzy metric space. We call this fuzzy metric induced by a metric d.
Lemma 2.4.[16,24] For all x, y ∈ X, (X, M, ·) is non-decreasing function.
Definition 2.5.[37] Let (X, M, ∗) be a fuzzy metric space, A and B be self maps of non-

empty X. A point x ∈ X is called a coincidence point of A and B if and only if Ax = Bx. In
this case w = Ax = Bx is called a point of coincidence of A and B.

Definition 2.6.[37] Two self mappings A and B of a fuzzy metric space (X, M, ∗) are said
to be weakly compatible if they commute at their coincidence points, that is, if Ax = Bx for
some x ∈ X then ABx = BAx.
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Lemma 2.7. If a fuzzy metric space (X, M, ∗) satisfies M(x, y, t) = C, for all t > 0 with
fixed x, y ∈ X. Then we have C = 1 and x = y.

Lemma 2.8.[26] Let the function φ(t) satisfy the following condition (Φ) : φ(t) : [0,∞) →
[0,∞) is non-decreasing and

∑∞
n=1 φn(t) < ∞ for all t > 0, when φn(t) denotes the nth iterative

function of φ(t). Then φ(t) < t for all t > 0.
The following concept due to Al-Thagafi and Shahzad [7−8] is a proper generalization of

nontrivial weakly compatible maps which do have a coincidence point. The counterpart of the
concept of owc maps in fuzzy metric spaces is as follows:

Definition 2.9. Two self maps A and B of a fuzzy metric space (X, M, ∗) are owc if and
only if there is a point x ∈ X which is a coincidence point of A and B at which A and B

commute.
From the following example it is clear that the notion of owc maps is more general than

the concept of weakly compatible maps.
Example 2.10. Let (X, M, ∗) be a fuzzy metric space, where X = [0,∞) and

M(x, y, t) = t
(t+|x−y|)

for all t > 0 and x, y ∈ X. Define A,B : X → X by A(x) = 3x and B(x) = x2 for all x ∈ X.
Then A(x) = B(x) for x = 0, 3 but AB(0) = BA(0) and AB(3) 6= BA(3). Thus A and B are
owc maps but not weakly compatible.

The following lemma is on the lines of Jungck and Rhoades [28].
Lemma 2.11. Let (X, M, ∗) be a fuzzy metric space, A and B are owc self maps of X.

If A and B have a unique point of coincidence, w = Ax = Bx, then w is the unique common
fixed point of A and B.

Proof. Since A and B are owc, there exists a point x in X such that Ax = Bx = w and
ABx = BAx. Thus, AAx = ABx = BAx, which says that Ax is also a point of coincidence of
A and B. Since the point of coincidence w = Ax is unique by hypothesis, BAx = AAx = Ax,
and w = Ax is a common fixed point of A and B.

Moreover, if z is any common fixed point of A and B, then z = Az = Bz = w by the
uniqueness of the point of coincidence.

§3. Results

First, we prove a common fixed point theorem for four single-valued self maps in fuzzy
metric space.

Theorem 3.1. Let A,B, S and T be self maps on fuzzy metric space (X, M, ∗), where ∗
is a continuous t-norm with a ∗ a ≥ a for all a ∈ [0, 1]. Further, let the pairs (A,S) and (B, T )
are each owc satisfying:

M(Ax,By, φ(t)) ≥




M(Sx, Ty, t) ∗M(Ax, Sx, t) ∗M(By, Ty, t)

∗M(Ax, Ty, t) ∗M(By, Sx, 2t)



 (1)

for all x, y ∈ X and t > 0. Here, the function φ(t) : [0,∞) → [0,∞) is onto, strictly increasing
and satisfies condition (Φ). Then there exists a unique point w ∈ X such that Aw = Sw = w
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and a unique point z ∈ X such that Bz = Tz = z. Moreover, z = w, so that there is a unique
common fixed point A,B, S and T .

Proof. Since the pairs (A,S) and (B, T ) are each owc, there exist points u, v ∈ X such
that Au = Su, ASu = SAu and Bv = Tv, BTv = TBv. Now we show that Au = Bv. Putting
x = u and y = v in inequality (1), then we get

M(Au,Bv, φ(t)) ≥




M(Su, Tv, t) ∗M(Au, Su, t) ∗M(Bv, Tv, t)

∗M(Au, Tv, αt) ∗M(By, Su, 2t)





=





M(Au,Bv, t) ∗M(Au,Au, t) ∗M(Bv,Bv, t)

∗M(Au,Bv, t) ∗M(Bv,Au, 2t)





= {M(Au,Bv, t) ∗ 1 ∗ 1 ∗M(Au,Bv, t) ∗M(Bv,Au, 2t)},

then we have

M(Au,Bv, φ(t)) ≥ M(Au,Bv, t).

On the other hand, since M is non-decreasing, we get M(Au,Bv, φ(t)) ≤ M(Au,Bv, t).
Hence, M(Au,Bv, t) = C for all t > 0. From Lemma 2.7, we conclude that C = 1, that
is Au = Bv. Therefore, Au = Su = Bv = Tv. Moreover, if there is another point z such
that Az = Sz. Then using inequality (1) it follows that Az = Sz = Bv = Tv, or Au = Az.
Hence w = Au = Su is the unique point of coincidence of A and S. By Lemma 2.11, w is the
unique common fixed point of A and S. Similarly, there is a unique point z ∈ X such that
z = Bz = Tz. Suppose that w 6= z and taking x = w, y = z in inequality (1), then we get

M(Aw, Bz, φ(t)) ≥




M(Sw, Tz, t) ∗M(Aw, Sw, t) ∗M(Bz, Tz, t)

∗M(Aw, Tz, t) ∗M(Bz, Sw, 2t)





M(w, z, φ(t)) ≥




M(w, z, t) ∗M(w, w, t) ∗M(z, z, t)

∗M(w, z, t) ∗M(z, w, 2t)





= {M(w, z, t) ∗ 1 ∗ 1 ∗M(w, z, t) ∗M(z, w, 2t)},

thus it follows that

M(w, z, φ(t)) ≥ M(w, z, t).

Since M is non-decreasing, we get M(w, z, φ(t)) ≤ M(w, z, t). Hence, M(w, z, t) = C for
all t > 0. From Lemma 2.7, we conclude that C = 1, that is w = z. Hence w is the unique
common fixed point of the self maps A,B, S and T in X.

Now, we give an example which illustrates Theorem 3.1.
Example 3.2. Let X = [0, 4] with the metric d defined by d(x, y) = |x− y| and for each

t ∈ [0, 1] define
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M(x, y, t) =





t
t+|x−y| , if t > 0;

0, if t = 0.

for all x, y ∈ X. Clearly (X, M, ∗) be a fuzzy metric space, where ∗ is a continuous t-norm with
∗ = min. Define φ(t) = kt, where k ∈ (0, 1) and the self maps A,B, S and T by

A(x) =





x, if 0 ≤ x ≤ 2;

3, if 2 < x ≤ 4.
S(x) =





2, if 0 ≤ x ≤ 2;

0, if 2 < x ≤ 4.

B(x) =





2, if 0 ≤ x ≤ 2;

4, if 2 < x ≤ 4.
T (x) =





2, if 0 ≤ x ≤ 2;
x
4 , if 2 < x ≤ 4.

Then A,B, S and T satisfy all the conditions of Theorem 3.1. Notice that AS(2) = A(2) = 2 =
S(2) = SA(2) and BT (2) = B(2) = 2 = T (2) = TB(2), that is A and S as well as B and T are
owc. Hence, 2 is the unique common fixed point of A,B, S and T . This example never requires
any condition on containment of ranges amongst involved maps. On the other hand, it is clear
to see that the self maps A,B, S and T are discontinuous at 2.

On taking A = B and S = T in Theorem 3.1, then we get the following result:
Corollary 3.3. Let A and S be self maps on fuzzy metric space (X, M, ∗) where ∗ is a

continuous t-norm and a ∗ a ≥ a for all a ∈ [0, 1]. Further, let the pair (A,S) is owc satisfying:

M(Ax,Ay, φ(t)) ≥




M(Sx, Sy, t) ∗M(Ax, Sx, t) ∗M(Ay, Sy, t)

∗M(Ax, Sy, t) ∗M(Ay, Sx, 2t)



 (2)

for all x, y ∈ X and t > 0. Here, the function φ(t) : [0,∞) → [0,∞) is onto, strictly increasing
and satisfies condition (Φ). Then A and S have a unique common fixed point in X.

Now, we extend Theorem 3.1 and Corollary 3.3 to any even number of self-maps in fuzzy
metric space.

Theorem 3.4. Let P1, P2, . . . , P2n, A and B be self maps on fuzzy metric space (X, M, ∗),
where ∗ is a continuous t-norm with a ∗ a ≥ a for all a ∈ [0, 1]. Further, let the pairs
(A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are each owc satisfying:

M(Ax,By, φ(t)) ≥





M(P1P3 . . . P2n−1x, P2P4 . . . P2ny, t)

∗M(Ax,P1P3 . . . P2n−1x, t) ∗M(By, P2P4 . . . P2ny, t)

∗M(Ax,P2P4 . . . P2ny, t) ∗M(By, P1P3 . . . P2n−1x, 2t)





(3)

for all x, y ∈ X and t > 0. Here, the function φ(t) : [0,∞) → [0,∞) is onto, strictly increasing
and satisfies condition (Φ). Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,
...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,
A(P3 . . . P2n−1) = (P3 . . . P2n−1)A,



Vol. 7 Fixed points of occasionally weakly compatible mappings in fuzzy metric spaces 27

A(P5 . . . P2n−1) = (P5 . . . P2n−1)A,
...

AP2n−1 = P2n−1A,

similarly,

P2(P4 . . . P2n) = (P4 . . . P2n)P2,

P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,
...

P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,

B(P4 . . . P2n) = (P4 . . . P2n)B,

B(P6 . . . P2n) = (P6 . . . P2n)B,
...

BP2n = P2nB.

Then P1, P2, . . . , P2n, A and B have a unique common fixed point in X.

Proof. Since the pairs (A,P1P3 . . . P2n−1) and (B,P2P4 . . . P2n) are each owc then there
exist points u, v ∈ X such that Au = P1P3 . . . P2n−1u, A(P1P3 . . . P2n−1)u = (P1P3 . . . P2n−1)Au

and Bv = P2P4 . . . P2nv, B(P2P4 . . . P2n)v = (P2P4 . . . P2n)Bv. Now we show that Au = Bv.
Taking x = u and y = v in inequality (3), then we get

M(Au,Bv, φ(t)) ≥





M(P1P3 . . . P2n−1u, P2P4 . . . P2nv, t)

∗M(Au,P1P3 . . . P2n−1u, t) ∗M(Bv, P2P4 . . . P2nv, t)

∗M(Au,P2P4 . . . P2nv, t) ∗M(Bv, P1P3 . . . P2n−1u, 2t)





=





M(Au,Bv, t) ∗M(Au,Au, t) ∗M(Bv,Bv, t)

∗M(Au,Bv, t) ∗M(Bv,Au, 2t)





= {M(Au,Bv, t) ∗ 1 ∗ 1 ∗M(Au,Bv, t) ∗M(Bv,Au, 2t)},

then we have

M(Au,Bv, φ(t)) ≥ M(Au,Bv, t).

On the other hand, since M is non-decreasing, we get M(Au,Bv, φ(t)) ≤ M(Au,Bv, t).
Hence, M(Au,Bv, t) = C for all t > 0. From Lemma 2.7, we conclude that C = 1, that is
Au = Bv. Moreover, if there is another point z such that Az = P1P3 . . . P2n−1z. Then using
inequality (3) it follows that Az = P1P3 . . . P2n−1z = Bv = P2P4 . . . P2nv, or Au = Az. Hence,
w = Au = P1P3 . . . P2n−1u is the unique point of coincidence of A and P1P3 . . . P2n−1. From
Lemma 2.11, it follows that w is the unique common fixed point of A and P1P3 . . . P2n−1. By
symmetry, q = Bv = P2P4 . . . P2nv is the unique common fixed point of B and P2P4 . . . P2n.
Since w = q, we obtain that w is the unique common fixed point of B and P2P4 . . . P2n. Now,
we show that w is the fixed point of all the component mappings. Putting x = P3 . . . P2n−1w,
y = w, P

′
1 = P1P3 . . . P2n−1 and P

′
2 = P2P4 . . . P2n in inequality (3), we have
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M(AP3 . . . P2n−1w, Bw, φ(t)) ≥





M(P
′
1P3 . . . P2n−1w, P

′
2w, t)

∗M(AP3 . . . P2n−1w, P
′
1P3 . . . P2n−1w, t)

∗M(Bw,P
′
2w, t) ∗M(AP3 . . . P2n−1w, P

′
2w, t)

∗M(Bw,P
′
1P3 . . . P2n−1w, 2t)





M(P3 . . . P2n−1w, w, φ(t)) ≥





M(P3 . . . P2n−1w, w, t)

∗M(P3 . . . P2n−1w, P3 . . . P2n−1w, t) ∗M(w, w, t)

∗M(P3 . . . P2n−1w, w, t) ∗M(w, P3 . . . P2n−1w, 2t)





=





M(P3 . . . P2n−1w, w, t) ∗ 1 ∗ 1

∗M(P3 . . . P2n−1w, w, t) ∗M(w, P3 . . . P2n−1w, 2t)



 ,

thus, it follows that

M(P3 . . . P2n−1w, w, φ(t)) ≥ M(P3 . . . P2n−1w, w, t).

Since M is non-decreasing, we get M(P3 . . . P2n−1w, w, φ(t)) ≤ M(P3 . . . P2n−1w, w, t).
Hence, M(P3 . . . P2n−1w, w, t) = C for all t > 0. From Lemma 2.7 we conclude that C = 1,
that is P3 . . . P2n−1w = w. Hence, P1w = w. Continuing this procedure, we have

Aw = P1w = P3w = . . . = P2n−1w = w.

So, Bw = P2w = P4w = . . . = P2nw = w. So, w is the unique common fixed point of
P1, P2, . . . , P2n, A and B.

The following result is a slight generalization of Theorem 3.4.
Corollary 3.5. Let {Tζ}ζ∈J and {Pi}2n

i=1 be two families of self maps on fuzzy metric
space (X, M, ∗) where ∗ is a continuous t-norm with a ∗ a ≥ a for all a ∈ [0, 1]. Further, let the
pairs (Tζ , P1P3 . . . P2n−1) and (Tξ, P2P4 . . . P2n) are each owc satisfying: for a fixed ξ ∈ J ,

M(Tζx, Tξy, φ(t)) ≥





M(P1P3 . . . P2n−1x, P2P4 . . . P2ny, t)

∗M(Tζx, P1P3 . . . P2n−1x, t) ∗M(Tξy, P2P4 . . . P2ny, t)

∗M(Tζx, P2P4 . . . P2ny, t) ∗M(Tξy, P1P3 . . . P2n−1x, 2t)





(4)

for all x, y ∈ X and t > 0. Here, the function φ(t) : [0,∞) → [0,∞) is onto, strictly increasing
and satisfies condition (Φ). Suppose that

P1(P3 . . . P2n−1) = (P3 . . . P2n−1)P1,
P1P3(P5 . . . P2n−1) = (P5 . . . P2n−1)P1P3,
...
P1 . . . P2n−3(P2n−1) = (P2n−1)P1 . . . P2n−3,
Tζ(P3 . . . P2n−1) = (P3 . . . P2n−1)Tζ ,
Tζ(P5 . . . P2n−1) = (P5 . . . P2n−1)Tζ ,
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...
TζP2n−1 = P2n−1Tζ ,
similarly,
P2(P4 . . . P2n) = (P4 . . . P2n)P2,
P2P4(P6 . . . P2n) = (P6 . . . P2n)P2P4,
...
P2 . . . P2n−2(P2n) = (P2n)P2 . . . P2n−2,
Tξ(P4 . . . P2n) = (P4 . . . P2n)Tξ,
Tξ(P6 . . . P2n) = (P6 . . . P2n)Tξ,
...
TξP2n = P2nTξ.
Then all {Pi} and {Tζ} have a unique common fixed point in X.
Remark 3.6. The conclusions of our results remain true if we take φ(t) = kt, where

k ∈ (0, 1).
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Abstract In this paper, a super class of k-paranormal operators properly containing it is

studied. Composition operators and weighted composition operators of this class are also

characterized.
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§1. Introduction

Let B(H) be the Banach Algebra of all bounded linear operators on a non-zero complex
Hilbert space H. By an operator, we mean an element from B(H). If T lies in B(H), then T ∗

denotes the adjoint of T in B(H). For 0 < p ≤ 1, an operator T is said to be p-hyponormal
if (T ∗T )p ≥ (TT ∗)p. If p = 1, T is called hyponormal. If p = 1

2 , T is called semi-hyponormal.
An operator T is called paranormal, if ‖Tx‖2 ≤

∥∥T 2x
∥∥ ‖x‖ , for every x ∈ H. An operator T is

normaloid if r(T ) = ‖T‖, where r(T ) is the spectral radius of T or ‖T‖n = ‖Tn‖ for all positive
integers n.

In general, hyponormal ⇒ p-hyponormal ⇒paranormal ⇒ k-paranormal.
Ando [4] has characterized paranormal operators as follows:
Theorem 1.1. An operator T ∈ B(H) is paranormal if and only if T ∗2T 2−2kT ∗T+k2 ≥ 0,

for every k ∈ R.

Generalising this, Yuan and Gao [13] has characterised k-paranormal operators as follows:
Theorem 1.2. For each positive integer k, an operator T ∈ B(H) is k-paranormal if and

only if T ∗1+kT 1+k − (1 + k)µkT ∗T + kµ1+kI ≥ 0, for every µ > 0.

In [10], Uchiyama gives a matrix representation for a paranormal operator with respect to
the direct sum of an eigenspace and its orthogonal complement.

In this paper we characterize the new class of operators which properly contains k-paranorm
-al operators, discuss its matrix representation and prove some more properties. We also char-
acterize the composition operators and weighted composition operators of this class.

1This work is supported by the UGC, New Delhi (Grant F. No: 34-148/2008(SR)).
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§2. Preliminaries

Let (X, Σ, λ ) be a sigma-finite measure space. The relation of being almost everywhere,
denoted by a.e, is an equivalence relation in L2(X, Σ, λ) and this equivalence relation splits
L2(X, Σ, λ) into equivalence classes. Let T be a measurable transformation from X into itself.
L2(X, Σ, λ) is denoted as L2(λ). The equation CT f = f ◦ T, f ∈ L2(λ) defines a composition
transformation on L2(λ). T induces a composition operator CT on L2(λ) if (i) the measure
λ◦T−1 is absolutely continuous with respect to λ and (ii) the Radon-Nikodym derivative d(λT−1)

dλ

is essentially bounded (Nordgren). Harrington and Whitley have shown that if CT ∈ B(L2(λ)),
then C∗T CT f = f0f and CT C∗T f = (f0 ◦T )Pf for all f ∈ L2(λ) where P denotes the projection
of L2(λ) onto ran(CT ). Thus it follows that CT has dense range if and only if CT C∗T is the
operator of multiplication by f0 ◦ T, where f0 denotes d(λT−1)

dλ . Every essentially bounded
complex valued measurable function f0 induces a bounded operator Mf0 on L2(λ), which is
defined by Mf0 f = f0f, for every f ∈ L2(λ). Further C∗T CT = Mf0 and C∗T

2CT
2 = Mh0 . Let us

denote d(λT−1)
dλ by h i.e f0 by h and d(λT−k)

dλ by hk, where k is a positive integer greater than or
equal to one. Then C∗T CT = Mh and C∗T

2CT
2 = Mh2 . In general, C∗T

kCT
k = Mhk

, where Mhk

is the multiplication operator on L2(λ) induced by the complex valued measurable function hk.

Hyponormal composition operators are studied by Alan Lambert [1]. Paranormal composition
operators are studied by T. Veluchamy and S. Panayappan [11].

§3. Definition and properties

Defnition 3.1. An operator T satisfying the condition
∥∥T 2+kx

∥∥ 1
1+k ‖Tx‖ k

1+k ≥ ∥∥T 2x
∥∥ ,

for some integer k ≥ 1 and for every x ∈ H is called extended k-paranormal operator or, in
short ek-paranormal operators.

If we replace x by Tx in the definition of k-paranormal operators, we get ek-paranormal
operators. But the converse is not true. This is clear from the following example.

Example 3.2. Let H = C2 and T =


 0 0

1 0


 . Then T is not k-paranormal for any

positive integer k. But T is ek-paranormal.

We characterize ek-paranormal operators as below.

Theorem 3.3. For each positive integer k, an operator T is ek-paranormal if and only if

T ∗2+kT 2+k − (1 + k)µkT ∗2T 2 + kµ1+kT ∗T ≥ 0 for every µ > 0.

Example 3.4. Let H be the direct sum of a denumerable number of copies of two dimen-
sional Hilbert space R × R. Let A and B be two positive operators on R × R. For any fixed
positive integer n, define an operator T = TA,B,n on as follows:

T ((x1, x2, . . .) = (0, A(x1), A(x2), . . . , A(xn), B(xn+1), . . .).

Its adjoint is T ∗ ((x1, x2, . . .)) = (A(x2), A(x3), . . . , A(xn+1), B(xn+2), . . .).
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Let n ≥ k. Then by Theorem 3.3, T is ek-paranormal if the following conditions are satisfied
by A and B.

A4+2k − (1 + k)µkA4 + kµ1+kA2 ≥ 0

B4+2k − (1 + k)µkB4 + kµ1+kB2 ≥ 0

A2+k−mB2mA2+k−m − (1 + k)µkA4 + kµ1+kA2 ≥ 0 for m = 1, 2, . . . , k,

and AB2+2kA− (1 + k)µkAB2A + kµ1+kA2 ≥ 0.

For A =


 1 0

0 0


 and B =


 1 1

1 1


 , TA,B,n satisfies the above conditions for every

integer k ≥ 1. Hence T is ek-paranormal, for every k ≥ 1.

Theorem 3.5. If T is ek-paranormal for k = 1, then T is ek-paranormal for every positive
integer k.

Proof. Let T be ek-paranormal for k = 1. Then

∥∥T 4x
∥∥ ‖Tx‖2 ≥

∥∥T 3x
∥∥2

‖T 2x‖ ‖Tx‖2 ≥ ∥∥T 2x
∥∥3

.

Hence T is ek-paranormal for k = 2. Similarly we can show that if T is ek-paranormal for
both k = 1 and k = 2, then T is ek-paranormal for k = 3, and so on for every positive integer
k.

Theorem 3.6. If T is ek-paranormal and if α is a scalar , then αT is also ek-paranormal.
Proof. If α = 0, the result is trivial. So assume that α 6= 0.. Then for any µ > 0,

(αT )∗2+k(αT )2+k − (1 + k)µk(αT )∗2(αT )2 + kµ1+k(αT )∗(αT )

=
(
|α|2

)2+k


T ∗2+kT 2+k − (1 + k)

(
µ

|α|2
)k

T ∗2T 2 + k

(
µ

|α|2
)1+k

T ∗T


 ≥ 0.

Hence αT is ek-paranormal.
The following example shows that the ek-paranormal operators are not translation invari-

ant.

Example 3.7. Recall that if H = C2, then T =


 0 0

1 0


 is ek-paranormal for every

positive integer k. But T + 1 =


 1 0

1 1


 is not ek-paranormal for any positive integer k.

Theorem 3.8. Let T be ek-paranormal, 0 6= λ ∈ σp(T ) and T is of the form T =
 λ T2

0 T3


 on ker(T − λ)⊕ ker(T − λ)⊥, then

T2T3

(
1 +

T3

λ
+

(
T3

λ

)2

+ · · ·+
(

T3

λ

)k
)

= (1 + k)T2T3.

Proof. Without loss of generality, assume that λ = 1. Since T is ek-paranormal, taking
µ = 1, we have
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0 ≤ T ∗2+kT 2+k − (1 + k)T ∗2T 2 + kT ∗T =


0 T2T3 + · · ·+ T2T
1+k
3 − (1 + k)T2T3

T ∗3 T ∗2 + · · ·+ T ∗3
1+kT ∗2

−(1 + k)T ∗3 T ∗2

(T ∗3 T ∗2 + · · ·+ T ∗3
1+kT ∗2 )(T2T3 + · · ·+ T2T

1+k
3 ) + T ∗3

2+kT 2+k
3

−(1 + k)
(
(T ∗2 + T ∗3 T ∗2 )(T2 + T2T3) + T ∗3

2T 2
3

)
+ k(T ∗2 T2 + T ∗3 T3)




A matrix of the form


 X Y

Y ∗ Z


 ≥ 0 ⇔ X ≥ 0, Z ≥ 0 and Y = X1/2WZ1/2, for

some contraction W . Hence we get the required result.
Theorem 3.9. Let T be ek-paranormal, 0 6= λ ∈ σp(T ) and T is of the form T =

 λ T2

0 T3


 on ker(T − λ)⊕ ker(T − λ)⊥, then T3 is also ek-paranormal.

Proof. Using Theorem 3.3,

0 ≤ T ∗2+kT 2+k − (1 + k)µkT ∗2T 2 + kµ1+kT ∗T =


 X(µ) Y (µ)

Y (µ)∗ Z(µ)


 ,

where X(µ) = 1−(1+k)µk +kµk+1, Y (µ) = (1−(1+k)µk +kµk+1)T2+(1+k)T2T3(1−µk) and
Z(µ) = (1−(1+k)µk +kµk+1)T ∗2 T2 +(1+k)(T ∗2 T2T3 +T ∗3 T ∗2 T2)(1−µk)+(1+k)T ∗3 T ∗2 T2T3(1+
k − µk) + T ∗3

2+kT3
2+k − (1 + k)µkT ∗3

2T3
2 + kµ1+kT ∗3 T3.

Using the result


 X Y

Y ∗ Z


 ≥ 0 ⇔ X ≥ 0, Z ≥ 0 andY = X1/2WZ1/2, for some contrac-

tion W, we get (i) X(µ) ≥ 0, (ii) Z(µ) ≥ 0 and (iii) there exists a contraction W (µ) such that
Y (µ) = X(µ)1/2W (µ)Z(µ)1/2. Therefore,

T ∗3
2+kT3

2+k − (1 + k)µkT ∗3
2T3

2 + kµk+1T ∗3 T3 ≥ (1 + k)f(µ)
X(µ)

T ∗3 T ∗2 T2T3,

where f(µ) = (1 + k)(1−µk)X(µ) ≥ 0 for all µ ≥ 0, since f(µ) has a minimum value at µ = 1.

Hence T3 is ek-paranormal.
Theorem 3.10. If T is a ek-paranormal operator and

∥∥T j
∥∥ = ‖T‖j for some j ≥ 2, then

T is a normaloid.
Proof. For any j ≥ 2,

∥∥T jx
∥∥k+1 ≤ ∥∥T k+jx

∥∥∥∥T j−1x
∥∥k

≤ ∥∥T k+j
∥∥ ∥∥T j−1

∥∥k ‖x‖k+1

⇒
∥∥T j

∥∥k+1 ≤
∥∥T k+j

∥∥ ∥∥T j−1
∥∥k

Hence ‖T‖j(k+1) =
∥∥T j

∥∥k+1 ≤
∥∥T k+j

∥∥∥∥T j−1
∥∥k ≤

∥∥T k+j
∥∥ ‖T‖(j−1)k

Hence ‖T‖k+j ≤
∥∥T k+j

∥∥
and hence ‖T‖k+j =

∥∥T k+j
∥∥ .

Hence by induction, for all positive integers l, ‖T‖lk+2 =
∥∥T lk+2

∥∥. Therefore, there exists a
subsequence {Tnl} of {Tn} such that lim ‖Tnl‖1/nl ⇒ ‖T‖ . Hence r(T ) = ‖T‖. Hence T is
normaloid.
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Theorem 3.11. If T is ek-paranormal, for some positive integer k, then asc( T ) is finite.
Proof. By the definition of the operator, kerT k+2 is a subset of kerT 2, which in turn is

a subset of kerT k+1. Hence kerT k+1 = kerT k+2 and hence the result.
Theorem 3.12. If T is ek-paranormal for some positive integer k and commutes with an

isometric operator S, then ST is ek-paranormal.
Proof. Since S is an isometry, S∗S = I. Therefore,

(ST )∗2+k(ST )2+k − (1 + k)µk(ST )∗2(ST ) + kµ1+k(ST )∗(ST )

= T ∗2+kT 2+k − (1 + k)µkT ∗2T 2 + kµ1+kT ∗T ≥ 0.

Hence is ek-paranormal.
Theorem 3.13. An operator unitarily equivalent to a ek-paranormal for some positive

integer k, is also a ek-paranormal operator.
Proof. Let S be unitarily equivalent to a ek-paranormal operator T, for some positive

integer k. Then S = UTU∗ for some unitary operator U. Hence

∥∥S2+kx
∥∥ ‖Sx‖k =

∥∥UT 2+kU∗x
∥∥ ‖UTU∗x‖

≥ ∥∥U∗T 2U
∥∥1+k

=
∥∥S2x

∥∥1+k

Hence S is also ek-paranormal. Hence the result.

§4. Composition operators of ek-paranormal operators

Theorem 4.1. For each positive integer k, CT is ek-paranormal if and only if

h2+k − (1 + k)µkh2 + kµ1+kh ≥ 0 a.e., for every µ > 0.

Proof. CT is ek-paranormal for a positive integer k if and only if

C∗T
2+kCT

2+k − (1 + k)µkC∗T
2CT

2 + kµ1+kC∗T CT ≥ 0, for every µ > 0,

if and only if for every f ∈ L2(λ),
〈
C∗T

2+kCT
2+kf, f

〉
− (1 + k)µk

〈
C∗T

2C2
T f, f

〉
+ kµ1+k 〈C∗T CT f, f〉 ≥ 0,

if and only if 〈h2+kf, f〉 − (1 + k)µk 〈h2f, f〉+ kµk 〈hf, f〉 ≥ 0,

if and only if for every characteristic function χE of E in Σ,

∫

X

(h2+k − (1 + k)µkh2 + kµ1+kh)χEχE dλ ≥ 0,

if and only if h2+k − (1 + k)µkh2 + kµ1+kh ≥ 0 a.e. for every µ > 0.

Corollary 4.2. CT is ek-paranormal for a positive integer k if and only if hk+1
2 ≤ h2+khk

a.e.
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§5. Weighted composition operators and Aluthge transfor-

mation of k-paranormal operators

A weighted composition operator induced by T is defined as Wf = w(f ◦ T ), is a complex
valued Σ measurable function. Let wk denote w(w ◦ T )(w ◦ T 2) · · · (w ◦ T k−1). Then W kf =
wk(f ◦ T )k [9]. To examine the weighted composition operators effectively Alan Lambert [1]

associated conditional expectation operator E with T as E(·/T−1Σ) = E(·). E(f) is defined
for each non-negative measurable function f ∈ Lp(p ≥ 1) and is uniquely determined by the
conditions

1. E(f) is T−1Σ measurable.

2. if B is any T−1Σ measurable set for which
∫

B
fdλ converges, we have

∫
B

fdλ =
∫

B
E(f)dλ.

As an operator on Lp, E is the projection onto the closure of range of T and E is the identity
operator on Lp if and only if T−1Σ = Σ. Detailed discussion of E is found in [6], [12] and [7].

The following proposition due to Campbell and Jamison is well-known.
Proposition 5.1.[2] For w ≥ 0,

1. W ∗Wf = h[E(w2)] ◦ T−1f.

2. WW ∗f = w(h ◦ T )E(wf).

Since W kf = wk(f◦T k) and W ∗kf = hkE(wkf)◦T−k, we have W ∗kW k = hkE(w2
k)◦T−kf,

for f ∈ L2(λ). Now we are ready to characterize k-paranormal weighted composition operators.
Theorem 5.2. Let W ∈ B(L2(λ)). Then W is ek-paranormal if and only if hk+2E(w2

k+2)◦
T−(k+2) − (1 + k)µkh2E(w2

2) ◦ T−2 + kµ1+khE(w2) ◦ T−1 ≥ 0 a.e, for every µ > 0.

Proof. Since W is ek-paranormal,

W ∗2+kW 2+k − (1 + k)µkW ∗2W 2 + kµ1+kW ∗W ≥ 0, for every µ > 0.

Hence
∫

E

hk+2E(w2
k+2) ◦ T−(k+2) − (1 + k)µkh2E(w2

2) ◦ T−2 + kµ1+khE(w2) ◦ T−1 dλ ≥ 0

for every E ∈ Σ and so

hk+2E(w2
k+2)◦T−(k+2)−(1+k)µkh2E(w2

2)◦T−2+kµ1+khE(w2)◦T−1 ≥ 0 a.e. for every µ > 0.

Corollary 5.3. Let T−1Σ = Σ. Then W is ek-paranormal if and only if hk+2w
2
k+2 ◦

T−(k+2) − (1 + k)µkh2w
2
2 ◦ T−2 + kµ1+khw2 ◦ T−1 ≥ 0 a.e. for every µ > 0.

The Aluthge transformation of T is the operator T̃ given by T̃ = |T |1/2
U |T |1/2. It was

introduced by Aluthge [2]. More generally we may form the family of operators Tr : 0 < r ≤ 1
where Tr = |T |r U |T |1−r [3]. For a composition operator C, the polar decomposition is given
by C = U |C| where |C| f =

√
hf and Uf = 1√

h◦T f ◦ T . Lambert [5] has given a more

general Aluthge transformation for composition operators as Cr = |C|r U |C|1−r as Crf =(
h

h◦T
)r/2

f ◦ T. i.e Cr is weighted composition with weight π =
(

h
h◦T

)r/2
.
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Corollary 5.4. Let Cr ∈ B(L2(λ)). Then Cr is of ek-paranormal if and only if

hk+2E(π2
k+2) ◦ T−(k+2) − (1 + k)µkh2E(π2

2) ◦ T−2 + kµk+1E(π2) ◦ T−1 ≥ 0

a.e. for every µ > 0.
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§1. Introduction

In 1966, K. Iseki introduced the notion of a BCI-algebras which is a generalization of BCK-
algebras. He defined a BCI-algebra as an algebra (X, ∗, 0) of type (2,0) satisfying the following
conditions: (BCI 1) ((x∗y)∗ (x∗z))∗ (z ∗y) = 0, (BCI 2) (x∗ (x∗y))∗y = 0, (BCI 3) x∗x = 0,
(BCI 4) x ∗ y = 0 = y ∗ x imply x = y, (BCI 5) x ∗ 0 = 0 imply x = 0, for all x, y, z ∈ X. If
(BCI 5) is replaced by (BCI 6) 0 ∗ x = 0 for all x ∈ X, the algebra (X, ∗, 0) is called BCK-
algebra. In 1983, Hu and Li introduced the notion of a BCH-algebras which is a generalization
of the notions of BCK-algebra and BCI-algebras. They have studied a few properties of these
algebras and defined a BCH-algebra as an algebra (X, ∗, 0) of type (2,0) satisfying the following
conditions: (BCH 1) x ∗ x = 0, (BCH 2) (x ∗ y) ∗ z = (x ∗ z) ∗ y, (BCH 3) x ∗ y = 0 = y ∗ x

imply x = y, for all x, y, z ∈ X. In 1998, Dudek and Zhang studied ideals and congruences
of BCC-algebras. They gave the concept of homomorphisms and quotient of BCC-algebras.
They presented some related properties of them. In 2006 Dar and Akram studied properties of
endomorphism in BCH-algebra.

In this paper, we introduce a new algebraic structure, called SU-algebra and a concept
of ideal and homomorphisms in SU-algebra. We also describe connections between ideals and
congruences. We investigated some related properties of them. Moreover, this paper is to
derive some straightforward consequences of the relations between quotient SU-algebras and
isomorphisms and also investigate some of its properties.

§2. The structure of SU-algebra

Definition 2.1. A SU-algebra is an algebra (X, ∗, 0) of type (2,0) satisfying the following
conditions:
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(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (y ∗ z) = 0,
(2) x ∗ 0 = x,
(3) if x ∗ y = 0 imply x = y for all x, y, z ∈ X.
From now on, X denotes a SU-algebra (X, ∗, 0) and a binary operation will be denoted by

juxtaposition.
Example 2.2. Let X = {0, 1, 2, 3} be a set in which operation ∗ is defined by the following:

* 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Then X is a SU-algebra.
Theorem 2.3. Let X be a SU-algebra. Then the following results hold for all x, y, z ∈ X.

(1) xx = 0,
(2) xy = yx,
(3) 0x = x,
(4) ((xy)x)y = 0,
(5) ((xz)(yz))(xy) = 0,
(6) xy = 0 if and only if (xz)(yz) = 0,
(7) xy = x if and only if y = 0.
Theorem 2.4. Let X be a SU-algebra. A relation ≤ on X is defined by x ≤ y if xy = 0.

Then (X,≤) is a partially ordered set.
Theorem 2.5. Let X be a SU-algebra. Then the following results hold for all x, y, z ∈ X.

(1) x ≤ y if and only if y ≤ x,
(2) x ≤ 0 if and only if x = 0,
(3) if x ≤ y, then xz ≤ yz.
Theorem 2.6. Let X be a SU-algebra. Then the following results hold for all x, y, z ∈ X.

(1) (xy)z = (xz)y,
(2) x(yz) = z(yx),
(3) (xy)z = x(yz).
Theorem 2.7. Let X be a SU-algebra. If xz = yz, then x = y for all x, y, z ∈ X.

Theorem 2.8. Let X be a SU-algebra and a ∈ X. If ax = x for all x ∈ X, then a = x.

§3. Ideal and congruences in SU-algebra

Definition 3.1. Let X be a SU-algebra. A nonempty subset I of X is called an ideal of
X if it satisfies the following properties :

(1) 0 ∈ I,
(2) if (xy)z ∈ I and y ∈ I for all x, y, z ∈ X, then xz ∈ I.
Clearly, X and {0} are ideals of X.
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Example 3.2. Let X be a SU-algebra as defined in Example 2.2. If A = {0, 1}, then A is
an ideal of X. If B = {0, 1, 2}, then B is not an ideal of X because (1 ∗ 1) ∗ 2 = 0 ∗ 2 = 2 ∈ B

but 1 ∗ 2 = 3 /∈ B.
Theorem 3.3. Let X be a SU-algebra and I be an ideal of X. Then
(1) if xy ∈ I and y ∈ I, then x ∈ I for all x, y ∈ X,
(2) if xy ∈ I and x ∈ I, then y ∈ I for all x, y ∈ X.
Proof. Let X be a SU-algebra and I be an ideal of X.
(1) Let xy ∈ I and y ∈ I. Since (xy)0 = xy ∈ I and y ∈ I, x = x0 ∈ I (by Definition 3.1).
(2) It is immediately followed by (1) and Theorem 2.3 (2).
Theorem 3.4. Let X be a SU-algebra and Ai be ideal of X for i = 1, 2, . . . , n. Then

n⋂

i=1

Ai is an ideal of X.

Proof. Let X be a SU-algebra and Ai be ideal of X for i = 1, 2, . . . , n. Clearly, 0 ∈
n⋂

i=1

Ai.

Let x, y, z ∈ X be such that (xy)z ∈
n⋂

i=1

Ai and y ∈
n⋂

i=1

Ai. Then (xy)z ∈ Ai and y ∈ Ai for all

i = 1, 2, . . . , n. Since Ai is an ideal, xz ∈ Ai for all i = 1, 2, . . . , n. Thus xz ∈
n⋂

i=1

Ai . Hence

n⋂

i=1

Ai is a ideal of X.

Definition 3.5. Let X be a SU-algebra. A nonempty subset S of X is called a SU-
subalgebra of X if xy ∈ S for all x, y ∈ S.

Theorem 3.6. Let X be a SU-algebra and I be an ideal of X. Then I is a SU-subalgebra
of X.

Proof. Let X be a SU-algebra and I be an ideal of X. Let x, y ∈ I. By Theorem 2.3
(4), ((xy)x)y = 0 ∈ I. Since I is an ideal and x ∈ I, (xy)y ∈ I. Since I is an ideal and
y ∈ I, xy ∈ I.

Definition 3.7. Let X be a SU-algebra and I be an ideal of X. A relation ∼ on X is
defined by x ∼ y if and only if xy ∈ I.

Theorem 3.8. Let X be a SU-algebra and I be an ideal of X. Then ∼ is a congruence
on X.

Proof. A reflexive property and a symmetric property are obvious. Let x, y, z ∈ X.
Suppose that x ∼ y and y ∼ z. Then xy ∈ I and yz ∈ I. Since ((xz)(xy))(zy) = 0 ∈ I and I

is an ideal, (xz)(yz) = (xz)(zy) ∈ I. By Theorem 3.3 (1), xz ∈ I. Thus x ∼ z. Hence ∼ is an
equivalent relation.

Next, let x, y, u, v ∈ X be such that x ∼ u and y ∼ v. Then xu ∈ I and yv ∈ I.
Thus ux ∈ I and vy ∈ I. Since ((xy)(xv))(yv) = 0 ∈ I and Theorem 3.3 (1), (xy)(xv) ∈ I.
Hence xy ∼ xv. Since ((uv)(ux))(vx) = 0 ∈ I and Definition 3.1 (2), (uv)(vx) ∈ I. Since
vx = xv, (uv)(vx) = (uv)(xv). Hence (uv)(xv) ∈ I and so xv ∼ uv. Thus xy ∼ uv. Hence ∼
is a congruence on X.

Let X be a SU-algebra, I be an ideal of X and ∼ be a congruence relation on X. For
any x ∈ X, we define [x]I = {y ∈ X|x ∼ y} = {y ∈ X|xy ∈ I}. Then we say that [x]I is an
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equivalence class containing x.
Example 3.9. Let X be a SU-algebra as defined in Example 2.2. It is easy to show that

I = {0, 1} is an ideal of X, then [0]I = {0, 1}, [1]I = {0, 1}, [2]I = {2, 3}, [3]I = {2, 3}.
Remarks 3.10. Let X be a SU-algebra. Then
1. x ∈ [x]I for all x ∈ X,
2. [0]I = {x ∈ X|0 ∼ x} is an ideal of X.
Theorem 3.11. Let X be a SU-algebra, I be an ideal of X and ∼ be a congruence relation

on X. Then [x]I = [y]I if and only if x ∼ y for all x, y ∈ X.
Proof. Let [x]I = [y]I . Since y ∈ [y]I , y ∈ [x]I . Hence x ∼ y. Conversely, let x ∼ y.

Then y ∼ x. Let z ∈ [x]I . Then x ∼ z. Since y ∼ x and x ∼ z, y ∼ z, z ∈ [y]I . Similarly, let
w ∈ [y]I . Then w ∈ [x]I . Therefore [x]I = [y]I .

The family {[x]I |x ∈ X} gives a partition of X which is denoted by quotient SU-algebra
X/I. For x, y ∈ X we define [x]I [y]I = [xy]I . The following theorem show that X/I is a
SU-algebra.

Theorem 3.12. Let X be a SU-algebra and I be an ideal of X. Then X/I is a SU-algebra.
Proof. Let [x]I , [y]I , [z]I ∈ X/I.
1) (([x]I [y]I)([x]I [z]I))([y]I [z]I) = ([xy]I [xz]I)[yz]I = [((xy)(xz))(yz)]I = [0]I .
2) [x]I [0]I = [x0]I = [x]I .
3) Suppose that [x]I [y]I = [0]I . Then [xy]I = [0]I = [yx]I . Since xy ∈ [xy]I , 0 ∼ xy. Hence

xy ∈ [0]I . Since [0]I is an ideal, x ∼ y. Hence [x]I = [y]I . Thus X/I is a SU-algebra.

§4. Isomorphism of a SU-Algebra

In this section, we defined homomorphism and isomorphism of SU-algebras, then we show
some consequences of the relations between quotient SU-algebras and isomorphisms.

Definition 4.1. Let (X, ∗X , 0X) and (Y, ∗Y , 0Y ) be a SU-algebra and let f : X → Y . We
called f is a homomorphism if and only if f(xy) = f(x)f(y) for all x, y ∈ X.

The kernel of f defined to be the set ker(f) = {x ∈ X|f(x) = 0Y }.
The image of f defined to be the set im(f) = {f(x) ∈ Y |x ∈ X}.
Definition 4.2. Let X and Y be a SU-algebra and let f : X → Y be a homomorphism,

then:
(1) f called a monomorphism if f is injective,
(2) f called an epimorphism if f is surjective,
(3) f called an isomorphism if f is bijective.
Definition 4.3. Let X and Y be a SU-algebra, then we say that X isomorphic Y (X ∼= Y )

if we have f : X → Y which f is an isomorphism.
Theorem 4.4. Let X be a SU-algebra, I be an ideal of X and ∼ be a congruence on X.

Then f : X → X/I defined by f(x) = [x]I for all x ∈ X is an epimorphism.
Proof. Let f : X → X/I and defined f by f(x) = [x]I for all x ∈ X. Let x, y ∈ X

and x = y, then [x]I = [y]I . Thus f(x) = f(y). Hence f is a function. Let [x]I ∈ X/I, then
f(x) = [x]I . Hence f is surjective. Since f(xy) = [xy]I = [x]I [y]I = f(x)f(y). Thus f is a
homomorphism on X. Hence f is an epimorphism on X.
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Theorem 4.5. Let (X, ∗X , 0X) and (Y, ∗Y , 0Y ) be a SU-algebra and let f : X → Y be a
homomorphism, then:

(1) f(0X) = 0Y ,
(2) im(f) is a SU-subalgebra,
(3) ker(f) = {0X} if and only if f is a injective,
(4) ker(f)is an ideal of X.
Proof. (1) Let x ∈ X, then f(x) ∈ Y . Since 0Y f(x) = f(x) = f(0Xx) = f(0X)f(x), then

by Theorem 2.7 we have 0Y = f(0X).
(2) Let a, b ∈ im(f), then there exists x, y ∈ X such that f(x) = a and f(y) = b. Thus

ab = f(x)f(y) = f(xy) ∈ im(f). Hence im(f) is a SU-subalgebra.
(3) Suppose ker(f) = {0X}. Let x, y ∈ X and f(x) = f(y), then f(xy) = f(x)f(y) = 0Y .

Thus xy ∈ ker(f) = 0X . Hence x = y. Therefore f is an injective. Conversely, it is obviously.
(4) By (1) we have f(0X) = 0Y , Thus 0X ∈ ker(f). Let (xy)z ∈ ker(f) and y ∈ ker(f),

then f((xy)z) = 0Y and f(y) = 0Y . Since f is a homomorphism, f((xy)z) = f(xy)f(z) =
(f(x)f(y))f(z). Since f((xy)z) = 0Y and f(y) = 0x, 0Y = (f(x)0Y )f(z) = f(x)f(z) = f(xz).
Thus xz ∈ ker(f). Hence ker(f) is an ideal of X.

Theorem 4.6. Let X and Y be a SU-algebra and let f : X → Y be a homomorphism,
then X/ker(f) ∼= im(f). In particular, if f is surjective, then X/ker(f) ∼= Y .

Proof. Consider the mapping g : X/ker(f) → im(f) given by g([x]ker(f)) = f(x)for all
x ∈ X.

1) Let x, y ∈ X and [x]ker(f) = [y]ker(f), then x ∼ y. Thus xy ∈ ker(f). Hence f(xy) = 0.
Since f(y)f(x) = f(x)f(y) = f(xy) = 0, f(x) = f(y). Therefore g([x]ker(f)) = f(x) = f(y) =
g([y]ker(f)). Hence g is a function .

2) Let x, y ∈ X and g([x]ker(f)) = g([y]ker(f)), then f(x) = f(y). Thus 0X = f(x)f(y) =
f(xy). Hence xy ∈ ker(f). Since ker(f) is an ideal, x ∼ y. Thus [x]ker(f) = [y]ker(f). Hence g

is a injective.
3) Let f(x) ∈ im(f). Since g([x]ker(f)) = f(x), g is a surjective.
4) Let x, y ∈ X, then g([x]ker(f)[y]ker(f)) = g([xy]ker(f)) = f(xy) = f(x)f(y) = g([x]ker(f))

g([y]ker(f)). Hence g is a homomorphism. Therefore X/ker(f) ∼= im(f). In particular, let f be
a surjective, then im(f) = Y . Hence X/ker(f) ∼= Y .

Theorem 4.7. Let H and K be an ideal of SU-algebra X and K ⊆ H, then (X/K)/(H/K)
∼= X/H.

Proof. Consider the mapping g : X/K → X/H given by g([x]K) = [x]H for all x ∈ X.
1) Let x, y ∈ X and [x]K = [y]K , then x ∼ y. Since K is a ideal , xy ∈ K. Since K ⊆ H,

xy ∈ H. Thus g([x]K) = [x]H = [y]H = g([y]K). Hence g is a function.
2) Let [x]H ∈ X/H. Since g([x]K) = [x]H , g is a surjective.
3) Let x, y ∈ X, then g([x]K [y]K) = g([xy]K) = [xy]H = [x]H [y]H = g([x]K)g([y]K). Hence

g is a homomorphism.
4) ker(g) = {[x]K |g([x]K) = [0]H} = {[x]K |[x]H = [0]H} = {[x]K |x ∼ 0} = {[x]K |x = x0 ∈

H} = H/K. By Theorem 4.6 we have (X/K)/(H/K) ∼= X/H.
Let X be a SU-algebra and A,B be a subset of X defined AB by AB = {xy ∈ X|x ∈

A, y ∈ B}.
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Theorem 4.8. Let A and B be a subset of SU-algebra X, then AB is a SU-subalgebra of
X.

Proof. Let a ∈ AB. By definition of AB we have a = xy for some x ∈ A, y ∈ B.
Since A,B ⊆ X, x, y ∈ X. Thus a = xy ∈ X. Hence AB ⊆ X. Let m,n ∈ AB such that
m = a1b1, n = a2b2 for some a1, a2 ∈ A, b1, b2 ∈ B, then mn = (a1b1)(a2b2) = (a1(a2b2))b1 =
(b2(a2a1))b1 = (b2b1)(a2a1) = (a2a1)(b2b1). Since a2a1 ∈ A and b2b1 ∈ B, mn ∈ AB. Hence
AB is a SU-subalgebra of X.

Remark 4.9. Let H and K be an ideal of SU-algebra X, then N is an ideal of HN .
Theorem 4.10. Let H and N be an ideal of SU-algebra X, then H/(H ∩N) ∼= HN/N .
Proof. Consider the mapping g : H → HN/N given by g(x) = [x]N for all x ∈ H.
1) Let x, y ∈ H and x = y, then [x]N = [y]N . Thus g(x) = g(y). Hence g is a function.
2) Let [x]N ∈ HN/N , then g(x) = [x]N Hence g is a surjective.
3) Let x, y ∈ H. Since g(xy) = [xy]N = [x]N [y]N = g(x)g(y). Hence g is a homomorphism

on X.
4) Let x ∈ ker(g), then g(x) = [0]N . Since g(x) = [x]N , [x]N = [0]N . Thus x ∼ 0. Since N

is an ideal, x = x0 ∈ N . Since ker(g) ⊆ H, x ∈ H. Thus x ∈ H ∩N . Hence ker(g) ⊆ H ∩N .
Let x ∈ H ∩ N , then x ∈ H and x ∈ N . Since g(x) = [x]N = [0]N , x ∈ ker(g). Thus
H ∩N ⊆ ker(g). Hence ker(g) = H ∩N . By Theorem 4.6 we have H/(H ∩N) ∼= HN/N .
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§1. Introduction

Norman Levine introduced generalized closed sets, K. Balachandaran and P. Sundaram
studied generalized continuous functions and generalized homeomorphism. N. Palaniappan
and K. C. Rao defined regular generalized closed sets. V. K. Sharma studied generalized
separation axioms. Following V. K. Sharma the author of the present paper define a new
variety of generalized axioms called rgα−separation axioms and study their basic properties
and interrelation with other type of generalized separation axioms. Throughout the paper
a space X means a topological space (X,τ). For any subset A of X its complement, interior,
closure, rgα−interior, rgα−closure are denoted respectively by the symbols Ac, A0, A, rgα(A)0

and rgα(A).
Definition 1.1. A ⊂ X is called
(i) regularly closed if A = (A)o and regularly open if A = (A)0.
(ii) semi-closed [resp: ν−closed] if ∃ an open [resp: regular open] set U 3 Uo ⊆ A ⊆ U .
(iii) g-closed if A ⊆ U whenever A ⊆ U and U is open.
(iv) rg-closed if A ⊆ U whenever A ⊆ U and U is regular-open.
(v) semi-open [resp: ν−open] if ∃ an open [resp: regular open] set U 3 U ⊆ A ⊆ U .
(vi) g-open [resp: rg-open] if its complement is g-closed [resp: rg-closed].
(vii) rgα−closed if α(A) ⊂ U whenever A ⊂ U and U is regular-α−open in X.
Note 1. The class of regular open sets, open sets, g-open sets, and rgα−open sets are

denoted by RO(X), τ(X), GO(X) and RGαO(X) respectively. Clearly RO(X) ⊂ τ(X) ⊂
GO(X) ⊂ RGαO(X).

Note 2. For any A ⊂ X, A ∈ RGαO(X, x) means A is a rgα-open set [neighborhood] in
X containing x.

Definition 1.2. A ⊂ X is called clopen [resp: nearly-clopen; ν−clopen; semi-clopen;
g-clopen; rgα−clopen] if it is both open [resp: regular-open; ν−open; semi-open; g-open;
rgα−open] and closed [resp: regular-closed; ν−closed; semi-closed; g-closed; rgα−closed].
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Definition 1.3. A function f : X→ Y is said to be
(i) Continuous [resp: nearly continuous, semi-continuous] if inverse image of open set is

open[resp: regular-open, semi-open].
(ii) g-continuous [resp: rgα−continuous] if inverse image of closed set is g-closed [resp:

rgα−closed].
(iii) irresolute [resp: nearly irresolute] if inverse image of semi-open [resp: regular-open]

set is semi-open[resp: regular-open].
(iv) g-irresolute [resp: rgα−irresolute] if inverse image of g-closed [resp: rgα−closed] set

is g-closed[resp: rgα−closed].
(v) open [resp: nearly open, semi-open, g-open, rgα−open] if the image of open set is open

[resp: regular-open, semi-open, g-open, rgα−open].
(vi) homeomorphism [resp: nearly homeomorphism, semi-homeomorphism, g-homeomor-

phism, rgα−homeomorphism] if f is bijective continuous [resp: nearly-continuous, semi-contin-
uous, g-continuous, rgα−continuous] and f−1 is continuous [resp: nearly-continuous, semi-cont-
inuous, g-continuous, rgα−continuous].

(vii) rc-homeomorphism [resp: sc-homeomorphism, gc-homeomorphism, RGαC-homeomo-
rphism] if f is bijective r-irresolute [resp: irresolute, g-irresolute, rgα−irresolute] and f−1 is r-
irresolute [resp: irresolute, g-irresolute, rgα−irresolute].

Definition 1.4. X is said to be
(i) compact [resp: nearly compact, semi-compact, g-compact, rgα−compact] if every open

[resp: regular-open, semi-open, g-open, rgα−open] cover has a finite subcover.
(ii) T0 [resp: r−T0, s−T0, g0] space if for each x 6= y ∈ X∃U ∈ τ(X) [resp: RO(X); SO(X);

GO(X)] containing either x or y.
(iii) T1 [resp: r − T1, s − T1, g1] space if for each x 6= y ∈ X∃U, V ∈ τ(X) [resp: RO(X);

SO(X); GO(X)] such that x ∈ U − V and y ∈ V − U .
(iv) T2 [resp: r − T2, s − T2, g2] space if for each x 6= y ∈ X∃U, V ∈ τ(X) [resp: RO(X);

SO(X); GO(X)] such that x ∈ U ; y ∈ V and U ∩ V = φ.
(v) T 1

2
[resp: r−T 1

2
, s−T 1

2
] if every generalized [resp: regular generalzed, semi-generalized]

closed set is closed[resp: regular-closed, semi-closed].
(vi) C0 [resp: rC0, sC0, gC0] space if for each x 6= y ∈ X∃U ∈ τ(X)[resp: RO(X); SO(X);

GO(X)] whose closure contains either x or y.
(vii) C1 [resp: rC1, sC1, gC1] space if for each x 6= y ∈ X∃U, V ∈ τ(X)[resp: RO(X);

SO(X); GO(X)] such that x ∈ (U) and y ∈ (V ).
(viii) C2 [resp: rC2, sC2, gC2] space if for each x 6= y ∈ X∃U, V ∈ τ(X)[resp: RO(X);

SO(X); GO(X)] such that x ∈ (U); y ∈ (V ) and U ∩ V = φ.
(ix) D0 [resp: rD0, sD0, gD0] space if for each x 6= y ∈ X∃U ∈ D(X)[resp: RD(X); SD(X);

GD(X)] containing either x or y.
(x) D1 [resp: rD1, sD1, gD1] space if for each x 6= y ∈ X∃U, V ∈ Dτ(X)[resp: RD(X);

SD(X); GD(X)] 3 x ∈ U − V and y ∈ V − U .
(xi) D2 [resp: rD2, sD2, gD2]space if for each x 6= y ∈ X∃U, V ∈ Dτ(X)[resp: RD(X);

SD(X); GD(X)] 3 x ∈ U − V ; y ∈ V − U and U ∩ V = φ.
(xii) R0 [resp: rR0, sR0, gR0]space if for each x ∈ X∃U ∈ τ(X) [resp: RO(X); SO(X);
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GO(X)]3 {x} ⊆ U [resp: r{x} ⊆ U ; s{x} ⊆ U ; g{x} ⊆ U ] whenever x ∈ U ∈ τ(X)[resp:
x ∈ U ∈ RO(X);x ∈ U ∈ SO(X);x ∈ U ∈ GO(X)].

(xiii) R1 [resp: rR1, sR1, gR1]space for x, y ∈ X 3 {x} 6= {y} [resp:3 r{x} 6= r{y};3
s{x} 6= s{y};3 g{x} 6= g{y};[resp: RO(X); SO(X); GO(X)], ∃ disjoint U ;V ∈ τ(X) 3 {x} ⊆ U

[resp: RO(X) 3 r{x} ⊆ U ;SO(X) 3 s{x} ⊆ U ;GO(X) 3 g{x} ⊆ U ] and {y} ⊆ V [resp:
r{y} ⊆ V ; s{y} ⊆ V ; g{y} ⊆ V ].

Theorem 1.1. (i) If x is a rgα−limit point of any A ⊂ X, then every rgα−neighborhood
of x contains infinitely many distinct points.

(ii) Let A ⊆Y⊆X and Y is regularly open subspace of X then A is rgα−open in X iff A

is rgα−open in τ/Y .

Theorem 1.2. If f is rgα−continuous [resp: rgα−irresolute{rgα−homeomorphism}] and
G is open [resp: rgα−open] set in Y , then f−1(G) is rgα−open [resp: rgα−open] in X.

§2. rgα−continuity and product spaces

Theorem 2.1. If f is nearly continuous then f is rgα−continuous. Converse is true if X

is r − T 1
2
.

Theorem 2.2. If f : X → Y is rgα−continuous, g : Y → Z is rgα−continuous and Y is
r − T 1

2
, then g ◦ f is rgα−continuous.

Theorem 2.3. Let Y and {Xα : α ∈ I} be Topological Spaces. Let f : Y → ΠXα be a
function. If f is rgα−continuous, then πα ◦ f : Y → Xα is rgα−continuous.

Proof. Suppose f is rgα−continuous. Since πα : ΠXβ → Xα is continuous for each α ∈ I,
it follows that πα ◦ f is rgα−continuous.

Converse of the above theorem is not true in general as shown by the following example:

Example 2.1. Let X = {p, q, r, s}; τX = {φ, {p}, {q}, {s}, {p, q}, {p, s}, {q, s}, {p, q, r}, {p, q,

s}, X}, Y1 = Y2 = {a, b}; τY1 = {φ, {a}, Y1}; τY2 = {φ, {a}, Y2};Y = Y1×Y2; = {(a, a), (a, b), (b, a),
(b, b)} and τY = {φ, {(a, a)}, {(a, a), (a, b)}, {(a, a), (b, a)}, {(a, a), (a, b), (b, a)}, Y1 × Y2}.

(i) Define f : X → Y by f(p) = (a, a), f(q) = (b, b), f(r) = (a, b), f(s) = (b, a). Then π1 ◦ f;
π2 ◦ f and f is rgα−continuous.

(ii) Define f : X → Y by f(p) = (a, a), f(q) = (a, b), f(r) = (b, b), f(s) = (b, a). It is easy to see
that π1 ◦ f and π2 ◦ f are rgα−continuous. However {(b, b)} is closed in Y but f−1({(b, b)}) = {q}
is not rgα−closed in X. Therefore f is not rgα−continuous.

Theorem 2.4. If Y is rT 1
2

and {Xα : α ∈ I} be Topological Spaces. Let f : Y → ΠXα be
a function, then f is rgα−continuous iff πα ◦ f : Y → Xα is rgα−continuous.

Corollary 2.5. Let fα : Xα → Yα be a function and let f : ΠXα → ΠYα be defined by
f((xα)α∈I) = (fα(xα))α∈I . If f is rgα−continuous then each fα is rgα−continuous.

Corollary 2.6. For each α, let Xα be rT 1
2

and let fα : Xα → Yα be a function and let
f : ΠXα → ΠYα be defined by f((xα)α∈I) = (fα(xα))α∈I , then f is rgα−continuous iff each fα
is rgα−continuous.
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§3. rgαi spaces i= 0, 1, 2

Definition 3.1. X is said to be
(i) a rgα0 space if for each pair of distinct points x, y of X, there exists a rgα−open set

G containing either x or y.
(ii) a rgα1 space if for each pair of distinct points x, y of X there exists a rgα−open set

G containing x but not y and a rgα−open set H containing y but not x.
(iii) a rgα2 space if for each pair of distinct points x, y of X there exists disjoint rgα−open

sets G and H such that G containing x but not y and H containing y but not x.
Note 2. (i) rTi ⇒ Ti ⇒ gi ⇒ rgαi, i = 0, 1, 2, but the converse is not true in general.
(ii) X is rgα2 ⇒ X is rgα1 ⇒ X is rgα0.
Example 3.1. Let X = {a, b, c} and
(i) τ = {φ, {a, c}, X} then X is rgαi for i = 0, 1, 2.
(ii) τ = {φ, {a}, {a, c}, X} then X is not rgαi for i = 0, 1, 2.
Example 3.2. (i) Let X = {a, b, c, d} and τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X} then

X is rgαi but not gi, r-T0 and T0, for i = 0, 1, 2.
Theorem 3.1. We have the following properties:
(i) Every [resp: regular open] open subspace of rgαi space is rgαi for i = 0, 1, 2.
(ii) The product of rgαi spaces is again rgαi for i = 0, 1, 2.
(iii) X is rgα0 iff ∀x ∈ X, ∃U ∈ RGαO(X) containing x 3 the subspace U is rgα0.

(iv) X is rgα0 iff distinct points of X have disjoint rgα−closures.
Theorem 3.2. The following are equivalent:
(i) X is rgα1.

(ii) Each one point set is rgα−closed.
(iii) Each subset of X is the intersection of all rgα−open sets containing it.
(iv) For any x ∈ X, the intersection of all rgα−open sets containing the point is the set

{x}.
Theorem 3.3. (i) If X is rgα1 then distinct points of X have disjoint rgα−closures.
(ii) If x is a rgα−limit point of a subset A of a rgα1 space X. Then every neighborhood

of x contains infinitely many distinct points of A.
(iii) X is rgα2 iff the intersection of all rgα−closed, rgα−neighborhoods of each point of

the space is reduced to that point.
(iv) If to each point x ∈ X, there exist a rgα−closed, rgα−open subset of X containing x

which is also a rgα2 subspace of X, then X is rgα2.

(v) In rgα2-space, rgα−limits of sequences, if exists, are unique.
Theorem 3.4. If X is rgα2 then the diagonal ∆ in X ×X is rgα−closed.
Proof. Suppose (x, y) ∈ X ×X −∆. As (x, y) /∈ ∆ and x 6= y. Since X is rgα2, ∃U, V ∈

RGαO(X) 3 x ∈ U, y ∈ V and U ∩ V = φ. U ∩ V = φ ⇒ (U × V ) ∩ ∆ = φ and therefore
(U × V ) ⊂ X × X − ∆. Further (x, y) ∈ (U × V ) and (U × V ) is rgα−open in X × X gives
X ×X −∆ is rgα−open. Hence ∆ is rgα−closed.

Theorem 3.5. In a rgα2 space, a point and disjoint rgα−compact subspace can be
separated by disjoint rgα−open sets.



Vol. 7 rgα− separation axioms 49

Proof. Let X be a rgα2 space, x ∈ X and C a rgα−compact subspace of X not containing
x. Let y ∈ C then for x 6= y in X, there exist disjoint rgα−open neighborhoods Gx and Hy.

Allowing this for each y in C, we obtain a class {Hy} whose union covers C; and since C is
rgα−compact, some finite subclass {Hi, i = 1 to n} covers C. If Gi is rgα−neighborhood of x

corresponding to Hi, we put G =
n∪

i=1
Gi and H =

n∩
i=1

Hi, satisfying the required properties.

Theorem 3.6. (i) Every rgα−compact subspace of a rgα2 space is rgα−closed.
(ii) Every compact [resp: nearly-compact; g-compact] subspace of a T2 [resp: rT2; g2] space

is rgα−closed.
Theorem 3.7. (i) If f is injective, rgα−irresolute and Y is rgαi then X is rgαi, i = 0, 1, 2.
(ii) If f is injective, rgα−continuous and Y is Ti then X is rgαi, i = 0, 1, 2.
(iii) The property of being a space is rgα0 is a rgα−topological property.
(iv) Let f is a RGαC-homeomorphism, then X is rgαi if Y is rgαi, i = 0, 1, 2.
Theorem 3.8. We have the following
(i) Let X be T1 and f be rgα−closed surjection. Then X is rgα1.
(ii) Every rgα−irresolute map from a rgα−compact space into a rgα2 space is rgα−closed.
(iii) Any rgα−irresolute bijection from a rgα−compact space onto a rgα2 space is a RGαC-

homeomorphism.
(iv) Any rgα−continuous bijection from a rgα−compact space onto a rgα2 space is a

rgα−homeomorphism.
Theorem 3.9. The following are equivalent:
(i) X is rgα2.

(ii) For each pair x 6= y ∈ X, ∃ a rgα−open, rgα−closed set V 3 x ∈ V and y /∈ V, and
(iii) For each pair x 6= y ∈ X, ∃ f : X → [0, 1] such that f(x) = 0 and f(C) = 1 and f is

rgα−continuous.
Theorem 3.10. If f : X→ Y is rgα−irresolute and Y is rgα2 then
(i) the set A = {(x1, x2) : f(x1) = f(x2)} is rgα−closed in X ×X.
(ii) G(f ), Graph of f, is rgα−closed in X × Y .
Proof. (i) Let A = {(x1, x2) : f(x1) = f(x2)}. If (x1, x2) ∈ X×X−A, then f(x1) 6= f(x2) ⇒

∃ disjoint V1 and V2 ∈ RGαO(Y ) 3 f(x1) ∈ V1 and f(x2) ∈ V2, then by rgα−irresoluteness of
f, f−1(Vj) ∈ RGαO(X, xj) for each j. Thus (x1, x2) ∈ f−1(V1) × f−1(V2) ∈ RGαO(X × X).
Therefore f−1(V1)× f−1(V2) ⊂ X ×X −A ⇒ X ×X −A is rgα−open. Hence A is rgα−closed.

(ii) Let (x, y) 6∈ G(f) ⇒ y 6= f(x) ⇒ ∃ disjoint rgα−open sets V and W 3 f(x) ∈ V and
y∈ W . Since f is rgα−irresolute, ∃U ∈ RGαO(X) 3 x ∈ U and f(U) ⊂ W . Therefore we
obtain (x, y) ∈ U × V ⊂ X × Y − G(f). Hence X × Y − G(f) is rgα−open. Hence G(f ) is
rgα−closed in X × Y .

Theorem 3.11. If f : X → Y is rgα−open and the set A = {(x1, x2) : f(x1) = f(x2)} is
closed in X ×X. Then Y is rgα2.

Theorem 3.12. Let X be an arbitrary space, R an equivalence relation in X and p : X →
X/R the identification map. If R ⊂ X ×X is rgα−closed in X ×X and p is rgα−open map,
then X/R is rgα2.

Proof. Let p(x), p(y) be distinct members of X/R. Since x and y are not related,
R ⊂ X×X is rgα−closed in X×X. There are rgα−open sets U and V such that x ∈ U, y ∈ V
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and U×V ⊂ Rc. Thus p(U), p(V) are disjoint and also rgα−open in X/R since p is rgα−open.
Theorem 3.13. The following four properties are equivalent:
(i) X is rgα2.
(ii) Let x ∈ X. For each y 6= x,∃U ∈ RGαO(X) 3 x ∈ U and y /∈ rgα(U).
(iii) For each x ∈ X,∩{rgα(U)/U ∈ RGαO(X) and x ∈ U} = {x}.
(iv) The diagonal ∆ = {(x, x)/x ∈ X} is rgα−closed in X ×X.
Proof. (i) ⇒ (ii): Let x ∈ X and y 6= x. Then there are disjoint rgα−open sets U and

V such that x ∈ U and y ∈ V . Clearly V c is rgα−closed, rgα(U) ⊂ V c, y /∈ V c and therefore
y /∈ rgα(U).

(ii) ⇒ (iii): If y 6= x, then ∃U ∈ RGαO(X) 3 x ∈ U and y 6∈ rgα(U). So y /∈
∩{rgα(U)/U ∈ RGαO(X) and x ∈ U}.

(iii) ⇒ (iv): We prove ∆c is rgα−open. Let (x, y) /∈ ∆. Then y 6= x and ∩{rgα(U)/U ∈
RGαO(X) and x ∈ U} = {x} there is some U ∈ RGαO(X) with x ∈ U and y 6∈ rgα(U). Since
U ∩ (rgα(U))c = φ, U × (rgα(U))c is a rgα−open set such that (x, y) ∈ U × (rgα(U))c ⊂ ∆c.

(iv) ⇒ (i): y 6= x, then (x, y) /∈ ∆ and thus there exist rgα−open sets U and V such
that (x, y) ∈ U × V and (U × V ) ∩∆ = φ. Clearly, for the rgα−open sets U and V we have:
x ∈ U, y ∈ V and U ∩ V = φ.

§4. rgα−Ri spaces; i = 0,1

Definition 4.1. Let x ∈ X. Then
(i) rgα−kernel of x is defined and denoted by Kerrgα{x} = ∩{U : U ∈ RGαO(X) and

x ∈ U}.
(ii) KerrgαF = ∩{U : U ∈ RGαO(X) and F ⊂ U}.
Lemma 4.1. Let A ⊂ X, then Kerrgα{A} = {x ∈ X : rgα{x} ∩A 6= φ}.
Lemma 4.2. Let x ∈ X. Then y ∈ Kerrgα{x} iff x ∈ rgα{y}.
Proof. Suppose that y /∈ Kerrgα{x}. Then ∃V ∈ RGαO(X) containing x 3 y /∈ V .

Therefore we have x /∈ rgα{y}. The proof of converse part can be done similarly.
Lemma 4.3. For any points x 6= y ∈ X, the following are equivalent:
(1) Kerrgα{x} 6= Kerrgα{y};
(2) rgα{x} 6= rgα{y}.
Proof. (1)⇒ (2): Let Kerrgα{x} 6= Kerrgα{y}, then ∃z ∈ X 3 z ∈ Kerrgα{x} and

z /∈ Kerrgα{y}. From z ∈ Kerrgα{x} it follows that x ∩ rgα{z} 6= φ ⇒ x ∈ rgα{z}. By
z /∈ Kerrgα{y}, we have {y} ∩ rgα{z} = φ. Since x ∈ rgα{z}, rgα{x} ⊂ rgα{z} and {y} ∩
rgα{x} = φ. Therefore rgα{x} 6= rgα{y}. Now Kerrgα{x} 6= Kerrgα{y} ⇒ rgα{x} 6= rgα{y}.

(2)⇒(1): If rgα{x} 6= rgα{y}. Then ∃z ∈ X 3 z ∈ rgα{x} and z /∈ rgα{y}. Then ∃
a rgα−open set containing z and therefore containing x but not y, namely, y /∈ Kerrgα{x}.
Hence Kerrgα{x} 6= Kerrgα{y}.

Definition 4.2. X is said to be
(i) rgα−R0 iff rgα{x} ⊆ G whenever x ∈ G ∈ RGαO(X).
(ii) weakly rgα−R0 iff ∩rgα{x} = φ.
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(iii) rgα−R1 iff for x, y ∈ X 3 rgα{x} 6= rgα{y}∃ disjoint U ;V ∈ RGαO(X) 3 rgα{x} ⊆
U and rgα{y} ⊆ V.

Example 4.1. Let X = {a, b, c, d} and τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X}, then X is
weakly rgαR0 and rgαRi, i = 0, 1.

Remark 4.1. (i) r −Ri ⇒ Ri ⇒ gRi ⇒ rgαRi, i = 0, 1.

(ii) Every weakly-R0 space is weakly rgαR0.

Lemma 4.4. Every rgαR0 space is weakly rgαR0.

Converse of the above theorem is not true in general by the following examples.

Example 4.2. Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, X}. Clearly, X is weakly
rgαR0, since ∩rgα{x} = φ. But it is not rgαR0, for {a} ⊂ X is rgα−open and rgα{a} =
{a, b} 6⊂ {a}.

Theorem 4.1. Every rgα−regular space X is rT2 and rgα−R0.

Proof. Let X be rgα−regular and let x 6= y ∈ X. By Lemma 4.1, {x} is either r−open
or r−closed. If {x} is r−open, {x} is rgα−open and hence r−clopen. Thus {x} and X − {x}
are separating r−open sets. Similar argument, for {x} is rgα−closed gives {x} and X − {x}
are separating r−closed sets. Thus X is rT2 and rgα−R0.

Theorem 4.2. X is rgα−R0 iff given x 6= y ∈ X; rgα{x} 6= rgα{y}.
Proof. Let X be rgα−R0 and let let x 6= y ∈ X. Suppose U is a rgα−open set containing

x but not y, then y ∈ rgα{y} ⊂ X − U and so x /∈ rgα{y}. Hence rgα{x} 6= rgα{y}.
Conversely, let x 6= y ∈ X 3 rgα{x} 6= rgα{y} ⇒ rgα{x} ⊂ X − rgα{y} = U(say) a

rgα−open set in X. This is true for every rgα{x}. Thus ∩rgα{x} ⊆ U where x ∈ rgα{x} ⊆
U ∈ RGαO(X), which in turn implies ∩rgα{x} ⊆ U where x ∈ U ∈ RGαO(X). Hence X is
rgαR0.

Theorem 4.3. X is weakly rgαR0 iff Kerrgα{x} 6= X for any x ∈ X.

Proof. Let x0 ∈ X 3 kerrgα{x0} = X. This means that x0 is not contained in any proper
rgα−open subset of X. Thus x0 belongs to the rgα−closure of every singleton set. Hence
x0 ∈ ∩rgα{x}, a contradiction.

Conversely assume Kerrgα{x} 6= X for any x∈ X. If there is an x0 ∈ X 3 x0 ∈ ∩{rgα{x}},
then every rgα−open set containing x0 must contain every point of X. Therefore, the unique
rgα−open set containing x0 is X. Hence Kerrgα{x0} = X, which is a contradiction. Thus X

is weakly rgα−R0.

Theorem 4.4. The following statements are equivalent:

(i) X is rgα−R0 space.

(ii) For each x∈ X, rgα{x} ⊂ Kerrgα{x}.
(iii) For any rgα−closed set F and a point x/∈ F, ∃U ∈ RGαO(X) 3 x /∈ U and F ⊂ U .

(iv) Each rgα−closed set F can be expressed as F = ∩{G : G is rgα−open and F⊂ G}.
(v) Each rgα−open set G can be expressed as G = ∪{A : A is rgα−closed and A⊂ G}.
(vi) For each rgα−closed set F , x/∈ F implies rg{x}− ∩ F = φ.

Proof. (i)⇒(ii): For any x ∈ X, we have Kerrgα{x} = ∩{U : U ∈ RGO(X) and x ∈ U}.
Since X is rgα − R0, each rgα−open set containing x contains rgα{x}. Hence rgα{x} ⊂
Kerrgα{x}.
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(ii)⇒(iii): Let x /∈ F ∈ RGαC(X). Then for any y ∈ F, rgα{y} ⊂ F and so x /∈ rgα{y} ⇒
y /∈ rgα{x} that is ∃Uy ∈ RGαO(X) 3 y ∈ Uy and x /∈ Uy, ∀y ∈ F. Let U = ∪{Uy : Uy is;
rgα−open, y ∈ Uy and x /∈ Uy}. Then U is rgα−open such that x /∈ U and F ⊂ U.

(iii)⇒(iv): Let F be any rgα−closed set and N = ∩{G : G is rgα−open and F ⊂ G}.
Then F ⊂ N −→ (1). Let x /∈ F, then by (iii) ∃G ∈ RGαO(X) 3 x /∈ G and F ⊂ G, hence
x /∈ N which implies x ∈ N ⇒ x ∈ F. Hence N ⊂ F −→ (2).

Therefore from (1)&(2), each rgα−closed set F = ∩{G : G is rgα−open and F ⊂ G}.
(iv)⇒(v): obvious.
(v)⇒(vi): Let x /∈ F ∈ RGαC(X). Then X−F = G is a rgα−open set containing x. Then

by (v), G can be expressed as the union of rgα−closed sets A contained in G, and so there is
an M ∈ RGαC(X) 3 x ∈ M ⊂ G; and hence rgα{x} ⊂ G which implies rgα{x} ∩ F = φ.

(vi)⇒(i): Let x ∈ G ∈ RGαO(X). Then x /∈ (X−G), which is a rgα−closed set. Therefore
by (vi) rgα{x} ∩ (X −G) = φ, which implies that rgα{x} ⊆ G. Thus X is rgαR0 space.

Theorem 4.5. Let f be a rgα−closed one-one function. If X is weakly rgα−R0, then so
is Y .

Theorem 4.6. If X is weakly rgα−R0, then for every space Y, X×Y is weakly rgα−R0.
Proof. ∩rgα{(x, y)} ⊆ ∩{rgα{x}× rgα{y}} = ∩[rgα{x}]× [rgα{y}] ⊆ φ×Y = φ. Hence

X × Y is rgαR0.

Corollary 4.1. (i) If X and Y are weakly rgαR0, then X × Y is weakly rgαR0.

(ii) If X and Y are (weakly-)R0, then X × Y is weakly rgαR0.

(iii) If Xand Y are rgαR0, then X × Y is weakly rgαR0.

(iv) If X is rgαR0 and Y are weakly R0, then X × Y is weakly rgαR0.

Theorem 4.7. X is rgαR0 iff for any x, y ∈ X, rgα{x} 6= rgα{y} ⇒ rgα{x}∩rgα{y} = φ.
Proof. Let X is rgαR0 and x, y ∈ X 3 rgα{x} 6= rgα{y} . Then, ∃z ∈ rgα{x} 3 z /∈

rgα{y}(orz ∈ rgα{y}) 3 z /∈ rgα{x}. There exists V ∈ RGαO(X) 3 y /∈ V and z ∈ V ; hence
x ∈ V . Therefore, x /∈ rgα{y}. Thus x ∈ [Gy]c ∈ RGαO(X), which implies rgα{x} ⊂ [rgα{y}]c
and rgα{x} ∩ rgα{y} = φ. the proof for otherwise is similar.

Sufficiency: Let x ∈ V ∈ RGαO(X). We show that rgα{x} ⊂ V . Let y /∈ V , i.e., y ∈ [V ]c.
Then x 6= y and x /∈ rgα{y}. Hence rgα{x} 6= rgα{y}. By assumption, rgα{x} ∩ rgα{y} = φ.
Hence y /∈ rgα{x}. Therefore rgα{x} ⊂ V .

Theorem 4.8. X is rgαR0 iff for any points x, y ∈ X, Kerrgα{x} 6= Kerrgα{y} ⇒
Kerrgα{x} ∩Kerrgα{y} = φ.

Proof. Suppose X is rgαR0. Thus by Lemma 4.3, for any x, y ∈ X if Kerrgα{x} 6=
Kerrgα{y} then rgα{x} 6= rgα{y}. Assume that z ∈ Kerrgα{x} ∩ Kerrgα{y}. By z ∈
Kerrgα{x} and Lemma 4.2, it follows that x ∈ rgα{z}. Since x ∈ rgα{z}, rgα{x} = rgα{z}.
Similarly, we have rgα{y} = rgα{z} = rgα{x}. This is a contradiction. Therefore, we have
Kerrgα{x} ∩Kerrgα{y} = φ.

Conversely, let x, y ∈ X,3 rgα{x} 6= rgα{y}, then by Lemma 4.3, Kerrgα{x} 6= Kerrgα{y}.
Hence by hypothesis Kerrgα{x}∩Kerrgα{y} = φ, which implies rgα{x}∩rgα{y} = φ. Because
z ∈ rgα{x} implies that x ∈ Kerrgα{z} and therefore Kerrgα{x} ∩Kerrgα{z} 6= φ. Therefore
by Theorem 4.7 X is a rgαR0 space.

Theorem 4.9. The following properties are equivalent:
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(1) X is a rgα−R0 space.
(2) For any A 6= φ and G ∈ RGαO(X) 3 A ∩ G 6= φ∃F ∈ RGαC(X) 3 A ∩ F 6= φ and

F ⊂ G.

Proof. (1)⇒(2): Let A 6= φ and G ∈ RGαO(X) 3 A ∩ G 6= φ. There exists x ∈ A ∩ G.
Since x ∈ G ∈ RGαO(X), rgα{x} ⊂ G. Set F = rgα{x}, then F ∈ RGαC(X), F ⊂ G and
A ∩ F 6= φ.

(2)⇒(1): Let G ∈ RGαO(X) and x ∈ G. By (2) rgα{x} ⊂ G. Hence X is rgα−R0.
Theorem 4.10. The following properties are equivalent:
(1) X is a rgα−R0 space;
(2) x ∈ rgα{y} iff y ∈ rgα{x}, for any points x and y in X.
Proof. (1)⇒(2): Assume X is rgαR0. Let x ∈ rgα{y} and D be any rgα−open set

such that y ∈ D. Now by hypothesis, x ∈ D. Therefore, every rgα−open set which contain y
contains x. Hence y ∈ rgα{x}.

(2)⇒(1): Let U be a rgα−open set and x ∈ U . If y /∈ U , then x /∈ rgα{y} and hence
y /∈ rgα{x}. This implies that rgα{x} ⊂ U . Hence X is rgαR0.

Theorem 4.11. The following properties are equivalent:
(1) X is a rgαR0 space;
(2) If F is rgα−closed, then F = Kerrgα(F );
(3) If F is rgα−closed and x ∈ F , then Kerrgα{x} ⊆ F ;
(4) If x ∈ X, then Kerrgα{x} ⊂ rgα{x}.
Proof. (1)⇒(2): Let x /∈ F ∈ RGαC(X) ⇒ (X − F ) ∈ RGαO(X) and contains x.

For X is rgαR0, rgα({x}) ⊂ (X − F ). Thus rgα({x}) ∩ F = φ and x /∈ Kerrgα(F ). Hence
Kerrgα(F ) = F .

(2)⇒(3): A ⊂ B ⇒ Kerrgα(A) ⊂ Kerrgα(B). Therefore, by (2), Kerrgα{x} ⊂ Kerrgα(F ) =
F .

(3)⇒(4): Since x ∈ rgα{x} and rgα{x} is rgα−closed, by (3), Kerrgα{x} ⊂ rgα{x}.
(4)⇒(1): Let x ∈ rgα{y}. Then by Lemma 4.2, y ∈ Kerrgα{x}. Since x ∈ rgα{x} and

rgα{x} is rgα−closed, by (4), we obtain y ∈ Kerrgα{x} ⊆ rgα{x}. Therefore x ∈ rgα{y}
implies y ∈ rgα{x}.

The converse is obvious and X is rgαR0.
Corollary 4.2. The following properties are equivalent:
(1) X is rgαR0.
(2) rgα{x} = Kerrgα{x}∀x ∈ X.
Proof. Straight forward from Theorem 4.4 and 4.11.
Recall that a filterbase F is called rgα−convergent to a point x in X, if for any rgα−open

set U of X containing x, there exists B ∈ F such that B ⊂ U.

Lemma 4.5. Let x and y be any two points in X such that every net in X rgα−converging
to y rgα−converges to x. Then x ∈ rgα{y}.

Theorem 4.12. The following statements are equivalent:
(1) X is a rgαR0 space;
(2) If x, y ∈ X, then y ∈ rgα{x} iff every net in X rgα−converging to y rgα−converges

to x.



54 S. Balasubramanian No. 2

Proof. (1)⇒(2): Let x, y ∈ X 3 y ∈ rgα{x}. Suppose that {xα}α∈Λ is a net in X 3
{xα}α∈Λrgα−converges to y. Since y ∈ rgα{x}, by Theorem 4.7, we have rgα{x} = rgα{y}.
Therefore x ∈ rgα{y}. This means that {xα}α∈Λrgα−converges to x.

Conversely, let x, y ∈ X such that every net in X rgα−converging to y rgα−converges to
x. Then x ∈ rg{y}− by Theorem 4.4. By Theorem 4.7, we have rgα{x} = rgα{y}. Therefore
y ∈ rgα{x}.

(2)⇒(1): Let x, y ∈ X 3 rgα{x} ∩ rgα{y} 6= φ. Let z ∈ rgα{x} ∩ rgα{y}. So ∃ a net
{xα}α∈Λ in rgα{x} 3 {xα}α∈Λrgα−converges to z. Since z ∈ rgα{y}, then {xα}α∈Λrgα−conve
-rges to y. It follows that y ∈ rgα{x}. Similarly we obtain x ∈ rgα{y}. Therefore rgα{x} =
rgα{y}. Hence, X is rgαR0.

Theorem 4.13. (i) Every subspace of rgαR1 space is again rgαR1.
(ii) Product of any two rgαR1 spaces is again rgαR1.
Theorem 4.14. X is rgαR1 iff given x 6= y ∈ X, rgα{x} 6= rgα{y}.
Theorem 4.15. Every rgα2 space is rgαR1.
The converse is not true. However, we have the following result.
Theorem 4.16. Every rgα1, rgαR1 space is rgα2.

Proof. Let x 6= y ∈ X. Since X is rgα1, {x} and {y} are rgα−closed sets 3 rgα{x} 6=
rgα{y}. Since X is rgαR1, ∃ disjoint U ;V ∈ RGαO(X) 3 x ∈ U, y ∈ V. Hence X is rgα2.

Corollary 4.3. X is rgα2 iff it is rgαR1 and rgα1.
Theorem 4.17. The following are equivalent
(i) X is rgα−R1.
(ii) ∩rgα{x} = {x}.
(iii) For any x ∈ X, intersection of all rgα−neighborhoods of x is {x}.
Proof. (i)⇒(ii): Let y 6= x ∈ X 3 y ∈ rgα{x}. Since X is rgαR1, ∃U ∈ RGαO(X) 3 y ∈

U, x /∈ U or x∈U, y /∈ U . In either case y /∈ rgα{x}. Hence ∩rgα{x} = {x}.
(ii)⇒(iii): If y 6= x ∈ X, then x/∈ ∩rgα{y}, so there is a rgα−open set containing x but

not y. Therefore y does not belong to the intersection of all rgα−neighborhoods of x. Hence
intersection of all rgα−neighborhoods of x is {x}.

(iii)⇒(i): Let x 6= y ∈ X. By hypothesis, y does not belong to the intersection of all
rgα−neighborhoods of x and x does not belong to the intersection of all rgα−neighborhoods
of y, which implies rgα{x} 6= rgα{y}. Hence X is rgα−R1.

Theorem 4.18. The following are equivalent:
(i) X is rgα−R1.
(ii) For each pair x, y ∈ X 3 rgα{x} 6= rgα{y}, ∃ a rgα−open, rgα−closed set V 3 x ∈ V

and y /∈ V , and
(iii) For each pair x, y ∈ X 3 rgα{x} 6= rgα{y},∃f : X → [0, 1] 3 f(x) = 0 and f(C) = 1

and f is rgα−continuous.
Proof. (i)⇒(ii): Let x, y ∈ X 3 rgα{x} 6= rgα{y},∃ disjoint U ;W ∈ RGαO(X) 3

rgα{x} ⊂ U and rgα{y} ⊂ Wand V = rgα(U) is rgα−open and rgα−closed such that x ∈ V

and y /∈ V.

(ii)⇒(iii): Let x, y ∈ X such that rgα{x} 6= rgα{y}, and let V be rgα−open and
rgα−closed such that x ∈ V and y /∈ V. Then f : X → [0, 1] defined by f(z) = 0 if z ∈ V



Vol. 7 rgα− separation axioms 55

and f(z) = 1 if z /∈ V satisfied the desired properties.
(iii)⇒(i): Let x, y ∈ X such that rgα{x} 6= rgα{y}, let f : X → [0, 1] be rgα−continuous,

f(x) = 0 and f(y) = 1. Then U = f−1([0, 1
2 )) and V = f−1(( 1

2 , 1]) are disjoint rgα−open and
rgα−closed sets in X, such that rgα{x} ⊂ U and rgα{y} ⊂ V.

Theorem 4.19: (i) If X is rgα−R1, then X is rgα−R0.
(ii) X is rgα−R1 iff for x, y ∈ X, Kerrgα{x} 6= Kerrgα{y},∃ disjoint U ;V ∈ RGαO(X) 3

rgα{x} ⊂ U and rgα{y} ⊂ V .

§5. rgα− Ci and rgα−Di spaces, i = 0,1,2

Definition 5.1. X is said to be a
(i) rgα − C0 space if for each pair of distinct points x, y of X there exists an rgα−open

set G whose closure contains either x or y.

(ii) rgα− C1 space if for each pair of distinct points x, y of X there exists rgα−open sets
G and H such that G containing x but not y and H containing y but not x.

(iii) rgα−C2 space if for each pair of distinct points x, y of X there exists disjoint rgα−open
sets G and H such that G containing x but not y and H containing y but not x.

Note. rgα − C2 ⇒ rgα − C1 ⇒ rgα − C0 but converse need not be true in general as
shown by the following example.

Example 5.1. Let X = {a, b, c, d} and τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X}, then X is
rgα− Ci, i = 1, 2.

Theorem 5.1. The following statements are true:
(i) Every subspace of rgα− Ci space is rgα− Ci.
(ii) Every rgαi spaces is rgα− Ci.
(iii) Product of rgα− Ci spaces are rgα− Ci.
(iv) If f : X → Y is rgα−continuous and Y is Ci then X is rgα− Ci.
(v) If f : X → Y is rgα−irresolute and Y is rgα− Ci then X is rgα− Ci.
(vi) Let (X, τ) be any rgα−Ci space and A ⊂ X then A is rgα−Ci iff (A, τ/A) is rgα−Ci.
(vii) If X is rgα− C1 then each singleton set is rgα−closed.
(viii) In an rgα− C1 space disjoint points of X has disjoint rgα− closures.
Definition 5.2. A ⊂ X is called a rgαDifference (Shortly rgαD-set) set if there are two

U , V ∈ RGαO(X, τ) such that U 6= X and A = U − V .
Clearly every rgα−open set U different from X is a rgαD-set if A = U and V = φ.
Definition 5.3. X is said to be a
(i) rgα − D0 if for any pair of distinct points x and y of X there exist a rgαD-set in X

containing x but not y or a rgαD-set in X containing y but not x.
(ii) rgα −D1 if for any pair of distinct points x and y in X there exist a rgαD-set of X

containing x but not y and a rgαD-set in X containing y but not x.
(iii) rgα−D2 if for any pair of distinct points x and y of X there exists disjoint rgαD-sets

G and H in X containing x and y, respectively.
Example 5.2. Let X = {a, b, c, d} and τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X}, then X is

rgα−Di, i = 0, 1, 2.
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Remark 5.2. (i) If X is r − Ti, then it is rgαi, i = 0, 1, 2 and converse is false.
(ii) If X is rgαi, then it is rgαi−1, i = 1, 2.
(iii) If X is rgαi, then it is rgα−Di, i = 0, 1, 2.
(iv) If X is rgα−Di, then it is rgα−Di−1, i = 1, 2.
Theorem 5.2. The following statements are true:
(i) X is rgα−D0 iff it is rgα0.
(ii) X is rgα−D1 iff it is rgα−D2.
Proof. (i) The sufficiency is stated in Remark 5.1(iii).
To prove necessity, let X be rgα −D0. Then for each distinct pair of points x, y ∈ X, at

least one of x, y, say x, belongs to a rgαD-set G but y /∈ G. Let G = U1 − U2 where U1 6= X

and U1, U2 ∈ RGαO(X). Then x ∈ U1 and for y /∈ G we have two cases:
(a) y /∈ U1; (b) y ∈ U1 and y /∈ U2.
In case (a), x ∈ U1 but y /∈ U1;
In case (b), y ∈ U2 but x /∈ U2. Hence X is rgα0.
(ii) Sufficiency. Remark 5.1(iv).
Necessity. Suppose X is rgα − D1. Then for each x 6= y ∈ X, we have rgαD-sets

G1, G2 3 x ∈ G1; y /∈ G1; y ∈ G2, x /∈ G2. Let G1 = U1 − U2, G2 = U3 − U4. From x /∈ G2, it
follows that either x /∈ U3 or x ∈ U3 and x ∈ U4. We discuss the two cases separately.

(1) x /∈ U3. By y /∈ G1 we have two subcases:
(a) y /∈ U1. From x ∈ U1 − U2, it follows that x ∈ U1 − (U2 ∪ U3) and by y ∈ U3 − U4, we

have y ∈ U3 − (U1 ∪ U4). Therefore (U1 − (U2 ∪ U3)) ∩ (U3 − (U1 ∪ U4) = φ.
(b) y ∈ U1 and y ∈ U2. We have x ∈ U1 − U2, y ∈ U2.(U1 − U2) ∩ U2 = φ.
(2) x ∈ U3 and x ∈ U4. We have y ∈ U3 − U4, x ∈ U4.(U3 − U4) ∩ U4 = φ.
Therefore X is rgα−D2.
Corollary 5.1. If X is rgα−D1, then it is rgα0.
Proof. Remark 5.1(iv) and Theorem 5.1(vii).
Definition 5.4. A point x ∈ X which has X as the unique rgα−neighborhood is called

rgc.c point.
Theorem 5.3. For an rgα0 space X the following are equivalent:
(1) X is rgα−D1;
(2) X has no rgc.c point.
Proof. (1)⇒(2): Since X is rgα−D1, then each point x of X is contained in a rgαD-set

O = U − V and thus in U . By definition U 6= X. This implies that x is not a rgc.c point.
(2)⇒(1): If X is rgα0, then for each x 6= y ∈ X, at least one of them, x (say) has a

rgα−neighborhood U containing x and not y. Thus U 6= X is a rgαD-set. If X has no rgc.c
point, then y is not a rgc.c point. This means ∃ rgα−neighborhood V of y) 3 V 6= X. Thus
y ∈ (V − U) but not x and V − U is a rgαD-set. Hence X is rgα−D1.

Remark 5.2. It is clear that an rgα0 space X is not rgα−D1 iff there is a unique rgα−c.c
point in X. It is unique because if x and y are both rgc.c point in X, then at least one of
them say x has a rgα−neighborhood U containing x but not y. But this is a contradiction since
U 6= X.

Definition 5.5. X is rgα−symmetric if for x and y in X, x ∈ rgα{y} implies y ∈ rgα{x}.
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Theorem 5.4. X is rgα−symmetric iff {x} is rgα-closed for each x ∈ X.
Proof. Assume that x ∈ rgα{y} but y /∈ rgα{x}. This means that [rgα{x}]c contains

y. This implies that rgα{y} is a subset of [rgα{x}]c. Now [rgα{x}]c contains x which is a
contradiction. Conversely, suppose that {x} ⊂ E ∈ RGαO(X) but rgα{x} is not a subset of
E. This means that rgα{x} and Ec are not disjoint. Let y belongs to their intersection. Now
we have x ∈ rgα{y} which is a subset of Ec and x /∈ E. But this is a contradiction.

Corollary 5.2. If X is a rgα1, then it is rgα−symmetric.
Proof. In a rgα1 space, singleton sets are rgα−closed (Theorem 3.2(ii)) and therefore

rgα−closed (Remark 5.3). By Theorem 5.4, the space is rgα−symmetric.
Corollary 5.3. The following are equivalent:
(1) X is rgα−symmetric and rgα0;
(2) X is rgα1.
Proof. By Corollary 5.2 and Remark 5.1 it suffices to prove only (1) → (2). Let x 6= y

and by rgα0, we may assume that x ∈ G1 ⊂ {y}c for some G1 ∈ RGαO(X). Then x /∈ rg{y}−
and hence y /∈ rg{x}−. There exists G2 ∈ RGαO(X) 3 y ∈ G2 ⊂ {x}c and X is a rgα1 space.

Theorem 5.5. For an rgα−symmetric space X the following are equivalent: (1) X is
rgα0; (2) X is rgα−D1; (3) X is rgα1.

Proof. (1)⇒(3): Corollary 5.3 and (3) ⇒ (2) ⇒ (1): Remark 5.1.
Theorem 5.6. If f is a rgα−irresolute surjection and E is rgαD-set in Y , then f−1(E) is

rgαD-set in X.
Proof. Let E be a rgαD-set in Y . Then there are rgα−open sets U1 and U2 in Y such that

E = U1 − U2 and U1 6= Y . By the rgα−irresoluteness of f, f−1(U1) and f−1(U2) are rgα−open
in X. Since U1 6= Y , we have f−1(U1) 6= X Hence f−1(E) = f−1(U1)− f−1(U2) is a rgα− D-set.

Theorem 5.7. If Y is rgα−D1 and f is bijective, rgα−irresolute, then X is rgα−D1.
Proof. Suppose that Y is a rgα−D1 space. Let x and y be any pair of distinct points in

X. Since f is injective and Y is rgα−D1, there exist rgα−D-sets Gz and Gy of Y containing
f (x) and f (y) respectively, such that f(y) /∈ Gz and f(x) /∈ Gy. By Theorem 5.6, f−1(Gz) and
f−1(Gy) are rgα−D-sets in X containing x and y, respectively. Therefore X is a rgα − D1

space.
Theorem 5.8. X is rgα −D1 iff for each pair x 6= y ∈ X, ∃ a rgα−irresolute surjective

function f, where Y is an rgα−D1 space 3 f(x) 6= f(y).
Proof. Necessity. For every x 6= y ∈ X, it suffices to take the identity function on X.

Sufficiency. Let x 6= y ∈ X. By hypothesis, ∃ a rgα−irresolute, surjective function f from
X onto a rgα − D1 space Y such that f(x) 6= f(y). Therefore, there exist disjoint rgα−D-
sets Gx;Gy ⊂ Y 3 f(x) ∈ Gx and f(y) ∈ Gy. Since f is rgα−irresolute and surjective, by
Theorem 5.6, f−1(Gx) and f−1(Gy) are disjoint rgα−D-sets in X containing x and y respectively.
Therefore X is rgα−D1 space.

Corollary 5.4. Let {Xα/α ∈ I} be any family of topological spaces. If Xα is rgα −D1

for each α ∈ I, then the product ΠXα is rgα−D1.
Proof. Let (xα) and (yα) be any pair of distinct points in ΠXα. Then there exists an

index β ∈ I such that xβ 6= yβ . The natural projection Pβ : ΠXα → Xβ is almost continuous
and almost open and Pβ((xα)) = Pβ((yα)). Since Xβ is rgα−D1, ΠXα is rgα−D1.
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Conclusion. In this paper we defined new separation axioms using rgα−open sets and
studied their interrelations with other separation axioms.
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§1. Introduction

The fuzzy concept has invaded almost all branches of mathematics ever since the intro-
duction of fuzzy sets by L. A. Zadeh [14]. The theory of fuzzy topological space was introduced
and developed by C. L. Chang [7] and since then various notions in classical topology have been
extended to fuzzy topological space. The idea of “intuitionistic fuzzy set”was first published
by Atanassov [1] and many works by the same author and his colleagues appeared in the liter-
ature [2−4]. Later, this concept was generalized to“intuitionistic L - fuzzy sets”by Atanassov
and Stoeva [5]. In classical topology the class of somewhat continuous functions was introduced
by Karl R. Gentry and Hunghes B. Hoyle III in [11]. We have extended this concepts to fuzzy
topological space and in this connection, we have introduced the concept of somewhat fuzzy
continuous functions and somewhat fuzzy open hereditarily irresolvable by G. Thangaraj and
G. Balasubramanian in [12]. The concepts of resolvability and irresolvability in topological
spaces was introduced by E. Hewit in [10]. The concept of open hereditarily irresolvable spaces
in the classical topology was introduced by A. Geli’kin in [9]. The concept on fuzzy resolv-
able and fuzzy irresolvable spaces was introduced by G. Thangaraj and G. Balasubramanian



60 R. Dhavaseelan, E. Roja and M. K. Uma No. 2

in [13]. In this paper the concept of intuitionistic fuzzy resolvable, intuitionistic fuzzy irre-
solvable, intuitionistic fuzzy open hereditarily irresolvable spaces and maximally intuitionistic
fuzzy irresolvable space are introduced. Also we discuss and study several interest properties
of the intuitionistic fuzzy open hereditarily irresolvable spaces besides giving characterization
of these spaces by means of somewhat intuitionistic fuzzy continuous functions and somewhat
intuitionistic fuzzy open functions. Some interesting properties and related examples are given.

§2. Preliminaries

Definition 2.1.[3] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for
short) A is an object having the form A = {〈x, µA(x), δA(x)〉 : x ∈ X} where the function
µA : X → I and δA : X → I denote the degree of membership (namely µA(x)) and the
degree of nonmembership(δA(x)) of each element x ∈ X to the set A, respectively, and 0 ≤
µA(x) + δA(x) ≤ 1 for each x ∈ X.

Definition 2.2.[3] Let X be a nonempty set and the intuitionistic fuzzy sets A and B in
the form A = {〈x, µA(x), δA(x)〉 : x ∈ X}, B = {〈x, µB(x), δB(x)〉 : x ∈ X}. Then

(a) A ∩B = {〈x, µA(x) ∧ µB(x), δA(x) ∨ δB(x)〉 : x ∈ X};
(b) A ∪B = {〈x, µA(x) ∨ µB(x), δA(x) ∧ δB(x)〉 : x ∈ X}.
Now we shall define the image and preimage of intuitionistic fuzzy sets. Let X and Y be

two nonempty sets and f : X → Y be a function.
Definition 2.3.[3] (a) If B = {〈y, µB(y), δB(y)〉 : y ∈ Y } is an intuitionistic fuzzy set in Y ,

then the preimage of B under f, denoted by f−1(B), is the intuitionistic fuzzy set in X defined
by f−1(B) = {〈x, f−1(µB)(x), f−1(δB)(x)〉 : x ∈ X}.

(b) If A = {〈x, λA(x), ϑA(x)〉 : x ∈ X} is an intuitionistic fuzzy set in X, then the
image of A under f, denoted by f(A), is the intuitionistic fuzzy set in Y defined by f(A) =
{〈y, f(λA)(y), (1− f(1− ϑA))(y)〉 : y ∈ Y }.

Where

f(λA)(y) =





supx∈f−1(y) λA(x), if f−1(y) 6= ∅,
0, otherwise,

(1− f(1− ϑA))(y) =





infx∈f−1(y) ϑA(x), if f−1(y) 6= ∅,
1, otherwise.

For the sake of simplicity, let us use the symbol f−(ϑA) for 1− f(1− ϑA).
Definition 2.4.[8] Let A be an intuitionistic fuzzy set in intuitionistic fuzzy topological

space (X, T ). Then
IF int(A) =

⋃{G | G is an intuitionistic fuzzy open in X and G ⊆ A} is called an
intuitionistic fuzzy interior of A;

IFcl(A) =
⋂{G |G is an intuitionistic fuzzy closed in X and G ⊇ A} is called an intu-

itionistic fuzzy closure of A.
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Proposition 2.1.[8] Let (X, T ) be any intuitionistic fuzzy topological space. Let A be
an intuitionistic fuzzy sets in (X, T ). Then the intuitionistic fuzzy closure operator satisfy the
following properties:

(i) 1− IFcl(A) = IF int(1−A);
(ii) 1− IF int(A) = IFcl(1−A).
Definition 2.5.[12] A fuzzy set λ in a fuzzy topological space (X, T ) is called fuzzy dense

if there exists no fuzzy closed set µ in (X, T ) such that λ < µ < 1.
Definition 2.6.[13] Let (X, T ) be a fuzzy topological space. (X, T ) is called fuzzy resolvable

if there exists a fuzzy dense set λ in (X, T ) such that cl(1− λ) = 1. Otherwise (X, T ) is called
fuzzy irresolvable.

Definition 2.7.[6] A fuzzy topological space (X, T ) is called a fuzzy submaximal space if
for each fuzzy set λ in (X, T ) such that cl(λ) = 1, then λ ∈ T .

Definition 2.8.[13] Let (X, T ) be a fuzzy topological space. (X, T ) is called fuzzy open
hereditarily irresolvable if intcl(λ) 6= 0 then intλ 6= 0 for any fuzzy set λ in (X, T ).

Definition 2.9.[12] Let (X, T ) and (Y, S) be any two fuzzy topological spaces. A function
f : (X, T ) → (Y, S) is called somewhat fuzzy continuous if λ ∈ S and f−(λ) 6= 0 =⇒ there
exists µ ∈ T such that µ 6= 0 and µ ≤ f−(λ).

Definition 2.10.[12] Let (X, T ) and (Y, S) be any two fuzzy topological spaces. A function
f : (X, T ) → (Y, S) is called somewhat fuzzy open if λ ∈ T and λ 6= 0 =⇒ there exists µ ∈ S

such that µ 6= 0 and µ ≤ f(λ).

§3. Intuitionistic fuzzy resolvable and intuitionistic fuzzy

irresolvable

Definition 3.1. An intuitionistic fuzzy set A in intuitionistic fuzzy topological space
(X, T ) is called intuitionistic fuzzy dense if there exists no intuitionistic fuzzy closed set B in
(X, T ) such that A ⊂ B ⊂ 1∼.

Definition 3.2. Let (X, T ) be an intuitionistic fuzzy topological space. (X, T ) is called
intuitionistic fuzzy resolvable if there exists a intuitionistic fuzzy dense set A in (X, T ) such
that IFcl(1−A) = 1∼. Otherwise, (X, T ) is called intuitionistic fuzzy irresolvable.

Example 3.1. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A, B and C as follows,

A = 〈x, ( a
0.6 , b

0.6 , c
0.5 ), ( a

0.3 , b
0.3 , c

0.5 )〉,

B = 〈x, ( a
0.4 , b

0.4 , c
0.5 ), ( a

0.5 , b
0.5 , c

0.4 )〉,

and

C = 〈x, ( a
0.3 , b

0.3 , c
0.4 ), ( a

0.7 , b
0.7 , c

0.6 )〉.

Clearly T = {0∼, 1∼, A} is an intuitionistic fuzzy topology on X. Thus (X, T ) is an
intuitionistic fuzzy topological space. Now IF int(B) = 0∼, IF int(C) = 0∼, IF int(1 − B) =
0∼, IF int(1−C) = A, IFcl(B) = 1∼, IFcl(C) = 1∼, IFcl(1−B) = 1∼ and IFcl(1−C) = 1−
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A. Hence there exists a intuitionistic fuzzy dense set B in (X, T ), such that IF int(1−B) = 1∼.
Hence the intuitionistic fuzzy topological space (X, T ) is called a intuitionistic fuzzy resolvable.

Definition 3.2. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A, B and C as
follows,

A = 〈x, ( a
0.6 , b

0.5 , c
0.5 ), ( a

0.4 , b
0.5 , c

0.5 )〉,

B = 〈x, ( a
0.7 , b

0.8 , c
0.6 ), ( a

0.3 , b
0.1 , c

0.3 )〉,

and

C = 〈x, ( a
0.6 , b

0.5 , c
0.5 ), ( a

0.4 , b
0.4 , c

0.4 )〉.

Clearly T = {0∼, 1∼, A} is an intuitionistic fuzzy topology on X. Thus (X, T ) is an
intuitionistic fuzzy topological space. Now IF int(B) = A, IF int(C) = A, IFcl(B) =
1∼, IFcl(C) = 1∼ and IFcl(B) = 1∼. Thus B and C are intuitionistic fuzzy dense set in
(X, T ), such that IFcl(1−B) = 1−A and IFcl(1−C) = 1−A. Hence the intuitionistic fuzzy
topological space (X, T ) is called a intuitionistic fuzzy irresolvable.

Proposition 3.1. Let (X, T ) be an intuitionistic fuzzy topological space. (X, T ) is an
intuitionistic fuzzy resolvable space iff (X, T ) has a pair of intuitionistic fuzzy dense set A1 and
A2 such that A1 ⊆ 1−A2.

Proof. Let (X, T ) be an intuitionistic fuzzy topological space and (X, T ) is an intuitionistic
fuzzy resolvable space. Suppose that for all intuitionistic fuzzy dense sets Ai and Aj , we have
Ai 6⊆ 1 − Aj . Then Ai ⊃ 1 − Aj . Then IFcl(Ai) ⊃ IFcl(1 − Aj) which implies that 1∼
⊃ IFcl(1 − Aj) then IFcl(1 − Aj) 6= 1∼. Also Aj ⊃ 1 − Ai then IFcl(Aj) ⊃ IFcl(1 − Ai)
which implies that 1∼ ⊃ IFcl(1 − Ai). Then IFcl(1 − Ai) 6= 1∼. Hence IFcl(Ai) = 1∼, but
IFcl(1−Ai) 6= 1∼ for all intuitionistic fuzzy set Ai in (X, T ). Which is a contradiction. Hence
(X, T ) has a pair of intuitionistic fuzzy dense set A1 and A2 such that A1 ⊆ 1−A2.

Converse, suppose that the intuitionistic fuzzy topological space (X, T ) has a pair of in-
tuitionistic fuzzy dense set A1 and A2, such that A1 ⊆ 1 − A2. Suppose that (X, T ) is a
intuitionisic fuzzy irresolvable space. Then for all intuitionistic fuzzy dense set A1 and A2 in
(X, T ), we have IFcl(1−A1) 6= 1∼. Then IFcl(1−A2) 6= 1∼ implies that there exists a intu-
itionistic fuzzy closed set B in (X, T ), such that 1−A2 ⊂ B ⊂ 1∼. Then A1 ⊆ 1−A2 ⊂ B ⊂ 1∼
implies that A1 ⊂ B ⊂ 1∼. Which is a contradiction. Hence (X, T ) is a intuitionistic fuzzy
resolvable space.

Proposition 3.2. If (X, T ) is intuitionistic fuzzy irresolvable iff IF int(A) 6= 0∼ for all
intuitionistic dense set A in (X, T ).

Proof. Since (X, T ) is an intuitionistic fuzzy irresolvable space, for all intuitionistic fuzzy
dense set A in (X, T ), IFcl(1−A) 6= 1∼. Then 1− IF int(A) 6= 1∼, which implies IF int(A) 6=
0∼.

Conversely IF int(A) 6= 0∼, for all intuitionistic fuzzy dense set A in (X, T ). Suppose that
(X, T ) is intuitionistic fuzzy resolvable. Then there exists a intuitionistic fuzzy dense set A in
(X, T ), such that IFcl(1 − A) = 1∼ implies that 1 − IF int(A) = 1∼, implies IF int(A) = 0∼.
Which is a contradiction. Hence (X, T ) is intuitionistic fuzzy irresolvable space.
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Definition 3.3. An intuitionistic fuzzy topological space (X, T ) is called a intuitionistic
fuzzy submaximal space if each intuitionistic fuzzy set A in (X, T ) such that IFcl(A) = 1∼,
then A ∈ T .

Proposition 3.3. If the intuitionistic fuzzy topological space (X, T ) is intuitionistic fuzzy
submaximal, then (X, T ) is intuitionistic fuzzy irresolvable.

Proof. Let (X, T ) be a intuitionistic fuzzy submaximal space. Assume that (X, T ) is a
intuitionistic fuzzy resolvable space. Let A be a intuitionistic fuzzy dense set in (X, T ). Then
IFcl(1−A) = 1∼. Hence 1− IF int(A) = 1∼, which implies that IF int(A) = 0∼. Then A 6∈ T .
Which is a contradiction to intuitionistic fuzzy submaximal space of (X, T ). Hence (X, T ) is
intuitionistic fuzzy irresolvable space.

The converse Proposition 3.3 is not true. See Example 3.2.
Definition 3.4. An intuitionistic fuzzy topological space (X, T ) is called a maximal in-

tuitionistic fuzzy irresolvable space if (X, T ) is intuitionistic fuzzy irresolvable and every intu-
itionistic fuzzy dense set A of (X, T ) is intuitionistic fuzzy open.

Example 3.3. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A, B, A ∩ B and
A ∪B as follows,

A = 〈x, ( a
0.5 , b

0.4 , c
0.5 ), ( a

0.4 , b
0.4 , c

0.4 )〉,

B = 〈x, ( a
0.4 , b

0.5 , c
0.5 ), ( a

0.5 , b
0.5 , c

0.5 )〉,

A ∩B = 〈x, ( a
0.4 , b

0.4 , c
0.5 ), ( a

0.5 , b
0.5 , c

0.5 )〉,

and

A ∪B = 〈x, ( a
0.5 , b

0.5 , c
0.5 ), ( a

0.4 , b
0.4 , c

0.4 )〉.

Clearly T = {0∼, 1∼, A, B, A ∩ B,A ∪ B} is an intuitionistic fuzzy topology on X. Thus
(X, T ) is an intuitionistic fuzzy topological space. Now IF int(1 − A) = 0∼, IF int(1 − B) =
∨{0∼, B, A ∩B} = B, IF int(1−A ∪B) = 0∼, IF int(1−A ∩B) = ∨{0∼, B, A ∩B} = B and
IFcl(A) = 1∼, IFcl(B) = 1−B, IFcl(A∪B) = 1∼, IFcl(A∩B) = 1−B, IFcl(1−A∪B) =
∧{1∼, 1 − A ∪ B, 1 − B, 1 − A ∩ B} = 1 − A ∪ B, IFcl(1 − A) = ∧{1∼, 1 − A, 1 − A ∩ B} =
1 − A, IFcl(0∼) 6= 1∼. Thus intuitionistic fuzzy dense set in (X, T ) are A,A ∪ B, 1∼ are
intuitionistic fuzzy open in (X, T ). Hence (X, T ) is an intuitionistic fuzzy irresolvable and
every intuitionistic fuzzy dense set of (X, T ) is intuitionistic fuzzy open. Therefore (X, T ) is a
maximally intuitionistic fuzzy irresolvable space.

§4. Intuitionistic fuzzy open hereditarily irresolvable

Definition 4.1. (X, T ) is said to be intuitionistic fuzzy open hereditarily irresolvable if
IF int(IFcl(A)) 6= 0∼ then IF int(A) 6= 0∼ for any intuitionistic fuzzy set A in (X, T ).

Example 4.1. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A1, A2 and A3 as
follows,
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A = 〈x, ( a
0.4 , b

0.4 , c
0.4 ), ( a

0.5 , b
0.5 , c

0.5 )〉,

A = 〈x, ( a
0.6 , b

0.5 , c
0.4 ), ( a

0.4 , b
0.5 , c

0.4 )〉,

and

A = 〈x, ( a
0.4 , b

0.4 , c
0.5 ), ( a

0.4 , b
0.4 , c

0.5 )〉.

Clearly T = {0∼, 1∼, A1, A2} is an intuitionistic fuzzy topology on X. Thus (X, T ) is an
intuitionistic fuzzy topological space. Now IFcl(A1) = 1−A1; IFcl(A2) = 1∼ and IF int(A3) =
A1. Also IF int(IFcl(A1)) = IF int(1 − A1) = 1 − A1 6= 0∼ and IF int(A1) = A1 6= 0∼,
IF int(IFcl(A2)) = IF int(1∼) = 1∼ 6= 0∼ and IF int(A2) = A2 6= 0∼, IF int(IFcl(A3)) =
IF int(1 − A1) = 1 − A1 6= 0∼ and IF int(A3) = A1 6= 0∼ and IF int(IFcl(1 − A3)) =
IF int(1 − A1) = 1 − A1 6= 0∼ and IF int(1 − A3) = A1 6= 0∼. Hence if IF int(IFcl(A)) 6= 0∼
then IF int(A) 6= 0∼ for any non zero intuitionistic fuzzy set A in (X, T ). Thus (X, T ) is a
intuitionistic fuzzy open hereditarily irresolvable space.

Proposition 4.1. Let (X, T ) be an intuitionistic fuzzy topological space. If (X, T ) is
intuitionistic fuzzy open hereditarily irresolvable then (X, T ) is intuitionistic fuzzy irresolvable.

Proof. Let A be an intuitionistic fuzzy dense set in (X, T ). Then IFcl(A) = 1∼, which
implies that IF int(IFcl(A)) = 1∼ 6= 0∼. Since (X, T ) is intuitionistic fuzzy open hereditarily
irresolvable, we have IF int(A) 6= 0∼. Therefore by Proposition 3.2, IF int(A) 6= 0∼ for all
intuitionistic fuzzy dense set in (X, T ), implies that (X, T ) is intuitionistic fuzzy irresolvable.
The converse is not true (See Example 4.2).

Example 4.2. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A, B and C as follows,

A = 〈x, ( a
0.3 , b

0.3 , c
0.4 ), ( a

0.5 , b
0.5 , c

0.5 )〉,

B = 〈x, ( a
0.4 , b

0.5 , c
0.4 ), ( a

0.4 , b
0.4 , c

0.4 )〉,

and

C = 〈x, ( a
0.4 , b

0.4 , c
0.4 ), ( a

0.3 , b
0.3 , c

0.3 )〉.

Clearly T = {0∼, 1∼, A, B} is an intuitionistic fuzzy topology on X. Thus (X, T ) is an
intuitionistic fuzzy topological space. Now C and 1∼ are intuitionistic fuzzy dense sets in
(X, T ). Then IF int(C) = A 6= 0∼ and IF int(1∼) 6= 0∼. Hence (X, T ) i an intuitionistic fuzzy
irresolvable. But IF int(IFcl(1 − C)) = IF int(1 − A) = A 6= 0∼ and IF int(1 − C) = 0∼.
Therefore (X, T ) is not a intuitionistic fuzzy open hereditarily irresolvable space.

Proposition 4.2. Let (X, T ) be an intuitionistic fuzzy open hereditarily irresolvable.
Then IF int(A) 6⊆ 1− IF int(B) for any two intuitionistic fuzzy dense sets A and B in (X, T ).

Proof. Let A and B be any two intuitionistic fuzzy dense sets in (X, T ). Then IFcl(A) =
1∼ and IFcl(B) = 1∼ implies that IF int(IFcl(A)) 6= 0∼ and IF int(IFcl(B)) 6= 0∼. Since
(X, T ) is intuitionistic fuzzy open hereditarily irresolvable, IF int(A) 6= 0∼ and IF int(B) 6= 0∼.
Hence by Proposition 3.1, A 6⊆ 1−B. Therefore IF int(A) ⊆ A 6⊆ 1−B ⊆ 1−IF int(B). Hence
we have IF int(A) ⊆ 1−IF int(B) for any two intuitionistic fuzzy dense sets A and B in (X, T ).
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Proposition 4.3. Let (X, T ) be an intuitionistic fuzzy topological space. If (X, T ) is intu-
itionistic fuzzy open hereditarily irresolvable then IF int(A) = 0∼ for any nonzero intuitionistic
fuzzy dense set A in (X, T ) implies that IF int(IFcl(A)) = 0∼.

Proof. Let A be an intuitionistic fuzzy set in (X, T ), such that IF int(A) = 0∼. We claim
that IF int(IFcl(A)) = 0∼. Suppose that IF int(IFcl(A)) = 0∼. Since (X, T ) is intuitionistic
fuzzy open hereditarily irresolvable, we have IF int(A) 6= 0∼. Which is a contradiction to
IF int(A) = 0∼. Hence IF int(IFcl(A)) = 0∼.

Proposition 4.4. Let (X, T ) be an intuitionistic fuzzy topological space. If (X, T ) is intu-
itionistic fuzzy open hereditarily irresolvable then IFcl(A) = 1∼ for any nonzero intuitionistic
fuzzy dense set A in (X, T ) implies that IFcl(IF int(A)) = 0∼.

Proof. Let A be an intuitionistic fuzzy set in (X, T ), such that IFcl(A) = 1∼. Then we
have 1 − IFcl(A) = 0∼, which implies that IF int(1 − A) = 0∼. Since (X, T ) is intuitionistic
fuzzy open hereditarily irresolvable by Proposition 4.3. We have that IF int(IFcl(1−A)) = 0∼.
Therefore 1− IFcl(IF int(A)) = 0∼ implies that IFcl(IF int(A)) = 1∼.

§5. Somewhat intuitionistic fuzzy continuous and some-

what intuitionistic fuzzy open

Definition 5.1. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological spaces.
A function f : (X, T ) → (Y, S) is called somewhat intuitionistic fuzzy continuous if A ∈ S and
f−1(A) 6= 0∼, then there exists a B ∈ T , such that B 6= 0∼ and B ⊆ f−1(A).

Definition 5.2. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological spaces. A
function f : (X, T ) → (Y, S) is called somewhat intuitionistic fuzzy open if A ∈ T and A 6= 0∼,
then there exists a B ∈ S, such that B 6= 0∼ and B ⊆ f(A).

Proposition 5.1. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological spaces.
If the function f : (X, T ) → (Y, S) is somewhat intuitionistic fuzzy continuous and 1-1 and if
IF int(A) = 0∼ for any nonzero intuitionistic fuzzy set A in (X, T ) then IF int(f(A)) = 0∼ in
(Y, S).

Proof. Let A be a nonzero intuitionistic fuzzy set in (X, T ), such that IF int(A) = 0∼. To
prove that IF int(f(A)) = 0∼. Suppose that IF int(f(A)) 6= 0∼ in (Y, S). Then there exists an
nonzero intuitionistic fuzzy set B in (Y, S), such that B ⊆ f(A). Then f−1(B) ⊆ f−1(f(A)).
Since f is somewhat intuitionistic fuzzy continuous, there exists a C ∈ T , such that C 6= 0∼
and C ⊆ f−1(B). Hence C ⊆ f−1(B) ⊆ A, which implies that IF int(A) 6= 0∼. Which is a
contradiction. Hence IF int(f(A)) = 0∼ in (Y, S).

Proposition 5.2. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological
spaces. If the function f : (X, T ) → (Y, S) is somewhat intuitionistic fuzzy continuous and
1-1 and if IF int(IFcl(A)) = 0∼ for any nonzero intuitionistic fuzzy set A in (X, T ) then
IF int(IFcl(f(A))) = 0∼ in (Y, S).

Proof. Let A be a nonzero intuitionistic fuzzy set in (X, T ), such that IF int(IFcl(A)) =
0∼. We claim that IF int(IFcl(f(A))) = 0∼ in (Y, S). Suppose that IF int(IFcl(f(A))) 6= 0∼
in (Y, S). Then IFcl(f(A)) 6= 0∼. Then 1 − IFcl(f(A)) 6= 0∼. Now 1 − IFcl(f(A)) 6= 0∼ ∈
S and since f is somewhat intuitionistic fuzzy continuous, there exists a B ∈ T , such that
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B 6= 0∼ and B ⊆ f−1(1 − IFcl(f(A))). That is B ⊆ 1 − f−1(IFcl(f(A))), which implies
that f−1(IFcl(f(A))) ⊆ 1 − B. Since f is 1-1, thus A ⊆ f−1(f(A) ⊆ f−1(IFcl(f(A))) ⊆
1 − B, implies that A ⊆ 1 − B. Therefore B ⊆ 1 − A implies that IF int(1 − A) 6= 0∼. Let
IF int(1 − A) = C 6= 0∼. Then we have IFcl(IF int(1 − A)) = IFcl(C) 6= 1∼, implies that
IF int(IFcl(A)) 6= 0∼. Which is a contradiction. Hence IF int(Ifcl(f(A))) = 0∼ in (Y, S).

Proposition 5.3. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological spaces.
If the function f : (X, T ) → (Y, S) is somewhat intuitionistic fuzzy open and if IF int(A) = 0∼
for any nonzero intuitionistic fuzzy set A in (Y, S) then IF int(f−1(A)) = 0∼ in (X, T ).

Proof. Let A be a nonzero intuitionistic fuzzy set in (Y, S), such that IF int(A) = 0∼.
We claim that IF int(f−1(A)) = 0∼ in (X, T ). Suppose that IF int(f−1(A)) 6= 0∼ in (X, T ).
Then there exists a nonzero intuitionistic fuzzy open set B in (X, T ), such that B ⊆ f−1(A).
Then we have f(B) ⊆ f(f−1(A)) ⊆ A. Which implies that f(B) ⊆ A. Since f is somewhat
intuitionistic fuzzy open, there exists a C ∈ S, such that C 6= 0∼ and C ⊆ f(B). Hence
C ⊆ f(B) ⊆ A, which implies that C ⊆ A. Hence IF int(A) 6= 0∼. Which is a contradiction.
Hence IF int(f−1(A)) = 0∼ in (X, T ).

Proposition 5.4. Let (X, T ) and (Y, S) be any two intuitionistic fuzzy topological spaces.
Let (X, T ) be an intuitionistic fuzzy open hereditarily irresolvable space. If f : (X, T ) → (Y, S)
is somewhat intuitionistic fuzzy open and somewhat intuitionistic fuzzy continuous, 1-1 and
onto function then (Y, S) is intuitionistic fuzzy open hereditarily space.

Proof. Let A be a nonzero intuitionistic fuzzy set in (Y, S), such that IF int(A) = 0∼.
Now IF int(A) = 0∼ and f is somewhat intuitionistic fuzzy open implies that by Proposition
5.3, IF int(f−1(A)) = 0∼ in (X, T ). Since (X, T ) is intuitionistic fuzzy open hereditarily ir-
resolvable space, we have IF int(IFcl(f−1(A))) = 0∼ in (X, T ), by Proposition 4.3. Since
IF int(IFcl(f−1(A))) = 0∼ and f is somewhat intuitionistic fuzzy continuous by Proposition
5.2, we have IF int(IFcl(f(f−1(A)))) = 0∼. Since f is onto, thus IF intIFcl(A) = 0∼. Hence
by Proposition 4.3. (Y, S) is an intuitionistic fuzzy open hereditarily irresolvable space.
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§1. Introduction

The classical Weyl transform was first introduced in [6] by Hermann Weyl arising in quan-
tum mechanics. The theory of Weyl transform is a vast subject of remarkable interest both in
mathematical analysis and physics. In the theory of partial differential equations Weyl opera-
tors have been studied as a particular type of pseudo-differential operators. They have proved
to be a useful technique in a quantity of problems like elliptic theory, spectral asymptotics,
regularity problems, etc [7].

There is so many operators in theoretical mathematics that have powerful analytic methods
for achieving the relationships and proposed which are require. But in the Theoretical physics
(or applied mathematics!) we deal with functions or equations that do not abbey ordinary laws.

As operators acting on L2(Rn), Weyl operators have been deeply investigated mainly in
the case where the symbol is a smooth function belonging to some special symbol classes [1−2].

In the microlocal analysis we deal with the space of symbols which are infinitely differen-
tiable functions and make it into Fréchet space by means of seminorms [5]. But in the Physics
observations we often deal with functions which vary in respect of time and thus make nets of
functions. In [4] introduced a class of symbols that vary in respect of time and are integrable
with respect to an arbitrary measure. By means of this class of symbols we can generalize the
classical theory with supersymbols and supersigular pseudodifferential operators.
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§2. Preliminaries

Suppose N is a fixed natural number. The pseudodifferential operator (abb. ψdo) gener-
ates from Sm symbols as follow [4]

OPψ =
∫ ∫

ei(x−y)ξψ(x, ξ)f(y)dy dξ,

in which ψ(x, ξ) ∈ Sm, such that for all (α, β, n) ∈ ZN
+ × ZN

+ × Z+,

sup
|x|≤n

sup
ξ∈RN

|∂α
ξ ∂β

xψ(x, ξ)|(1 + |ξ|)−m+|α| < ∞.

One of the advantage operators which is used in the quantum meachanics is Wigner transform
[7]. Let f and g be in the Schwartz space S(RN ). Then the W (f, g) on the R2N , is defined by

W (f, g)(x, ξ) = (2π)−
N
2

∫
e−iξyf

(
x +

y

2

)
g

(
x− y

2

)
dy,

which is called the Wigner transform of f and g.
In addition to usefulness of the Wigner transform, the other application of that, is its

beautiful relationship with one of the most important operator in the quantum machanics, i. e.
Weyl transform,

Definition 2.1. Suppose that ψ lies in Sm. Then the linear operator Wψ defined by

(Wψf)(x) =
∫ ∫

ei(x−y)·ξψ
(

x + y

2
, ξ

)
f(y)dy dξ,

is the Weyl transform of the function f ∈ S(RN ).
Now we want to define a class of ψdos such that be more general and applicable in physics

phenomena.
Definition 2.2. Given an arbitrary measure σ on RN . If ψ : RN → Sm (m ∈ R), ψ is

said to be supersymbol if for all (α, β, n) ∈ ZN
+ × ZN

+ × Z+,
∫

sup
|x|<n

sup
ξ∈R

|∂α
ξ ∂β

xψ(x, ξ)|(1 + |ξ|)−m+|α|dσ(t) < ∞.

The class of such ψ is denoted by SSm.
Each supersymbol, regarded together with the measure generates a supersingular pseudod-

ifferential operator (abb. sψdo) as follows:

T (ψ, σ)(f) =
∫ ∫ ∫

eixξψ(t)(x, ξ)e−iyθf(y − t)dy dθ dσ(t).

As the trivial case when σ is the unit measure δ(t) supported at origin, T (ψ, σ) is the pseu-
dodofferential operator OPψ(0). As usual, notations OPSSm(σ) and OPSS−∞ etc. Stand
for the space of operators generated by the corresponding space of supersymbols, i.e. of
SSm(σ), SS−∞ ≡ ∩mSSm. It is easy to check that for T (ψ, σ) we can rewrite it as

T (ψ, σ)(f) =
∫ ∫ ∫

ei(x−y−t)·ξψ(t)(x, θ)f(y)dy dθ dσ(t).
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This technique is very useful for generalization of the differential operators to operators
for an arbitrary measure space. So we can define a general Wigner transform that is integrated
with an arbitrary measure σ on RN as follows

SW (f, g)(x, t, ξ) = (2π)−
N
2

∫
e−iξ·yf

(
x− t +

y

2

)
g

(
x− y

2

)
dy,

where x, t, ξ ∈ RN .

Now we are ready for introducing super Weyl transform that is more general and that will
extend the classical theory and make a framework of operators that will be useful in theoretical
physics and applied mathematics.

§3. Super Weyl transform

Definition 3.1. Let ψ(t) be a super symbol and σ be an arbitrary measure on RN . For
both functions f and g in the Schwartz space, the integral

(SWψ(t)f)(x) =
∫ ∫ ∫

ei(x−y−t)·ξψ(t)
(

x + y + t

2
, ξ

)
f(y)dy dξ dσ(t),

is called the super Weyl transform of f and g.

In the next theorem we will illuminate the relationship between the super Weyl transform
and the generalized Wigner transform. The following lemma is needed.

Lemma 3.2. If θ is in C∞0 (RN ), such that θ(0) = 1, then

lim
ε→0+

(2π)−N

∫ ∫ ∫
θ(εξ)ei(x−y−t)·ξψ(t)

(
x + y + t

2
, ξ

)
f(y)dy dξ dσ(t),

exists and is independent of the choice of the function θ. Moreover, the convergence is uniform
with respect to x on RN .

Hint: Note that for any positive integer L,

(1−∆y)L{ei(x−y−t)·ξ} = (1 + |ξ|2)Lei(x−y−t)·ξ.

Theorem 3.3. Let ψ(t) ∈ SSm, m ∈ R, and σ be an finite measure on RN . Then

〈SWψ(t)f, g〉 = (2π)−
N
2

∫ ∫ ∫
ψ(t)(x, ξ)SW (f, g)(x, t, ξ)dx dξ dσ(t), f, g ∈ S(RN ).

Proof. Let θ be any function in C∞0 (RN ) such that θ(0) = 1. Then, by the Lemma,
Lebesgue dominated convergence theorem, and Fubini’s theorem,
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∫ ∫ ∫
ψ(t)(x, ξ)SW (f, g)(x, t, ξ)dx dξ dσ(t)

= lim
ε→0

∫ ∫ ∫
θ(εξ)ψ(t)(x, ξ)SW (f, g)(x, t, ξ)dx dξ dσ(t)

= lim
ε→0

(2π)−
N
2

∫ ∫
θ(εξ)ψ(t)(x, ξ)

×
{∫ ∫

e−iξ·yf
(
x +

y

2

)
g

(
x− t− y

2

)
dy

}
dx dξ dσ(t)

= lim
ε→0

(2π)−
N
2

∫ ∫
θ(εξ)

×
{∫ ∫

ψ(t)(x, ξ)e−iξ·yf
(
x +

y

2

)
g

(
x− t− y

2

)
dy dx

}
dξ dσ(t).

Let u = x − t + y
2 and v = x − y

2 in the last term, by Lemma, Fubini’s Theorem and the
Lebesgue dominated convergence theorem,

∫ ∫ ∫
ψ(t)(x, ξ)SW (f, g)(x, t, ξ)dx dξ dσ(t)

= lim
ε→0

(2π)−
N
2

∫ ∫
θ(εξ)

×
{∫ ∫

ψ(t)
(

u + v + t

2
, ξ

)
ei(v−u−t)ξf(u)g(v)du dv

}
dξdσ(t)

= lim
ε→0

(2π)−
N
2

∫
g(v)

×
{∫ ∫ ∫

θ(εξ)ψ(t)
(

u + v + t

2
, ξ

)
ei(v−u−t)ξf(u)du dξ dσ(t)

}
dv

= (2π)−
N
2

∫
g(v)(SWψ(t)f)(v)dv = (2π)−

N
2 〈SWψ(t)f, g〉

In classical mechanics, the phase space used to describe the motion of a particle moving in
RN is given by

R2N = {(x, ξ); x, ξ ∈ RN},
where the variables x and ξ are used to denote the position and momentum of the particle,
respectively. The observables of the motion are given by real-valued tempered distributions on
R2N . The rules of quantization, with Planck’s constant adjusted to 1, say that a quantum-
mechanical model of the motion can be set up using the Hilbert space L2(RN ) for the phase
space, the multiplication operator on L2(RN ) by the function xj for the position variable xj ,
and the differential operator Dj for the momentum variable ξj .
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§1. Introduction and preliminaries

Let n > 1 be an integer of canonical from n =
∏s

i=1 pai
i . The integer d =

∏s
i=1 pbi

i is called
an exponential divisor of n if bi|ai for every i ∈{1,2,. . . ,s}, notation: d|en. By convention 1|e1.

The integer n > 1 is called e-squarefree, if all exponents a1, . . . , as are squarefree. The
integer 1 is also considered to be e-squarefree. Consider now the exponential squarefree ex-
ponential divisor (e-squarefree e-divisor) of n. Here d =

∏s
i=1 pbi

i is called an e-squarefree
e-divisor of n =

∏s
i=1 pai

i > 1, if b1|a1, · · · bs|as, b1, . . . , bs are squarefree. Note that the integer
1 is e-squarefree but is not an e-divisor of n > 1.

Let t(e)(n) denote the number of e-squarefree e-divisor of n. The function t(e)(n) is called
the e-squarefree e-divisor function, which is a multiplicative and if n =

∏s
i=1 pαi

i > 1, then (see
[1])

t(e)(n) = 2ω(α1) · · · 2ω(αs),

where ω(α) = s denotes the number of distinct prime factors of α. The properties of the
function t(e)(n) were investigated by many authors, see example [4]. Let

A(x) :=
∑

n≤x

t(e)(n),

Recently László Tóth proved that the estimate
∑

n≤x

t(e)(n) = c1x + c2x
1
2 + O(x

1
4+ε)

1This work is supported by N. N. S. F. of China (Grant Nos: 10771127, 11001154) and N. S. F. of Shandong

Province (Nos: BS2009SF018, ZR2010AQ009).
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holds for every ε > 0, where

c1 :=
∏
p

(1 +
∞∑

α=6

2ω(α) − 2ω(α−1)

pα
), (∗)

c2 := ζ(
1
2
)
∏
p

(1 +
∞∑

α=4

2ω(α) − 2ω(α−1) − 2ω(α−2) + 2ω(α−4)

p
α
2

).

Throughout this paper, ε always denotes a fixed but sufficiently small positive constant.
We assume that 1 ≤ a ≤ b are fixed integers, and we denote by d(a, b; k) the number of
representations of k as k = na

1nb
2, where n1, n2 are natural numbers, that is,

d(a, b; k) =
∑

k=na
1nb

2

1,

and d(a, b; k) ¿ nε2 will be used freely.
The aim of this short text is to study the short interval case and prove the following.
Theorem. If x

1
5+2ε < y ≤ x, then

∑

x<n≤x+y

t(e)(n) = c1y + O(yx−
ε
2 + x

1
5+ 3

2 ε),

where c1 is given by (∗).

§2. Proof of the theorem

In order to prove our theorem, we need the following lemmas.
Lemma 1. Suppose s is a complex number (Res > 1), then

F (s) :=
∞∑

n=1

t(e)(n)
ns

=
ζ(s)ζ(2s)

ζ(4s)
G(s),

where the Dirichlet series G(s) :=
∑∞

n=1
g(n)
ns is absolutely convergent for Res > 1/6.

Proof. Here t(e)(n) is multiplicative and by Euler product formula we have for σ > 1 that,

∞∑
n=1

te(n)
ns

=
∏
p

(1 +
te

ps
+

te(p2)
p2s

+
te(p3)
p3s

+ · · · ) (1)

=
∏
p

(1 +
1
ps

+
2
+

2
p3s

+
2

p4s
+ · · · )

=
∏
p

(1− 1
ps

)−1
∏
p

(1− 1
ps

)(1 +
1
ps

+
2

p2s
+

2
p3s

+ · · · )

= ζ(s)ζ(2s)
∏
p

(1− 1
p2s

)(1 +
1

p2s
+

1
p6s

+ · · · )

=
ζ(s)ζ(2s)

ζ(4s)
G(s).
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So we get G(s) :=
∑∞

n=1
g(n)
ns . It is easily seen the Dirichlet series is absolutely convergent

for Res > 1/6.
Lemma 2. Let k ≥ 2 be a fixed integer, 1 < y ≤ x be large real numbers and

B(x, y; k, ε) :=
∑

x < nmk ≤ x + y

m > xε

1.

Then we have
B(x, y; k, ε) ¿ yx−ε + x

1
2k+1 log x. (2)

Proof. This lemma is very important when studying the short interval distribution of
1-free number, see example [3].

Lemma 3. Let a(n) be an arithmetic function defined by (2), then we have
∑

n≤x

a(n) = Cx + O(x
1
6+ε), (3)

where C = Ress=1ζ(s)G(s).
Proof. Using Lemma 1, it is easy to see that

∑

n≤x

|g(n)| ¿ x
1
6+ε.

Therefore from the definition of g(n) and (2), it follows that
∑

n≤x

a(n) =
∑

mn≤x

g(n)

=
∑

n≤x

g(n)
∑

m≤ x
n

1

=
∑

n≤x

g(n)(
x

n
+ O(1))

= Cx + O(x
1
6+ε),

and C = Ress=1ζ(s)G(s).
Next we prove our theorem. From Lemma 3 and the definition of a(n), we get

t(e)(n) =
∑

n=n1n2
2n4

3

a(n1)µ(n3),

and
a(n) ¿ nε2 , |µ(n)| ¿ 1. (4)

So we have

A(x + y)−A(x) =
∑

x<n1n2
2n4

3≤x+y

a(n1)µ(n3)

=
∑
1

+O(
∑
2

+
∑
3

). (5)
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where

∑
1

=
∑

n2 ≤ xε

n3 ≤ xε

µ(n3)
∑

x

n2
2n4

3
<n1≤ x+y

n2
2n4

3

a(n1),

∑
2

=
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xε

|a(n1)µ(n3)|,

∑
3

=
∑

x < n1n2
2n4

3 ≤ x + y

n3 > xε

|a(n1)µ(n3)|.

(6)

In view of Lemma 3,

∑
1

=
∑

n2 ≤ xε

n3 ≤ xε

µ(n3)(
Cy

n2
2n

4
3

+ O((
x

n2
2n

4
3

)
1
6+ε))

= c1y + O(yx−
ε
2 + x

1
6+ 3

2 ε), (7)

where c1 = Ress=1F (s).

∑
2

¿
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xε

(n1)ε2

¿ xε2
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xε

1

= x2ε2
∑

x < n1n2
2n4

3 ≤ x + y

n2 > xε

d(1, 4;m)

¿ xε2B(x, y; 2, ε)

¿ x2ε2(yx−ε + x
1
5+ε)

¿ yx2ε2−ε + x
1
5+ 3

2 ε log x

¿ yx−
ε
2 + x

1
5+ 3

2 ε. (8)

Similarly we have
∑
3

¿ yx−
ε
2 + x

1
5+ 3

2 ε. (9)

Now our theorem follows from (5)-(9).
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§1. Introduction

In literature, the well known means respectively called Arithmetic mean, Geometric mean
and Harmonic mean are as follows;

For a, b > 0, then

A(a, b) =
a + b

2
, G(a, b) =

√
ab and H(a, b) =

2ab

a + b
.

Several researchers introduced and studied some interesting results on double sequences in
the form of above said means. Also, proved the convergence properties and obtained there limit
values. As an application to estimate the best accurate value of π, the authors considered the
following double sequences [4−8];

an+1 = H(an, bn) and bn+1 = G(an+1, bn), (1)

where H and G stands for harmonic mean and geometric mean respectively.
In finding the roots of an equation one of the famous iteration method is called the Heron’s

method of extracting of square root is achieved by the following double sequences;

an+1 = H(an, bn) and bn+1 = A(an, bn), (2)

where H and A stands for Harmonic mean and Arithmetic mean respectively.
Also, several researchers introduced and studied the double sequences for other applications

as follows;
an+1 = A(an, bn) and bn+1 = G(an, bn), (3)
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where A and G stands for Arithmetic mean and Geometric mean respectively.
In [1, 3], contains many results on convergence and monotonicity. The double sequences

were generalized as Archimedean double sequences and Gauss double sequences.
The sequence cn is said to be log-convex, if c2

n ≤ cn+1cn−1 and the sequence cn is said to
be log-concave, if c2

n ≥ cn+1cn−1.
In this paper, the logarithmic convexity and logarithmic concavity of the double sequences

are presented (1)-(3).

§2. Results

In this section, some results on log convexity and concavity of double sequences are proved.
Theorem 2.1. For n ≥ 0, a0 < b0, then the sequences an+1 = H(an, bn) and bn+1 =

G(an+1, bn) are respectively Log-concave and Log-convex.
Proof. From definitions of harmonic mean and geometric mean, consider

an+1 = H(an, bn) =
2anbn

an + bn
and bn+1 = G(an+1, bn) =

√
an+1bn. (4)

It is proved that for a0 < b0,

a0 < a1 < a2 < ... < an < an+1 < ... < bn+1 < bn < ... < b2 < b1 < b0 (5)

from (4), b2
n = anbn−1 and an < bn+1 from (5), implies that b2

n = anbn−1 < bn+1bn−1, which is
equivalently

b2
n < bn+1bn−1, (6)

consider
an

an+1
− an−1

an
=

an + bn

2bn
− an−1 + bn−1

2bn−1

=
1

2bnbn−1
[anbn−1 − an−1bn] (7)

form (5), b1 < b0,−b1 > −b0,−a0b1 > −a1b0, this leads to

=
1

2bnbn−1
[anbn−1 − an−1bn] =

1
2bnbn−1

[anbn−1 − an−1bn−1] =
1

2bn
[an − an−1] > 0.

This proves that
a2

n > an+1an−1. (8)

Thus the (6) and (8) satisfies the conditions of log concave and log convex for sequence. That
is the sequence an is log concave and the sequence bn is log convex.

Theorem 2.2. For n ≥ 0, a0 < b0, then the sequences an+1 = H(an, bn) and bn+1 =
A(an, bn) are respectively log-concave and log-convex.

Proof. Consider

a2
n − an−1an+1 =

(
2an−1bn−1

an−1 + bn−1

)2

− an−1

(
2anbn

an + bn

)
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on rearranging the above expression leads to

(4a2
n−1bn−1)(a2

n−1 + 3an−1bn−1)
(an−1 + bn−1)2(a2

n−1 + b2
n−1 + 6an−1bn−1)

(bn−1 − an−1) > 0,

this proves that

a2
n > an+1an−1, (9)

again consider

b2
n − bn−1bn+1 =

(
an−1 + bn−1

2

)2

− bn−1

(
an + bn

2

)

on rearranging the above expression leads to

(a2
n−1 + 3an−1bn−1)
4(an−1 + bn−1))

(an−1 − bn−1) < 0,

this proves that

b2
n < bn+1bn−1. (10)

Thus the (9) and (10) satisfies the conditions of log concave and log convex. That is the sequence
an is log concave and the sequence bn is log convex.

Theorem 2.3. For n ≥ 0, a0 < b0, then the sequences an+1 = A(an, bn) and bn+1 =
G(an, bn) are respectively log concave and log convex.

Proof. Consider

a2
n − an−1an+1 =

(
an−1 + bn−1

2

)2

− an−1

(
an + bn

2

)

on substituting and using the fact A(a, b) > G(a, b), from (5) the above expression leads to

1
2

(
bn−1

(
an−1 + bn−1

2

)
− an−1

√
an−1bn−1

)
< 0,

this proves that

a2
n > an+1an−1, (11)

again consider

b2
n − bn−1bn+1 = an−1bn−1 − bn−1

√
anbn

on substituting and using the fact A(a, b) > an−1, G(a, b) > an−1, the above expression leads
to

bn−1

(
an−1 −

√
an−1 + bn−1

2

√
an−1bn−1

)
< 0,

this proves that

b2
n < bn+1bn−1. (12)

Thus the (11) and (12) satisfies the conditions of log concave and log convex. That is the
sequence an is log concave and the sequence bn is log convex.
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§1. Introduction

In 1980, Joseph and Kwack introduced the notion of (θ, s)-continuous functions. In 1982,
Jankovic introduced the notion of almost weakly continuous functions. In 1996, Dontchev intro-
duced contra-continuous functions. C. W. Baker defined Subcontra-continuous functions in 1998
and contra almost β−continuous functions in 2006. Dontchev, Ganster and Reilly introduced
regular set-connected functions and Dontchev and T. Noiri introduced Contra-semicontinuous
functions in 1999. S. Jafari and T. Noiri introduced and studied Contra-super-continuous
functions and Jafari introduced the notion of (p, s)-continuous functions in 1999; Contra-
α−continuous functions in 2001 and contra-precontinuous functions in 2002. M. Caldas and
S. Jafari studied Some Properties of Contra-β−Continuous Functions in 2001. T. Noiri and
V. Popa studied unified theory of contra-continuity in 2002, Some properties of almost contra-
precontinuity in 2005 and unified theory of almost contra-continuity in 2008. E. Ekici introduced
Almost contra-precontinuous functions in 2004 and recently have been investigated further by
Noiri and Popa. A. A. Nasef studied some properties of contra-γ−continuous functions in
2005. M. K. R. S. Veera Kumar introduced Contra-Pre-Semi-Continuous Functions in 2005.
Ekici E., introduced Almost contra-precontinuous functions and studied another form of contra-
continuity in 2006. During 2007, N. Rajesh studied total ω−Continuity, Strong ω−Continuity
and contra ω−Continuity. Recently, Ahmad Al-Omari and Mohd. Salmi Md. Noorani studied
Some Properties of Contra-b-Continuous and Almost Contra-b-Continuous Functions in 2009
and Jamal M. Mustafa introduced Contra Semi-I-Continuous functions in 2010. Inspired with
these developments, we introduce a new class of functions called contra ν−continuous functions.
Moreover, we obtain basic properties, preservation theorem of contra ν−continuous function
and relationship with other types of functions are verified.
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§2. Preliminaries

Definition 2.1. A ⊂ X is said to be
(i) regular open [pre-open; semi-open; α-open; β-open] if A = (A)0[A ⊆ (A)o; A ⊆ (Ao);

A ⊆ ((Ao))o; A ⊆ ((A)o)] and regular closed [pre-closed; semi-closed; α-closed; β-closed] if
A = A0[(Ao) ⊆ A; (A)o ⊆ A; ((A)o) ⊆ A; ((Ao))o ⊆ A].

(ii) ν−open [rα−open] if there exists a regular open set O such that O ⊂ A ⊂ O[O ⊂ A ⊂
α(O)].

(iii) θ-semi-closed if A = sClθ(A) = {x ∈ X : V ∩ A 6= φ; ∀ V ∈ SO(X, x)}; sClθ(A) is
θ-semi-closure of A. The complement of a θ-semi-closed set is said to be θ-semi-open.

(iv) ν-dense in X if ν(A) = X.
(v) θ-closed if A = Clθ(A). The complement of a θ-closed set is said to be θ-open.
Remark 1. We have the following implication diagrams for closed sets.

↗ rα−open → ν−open ↘
Regular open → open → α−open → semi open → β−open

↘
pre-open

Definition 2.2. A cover Σ = {Uα : α ∈ I} of subsets of X is called a ν−cover if Uα is
ν−open for each α ∈ I.

Definition 2.3. A filter base Λ is said to be ν−convergent (resp. rc-convergent) to a point
x in X if for any U ∈ νO(X, x)(resp. U ∈ RC(X, x)), there exists a B ∈ Λ such that B ⊂ U.

Definition 2.4. A function f : X → Y is called
(i) almost-[resp: almost-semi-; almost-pre-;almost-rα−; almost-α−; almost-β−; almost-

ω−; almost-pre-semi-; almost-λ−]continuous if f−1(V ) is open [resp: semi-open; pre-open;rα−open;
α−open; β−open; ω−open; pre-semi-open; λ−open] in X ∀V ∈ RO(Y ).

(ii) contra-[resp: contra-semi-; contra-pre-;contra-r-;contra-rα−; contra-α−; contra-β−;
contra-ω−; contra-pre-semi-; contra-ν−]continuuos if f−1(V ) is closed [resp: semi-closed; pre-
closed; regular-closed; rα−closed; α−closed; β−closed; ω−closed; pre-semi-closed; ν−closed] in
X ∀V ∈ σ.

(iii) regular set-connected if inverse image of every regular open set V in Y is clopen in X.
(iv) perfectly continuous if inverse image of every open set V in Y is clopen in X.
(v) almost s-continuous if for each x ∈ X and each V ∈ SO(Y ) with f(x) ∈ V, there exists

an open set U in X containing x such that f(U) ⊂ scl(V ).
(vi) M-ν−open if image of each ν−open set is ν−open.
(vii) (ν, s)-continuous if for each x ∈ X and each V ∈ SO(Y, f(x)), ∃ U ∈ νO(X, x) 3

f(U) ⊂ V .

(viii) weakly continuous if for each x ∈ X and each V ∈ (σ(Y ), f(x)), ∃ U ∈ (τ(X), x)3
f(U) ⊂ V .

(ix) (θ, s)-continuous iff for each θ-semi-open set V of Y , f−1(V ) is open in X.
(x) faintly ν−continuous if for each x ∈ X and each θ-open set V of Y containing f (x),

∃U ∈ νO(X, x)] 3 f(U) ⊂ V.

Definition 2.5. A space X is said to be
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(i) strongly compact [resp:strongly Lindelof] if every preopen cover of X has a finite [resp:
countable] subcover and P-closed [resp: P-Lindelof] if every preclosed cover of X has a finite
[resp:countable] subcover.

(ii) strongly countably compact if every countable cover of X by preopen sets has a finite
subcover and countably S-closed [resp:countably P-closed] if every countable cover of X by
regular closed [resp: preclosed] sets has a finite subcover.

(iii) mildly compact (mildly countably compact, mildly Lindelof) if every clopen cover
(respectively, clopen countable cover, clopen cover) of X has a finite (respectively, a finite, a
countable) subcover.

(iv) S-closed [resp: S-Lindelof] if every regular closed cover of X has a finite [resp:countable]
subcover and nearly compact [resp:nearly Lindelof] if every regular open cover of X has a finite
[resp: countable] subcover.

(v) ν−connected provided that X is not the union of two disjoint nonempty ν−open sets.
(vi) ν−ultra-connected if every two non-void ν−closed subsets of X intersect.
(vii) hyperconnected if every open set is dense.
(viii) weakly Hausdorff if each element of X is an intersection of regular closed sets.
(ix) ν−T0 if for each pair of distinct points in X, there exists a ν−open set of X containing

one point but not the other.
(x) ν − T1 [resp: ν − T2] if for each pair of distinct points x and y of X, there exist [resp:

disjoint] ν−open sets U and V containing x and y respectively such that y 6∈ U and x 6∈ V .
(xi) almost regular if for each regular closed set F of X and each x ∈ X − F , there exists

disjoint open sets U and V of X such that x ∈ U and F ⊂ V.

(xii) extremally disconnected (briefly E.D.) if the closure of every open set of X is open in
X.

Lemma 2.1. If V is an open [r-open] set, then
(i) sCl(V) = Int(Cl(V)).
(ii) sClθ(V ) = sCl(V ).
(iii) If B ⊆ A ⊆ X and A ∈ RO(X), then νA(B) ⊆ νB.

Lemma 2.2. For V ⊂ Y , the following properties hold:
(i) αV = V for every V ∈ β(Y ).
(ii) νV = V for every V ∈ SO(Y ).
(iii) sV = (V )o for every V ∈ RO(Y ).
Lemma 2.3. For f : X → Y , the following properties are equivalent:
(i) f is faintly-ν−continuous.
(ii) f−1(V ) ∈ νO(X) for every θ-open set V of Y .
(iii) f−1(K) is ν−closed in X for every θ-closed set K of Y .
Lemma 2.4. f is al.ν.c. iff ∀ x ∈ X and each V ∈ RO(Y, f(x)), ∃ U ∈ νO(X, x) 3 f(U) ⊂ V.

Definition 2.6. For a function f : X → Y ,
(i) The subset {(x, f(x)) : x ∈ X} ⊂ X ×Y is called the graph of f and is denoted by G(f ).
(ii) A graph G(f ) of a function f is said to be ν−regular if for each (x, y) ∈ (X×Y )−G(f),

∃ U ∈ νC(X, x) and V ∈ RO(Y, y) 3 (U × V ) ∩G(f) = φ.

Lemma 2.5. The following properties are equivalent for a graph G(f ) of a function:
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(i) G(f ) is ν−regular;

(ii) for each point (x, y) ∈ (X×Y )−G(f), ∃ U ∈ νC(X, x) and V ∈ RO(Y, y) 3 f(U)∩V = φ.

§3. Almost contra ν-continuous maps

Definition 3.1. A function f : X → Y is said to be

(i) almost contra ν−continuous at x if for each regular closed set F in Y containing f (x),
there exists a ν−open set U in X containing x such that f(U) ⊂ F.

(ii) almost contra ν−continuous if the inverse image of every regular-open set is ν−closed.

Note 1. Here after we call almost contra ν−continuous function as al.c.ν.c function shortly.

Example 1. (i) X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {b, c}, Y }.
Let f be identity function, then f is al.c.ν.c.

(ii) f : on < defined by f (x) = [x], where [x] is the Gaussian symbol; is al.c.ν.c; al.c.s.c. but
not al.c.c; r-irreslute and c.r.c.

Example 2. (i) X = Y = {a, b, c}; τ = {φ, {a}, {a, b}, X} and σ = {φ, {a}, {b}, {a, b}, Y }.
Let f be identity function, then f is al.c.rα.c. but not al.c.ν.c.

(ii) The identity function on < with usual topology is not al.c.ν.c and al.c.s.c. but it is
al.c.c;c.c; c.r.c. and r-irresolute.

Theorem 3.1. (i) f is al.c.ν.c iff f−1(U) ∈ νO(X) whenever U ∈ RC(Y ).

(ii) If f is c.ν.c., then f is al.c.ν.c. Converse is true if X is discrete space.

Theorem 3.2. (i) f is al.c.ν.c. iff for each x ∈ X and each UY ∈ νO(Y, f(x)), ∃A ∈ νO(X)
3 x ∈ A and f(A) ⊂ UY .

(ii)f is al.c.ν.c. iff for each x ∈ X and each V ∈ RO(Y, f(x)), ∃ U ∈ νO(X, x) 3 f(U) ⊂ V.

Proof. Let UY ∈ RC(Y ) and let x ∈ f−1(UY ). Then f(x) ∈ UY and thus ∃ Ax ∈ νO(X)
3 x ∈ Ax and f(Ax) ⊂ UY . Then x ∈ Ax ⊂ f−1(UY ) and f−1(UY ) = ∪Ax. Hence f−1(UY ) ∈
νO(X).

Remark 2. We have the following implication diagram for a function f : (X, τ) → (Y, σ)

↗ al.c.rαc. → al.c.ν.c ↘
r-irresolute → al.c.c. → al.c.α.c. → al.c.s.c. → al.c.β.c.

↘
al.c.p.c.

Example 3. Let X = Y = {a, b, c}; τ = {φ, {b}, {a, b}, {b, c}, X} and σ = {φ, {a}, {b}, {a,

b}, {a, c}, Y }. The identity function f is not al.c.c., al.c.s.c., al.c.p.c., al.c.α.c., al.c.rα.c., al.c.β.c.,
al.c.ν.c., contra r-irresolute and r-irresolute and f defined as f (a) = f (b) = a; f (c) = c is
al.c.c., al.c.s.c., al.c.p.c., al.c.α.c., al.c.β.c., but not al.c.ν.c., al.c.rα.c., contra r-irresolute and
r-irresolute.

Example 4. Let X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {b}, {a, b},
{a, c}, Y }. The identity function f is al.c.s.c., al.c.α.c., al.c.rα.c., al.c.β.c., al.c.ν.c., but not
al.c.c.., al.c.p.c., contra r-irresolute and r-irresolute. Under usual topology on < both al.c.c.
and r-irresolute are same as well both al.c.s.c. and al.c.ν.c are same.

Theorem 3.3. If f is ν−open and al.c.ν.c, then f−1(U) is ν−closed if U is ν−open in Y .
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Proof. Let U be ν−open in Y . Then ∃V ∈ RO(Y ) 3 V ⊆ U ⊆ V . V ∈ RO(Y ) ⇒ V ∈
νO(Y ) ⇒ f−1(V ) ∈ νC(X) and f−1(V ) ⊆ f−1(U) ⊆ f−1(V ) ⇒ f−1(U) is ν−closed.

Theorem 3.4. Let f be al.c.ν.c and r-open, then
(i) f−1(A) ∈ SO(X) [f−1(A) ∈ SC(X)] for each A ∈ SC(Y ) [A ∈ SO(Y )].
(ii) f−1(A) ∈ RO(X) [f−1(A) ∈ RC(X)] for each A ∈ RC(Y ) [A ∈ RO(Y )].
(iii) If f is r-open and r-irresolute, then f−1(U) ∈ νC(X) for each U ∈ νO(Y ).
Theorem 3.5. Let fi : Xi → Yi be al.c.ν.c for i = 1, 2. Let f : X1 × X2 → Y1 × Y2 be

defined as follows: f(x1, x2) = (f1(x1), f2(x2)). Then f : X1 ×X2 → Y1 × Y2 is al.c.ν.c.
Proof. Let U1 × U2 ⊂ Y1 × Y2 where Ui be regular open in Yi for i = 1, 2. Then

f−1(U1 × U2) = f−1
1 (U1) × f−1

2 (U2). But f−1
1 (U1) and f−1

2 (U2) are ν−closed in X1 and X2

respectively and thus f−1
1 (U1)× f−1

2 (U2) is ν−closed in X1 ×X2. Therefore f is al.c.ν.c.
Theorem 3.6. Let h : X → X1 × X2 be al.c.ν.c, where h(x) = (h1(x), h2(x)). Then

hi : X → Xi is al.c.ν.c for i = 1, 2.

Proof. Let U1 is regular open in X1. Then U1 × X2 is regular open in X1 × X2, and
h−1(U1×X2) is ν−closed in X. But h−1

1 (U1) = h−1(U1×X2), therefore h1 : X → X1 is al.c.ν.c

Similar argument gives h2 : X → X2 is al.c.ν.c and thus hi : X → Xi is al.c.ν.c for i = 1, 2.
In general we have the following extenstion of Theorem 3.5 and 3.6:
Theorem 3.7. (i) If f : X → ΠYλ is al.c.ν.c, then Pλ ◦ f : X → Yλ is al.c.ν.c for each

λ ∈ Λ, where Pλ is the projection of ΠYλ onto Yλ.
(ii) f : ΠXλ → ΠYλ is al.c.ν.c, iff fλ : Xλ → Yλ is al.c.ν.c for each λ ∈ Λ.
Note 2. Converse of Theorem 3.7 is not true in general, as shown by the following example.
Example 5. Let X = X1 = X2 = [0, 1]. Let f1 : X → X1 be defined as follows: f1(x) = 1

if 0 ≤ x ≤ 1
2 and f1(x) = 0 if 1

2 < x ≤ 1. Let f2 : X → X2 be defined as follows: f2(x) = 1 if
0 ≤ x < 1

2 and f2(x) = 0 if 1
2 < x < 1. Then fi : X → Xi is clearly al.c.ν.c for i = 1, 2, but

h(x) = (f1(x1), f2(x2)) : X → X1 ×X2 is not al.c.ν.c, for S 1
2
(1, 0) is regular open in X1 ×X2,

but h−1(S 1
2
(1, 0)) = { 1

2} which is not ν−closed in X.
Remark 3. In general,
(i) The algebraic sum and product of two al.c.ν.c functions is not al.c.ν.c However the

scalar multiple of a al.c.ν.c function is al.c.ν.c.
(ii) The pointwise limit of a sequence of al.c.ν.c functions is not al.c.ν.c as shown by.
Example 6. Let X = X1 = X2 = [0, 1]. Let f1 : X → X1 and f2 : X → X2 are defined

as follows: f1(x) = x if 0 < x < 1
2 and f1(x) = 0 if 1

2 < x < 1; f2(x) = 0 if 0 < x < 1
2 and

f2(x) = 1 if 1
2 < x < 1.

Example 7. Let X = Y = [0, 1]. Let fn is defined as follows: fn(x) = xn for n ≥ 1 then
f is the limit of the sequence where f(x) = 0 if 0 ≤ x < 1 and f(x) = 1 if x = 1. Therefore f is
not al.c.ν.c For (1

2 , 1] is open in Y , f−1(( 1
2 , 1]) = (1) is not ν−closed in X.

However we can prove the following theorem.
Theorem 3.8. Uniform Limit of sequence of al.c.ν.c. functions is al.c.ν.c.
Problem. (i) Are sup{f, g} and inf{f, g} are al.c.ν.c if f, g are al.c.ν.c.
(ii) Is Cal.c.ν.c(X, R), the set of all al.c.ν.c functions.
(1) a Group.
(2) a Ring.
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(3) a Vector space.
(4) a Lattice.
(iii) Suppose fi : X → Xi(i = 1, 2) are al.c.ν.c If f : X → X1 × X2 defined by f(x) =

(f1(x), f2(x)), then f is al.c.ν.c.
Solution. No.
Note 3. In general al.c.c., al.c.α.c. and al.c.p.c. are independent of al.c.ν.c as shown by

Example 1 and 3.
Theorem 3.9. (i) If f is ν−irresolute and g is al.c.ν.c, then g ◦ f is al.c.ν.c.
(ii) If f is al.c.ν.c and g is continuous [resp: r-continuous] then g ◦ f is al.c.ν.c.
(iii) If f and g are r-irresolute then g ◦ f is ν−continuous.
(iv) If f is al.c.ν.c and g is r-irresolute, then g ◦ f is al.c.ν.c; al.c.s.c and al.c.β.c.
(v) If f is al.c.ν.c[contra r-irresolute] g is al.g.c.[al.rg.c] and GO(Y) = RGO(Y) = RO(Y),

then g ◦ f is al.c.ν.c.
Theorem 3.10. If f is ν−irresolute, ν−open and νO(X) = τ and g be any function, then

g ◦ f : X → Z is c.ν.c iff g is al.c.ν.c.
Proof. If part: Theorem 3.9 only if part: Let A ∈ RC(Z). Then (g ◦ f)−1(A) is a ν−open

and hence open in X [by assumption]. Since f is ν−open f(g ◦ f)−1(A) = g−1(A) is ν−open in
Y . Thus g : Y → Z is al.c.ν.c.

Corollary 3.1: (i) If f is a surjective M-ν−open [resp: M-ν−closed] and g is a function
such that g ◦ f is al.c.ν.c., then g is al.c.ν.c.

(ii) If f is ν−irresolute, M-ν−open and bijective, g is a function. Then g is al.c.ν.c. iff g ◦ f
is al.c.ν.c.

Theorem 3.11. If g : X → X × Y , defined by g(x) = (x, f(x))∀x ∈ X be the graph
function of f. Then g is al.c.ν.c iff f is al.c.ν.c.

Proof. Let V ∈ RC(Y ), then X × V = X × V 0 = X0 × V 0 = (X × V )0 ∈ RC(X × Y ).
Since g is al.c.ν.c., then f−1(V ) = g−1(X × V ) ∈ νO(X). Thus, f is al.c.ν.c.

Conversely, let x ∈ X and F ∈ RC(X×Y ) containing g(x). Then F ∩ ({x}×Y ) is r-closed
in {x} × Y containing g(x). Also {x} × Y is homeomorphic to Y . Hence {y ∈ Y : (x, y) ∈ F}
is r-closed subset of Y . Since f is al.c.ν.c.

⋃{f−1(y) : (x, y) ∈ F} is ν−open in X. Further
x ∈ ⋃{f−1(y) : (x, y) ∈ F} ⊆ g−1(F ). Hence g−1(F ) is ν−open. Thus g is al.c.ν.c.

Remark 4. In general, composition of two al.c.ν.c functions is not al.c.ν.c. However we
have the following example:

Example 8. Let X = Y = Z = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, X}; σ = {φ, {a}, {b, c},
Y }, and η = {φ, {a}, {b}, {a, b}, Z}. Let f be identity map and g be be defined as g(a) = a =
g(b); g(c) = c; are al.c.ν.c and g ◦ f is also al.c.ν.c.

Theorem 3.12. Let X, Y, Z be spaces and every ν−closed set be r-open in Y , then the
composition of two al.c.ν.c maps is al.c.ν.c.

Corollary 3.2. If f is al.c.ν.c [r-irresolute],
(i) g is al.c [r-continuous], then g ◦ f is al.c.s.c. and hence al.c.β.c.
(ii)g is al.g.c.{al.rg.c.} and Y is r − T 1

2
, then g ◦ f is al.c.s.c. and hence al.c.β.c.

Theorem 3.13. (i) If RαC(X) = RC(X) then f is al.c.rα.c. iff f is contra r-irresolute.
(ii) If RαC(X) = νC(X) then f is al.c.rα.c. iff f is al.c.ν.c.
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(iii) If νC(X) = RC(X) then f is r-irresolute iff f is al.c.ν.c.
(iv) If νC(X) = αC(X) then f is al.c.α.c. iff f is al.c.ν.c.
(v) If νC(X) = SC(X) then f is al.c.s.c. iff f is al.c.ν.c.
(vi) If νC(X) = βC(X) then f is al.c.β.c. iff f is al.c.ν.c.
Note 4. Pasting Lemma is not true with respect to al.c.ν.c functions. However we have

the following weaker versions.
Theorem 3.14. Let X and Y be such that X = A∪B. Let f/A : A → Y and g/B : B → Y

are r-irresolute functions such that f(x) = g(x)∀x ∈ A ∩ B. Suppose A and B are r-closed sets
in X and RC(X) is closed under finite unions, then the combination α : X → Y is al.c.ν.c.

Theorem 3.15. Pasting Lemma. Let X and Y be such that X = A∪B. Let f/A : A → Y

and g/B : B → Y are al.c.ν.c maps such that f (x) = g(x) ∀x ∈ A∩B. Suppose A, B are r-closed
sets in X and νC(X) is closed under finite unions, then the combination α : X → Y is al.c.ν.c.

Proof. Let F be r-open set in Y , then α−1(F ) = f−1(F )∪g−1(F ) where f−1(F ) is ν−closed
in A and g−1(F ) is ν−closed in B ⇒ f−1(F ) and g−1(F ) are ν−closed in X ⇒ f−1(F )∪ g−1(F )
is ν−closed in X[by assumption] ⇒ α−1(F ) is ν−closed in X. Hence α is al.c.ν.c.

Theorem 3.16. The following statements are equivalent for a function f:
(i) f is al.c.ν.c.;
(ii) f−1(F ) ∈ νO(X) for every F ∈ RC(Y );
(iii) for each x ∈ X and each regular closed set F in Y containing f (x), there exists a

ν−open set U in X containing x such that f(U) ⊂ F ;
(iv) for each x ∈ X and each regular open set V in Y non-containing f (x), there exists a

ν−closed set K in X non-containing x such that f−1(V ) ⊂ K;
(v) f−1((G)o) ∈ νC(X) for every open subset G of Y ;
(vi) f−1(F o) ∈ νO(X) for every closed subset F of Y .
Proof. (i) ⇔ (ii): Let F ∈ RC(Y ). Then Y − F ∈ RO(Y ). By (i), f−1(Y − F ) =

X − f−1(F ) ∈ νC(X). We have f−1(F ) ∈ νO(X). Reverse can be obtained similarly.
(ii)⇒(iii): Let F ∈ RC(Y, f(x)). By (ii), x ∈ f−1(F ) ∈ νO(X). Take U = f−1(F ). Then

f(U) ⊂ F.

(iii)⇒(ii): Let F ∈ RC(Y ) and x ∈ f−1(F ). From (iii), ∃ Ux ∈ νO(X, x) 3 U ⊂ f−1(F ).
We have f−1(F ) =

⋃
x∈f−1(F ) Ux. Thus f−1(F ) is ν−open.

(iii)⇔(iv): Let V ∈ RO(Y ) not containing f (x). Then, Y − V ∈ RC(Y, f(x)). By (3), ∃
U ∈ νO(X, x) 3 f(U) ⊂ Y −V . Hence, U ⊂ f−1(Y −V ) ⊂ X−f−1(V ) and then f−1(V ) ⊂ X−U .
Take H = X−U , then H is ν−closed in X non-containing x. The converse can be shown easily.

(i)⇔(v): Let G ∈ σ(Y ). Since (G)o ∈ RO(Y ), by (i), f−1((G)o) ⊂ νC(X). The converse
can be shown easily.

(ii)⇔(vi): It can be obtained smilar as (i)⇔(v).
Example 9. Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, X} = σ. Then the identity function

f : X → X is al.c.ν.c. But it is not regular set-connected.
Example 10. Let X = {a, b, c}, τ = {φ, {a}, X} and σ = {φ, {a}, {a, b}, X}. Then the

identity function f on X is al.c.ν.c. but not c.ν.c. and ν.c.
Theorem 3.17. Let f be al.c.ν.c and A ∈ RC(X), then f/A : A → Y is al.c.ν.c.
Proof. Let V ∈ RO(Y ) ⇒ f−1

/A (V ) = f−1(V ) ∩A is ν−closed in A. Hence f/A is al.c.ν.c.
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Remark 5. Every restriction of an al.c.ν.c. function is not necessarily al.c.ν.c.
Example 11. Let X = {a, b, c, d}, τ = {φ, {a, b}, X} and σ = {φ, {a}, {b, c, d}, X}. The

identity function f : X → X is al.c.ν.c., but, if A = {a, c, d} is not regular-open in (X, σ) and
σA is the relative topology on A induced by σ, then f|A : (A, σA) → (X, τ) is not al.c.ν.c.

Note that {b, c, d} is regular closed in (X, τ), but that f−1
|A ({b, c, d}) = {c, d} is not ν−open

in (A, σA).
Theorem 3.18. Let f be a function and Σ = {Uα : α ∈ I} be a ν−cover of X. If for each

α ∈ I, f|Uα
is al.c.ν.c., then f is an al.c.ν.c. function.

Proof. Let F ∈ RC(Y ). f|Uα
is al.c.ν.c. for each α ∈ I, f−1

|Uα
(F ) ∈ νO|Uα

. Since
Uα ∈ νO(X), by the previous lemma, f−1

|Uα
(F ) ∈ νO(X) for each α ∈ I. Then f−1(F ) =⋃

α∈I f−1
|Uα

(F ) ∈ νO(X). This gives f is an al.c.ν.c.
Theorem 3.19. Let f be a function and x ∈ X. If there exists U ∈ νO(X) 3 x ∈ U and

the restriction of f|U is al.c.ν.c. at x, then f is al.c.ν.c. at x.
Proof. Suppose that F ∈ RC(Y ) containing f (x). Since f|U is al.c.ν.c. at x, ∃ V ∈

νO(U, x) 3 f(V ) = (f|U )(V ) ⊂ F. Since U ∈ νO(X, x); then V ∈ νO(X, x). Thus f is al.c.ν.c.
at x.

Theorem 3.20. For f and g, the following properties hold:
(i) If f is al.c.ν.c. and g is regular set-connected, then g ◦ f is al.c.ν.c. and al.ν.c.
(ii) If f is al.c.ν.c. and g is perfectly continuous, then g ◦ f is ν−continuous and c.ν.c.
Proof. (i) LetV ∈ RO(Z). Since g is regular set-connected, g−1(V ) is clopen. Since f is

al.c.ν.c., f−1(g−1(V )) = (g ◦ f)−1(V ) is ν−clopen. Therefore, g ◦ f is al.c.ν.c. and al.ν.c.
(ii) can be obtained similarly.
Theorem 3.21. If f is r-irresolute and al.c.c., then f is regular set-connected.
Theorem 3.22.If f is al.c.ν.c., then for each point x ∈ X and each filter base Λ in X

ν−converging to x, the filter base f(Λ) is rc-convergent to f (x).
Theorem 3.23. For f, the following properties are equivalent:
(i) f is (ν, s)-continuous;
(ii) f is al.c.ν.c.;
(iii) f−1(V ) is ν−open in X for each θ-semi-open set V of Y ;
(iv) f−1(F ) is ν−closed in X for each θ-semi-closed set F of Y .
Proof. (i)⇒(ii): Let F ∈ RC(Y ) and x ∈ f−1(F ). Then f(x) ∈ F and F is semi-open.

Since f is (ν, s)-continuous, ∃U ∈ νO(X, x) 3 f(U) ⊂ F = F. Hence x ∈ U ⊂ f−1(F ) which
implies that x ∈ ν(f−1(F ))0. Therefore, f−1(F ) ⊂ ν(f−1(F ))0 and hence f−1(F ) = ν(f−1(F ))0.
This shows that f−1(F ) ∈ νO(X). Hence f is al.c.ν.c.

(ii) ⇒(iii): Follows from the fact that every θ-semi-open set is the union of regular closed
sets.

(iii) ⇔(iv): This is obvious.
(iv) ⇒ (i): Let x ∈ X and V ∈ SO(Y, f(x)). Since V is regular closed, it is θ-semi-open.

Now, put U = f−1(V ). Then U ∈ νO(X, x) and f(U) ⊂ V . This shows that f is (ν, s)-continuous.
Theorem 3.24. For f, the following properties are equivalent:
(i) f is al.c.ν.c.;
(ii) f(ν(A)) ⊂ sClθ(f(A)) for every subset A of X;
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(iii) ν(f−1(B)) ⊂ f−1(sClθ(B)) for every subset B of Y .
Proof. (i)⇒ (ii): Let A be any subset of X. Suppose that x ∈ ν(A) and G ∈ SO(Y, f(x)).

Since f is al.c.ν.c., by Theorem 3.23, ∃U ∈ νO(X, x) 3 f(U) ⊂ G. Since x ∈ ν(A), U∩A 6= φ; and
hence φ 6= f(U)∩f(A) ⊂ G∩f(A). Therefore, f(x) ∈ sClθ(f(A)) and hence f(ν(A)) ⊂ sClθ(f(A)).

(ii) ⇒(iii): Let B be any subset of Y . Then f(ν(f−1(B))) ⊂ sClθ(f(f−1(B))) ⊂ sClθ(B)
and hence ν(f−1(B)) ⊂ f−1(sClθ(B)).

(iii) ⇒(i): Let V ∈ SO(Y, f(x)). Since V ∩ (Y − V ) = φ, we have f(x) 6∈ sClθ(Y − V ) and
hence x 6∈ f−1(sClθ(Y − V )). By (3), x 6∈ ν(f−1(Y − V )), then ∃ U ∈ νO(X, x) 3 U ∩ f−1(Y −
V ) = φ; hence f(U) ∩ (Y − V ) = φ. This shows that f(U) ⊂ V . Therefore f is al.c.ν.c.

Theorem 3.25. For f, the following properties are equivalent:
(i) f is al.c.ν.c.;
(ii) f−1(V ) is ν−open in X for every V ∈ β(Y );
(iii) f−1(V ) is ν−open in X for every V ∈ SO(Y );
(iv) f−1((V )o) is ν−closed in X for every V ∈ RO(Y ).
Proof. (i) ⇒ (ii): Let V be any β-open set of Y . It follows from Theorem 2.4 of [2] that

V is regular closed. Then by Theorem 3.16, f−1(V ) ∈ νO(X).
(ii) ⇒ (iii): This is obvious since SO(Y ) ⊂ β(Y ).
(iii) ⇒ (iv): Let V ∈ RO(Y ). Then Y − (V )o is regular closed and hence semi-open. Then,

X − f−1((V )o) = f−1(Y − (V )o) = f−1((Y − (V )o)) ∈ νO(X). Hence f−1((V )o) ∈ νC(X).
(iv) ⇒ (i): Let V ∈ RO(Y ). Then V ∈ νO(Y ) and hence f−1(V ) = f−1((V )o) ∈ νC(X).
Corollary 3.3. For f, the following properties are equivalent:
(i) f is al.c.ν.c.;
(ii) f−1(αV ) is ν−open in X for every V ∈ β(Y );
(iii) f−1(νV ) is ν−open in X for every V ∈ SO(Y );
(iv) f−1(sV ) is ν−closed in X for every V ∈ RO(Y ).
Proof. This is an immediate consequence of Theorem 3.25 and Lemma 2.2.
The ν−frontier of A ⊂ X; is defined by νFr(A) = ν(A)− ν(X −A) = ν(A)− ν(A)0.
Theorem 3.26. For f, the following conditions are equivalent:
(i) f is al.c.ν.c.;
(ii) ν(f−1(V )) ⊆ f−1(sClθ(V )) for every open subset V of Y ;
(iii) ν(f−1(V )) ⊆ f−1(s(V )) for every open subset V of Y ;
(iv) ν(f−1(V )) ⊆ f−1((V )o) for every open subset V of Y ;
(v) (f−1(V ))o ⊆ f−1((V )o) for every open subset V of Y .
Proof. (i)⇒(ii) follows from Theorem 3.24(c).
(ii) ⇒(iii) follows from Lemma 2.1(ii).
(iii) ⇒(iv) follows from Lemma 2.1(iii).
(iv) ⇒(v). Since ν(f−1(V )) = f−1(V ) ∪ (f−1(V ))o), it follows from (iv) that (f−1(V ))o) ⊆

f−1((V )o).
(v) ⇒(i). Let V ∈ RO(Y ). Then by (v), (f−1(V ))o) ⊆ f−1((V )o) = f−1(V ). Therefore

f−1(V ) is ν−closed, which proves that f is al.c.ν.c.
The next result is an immediate consequence of Theorems 3.24 and 3.26.
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Theorem 3.27. Let f be a function and let S be any collection of subsets of Y containing
the open sets. Then f is al.c.ν.c. iff ν(f−1(S)) ⊆ f−1(sClθ(S)) for every S ∈ S.

Corollary 3.4. For f, the following properties are equivalent:

(i) f is al.c.ν.c.;

(ii) ν(f−1(V )) ⊆ f−1(sClθ(V )) for every V ∈ SO(Y );

(iii) ν(f−1(V )) ⊆ f−1(sClθ(V )) for every V ∈ PO(Y );

(iv) ν(f−1(V )) ⊆ f−1(sClθ(V )) for every V ∈ βO(Y ).

Theorem 3.28. {x ∈ X : f : X → Y is not al.c.ν.c.} is identical with the union of the
ν−frontier of the inverse images of regular closed sets of Y containing f(x).

Proof. Suppose that f is not al.c.ν.c. at x ∈ X. By Theorem 3.16, ∃ F ∈ RC(Y, f(x) 3
f(U) ∩ (Y − F ) 6= φ for every U ∈ νO(X, x). Then, x ∈ ν(f−1(Y − F )) = ν(X − f−1(F )). On
the other hand, we get x ∈ f−1(F ) ⊂ ν(f−1(F )) and hence x ∈ νFr(f−1(F )).

Conversely, suppose that f is al.c.ν.c. at x and let F ∈ RC(Y, f(x)). By Theorem 3.16,
there exists U ∈ νO(X, x) 3 x ∈ U ⊂ f−1(F ). Therefore, x ∈ ν(f−1(F ))o. This contradicts that
x ∈ νFr(f−1(F )). Thus f is not al.c.ν.c.

Theorem 3.29. If f is al.c.ν.c. and Y is T2, then G(f ) is ν−regular graph in X × Y.

Proof. Assume Y is T2. Let (x, y) ∈ (X × Y ) − G(f). It follows that f(x) 6= y. Since
Y is T2, there exist disjoint open sets V and W containing f (x) and y, respectively. We have
((V )o) ∩ ((W )o) = φ. Since f is al.c.ν.c., f−1((V )o) is ν−closed in X containing x. Take
U = f−1((V )o). Then f(U) ⊂ ((V )o). Therefore, f(U) ∩ ((W )o) = φ and G(f) is ν−regular in
X × Y.

Remark 6. al.ν.c. and al.c.ν.c. are independent to each other.

It is shown that Clθ(V ) = V for every open set V and Clθ(S) is closed for every subset S
of X.

Theorem 3.30. Let (Y, σ) be E.D. Then, a function f is al.c.ν.c. iff it is al.ν.c.

Proof. Necessity. Let x ∈ X and V ∈ RO(Y, f(x)). Since Y is E. D., by Lemma 5.6 of
[26] V is clopen and hence V is regular closed. By Theorem 3.16, there exists U ∈ νO(X, x) 3
f(U) ⊂ V. By Lemma 2.4, f is al.ν.c.

Sufficiency. Let F be any regular closed set of Y . Since (Y, σ) is E. D., F is also regular
open and f−1(F ) is ν−open in X. This shows that f is al.c.ν.c.

§4. The preservation theorems and some other properties

Theorem 4.1. If f is al.c.ν.c.[resp: al.c.r.c] surjection and X is ν−compact, then Y is
nearly closed compact.

Proof. Let {Gi : i ∈ I} be any regular-closed cover for Y . Since f is al.c.ν.c., {f−1(Gi)}
forms a ν−open cover for X and hence have a finite subcover, since X is ν−compact. Since f
is surjection, Y = f(X) =

⋃n
i=1 Gi. Therefore Y is nearly closed compact.

Corollary 4.1. If f is al.c.ν.c.[r-irresolute], surjection, then the following statements hold:

(i) If X is locally ν−compact, then Y is locally nearly closed compact; locally mildly
compact.
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(ii) If X is ν−Lindeloff [locally ν−lindeloff], then Y is nearly closed Lindeloff [resp: locally
nearly closed Lindeloff; locally mildly lindeloff].

(iii)If X is ν−compact [countably ν−compact], then Y is S-closed [countably S-closed].

(iv) If X is ν−Lindelof, then Y is S-Lindelof [nearly Lindelof].

(v) If X is ν−closed [countably ν−closed], then Y is nearly compact [nearly countably
compact].

Theorem 4.2. If f is contra r-iresolute and al.c., surjection and X is mildly compact (resp.
mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably
compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Proof. Since f is contra r-iresolute and al.c., for {Vα : α ∈ I} be any regular closed (resp:
regular open) cover of Y , {f−1(Vα : α ∈ I} is a clopen cover of X and since X is mildly compact,
∃ a finite subset I0 of I 3 X =

⋃{f−1(Vα) : α ∈ I0}. Since f is surjective, Y =
⋃{Vα : α ∈ I0}.

Hence Y is S-closed (resp: nearly compact). The other proofs can be obtained similarly.

Theorem 4.3. If f is al.c.ν.c., surjection and

(i) X is ν−compact [ν−lindeloff] then Y is mildly closed compact [mildly closed lindeloff].

(ii) X is s-closed then Y is mildly compact [mildly lindeloff].

Theorem 4.4. If X is ν−ultra-connected and f is al.c.ν.c. and surjective, then Y is
hyperconnected.

Proof. If Y is not hyperconnected. Then ∃ V ∈ σ 3 V 6= Y . Then ∃ disjoint non-
empty regular open subsets B1 and B2 in Y . Since f is al.c.ν.c. and onto, A1 = f−1(B1) and
A2 = f−1(B2) are disjoint non-empty ν−closed subsets of X. By assumption, the ν−ultra-
connectedness of X implies that A1 and A2 must intersect, which is a contradiction. Therefore
Y is hyperconnected.

Theorem 4.5. If f is al.c.ν.c.[contra ν−irreolute] surjection and X is ν−connected, then
Y is connected [ν−connected].

Proof. If Y is disconnected. Then Y = V1∪V2 and V1∩V2 = φ. Since f is al.c.ν.c., f−1(V1)
and f−1(V2) are disjoint ν−open sets in X and X = f−1(V1)∪ f−1(V2), which is a contradiction
for ν−connectedness of X. Hence Y is connected.

Corollary 4.2. The inverse image of a disconnected [ν−disconnected] space under a
al.c.ν.c.[contra ν−irreolute] surjection is ν−disconnected.

Theorem 4.6. If f is al.c.ν.c., injection and

(i) Y is UTi, then X is ν − Ti [hence semi-Ti and β − Ti], i = 0, 1, 2.

(ii) Y is URi, then X is ν −Ri [hence semi-Ri and β −Ri], i = 0, 1.

(iii) If f is closed and Y is UTi, then X is ν − Ti [hence semi-Ti and β − Ti], i = 3, 4.

(iv) Y is UCi[resp : UDi] then X is ν−Ti[resp: ν−Di], hence X is semi-Ti [resp: semi-Di]
and β − Ti [resp: β −Di], i = 0, 1, 2.

Theorem 4.7. If f is al.c.ν.c.[resp: al.c.r.c] and Y is UT2, then the graph G(f ) of f is
ν−closed in the product space X × Y .

Proof. Let (x1, x2) 6∈ G(f) ⇒ y 6= f(x) ⇒ ∃ disjoint clopen sets V and W 3 f(x) ∈ V and
y∈ W . Since f is al.c.ν.c., ∃U ∈ νO(X) 3 x ∈ U and f(U) ⊂ W . Therefore (x, y) ∈ U × V ⊂
X × Y −G(f). Hence G(f ) is ν−closed in X × Y .
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Corollary 4.3. If f is al.c.ν.c. and Y is UT2, then the graph G(f ) of f is semi-closed [resp:
β−closed and semi-θ-closed] in the product space X × Y .

Theorem 4.8. If f is al.c.ν.c.[al.c.r.c] and Y is UT2, then A = {(x1, x2)|f(x1) = f(x2)} is
ν−closed[and hence semi-closed and β−closed] in the product space X ×X.

Proof. If (x1, x2) ∈ X ×X −A, then f(x1) 6= f(x2) ⇒ ∃ disjoint Vj ∈ CO(σ) 3 f(xj) ∈ Vj ,
and since f is al.c.ν.c., f−1(Vj) ∈ νO(X, xj) for each j = 1, 2. Thus (x1, x2) ∈ f−1(V1)×f−1(V2) ∈
νO(X ×X) and f−1(V1)× f−1(V2) ⊂ X ×X −A. Hence A is ν−closed.

Theorem 4.9. If f is r-irresolute{al.c.c.}; g : X → Y is c.ν.c; and Y is UT2, then
E = {x ∈ X : f(x) = g(x)} is ν−closed [and hence semi-closed and β−closed] in X.

Theorem 4.10. If f is an al.c.ν.c. injection and Y is weakly Hausdorff, then X is ν − T1.
Proof. Suppose that Y is weakly Hausdorff. For any x 6= y ∈ X, ∃V, W ∈ RC(Y ) 3 f(x) ∈

V, f(y) 6∈ V, f(x) 6∈ W and f(y) ∈ W . Since f is al.c.ν.c., f−1(V ) and f−1(W ) are ν−open subsets
of X such that x ∈ f−1(V ), y 6∈ f−1(V ), x 6∈ f−1(W ) and y ∈ f−1(W ). This shows that X is
ν − T1.

Theorem 4.11. If for each pair x1 6= x2 ∈ X there exists a function f of X into a Urysohn
space Y such that f(x1) 6= f(x2) and f is al.c.ν.c., at x1 and x2, then X is ν − T2.

Proof. Let x1 6= x2. Then by the hypothesis ∃ a function f which satisfies the condition of
this theorem. Since Y is Urysohn and f(x1) 6= f(x2), ∃ open sets V1 and V2 containing f(x1) and
f(x2), respectively, such that V1 ∩ V2 = φ. Since f is al.ν.c., at xi, ∃Ui ∈ νO(X, xi) 3 f(Ui) ⊂ Vi

for i = 1, 2. Hence, we obtain U1 ∩ U2 = φ. Therefore, X is ν − T2.

Corollary 4.4. If f is r-irresolute injection and Y is Urysohn, then X is ν − T2.

Definition 4.1. A function f is said to have a strongly contra-ν−closed graph if for each
(x, y) ∈ (X × Y )−G(f) there exists U ∈ νO(X, x) and a regular closed set V of Y containing
y such that (U × V ) ∩G(f) = φ.

Lemma 4.1. f has a strongly contra-ν−closed graph iff for each (x, y) ∈ (X × Y )− G(f)
∃U ∈ νO(X, x) and V ∈ RC(Y, y) 3 f(U) ∩ V = φ.

Theorem 4.12. If f is injective al.c.ν.c. with the strongly contra-ν−closed graph, then X

is ν − T2.

Proof. Let x 6= y ∈ X. Since f is injective, we have f(x) 6= f(y) and (x, f(y)) ∈ (X ×
Y )−G(f). Since G(f) is strongly contra-ν−closed, by Lemma 5.1, ∃ U ∈ νO(X, x) and a V ∈
RC(Y, f(y)) 3 f(U)∩ V = φ. Since f is al.c.ν.c., by Theorem 3.16, ∃ G ∈ νO(X, y) 3 f(G) ⊂ V .
Therefore, we have f(U) ∩ f(G) = φ; hence U ∩G = φ. Hence X is ν − T2.
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§1. Introduction

In [2], R. A. Mollin considered the problem of giving necessary and sufficent conditions for
the solvability of the Diophantine equation x2−Dy2 = 4 and posed several theorems concerning
the relations between fundamental solution of the Diophantine equation x2 − Dy2 = 4 with
gcd(x, y) = 1 and central norm equals to 4 associated with a principal norm of 8, which is an
analogue of the generalized Lagrange result.

The following theorem was given by R. A. Mollin in [2].

Theorem 1. If D = 4c, c is odd, `(
√

D) = ` is even with Q`/2 = 4, and Qj = 8 for some
j, then the following hold:

(1) c ≡ 3, 7(mod 16) if and only if j is even.

(2) c ≡ 11, 15(mod 16) if and only if j is odd.

But the theorem is incorrect. In this paper we revise Theorem 1. Also, we describe an
algorithm for calculate j with value of c and give some counterexamples to Theorem 1.
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§2. Notation and preliminaries

We will be concerned with the simple continued fraction expansions of
√

D where D is an
integer that is not perfect square. We denote this expansion

√
D = 〈q0; q1, q2, . . . , q`−1, 2q0〉,

where `(
√

D) = ` is the period length, q0 = b√Dc (the floor of
√

D) and q1, q2, . . . , q`−1 is a
palindrome. The jth convergent of

√
D for j ≥ 0 is given by,

Aj

Bj
= 〈q0; q1, q2, . . . , qj , 〉,

where
Aj = qjAj−1 + Aj−2, Bj = qjBj−1 + Bj−2,

with A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0. The complete quotients are given by, (Pj +
√

D)/Qj ,
where P0 = 0, Q0 = 0 and for j ≥ 1,

Pj+1 = qjQj − Pj , qj = b(Pj +
√

D)/Qjc, D = P 2
j+1 + QjQj+1.

We will also need the following facts:

AjBj−1 −Aj−1Bj = (−1)j−1, A2
j−1 −B2

j−1D = (−1)jQj .

When ` is even, P`/2 = P`/2+1 and Q`/2|2Pl/2, where Q`/2|2D and Q`/2 is called the central
norm. In general, the values Qj are called the principal norms, since they are the norms of
principal reduced ideals in order Z[

√
D]. (Also, see [1] for a more advanced exposition)

We will be considering Diophantine equations x2 −Dy2 = 4. The fundamental solution of
such an equation means the (unique) least positive integers (x, y) = (x0, y0) satisfying it.

§3. Revision of Theorem 1

Firstly, we reformulate Theorem 1 as the following:
Theorem 2. If D = 4c, c is old, `(

√
D) = ` is even with Q`/2 = 4 and Qj = 8 for some

j, then the following hold:
(i) c ≡ 7, 15(mod 16) if and only if j is even.
(ii) c ≡ 3, 11(mod 16) if and only if j is odd.
Proof. Theorem 1 is correct for c ≡ 7(mod 16) and for c ≡ 11(mod 16) in part (1) and

in part (2) of Theorem 1, respectively. Therefore, we only prove for c ≡ 15(mod 16) and
c ≡ 3(mod 16).

Let c ≡ 15(mod 16). The solution A2
j−1 −B2

j−1D = (−1)j8 exists if and only if

1 = (A2
j−1/c) = ((−1)j8/c) = ((−1)j/c)(2/c) = (−1)(4j(c−1)+c2−1)/8.

Since D = 4c and c is odd, there exists an integer k such that c = 16k +15. If we calculate
(4j(c− 1) + c2 − 1)/8 with respec to the values of c except for j, then we have

(4j(c− 1) + c2 − 1)/8 = j(8k + 7) + (32k2 + 60k + 28).
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Now we assume j is an odd integer. Then (4j(c − 1) + c2 − 1)/8 is odd. Therefore, from
equation (1), we have

(−1)(4j(c−1)+c2−1)/8 = −1 6= 1.

This is a contradiction and so j is an even integer for c ≡ 15(mod 16).
Conversely, suppose that j is an even integer. Then there exists an integer m such that

j = 2m. From equation (1), we get for integers k

1 = (−1)(4j(c−1)+c2−1)/8 = (−1)(8m(c−1)+c2−1)/8 = (−1)2k

and so (8m(c− 1) + c2− 1)/8 = 2k. Thus, we have 2c2− 2 ≡ 0(mod 16) and so c ≡ 15(mod 16).

Proof of (ii) is the analogue of (i).
Now we describe a procedure to calculate j with value of c.

1. P [0] = 0 : Q[0] = 1 : A[0] = 0 : A[1] = 1 : B[0] = 1 : B[1] = 0

2. For k = 0, · · · ,max d

3. c ← 16 ∗ k + 15

4. D ← 4 ∗ c

5. q[0] ← int(sqrt(D))

6. For n = 1, · · · ,max d

7. P [n] ← q[n− 1] ∗Q[n− 1]− P [n− 1]

8. Q[n] ← (D − P [n] ∗ P [n])/Q[n− 1]

9. q[n] ← int(P [n]+sqrt(float D)/Q[n]

10. For j = 1, · · · , n

11. if q[n] equal 2∗q[0] and q[j] equal q[j + n]

12. period ← period +1

13. End of For

14. For i = 1, · · · , n

15. if (Qbn/2c equal 4) compute Q[i]

16. if (Q[i] equal 8) Display i

17. End of For

18. End of For

19. End of For
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Using above algorithms, we seek some values of j on computer and get many counterex-
amples to Theorem 1.

Example 1. Let we take D = 204 = 4.51 where c = 51 ≡ 3 + 3.16 ≡ 3(mod 16). Then we
have, `(

√
D) = ` = 8, Q`/2 = 4 and Qj = 8. But, this case holds only for odd numbers j = 1

and j = 7.
Example 2. Now let we take D = 508 = 4.127 where c = 127 ≡ 15 + 7.16 ≡ 15(mod 16).

Then we have, `(
√

D) = ` = 32, Q`/2 = 4 and Qj = 8. But, this case holds only for even
numbers j = 6 and j = 26.
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Abstract An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let Hn =

{(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric n-

tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ)

(Sn = (G, µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function. The neighborhood graph of a graph G = (V, E), denoted by N(G),

is a graph on the same vertex set V , where two vertices in N(G) are adjacent if, and only

if, they have a common neighbor. Analogously, one can define the neighborhood symmetric

n-sigraph N(Sn) of a symmetric n-sigraph Sn = (G, σ) as a symmetric n-sigraph, N(Sn) =

(N(G), σ′), where N(G) is the underlying graph of N(Sn), and for any edge e = uv in N(Sn),

σ′(e) = µ(u)µ(v), where for any v ∈ V , µ(v) =
∏

u∈N(v)

σ(uv). In this paper, we characterize

symmetric n-sigraphs Sn for which Sn ∼ N(Sn), Sc
n ∼ N(Sn) and N(Sn) ∼ J(Sn), where

J(Sn) and Sc
n denotes jump symmetric n-sigraph and complement of symmetric n-sigraph of

Sn respectively.

Keywords Symmetric n-sigraphs, symmetric n-marked graphs, balance, switching, neighbo-

rhood symmetric n-sigraphs, line symmetric n-sigraphs, jump symmetric n-sigraphs.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the
reader is refer to [6]. We consider only finite, simple graphs free from self-loops.

Let n ≥ 1 be an integer. An n-tuple (a1, a2, ..., an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n.
Let Hn = {(a1, a2, ..., an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric
n-tuples. Note that Hn is a group under coordinate wise multiplication, and the order of Hn is
2m, where m = dn

2 e.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ) (Sn =

(G,µ)), where G = (V, E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function.
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In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-
tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, ..., an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it is
a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity n-tuple
is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product
of the n-tuples on the edges of A.

In [11], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See
also R. Rangarajan and P. S. K. Reddy [8]):

Definition. Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is the
identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Note. An i-balanced n-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [11].

Proposition 1.1.[11] An n-sigraph Sn = (G, σ) is i-balanced if, and only if, it is possible
to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product
of the n-tuples of u and v.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as
follows: each vertex v ∈ V , µ(v) is the n-tuple which is the product of the n-tuples on the
edges incident with v. Complement of Sn is an n-sigraph Sn = (G, σc), where for any edge
e = uv ∈ G, σc(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to
Proposition 1.1.[13]

In [11], the authors also have defined switching and cycle isomorphism of an n-sigraph
Sn = (G, σ) as follows: (See [7,9,10,13-16]).

Let Sn = (G, σ) and S′n = (G′, σ′), be two n-sigraphs. Then Sn and S′n are said to be
isomorphic, if there exists an isomorphism φ : G → G′ such that if uv is an edge in Sn with
label (a1, a2, ..., an) then φ(u)φ(v) is an edge in S′n with label (a1, a2, ..., an).

Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is
the operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). The n-sigraph
obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph or just switched
n-sigraph.

Further, an n-sigraph Sn switches to n-sigraph S′n (or that they are switching equivalent
to each other), written as Sn ∼ S′n, whenever there exists an n-marking of Sn such that
Sµ(Sn) ∼= S′n.

Two n-sigraphs Sn = (G, σ) and S′n = (G′, σ′) are said to be cycle isomorphic, if there
exists an isomorphism φ : G → G′ such that the n-tuple σ(C) of every cycle C in Sn equals to
the n-tuple σ(φ(C)) in S′n.

We make use of the following known result.

Proposition 1.2.[11] Given a graph G, any two n-sigraphs with G as underlying graph
are switching equivalent if, and only if, they are cycle isomorphic.
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§2. Neighborhood n-sigraphs

For any graph G, neighborhood graph N(G) of G is a graph on the same vertex set V (G),
with two vertices are adjacent if, and only if, they have a common neighbor. Neighborhood
graphs are also known as 2-path graphs (See [1]). Further, a graph G is said to be neighborhood
graph if G ∼= N(H). The neighborhood of a vertex v is the set of all vertices adjacent to v.
Clearly, N(G) is the intersection graph of neighborhoods of G. Neighborhood graphs was first
introduced by C. R. Cook [4] as H2-graph of a graph. B. D. Acharya [2] introduced the notion
as open neighborhood graph of a given graph as intersection graph of neighbors of vertices of G.
Later F. Escalante et al.[5] introduced the notion of n-path graphs as follows: For any integer
n, the n-path graph (G)n of a graph G, as a graph on the same vertex set and two vertices are
adjacent if, and only if, there exists a path of length n in G. Thus 2-path graphs are nothing
but neighborhood graph.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion
of neighborhood graphs to n-sigraphs as follows: The neighborhood n-sigraph N(Sn) of an
n-sigraph Sn = (G, σ) is an n-sigraph whose underlying graph is N(G) and the n-tuple of any
edge uv in N(Sn) is µ(u)µ(v), where µ is the canonical n-marking of Sn. Further, an n-sigraph
Sn = (G, σ) is called neighborhood n-sigraph, if Sn

∼= N(S′n) for some n-sigraph S′n. The
following result indicates the limitations of the notion of neighborhood n-sigraph as introduced
above, since the entire class of i-unbalanced n-sigraphs is forbidden to neighborhood n-sigraphs.

Proposition 2.1. For any n-sigraph Sn = (G, σ), its neighborhood n-sigraph N(Sn) is
i-balanced.

Proof. Since the n-tuple of any edge uv in N(Sn) is µ(u)µ(v), where µ is the canonical
n-marking of Sn, by Proposition 1.1, N(Sn) is i-balanced.

The following result is due to B. D. Acharya and M. N. Vartak [2] which gives a character-
ization of neighborhood graphs:

Proposition 2.2. A graph G = (V, E), where V = {v1, v2, ..., vp} is a neighborhood graph
if, and only if edges of G can be included in p complete subgraphs H1,H2, ..., Hp, where the
subgraphs can be indexed so that

(i) vi /∈ Hi and;

(ii) vi ∈ Hj if, and only if vj ∈ Hi.

Proposition 2.3. Suppose an n-sigraph Sn = (G, σ) is a neighborhood n-sigraph. Then
Sn is i-balanced and G is a neighborhood graph.

Proof. Suppose that Sn is a neighborhood n-sigraph. That is there exists an n-sigraph
S′n = (G′, σ′) such that N(S′n) = Sn and hence N(G′) ∼= G. That is G is a neighborhood graph.
Also, by Proposition 2.1, the neighborhood n-sigraph of any n-sigraph is i-balanced, it follows
that N(S′n) = Sn is i-balanced.

Problem 2.4. Characterize neighborhood n-sigraphs.

Proposition 2.5. For any two n-sigraphs Sn and S′n with the same underlying graph,
their neighborhood n-sigraphs are switching equivalent.

The following results are due to R. C. Brigham and R. D. Dutton [3] which gives charac-
terization of graphs for which N(G) ∼= G and N(G) ∼= G.
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Proposition 2.6. For a connected graph G, N(G) ∼= G if, and only if, G is either a
complete graph or an odd cycle of order ≥ 3.

Proposition 2.7. For a graph G = (V, E), the following are equivalent:
(i) N(G) ∼= G;
(ii) There is a permutation f of the vertex set V such that uv is an edge in G if, and only

if, f(u) and f(v) have no common neighbor.
For any positive integer k, the iterated neighborhood graph of G is defined as follows:

N0(G) = G,Nk(G) = N(Nk−1(G)).

Proposition 2.8. For any graph G and any integer k ≥ 1, the kth-iterated neighborhood
graph Nk(G) ∼= G if, and only if, N(G) ∼= G.

The following result characterizes the family of n-sigraphs satisfies Sn ∼ N(Sn).
Proposition 2.9. A connected n-sigraph Sn = (G, σ) satisfies Sn ∼ N(Sn) if, and only

if, Sn is i-balanced and G is either an odd cycle or a complete graph.
Proof. Suppose Sn ∼ N(Sn). This implies, G ∼= N(G) and hence by Proposition 2.6, we

see that the graph G is either an odd cycle or a complete graph. Now, if Sn is any n-sigraph with
underlying graph is complete or is an odd cycle, Proposition 3 implies that N(Sn) is i-balanced
and hence if Sn is i-unbalanced and its neighborhood n-sigraph N(Sn) being i-balanced can
not be switching equivalent to Sn in accordance with Proposition 1.2. Therefore, Sn must be
i-balanced.

Conversely, suppose that Sn i-balanced n-sigraph on a complete graph or an odd cycle.
Then, since N(Sn) is i-balanced as per Proposition 2.1 and since G ∼= N(G) by Proposition
2.6, the result follows from Proposition 2.1 again.

Proposition 2.10. For an n-sigraph Sn = (G, σ), the following are equivalent:
(i) N(Sn) ∼ Sc

n;
(ii) There is a permutation f of the vertex set V such that uv is an edge in G if, and only

if, f(u) and f(v) have no common neighbor.
Proof. Suppose that N(Sn) ∼ Sc

n. Then clearly we have N(G) ∼= Ḡ. Hence by Proposition
2.7, there is a permutation f of the vertex set V such that uv is an edge in G if, and only if,
f(u) and f(v) have no common neighbor.

Conversely, suppose that there is a permutation f of the vertex set V such that uv is an
edge in G if, and only if, f(u) and f(v) have no common neighbor. Then again by Proposition
2.7, N(G) ∼= Ḡ. Since both N(Sn) and Sc

n are balanced for any n-sigraph Sn, the result follows
by Proposition 1.2 again.

§3. Switching equivalence of neighborhood n-sigraphs and

line n-sigraphs

The line graph L(G) of graph G has the edges of G as the vertices and two vertices of
L(G) are adjacent if the corresponding edges of G are adjacent. The line n-sigraph of an
n-sigraph Sn = (G, σ) is an n-sigraph L(Sn) = (L(G), σ′), where for any edge ee′ in L(Sn),
σ′(ee′) = σ(e)σ(e′). This concept was introduced by E. Sampatkumar et al.[12]
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Proposition 3.1. (E. Sampathkumar et al.[12]) For any n-sigraph Sn = (G, σ), its
line n-sigraph L(Sn) is i-balanced.

For any positive integer k, the kth iterated line n-sigraph, Lk(Sn) of Sn is defined as follows:

L0(Sn) = Sn, Lk(Sn) = L(Lk−1(Sn)).

Corollary 3.2. For any n-sigraph Sn = (G, σ) and for any positive integer k, Lk(Sn) is
i-balanced.

The following result due to B. D. Acharya [1] gives a characterization of graphs for which
L(G) ∼= N(G).

Proposition 3.3. ( B. D. Acharya [1] ) For a connected graph G = (V, E), L(G) ∼= N(G)
if and only if G satisfies the following conditions:

(i) G is unicyclic and the cycle C of G is of odd length m=2n+1, n ≥ 1.
(ii) If G contains a vertex v not on the cycle then, d(v, C) ≤ 2.
(iii) If there exists at least one vertex v not on the cycle C, with d(v, C) = 2, then C = C3.

Further, all such vertices not on the cycle C and at a distance 2 from C have degree 1 and are
adjacent to a unique point, say v, which is adjacent to exactly one vertex of C.

(iv) If degrees of all the vertices are distinct, then C = C3 and any vertex not on the cycle
C, is at a distance 1 from C.

(v) If the cycle C is of length more than 3 say C = Cm with m=2n+1 then, there exists
vertices vi and vj of C (not necessarily distinct) such that at least one of the two systems S1

and S2 given below, among the degrees dk of vertices vk ∈ C holds:
S1: di = dj , di+r = dj+r, 1 ≤ r ≤ n − i, dn+r = dj+2(n−i+r)−1, 1 ≤ r ≤ n, dr =

dj+2(n−i+r)+1, 1 ≤ r ≤ n− i.
S2: di = dj , di+r = dj+2(n−r)+1, 1 ≤ r n − i + 1, dn+r = dj+2(i+n−r)−2, 2 ≤ r ≤ n + 1,

dr = dj+2(i+n−r)−1, 1 ≤ r ≤ i− 1.
The following result gives a characterization of those n-sigraphs whose neighborhood n-

sgraphs are switching equivalent to their line n-sigraphs.
Proposition 3.4. For any n-sigraph Sn = (G, σ), N(Sn) ∼ L(Sn) if, and only if, Sn is an

i-balanced n-sigraph and satisfies conditions (i) to (iv) of Proposition 3.3.

§4. Switching equivalence of neighborhood n-sigraphs and

jump n-sigraphs

The jump graph J(G) of a graph G = (V, E) is L(G), the complement of the line graph
L(G) of G ( see [6]).

We now give a characterization of graphs for which N(G) ∼= J(G).
Proposition 4.1. The jump graph J(G) of a connected graph G is isomorphic to N(G),

the neighborhood graph of G if, and only if, G is C5.
Proof. Suppose G is a connected graph such that N(G) ∼= J(G). Hence number of vertices

and number of edges are equal and so G must be unicyclic. Since J(Cn) is a cycle if, and only
if, n = 5 and N(Cn) is either Cn or two copies of Cn/2 according as n is odd or even, it follows
that the cycle in G is C5. Now suppose that there exists a vertex in C5 of degree ≥ 3, then the
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edge not on the cycle is adjacent to 3 vertices in J(G), where as the vertex in N(G) is adjacent
two vertices of the cycle. Hence G ∼= C5. The converse part is obvious.

The jump n-sigraph of an n-sigraph Sn = (G, σ) is an signed graph J(S) = (J(G), σ′),
where for any edge ee′ in J(Sn), σ′(ee′) = σ(e)σ(e′). This concept was introduced by E.
Sampathkumar et al.[11]

Proposition 4.2. (E. Sampathkumar et al.[11]) For any n-sigraph Sn = (G, σ), its
jump n-sigraph J(Sn) is i-balanced.

For any positive integer k, the kth iterated jump n-sigraph, Jk(Sn) of Sn is defined as
follows:

J0(Sn) = Sn, Jk(Sn) = J(Jk−1(Sn)).

Corollary 4.3. For any n-sigraph Sn = (G, σ) and for any positive integer k, Jk(Sn) is
i-balanced.

We now give a characterization of n-sigraphs whose jump n-sigraphs are switching equiv-
alent to their neighborhood n-sigraphs.

Proposition 4.4. A connected n-sigraph Sn = (G, σ) satisfies N(Sn) ∼ J(Sn) if and only
if Sn is an n-sigraph on C5, cycle on 5 vertices.

Proof. Suppose that N(Sn) ∼ J(Sn). Then clearly N(G) ∼= J(G). Hence by Proposition
4.1, G must be C5.

Conversely, suppose that Sn is an n-sigraph on C5. Then by Proposition 4.1, N(G) ∼=
J(G). Since for any n-sigraph Sn, both N(Sn) and J(Sn) are balanced, the result follows by
Proposition 1.2.
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Abstract In this paper, we investigate the influence of some subgroups of Sylow subgroups
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Some conditions of p-nilpotency are obtained and some recent results are generalized.
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§1. Introduction

Throughout the paper, all groups are finite. We use conventional notions and notation, as
in Huppert [1]. G always denotes a group, |G| is the order of G, Op(G) is the maximal normal
p-subgroup of G, Op(G) =< g ∈ G | p - o(g) > and Φ(G) is the Frattini subgroup of G.

Let L/K be a normal factor of a group G. A subgroup H of G is said to cover L/K if
HL = HK, and H is said to avoid L/K if H ∩ L = H ∩ K. If H covers or avoids every
chief factor of G, then H is said to have the cover-avoiding property in G, i.e., H is a CAP -
subgroup of G. This conception was first studied by Gaschütz (see [2]) to study the solvable
groups, later by Gillam (see [3]) and Tomkinson (see [4]). In Ezquerro (see [5]) gave some
characterizations for a group G to be p-supersolvable and supersolvable under the assumption
that all maximal subgroups of some Sylow subgroups of G have the cover-avoiding property
in G. For example, Ezquerrohas proved: Let G be a group with a normal subgroup H such
that G/H is supersolvable. Then G is supersolvable if one of following holds: (1) all maximal
subgroups of the Sylow subgroups of H are CAP -subgroups of G; (2) H is solvable and all
maximal subgroups of the Sylow subgroups of F (H) are CAP -subgroups of G. Asaad (see [6])
said that it is possible to extend Ezquerro’s results with formation theory. Recently, Guo and
Shum pushed further this approach and obtained some charaterizations for a solvable group
and a p-solvable group based on the assumption that some of its subgroups are CAP -subgroups

1The project is supported by the N. S. F. of China (No: 11071229) and the N. S. F. of the Jiangsu Higher

Education Institutions (No: 10KJD110004).
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(see [7]). More recently, in Fan et al. (see [8]) introduced the semi cover-avoiding property,
which is the generalization not only of the cover-avoiding property but also of c-normality (see
[9]). A subgroup H of a group G is said to have the semi cover-avoiding property in G, i.e.,
H is an SCAP -subgroup of G, if there exists a chief series of G such that H either covers or
avoids every G-chief factor of this series. The results in Guo and Shum (see [7]) and Wang (see
[9]) were extended with the requirement that the certain subgroups of G are SCAP -subgroups
(see [10, 11]). More recently, many authors invest presented some conditions for a group to be
p-nilpotent and supersolvable under the condition that some subgroups of Sylow subgroup are
SCAP -subgroups (see [12, 13, 14]).

A subgroup H of a group G is said to be S-quasinormal (or π-quasinormal) in G if H

permutes with all Sylow subgroups of G, i.e., HS = SH for any Sylow subgroup S of G.
This concept was introduced by Kegel in [15]. As another generalization of S-quasinormal
subgroups, A. N. Skiba (see [16]) introduced the following concept: A subgroup H of a group
G is called weakly S-supplemented (or S-supplemented) in G if there is a subgroup T of G

such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those
subgroups of H which are S-quasinormal in G. In fact, this concept is also a generalization of
c-supplemented subgroups given in [17]. By using S-supplemented subgroups, many interesting
results in finite groups were obtained (see [18, 19, 20]). For example, Skiba proved: Let E be
a normal subgroup of a finite group G. Suppose that for every non-cyclic Sylow subgroup P of
E, either all maximal subgroups of P or all cyclic subgroups of P of prime order and order 4
are S-supplemented in G. Then each G-chief factor below E is cyclic.

There are examples to show that semi cover-avoiding property and S-supplementation can
not imply from one to the other one. In this paper, we will try an attempt to unify the two
concepts and establish the structure of groups under the assumption that all maximal subgroups
or all minimal subgroups of a Sylow subgroup or are SCAP or S-supplemented subgroups. Our
theorems generalize and unify some known results, such as in [11, 13, 26, 27, 28].

§2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our main results.
Lemma 2.1.[11] (Lemma 2.5 and 2.6) Let H be an SCAP subgroup of a group G.
(1) If H ≤ L ≤ G, then H is an SCAP subgroup of L.
(2) If N E G and N ≤ H ≤ G, then H/N is an SCAP subgroup of G/N .
(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is an SCAP

subgroup of G/N .
Lemma 2.2.[16] (Lemma 2.10) Let H be an S-supplemented subgroup of a group G.
(1) If H ≤ L ≤ G, then H is S-supplemented in L.
(2) If N E G and N ≤ H ≤ G, then H/N is S-supplemented in G/N .
(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is S-supplemented

in G/N .
Lemma 2.3.[16] (Lemma 3.1) Let p be a prime dividing the order of the group G with

(|G|, p− 1) = 1 and let P be a p-Sylow subgroup of G. If there is a maximal subgroup P1 of P
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such that P1 has the semi cover-avoiding property in G, then G is p-solvable.
Lemma 2.4.[22] (Lemma 2.8) Let M be a maximal subgroup of G and P a normal p-

subgroup of G such that G = PM , where p is a prime. Then P ∩M is a normal subgroup of
G.

Lemma 2.5.[23] (Lemma 2.7) Let G be a group and p a prime dividing |G| with (|G|, p−
1) = 1.

(1) If N is normal in G of order p, then N ≤ Z(G).
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
(3) If M ≤ G and |G : M | = p , then M E G.
Lemma 2.6.[25] (Lemma 2.6) If P is a S-quasinormal p-subgroup of a group G for some

prime p, then Op(G) ≤ NG(P ).
Lemma 2.7.[24] (Main Theorem) Suppose that G has a Hall π-subgroup where π is a set

of odd primes. Then all Hall π-subgroups of G are conjugate.
Lemma 2.8. ([1], IV, 5.4) Suppose that G is a group which is not nilpotent but whose

proper subgroups are all nilpotent. Then G is a group which is not nilpotent but whose proper
subgroups are all nilpotent.

Lemma 2.9. ([1], III, 5.2) Suppose G is a group which is not p-nilpotent but whose proper
subgroups are all p-nilpotent. Then

(a) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where Q is a
non-normal cyclic q-subgroup for some prime q 6= p.

(b) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).
(c) If P is non-abelian and p > 2, then the exponent of P is p; If P is non-abelian and

p = 2, then the exponent of P is 4.
(d) If P is abelian, then the exponent of P is p.
(e) Z(G) = Φ(P )× Φ(Q).

§3. P -nilpotentcy

Theorem 3.1. Let p be a prime dividing the order of a group G with (|G|, p− 1) = 1 and
H a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup
P of H such that every maximal subgroup of P is either an SCAP or an S-supplemented
subgroup of G, then G is p-nilpotent.

Proof. We distinguish two cases:
Case I. H = G.
Suppose that the theorem is false and let G be a counterexample of minimal order. We

will derive a contradiction in several steps.
(1) Op′(G) = 1.
Assume that Op′(G) 6= 1. Then POp′(G)/Op′(G) is a Sylow p-subgroup of G/Op′(G).

Suppose that M/Op′(G) is a maximal subgroup of POp′(G)/Op′(G). Then there exists a
maximal subgroup P1 of P such that M = P1Op′(G). By the hypothesis, P1 is either an
SCAP or an S-supplemented subgroup of G, then M/Op′(G) = P1Op′(G)/Op′(G) is either an
SCAP or an S-supplemented subgroup of G/Op′(G) by Lemma 2.1 and 2.2. It is clear that
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(|G/Op′(G)|, p− 1) = 1. The minimal choice of G implies that G/Op′(G) is p-nilpotent, and so
G is p-nilpotent, a contradiction. Therefore, we have Op′(G) = 1.

(2) Op(G) 6= 1.
If all maximal subgroups of P are S-supplemented in G, then G is p-nilpotent by [21,

Lemma 3.1]. Therefore we may assume that there is a maximal subgroup P1 of P which is an
SCAP subgroup of G. By Lemma 2.3, G is p-solvable. Since Op′(G) = 1 by Step (1), we have
Op(G) 6= 1.

(3) G is solvable.
If p 6= 2, then G is odd from the assumption that (|G|, p − 1) = 1. By the famous Odd

Order Theorem, G is solvable. If p = 2, then O2(G) 6= 1 by Step (2). Suppose that M/O2(G) is
a maximal subgroup of P/O2(G). Then M is a maximal subgroup of P . By the hypothesis, M

is either an SCAP or an S-supplemented subgroup of G, then M/O2(G) is either an SCAP or
an S-supplemented subgroup of G/O2(G) by Lemma 2.1 and 2.2. Therefore G/O2(G) satisfies
the hypothesis of the theorem. The minimal choice of G implies that G/O2(G) is 2-nilpotent,
and so G/O2(G) is solvable. It follows that G is solvable.

(4) Op(G) is the unique minimal normal subgroup of G.
Let N be a minimal normal subgroup of G. By Step (3), N is an elementary abelian

subgroup. Since Op′(G) = 1, we have N is p-subgroup and so N ≤ Op(G). It is easy to see
that G/N satisfies the hypothesis of the theorem. The minimal choice of G implies that G/N

is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, N is a unique
minimal normal subgroup of G and N � Φ(G). Choose M to be a maximal subgroup of G

such that G = NM . Obviously, G = Op(G)M and so Op(G) ∩M is normal in G by Lemma
2.4. The uniqueness of N yields N = Op(G).

(5) The final contradiction.
By the proof in Step (4), G has a maximal subgroup M such that G = MOp(G) and

G/Op(G) ∼= M is p-nilpotent. Clearly, P = Op(G)(P ∩M). Furthermore, P ∩M < P . Thus,
there exists a maximal subgroup V of P such that P ∩ M ≤ V . Hence, P = Op(G)V . By
the hypothesis, V is either an SCAP or a S-supplemented subgroup of G. First, we assume
that V is an SCAP of G. Since Op(G) is the unique minimal normal subgroup of G, V covers
or avoids Op(G)/1. If V covers Op(G)/1, then V Op(G) = V , i.e., Op(G) ≤ V . It follows
that P = Op(G)V = V , a contradiction. If V avoids Op(G)/1, then V ∩ Op(G) = 1. Since
V ∩ Op(G) is a maximal subgroup of Op(G), we have that Op(G) is of order p and so Op(G)
lies in Z(G) by Lemma 2.5. By the proof in Step (4), we have G/Op(G) is p-nilpotent. Then
G/Z(G) is p-nilpotent, and so G is p-nilpotent, a contradiction. Now, we may assume that V

is an S-supplemented subgroup of G. Then there is a subgroup T of G such that G = V T and
V ∩ T ≤ VsG. From Lemma 2.6, we have Op(G) ≤ NG(VsG). Since VsG is subnormal in G, we
have V ∩ T ≤ VsG ≤ Op(G). Thus, VsG ≤ V ∩Op(G) and

VsG ≤ (VsG)G = (VsG)Op(G)P = (VsG)P ≤ (V ∩Op(G))P = V ∩Op(G) ≤ Op(G).

It follows that (VsG)G = 1 or (VsG)G = V ∩Op(G) = Op(G). If (VsG)G = V ∩Op(G) = Op(G),
then Op(G) ≤ V and P = Op(G)V = V , a contradiction. If (VsG)G = 1, then V ∩ T = 1
and so |T |p = p. Hence, T is p-nilpotent by Lemma 2.5. Let Tp′ be the normal p-complement
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of T . Since M is p-nilpotent, we may suppose M has a normal Hall p′-subgroup Mp′ and
M ≤ NG(Mp′) ≤ G. The maximality of M implies that M = NG(Mp′) or NG(Mp′) = G. If
the latter holds, then Mp′ E G and Mp′ is actually the normal p-complement of G, which is
contrary to the choice of G. Hence, we may assume M = NG(Mp′). By applying Lemma 2.7
and Feit-Thompson’s theorem, there exists g ∈ G such that T g

p′ = Mp′ . Hence, T g ≤ NG(T g
p′) =

NG(Mp′) = M . However, Tp′ is normalized by T , so g can be considered as an element of V .
Thus, G = V T g = V M and P = V (P ∩M) = V , a contradiction.

Case II. H < G.

By Lemma 2.1 and 2.2, every maximal subgroup of P is an SCAP or S-supplemented
subgroup of H. By Case I, H is p-nilpotent. Now, let Hp′ be the normal p-complement of
H. Then Hp′ E G. Assume Hp′ 6= 1 and consider G/Hp′ . Applying Lemma 2.1 and 2.2, it is
easy to see that G/Hp′ satisfies the hypotheses for the normal subgroup H/Hp′ . Therefore, by
induction G/Hp′ is p-nilpotent and so G is p-nilpotent. Hence, we may assume Hp′ = 1 and so
H = P is a p-group. Since G/H is p-nilpotent, we can let K/H be the normal p-complement
of G/H. By Schur-Zassenhaus’s theorem, there exists a Hall p′-subgroup Kp′ of K such that
K = HKp′ . A new application of Case II yields K is p-nilpotent and so K = H ×Kp′ . Hence,
Kp′ is a normal p-complement of G, i.e., G is p-nilpotent.

Corollary 3.2. Let P be a Sylow p-subgroup of a group G, where p is the smallest prime
divisor of |G|. If every maximal subgroup of P is either an SCAP or an S-supplemented
subgroup of G, then G is p-nilpotent.

Proof. It is clear that (|G|, p − 1) = 1 if p is the smallest prime dividing the order of G

and so Corollary 3.2 follows immediately from Theorem 3.1.

Corollary 3.3. Suppose that every maximal subgroup of any Sylow subgroup of a group
G is either an SCAP or an S-supplemented subgroup of G, then G is a Sylow tower group of
supersolvable type.

Proof. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. By
Corollary 3.2, G is p-nilpotent. Let U be the normal p-complement of G. By Lemma 2.1
and 2.2, every maximal subgroup of any Sylow subgroup of U is either an SCAP or an S-
supplemented subgroup of U . Thus U satisfies the hypothesis of the Corollary. It follows by
induction that U , and hence G is a Sylow tower group of supersolvable type.

Corollary 3.4.[26] (Theorem 3.1) Let G be a group, p a prime dividing the order of G,
and P a Sylow p-subgroup of G. If (|G|, p − 1) = 1 and every maximal subgroup of P is an
SCAP subgroup of G, then G is p-nilpotent.

Corollary 3.5.[11] (Theorem 3.2) Let P be a Sylow p-subgroup of a group G, where p is
the smallest prime divisor of |G|. If P is cyclic or every maximal subgroup of P is an SCAP

subgroup of G, then G is p-nilpotent.

Proof. If P is cyclic, by Lemma 2.5, we have G is p-nilpotent. Thus we may assume that
every maximal subgroup of P is an SCAP subgroup of G. By Corollary 3.2, G is p-nilpotent.

Theorem 3.6. Suppose N is a normal subgroup of a group G such that G/N is p-nilpotent,
where p is a fixed prime number. Suppose every subgroup of order p of N is contained in the
hypercenter Z∞(G) of G. If p = 2, in addition, suppose every cyclic subgroup of order 4 of N

is either an SCAP or an S-supplemented subgroup of G, then G is p-nilpotent.
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Proof. Suppose that the theorem is false, and let G be a counterexample of minimal order.
(1) The hypotheses are inherited by all proper subgroups, thus G is a group which is not

p-nilpotent but whose proper subgroups are all p-nilpotent.
In fact, ∀K < G, since G/N is p-nilpotent, K/K ∩ N ∼= KN/N is also p-nilpotent. The

cyclic subgroup of order p of K ∩N is contained in Z∞(G)∩K ≤ Z∞(K), the cyclic subgroup
of order 4 of K ∩N is either an SCAP or an S-supplemented subgroup of G, then is either an
SCAP or an S-supplemented subgroup of K by Lemma 2.1 and 2.2. Thus K,K∩N satisfy the
hypotheses of the theorem in any case, so K is p-nilpotent, therefore G is a group which is not
p-nilpotent but whose proper subgroups are all p-nilpotent. By Lemma 2.8 and 2.9, G = PQ,
P E G and P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(2) G/P ∩N is p-nilpotent.
Since G/P ∼= Q is nilpotent, G/N is p-nilpotent and G/P ∩ N . G/P × G/N , therefore

G/P ∩N is p-nilpotent.
(3) P ≤ N .
If P � N , then P ∩ N < P . So Q(P ∩ N) < QP = G. Thus Q(P ∩ N) is nilpotent by

(1), Q(P ∩N) = Q× (P ∩N). Since G/P ∩N = P/P ∩N ·Q(P ∩N)/P ∩N , it follows that
Q(P ∩N)/P ∩N E G/P ∩N by Step (2). So Q char Q(P ∩N) E G. Therefore, G = P ×Q, a
contradiction.

(4) p = 2.
If p > 2, then exp(P ) = p by (a) and Lemma 2.9. Thus P = P ∩N ≤ Z∞(G). It follows

that G/Z∞(G) is nilpotent, and so G is nilpotent, a contradiction.
(5) For every x ∈ P\Φ(P ), we have ◦(x) = 4.
If not, there exists x ∈ P\Φ(P ) and ◦(x) = 2. Denote M =< xG >≤ P . Then

MΦ(P )/Φ(P ) E G/Φ(P ), we have that P = MΦ(P ) = M ≤ Z∞(G) as P/Φ(P ) is a mini-
mal normal subgroup of G/Φ(P ) by Lemma 2.9, a contradiction.

(6) For every x ∈ P\Φ(P ), < x > is supplemented in G.
Let x ∈ P\Φ(P ). Then x either an SCAP or an S-supplemented subgroup of G by Step

(5) and the hypothesis. We assume that x has the semi cover-avoiding property in G. In this
case, there exists a chief series of G

1 = G0 < G1 < · · · < Gt = G,

such that x covers or avoids every Gj/Gj−1. Since x ∈ G, for some k, x /∈ Gk but x ∈ Gk+1.
It follows from Gk∩ < x >6= Gk+1∩ < x > that Gk < x >= Gk+1 < x >= Gk+1. Hence
Gk+1/Gk is a cyclic group of order 4. The normality of P ∩Gk implies that (P ∩Gk)Φ(P )/Φ(P )
is normal in G/Φ(P ). Since P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), we see that
(P ∩ Gk)Φ(P ) = Φ(P ) or P . If (P ∩ Gk)Φ(P ) = P , then P ∩ Gk = P , contradicting x /∈
P ∩ Gk. Thus P ∩ Gk ≤ Φ(P ). Since x /∈ Φ(P ) but x ∈ P ∩ Gk+1, P ∩ Gk+1 = P , i.e.,
P ≤ Gk+1.Therefore, P = P ∩ Gk < x >=< x > (P ∩ Gk) = Φ(P ) < x >=< x >. By
Lemma 2.9, P is an elementary abelian group and so P does not have an element of order 4, a
contradiction.

(7) Final contradiction.
For any x ∈ P\Φ(P ), we may assume that x is supplemented in G by Step (6). Then

there is a subgroup T of G such that G =< x > T and < x > ∩T ≤< x >sG. It follows
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that P = P ∩ G = P∩ < x > T =< x > (P ∩ T ). Since P/Φ(P ) is abelian, we have
(P ∩ T )Φ(P )/Φ(P ) E G/Φ(P ). Since P/Φ(P ) is the minimal normal subgroup of G/Φ(P ),
P ∩ T ≤ Φ(P ) or P = (P ∩ T )Φ(P ) = P ∩ T . If P ∩ T ≤ Φ(P ), then < x >= P E G, a
contraction. If P = (P ∩T )Φ(P ) = P ∩T , then T = G and so < x >=< x >sG is s-permutable
in G. We have < x > Q is a proper subgroup of G and so < x > Q =< x > ×Q, i.e.,
< x >≤ NG(Q). By Lemma 2.9, Φ(P ) ⊆ Z(G). Therefore we have P ≤ NG(Q) and so Q E G,
a contradiction.

Corollary 3.7. Suppose N is a normal subgroup of a group G such that G/N is nilpotent
and every minimal subgroup of N is contained in the hypercenter Z∞(G) of G. If p = 2, in
addition, suppose every cyclic subgroup of order 4 of N is either an SCAP or an S-supplemented
subgroup of G, then G is nilpotent.

Corollary 3.8.[27] (Theorem 4.3) Suppose N is a normal subgroup of a group G such that
G/N is nilpotent and every minimal subgroup of N is contained in the hypercenter Z∞(G)
of G. If p = 2, in addition, suppose every cyclic subgroup of order 4 of N is c-supplemented
subgroup of G, then G is nilpotent.

Corollary 3.9.[28](Theorem 2.5) Suppose that p is a prime and K = GN be the nilpotent
residual of G. Then G is p-nilpotent if every minimal subgroup of K is contained in Z∞(G)
and every cyclic < x > of K with order 4 is c-supplemented in G.

Corollary 3.10.[29](Theorem 2.4) Let G be a finite group and K = GN be the nilpotent
residual of G. Then G is nilpotent if and only if every minimal subgroup < x > of K lies in
the hypercenter Z∞(G) of G and every cyclic element of P with order 4 is c-normal in G.
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§1. Introduction

For any positive integer n, the famous Smarandache adjacent number sequences {a(n,m)}
are defined as the number of such set, making the number of each set can be divided into
several same parts, where m represent the bits of n. For example, Smarandache a(1, 1) = 1,
a(2, 1) = 22, a(3, 1) = 333, a(4, 1) = 4444, a(5, 1) = 55555, a(6, 1) = 666666, a(7, 1) = 7777777,
a(8, 1) = 88888888, a(9, 1) = 999999999, a(10, 2) = 10101010101010101010,. . ., a(100, 3) =
100 · · · 100︸ ︷︷ ︸

100

,. . ., and so on.

In the reference [1], Professor F. Smarandache asked us to study the properties of this
sequence. About this problem, it seems that none had studied them before, at least we couldn’t
find any reference about it.

The problem of this sequence’s first n items summation is meaningful. After a simple
deduction and calculation, we can get a complex formula, but it’s not ideal. So we consider
the asymptotic problem of the average ln a(n, 1) + ln a(n, 2) + · · · + ln a(N, M). We use the
elementary method and the property of integral nature of the carrying to prove the following
conclusion:

Theorem. If m is the bits of n, for any positive integer N ,we have the asymptotic formula:

∑

n≤N

ln a(n,m) = N · lnN + O (N) .

But the two asymptotic formulas is very rough, we will continue to study the precise
asymptotic formulas.
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§2. Proof of the theorem

In this section, we shall use the elementary methods to prove our theorems directly. First,
we give one simple lemma which is necessary in the proof of our theorem. The proof of this
lemma can be found in the reference [8].

Lemma 1. If f has a continuous derivative f ′ on the interval [x, y], where 0 < y < x,

∑

y<k≤x

f(n) =
∫ x

y

f(t)dt +
∫ x

y

(t− [t])f ′(t)dt + f(x)([x]− x)− f(y)([y]− y).

Then, we consider the structure of {a(n,m)}. We will get the following equations:
a(1, 1) = 1,

a(2, 1) = 2 · 101 + 2 · 100,

a(3, 1) = 3 · 102 + 3 · 101 + 3 · 100,

a(4, 1) = 4 · 103 + 4 · 102 + 4 · 101 + 4 · 100,

· ··,
a(9, 1) = 9 · 108 + 9 · 107 + · · ·+ 9 · 102 + 9 · 101 + 9 · 100,

a(10, 2) = 10 · 1018 + 10 · 1016 + · · ·+ 10 · 102 + 10 · 100

· ··,
a(100, 3) = 100 · 10297 + 100 · 10294 + · · ·+ 100 · 103 + 100 · 100

· ··,
a(n,m) = n · n297 + n · 10294 + · · ·+ n · 10m + n · 100.

If we analysis the above equations, we can get :

∏

1≤n≤N

a(n,M) =

(
9∏

n=1

a(1, n)

)
· · ·




10(10M−1−1)·(M−1)∏

n=10M−1−1

a(n,M − 1)


 ·

(
N∏

n=10M−1

a(N, M)

)

= N !
(10− 1) · (102 − 1) · · · (10(10M−1−1)·(M−1) − 1) · (10(10M−1)·M − 1)

(10− 1)9 · (102 − 1)90 · · · (10M−1 − 1)9·10M−2 · (10M − 1)9·10
M−1 . (1)

When x → 0, we note that the estimation ln(1 + x) = x + O
(
x2

)
, so we have

M∑

k=1

ln
(
10k + 1

)9·10k−1

= 9 ·
M∑

k=1

10k−1 ·
(

k · ln 10 +
1

10k
+ O

(
1

102k

))

=
M∑

k=1

k · 10k−1 · 9 ln 10 +
9
10

M + O(1)

= M · 10M · ln 10 +
1
9
(1− 10M ) · ln 10 +

9
10

M + O(1)

= M · 10M · ln 10 + O(N). (2)
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M∑

k=1

ln(10(10k−1)·k − 1)

=
M∑

k=1

(
10k − 1

) · k ln 10−
M∑

k=1

1
10(10k−1)·k + O

(
1

10102·(10k−1)·k

)

=
M · 10M+1 · ln 10

9
+ M · 10M · ln 10 + O(N). (3)

Applying the Lemma 1, we obtain

ln(N !) =
∑

1≤n≤N

lnn = N · lnN −N + O(1). (4)

Combining the equation (1), asymptotic formulas (2), (3) and (4), we obtain the asymptotic
formula

∑

1≤n≤N

ln a(n,m) =
∑

1≤n≤N

lnn +
M∑

k=1

ln
(
10k + 1

)9·10k−1

−
M∑

k=1

ln(10(10k−1)·k − 1)

= N · lnN + O(N).

Thus, we have accomplished the proof of the theorem.
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§1. Introduction

Fuzzy set theory, compared to other mathematical theories, is perhaps the most easily
adaptable theory to practice. The main reason is that a fuzzy set has the property of relativity,
variability and inexactness in the definition of its elements. Instead of defining an entity in
calculus by assuming that its role is exactly known, we can use fuzzy sets to define the same
entity by allowing possible deviations and inexactness in its role. This representation suits well
the uncertainties encountered in practical life, which make fuzzy sets a valuable mathematical
tool. The concept of fuzzy set was introduced by Zadeh in 1965 [5]. Later on many research
workers were motivated by the introduced notion of fuzzy sets. It has been applied for the
studies in almost all branches of sciences, where mathematics has been applied. Workers on
sequence spaces have been also applied the notion of fuzzy real numbers and have introduced
sequences of fuzzy real numbers and have studied their different properties. Interval arithmetic
was first suggested by Dwyer [7] in 1951. Development of interval arithmetic as a formal
system and evidence of its value as a computational device was provided by Moore [10] in 1959
and Moore and Yang [11] 1962. Furthermore, Moore and others [7−9] and [12] have developed
applications to differential equations.

Chiao in [4] introduced sequence of interval numbers and defined usual convergence of
sequences of interval number. Recently Şengönül and Eryilmaz in [6] introduced and studied
bounded and convergent sequence spaces of interval numbers and showed that these spaces are
complete metric space.

The idea of statistical convergence for single sequences was introduced by Fast [2] in 1951.
Schoenberg [3] studied statistical convergence as a summability method and listed some of
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elemantary properties of statistical convergence. Both of these authors noted that if bounded
sequence is statistically convergent, then it is Cesaro summable. Existing work on statistical
convergence appears to have been restricted to real or complex sequence, but several authors
extended the idea to apply to sequences of fuzzy numbers and also introduced and discussed
the concept of statistically sequences of fuzzy numbers.

§2. Preliminaries

A set consisting of a closed interval of real numbers x such that a ≤ x ≤ b is called
an interval number. A real interval can also be considered as a set. Thus we can investi-
gate some properties of interval numbers, for instance arithmetic properties or analysis prop-
erties. We denote the set of all real valued closed intervals by IR. Any elements of IR is
called closed interval and denoted by x. That is x = {x ∈ R : a ≤ x ≤ b}. An interval number
x is a closed subset of real numbers [4]. Let xl and xr be first and last points of x inter-
val number, respectively. For x1, x2 ∈IR, we have x1 = x2 ⇔ x1l

=x2l
,x1r

=x2r
. x1 + x2 =

{x ∈ R : x1l
+ x2l

≤ x ≤ x1r
+ x2r

} , and if α ≥ 0, then αx = {x ∈ R : αx1l
≤ x ≤ αx1r

} and
if α < 0, then αx = {x ∈ R : αx1r

≤ x ≤ αx1l
} ,

x1.x2 =





x ∈ R : min {x1l
.x2l

, x1l
.x2r

, x1r
.x2l

, x1r
.x2r

} ≤ x

≤ max {x1l
.x2l

, x1l
.x2r , x1r .x2l

, x1r .x2r}



 .

The set of all interval numbers IR is a complete metric space defined by

d (x1, x2) = max {|x1l
− x2l

| , |x1r − x2r |} [10].

In the special case x1 = [a, a] and x2 = [b, b], we obtain usual metric of R.

Let us define transformation f : N → R by k → f (k) = x, x = (xk) . Then x = (xk) is
called sequence of interval numbers. The xk is called kth term of sequence x = (xk). wi denotes
the set of all interval numbers with real terms and the algebric properties of wi can be found
in [13].

Now we give the definition of convergence of interval numbers:
Definition 2.1.[4] A sequence x = (xk) of interval numbers is said to be convergent to the

interval number xo if for each ε > 0, there exists a positive integer ko such that d (xk, xo) < ε

for all k ≥ ko and we denote it by limk xk = xo.

Thus, limk xk = xo ⇔ limk xkl
= xol

and limk xkr = xor .

§3. Main results

In this paper, we introduce and study the concepts of strongly λ−convergence and statis-
tically λ−convergence for interval numbers.

Definition 3.1. Let λ = (λn) be a non-decreasing sequence of positive numbers such that
λn+1 ≤ λn + 1, λ1 = 1, λn →∞ as n →∞ and In = [n− λn + 1, n] . The sequence x = (xk) of
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interval numbers is said to be strongly λ−summable if there is an interval number xo such that

lim
n

1
λn

∑

k∈In

d (xk+m, xo) = 0, uniformly in m.

In which case we say that the sequence x = (xk) of interval numbers is said to be strongly
almost λ−summable to interval number xo. If λn = n, then strongly almost λ−summable
reduces to strongly almost Cesaro summable defined as follows:

lim
n

1
n

n∑

k=1

d (xk+m, xo) = 0, uniformly in m.

In special case m = 0, we obtain strongly λ−summable, which was defined Esi in [1] .
Definition 3.2. A sequence x = (xk) of interval numbers is said to be statistically almost

λ−convergent to interval number xo if for every ε > 0,

lim
n

1
λn

|{k ∈ In : d (xk+m, xo) ≥ ε}| = 0, uniformly in m.

In this case we write ŝλ − limxk = xo. If λn = n, then statistically almost λ−convergence
reduces to statistically almost convergence as follows:

lim
n

1
n
|{k ≤ n : d (xk+m, xo) ≥ ε}| = 0, uniformly in m.

In this case we write ŝ − limxk = xo. In special case m = 0, we obtain statistically
λ−convergence, which was defined Esi in [1] .

Theorem 3.1. Let x = (xk) and y = (yk) be sequences of interval numbers.
(i) If ŝλ − lim xk = xo and α ∈ R, then ŝλ − limαxk = αxo.

(ii) If ŝλ − limxk = xo and ŝλ − lim yk = yo, then ŝλ − lim (xk + yk) = xo + yo.

Proof. (i) Let α ∈ R. We have d (αxk, αxo) = |α| d (xk, xo) . For a given ε > 0 and all m,

1
λn

|{k ∈ In : d (αxk+m, αxo) ≥ ε}| ≤ 1
λn

∣∣∣∣
{

k ∈ In : d (xk+m, xo) ≥ ε

|α|
}∣∣∣∣ .

Hence ŝλ − lim αxk = αxo.

(ii) Suppose that ŝλ − limxk = xo and ŝλ − lim yk = yo. We have

d
(
xk+m + yk+m, xo + yo

) ≤ d (xk+m, xo) + d
(
yk+m, yo

)
.

Therefore given ε > 0 and all m, we have

1
λn

∣∣{k ∈ In : d
(
xk+m + yk+m, xo + yo

) ≥ ε
}∣∣

≤ 1
λn

∣∣{k ∈ In : d (xk+m, xo) + d
(
yk+m, yo

) ≥ ε
}∣∣

<
1
λn

∣∣∣
{

k ∈ In : d (xk+m, xo) ≥ ε

2

}∣∣∣ +
1
λn

∣∣∣
{

k ∈ In : d
(
yk+m, yo

) ≥ ε

2

}∣∣∣ .

Thus, ŝλ − lim (xk + yk) = xo + yo.
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In the following theorems, we exhibit some connections between strongly almost λ−summable
and statistically almost λ−convergence of sequences of interval numbers.

Theorem 3.2. If an interval sequence x = (xk) is strongly almost λ−summable to interval
number xo, then it is statistically almost λ−convergent to interval number xo.

Proof. Let ε > 0. Since

∑

k∈In

d (xk+m, xo) ≥
∑

k∈In
d(xk,xo)≥ε

d (xk+m, xo) ≥ |{k ∈ In : d (xk+m, xo) ≥ ε}| ε,

if x = (xk) is strongly almost λ−summable to xo, then it is statistically almost λ−convergent
to xo.

Theorem 3.3. If x = (xk) ∈ m̂ and x = (xk) is statistically λ−convergent to interval
number xo, then it is strongly almost λ−summable to xo and hence x = (xk) is strongly almost
Cesaro summable to xo, where m̂ =

{
x = (xk) : supk,m d (xk+m, xo) < ∞}

.

Proof. Suppose that x = (xk) ∈ m̂ and statistically almost λ−convergent to interval
number xo. Since x = (xk) ∈ m̂, we write d (xk+m, xo) ≤ A for all k, m ∈ N. Given ε > 0, we
have

1
λn

∑

k∈In

d (xk+m, xo) =
1
λn

∑

k∈In
d(xk,xo)≥ε

d (xk+m, xo) +
1
λn

∑

k∈In
d(xk,xo)<ε

d (xk+m, xo)

<
A

λn
|{k ∈ In : d (xk+m, xo) ≥ ε}|+ ε,

which implies that x = (xk) is strongly almost λ−summable to xo. Further we have

1
n

n∑

k=1

d (xk+m, xo) =
1
n

n−λn∑

k=1

d (xk+m, xo) +
1
n

∑

k∈In

d (xk+m, xo)

<
1
λn

n−λn∑

k=1

d (xk+m, xo) +
1
λn

∑

k∈In

d (xk+m, xo)

<
2
λn

∑

k∈In

d (xk+m, xo) .

Hence x = (xk) is strongly almost Cesaro summable to xo.

Theorem 3.4. If a interval sequence x = (xk) is statistically almost convergent to interval
number xo and lim infn

λn

n > 0, then it is statistically almost λ−convergent to xo.

Proof. For given ε > 0 and all m, we have

{k ≤ n : d (xk+m, xo) ≥ ε} ⊃ {k ∈ In : d (xk+m, xo) ≥ ε} .

Therefore

1
n
|{k ≤ n : d (xk+m, xo) ≥ ε}| >

1
n
|{k ∈ In : d (xk+m, xo) ≥ ε}|

≥ λn

n
· 1
λn

|{k ∈ In : d (xk+m, xo) ≥ ε}| .
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Taking limit as n → ∞, uniformly in m and using lim infn
λn

n > 0, we get that x = (xk) is
statistically almost λ−convergent to xo.

Finally we conclude this paper by stating a definition which generalizes Definition 3.1 of
Section 3 and two theorems related to this definition.

Definition 3.3. Let λ = (λn) be a non-decreasing sequence of positive numbers such that
λn+1 ≤ λn + 1, λ1 = 1, λn → ∞ as n → ∞ and In = [n− λn + 1, n] and p ∈ (0,∞) . The
sequence x = (xk) of interval numbers is said to be strongly almost λp−summable if there is
an interval number xo such that

lim
n

1
λn

∑

k∈In

[d (xk+m, xo)]
p = 0, uniformly in m.

In which case we say that the sequence x = (xk) of interval numbers is said to be strongly
almost λp−summable to interval number xo. If λn = n, then strongly almost λp−summable
reduces to strongly almost p-Cesaro summable defined as follows:

lim
n

1
n

n∑

k=1

[d (xk+m, xo)]
p = 0, uniformly in m.

The following theorems is similar to that of Theorem 3.2 and Theorem 3.3, so the proofs
omitted.

Theorem 3.5. If an interval sequence x = (xk) is strongly almost λp−summable to
interval number xo, then it is statistically almost λ−convergent to interval number xo.

Theorem 3.6. If x = (xk) ∈ m̂ and x = (xk) is statistically almost λ−convergent to
interval number xo, then it is strongly almost λp−summable to xo and hence x = (xk) is
strongly almost p-Cesaro summable to xo.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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