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Abstract In this paper the two different concepts namely Ditopological texture spaces and

ideals are combined together to define a new dimension of topology namely ditopological ideal
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§1. Introduction

Textures were introduced by L. M. Brown [2] as a point-set for the study of fuzzy sets
in 1998. On the other hand, textures offers a convenient setting for the investigation of
complement-free concepts in general, so much of the recent work has proceeded independently
of the fuzzy setting. And also several authors [1,12,13] have studied ideal topological spaces. In
1992, Jankovic and Hamlett introduced the notion of I-open sets in topological spaces which
received more and more attention because of their good properties. El-Monsef [1], investigated
I-open sets and I-continuous functions. In 1996, Dontchev [12] introduced the notion of pre-
I-open sets and obtained a decomposition of I-continuity. An ideal is defined as a nonempty
collection I of subsets of X satisfying the following two conditions:

(i) If A ∈ I and B ⊂ A, then B ∈ I.
(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.
An ideal topological space denoted by (X, τ, I) is a topological space (X, τ) with an ideal

I on X. For a subset A of X, A∗(I)={x ∈ X : U ∩ A 6∈ I for each neighbourhood U of x} is
called the local function [6] of A with respect to I and τ . Additionally, cl∗(A) = A∪A∗ defines
a Kuratowski closure operator for τ∗(I).

Ditopological Texture Spaces: Let S be a set, a texturing T of S is a subset of P (S). If
(i) (T, ⊆) is a complete lattice containing S and φ, and the meet and join operations in

(T, ⊆) are related with the intersection and union operations in (P (S), ⊆) by the equalities
∧i∈IAi = ∩i∈IAi, Ai ∈ T, i ∈ I, for all index sets I, while
∨i∈IAi = ∪i∈IAi, Ai ∈ T, i ∈ I, for all finite sets I.
(ii) T is completely distributive.
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(iii) T separates the points of S. That is, given s1 6= s2 in S we have A ∈ T with
s1 ∈ A, s2 6∈ A, or A ∈ T with s2 ∈ A, s1 6∈ A.

If S is textured by T we call (S, T ) a texture space or simply a texture.
For a texture (S; T ), most properties are conveniently defined in terms of the p-sets

Ps = ∩{A ∈ T\s ∈ A} and the q-sets Qs = ∨{A ∈ T/s 6∈ A}. The following are some basic
examples of textures.

Examples 1.1. Some examples of texture spaces,
(i) If X is a set and P (X) the powerset of X, then (X; P (X)) is the discrete texture on

X. For x ∈ X, Px = {x} and Qx = X\{x}.
(ii) Setting I = [0; 1], T = {[0; r); [0; r]/r ∈ I} gives the unit interval texture (I; T ).

For r ∈ I, Pr = [0; r] and Qr = [0; r).
(iii) The texture (L; T ) is defined by L = (0; 1], T = {(0; r]/r ∈ I}. For r ∈ L, Pr =

(0; r] = Qr.
(iv) T = {φ, {a, b}, {b}, {c}, {b, c}, S} is a simple textureing of S = {a, b, c} clearly

Pa = {a, b}, Pb = {b} and Pc = {c}.
Since a texturing T need not be closed under the operation of taking the set complement,

the notion of topology is replaced by that of dichotomous topology or ditopology, namely a pair
(τ, κ) of subsets of T , where the set of open sets τ satisfies:

(i) S, φ ∈ τ ,
(ii) G1; G2 ∈ τ then G1 ∩G2 ∈ τ and
(iii) Gi ∈ τ , i ∈ I then ∨iGi ∈ τ ,
and the set of closed sets κ satisfies:
(i) S, φ ∈ κ,
(ii) K1; K2 ∈ κ then K1 ∪K2 ∈ κ and
(iii) Ki ∈ κ, i ∈ I then ∩Ki ∈ κ.
Elements of closed set topology is set such that each set in κ is Ux

⋂
A 6= ϕ, where A in T

and Ux in τ , x in S.
For A ∈ T we define the closure [A] or cl(A) and the interior ]A[ or int(A) under (τ, κ)

by the equalities [A] = ∩{K ∈ κ/A ⊂ K} and ]A[= ∨{G ∈ τ/G ⊂ A}:
An mapping σ : T → T is said to be complementation on (S, T ) if κ = σ(τ), then

(S, T, σ, τ, κ) is said to be a complemented ditopological texture space. The ditopology (u, uc)
is clearly complemented for the complementation πX : P (X) → P (X) given by φX(Y ) = X\Y .

We denote by O(S; T ; τ, κ), or when there can be no confusion by O(S), the set of open
sets in S. Likewise, C(S; T ; τ, κ), C(S) will denote the set of closed sets. One of the most
useful notions of ditopological texture spaces is that of difunction. A difunction is a special type
of direlation [4]. For a difunction (f ; F ) : (S1; T1) → (S2; T2) we will have cause to use the
inverse image f←B and inverse co-image F→B, B ∈ T , which are equal; and the image f→A

and co-image F→A, A ∈ S, which are usually not. Now we consider complemented textures
(Sj ; Tj ; σj), j = 1; 2 and the difunction (f ; F ) : (S1; T1) → (S2; T2). The complement of
the difunction (f ; F ) is denoted by (f ; F )′ [4]. If (f ; F ) = (f ; F )′ then the difunction (f ; F )
is called complemented.

The difunction (f ; F ) : (S1; T1; τS1 ; κS1) → (S2; T2; τS2 ; κS2) is called continuous if
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B ∈ τS2 ⇒ F→B ∈ τS1 , cocontinuous if B ∈ κS ⇒ f←B ∈ κS and bicontinuous if it is both.
For complemented difunctions these two properties are equivalent. Finally, we also recall from
[8, 9, 11] the classes of ditopological texture spaces and difunctions.

Definition 1.1. For a ditopological texture space (S; T ; τ, κ):

(i) A ∈ T is called pre-open (resp. semi-open, β-open) if A ⊆ intclA (resp. A ⊆
clintA; A ⊆ clintclA). B ∈ S is called pre-closed (resp. semi-closed, β-closed) if clintB ⊆ B

(resp. intclB ⊆ B; intclintB ⊆ B).

(ii) A difunction (f ; F ) : (S; T ; τS , κS) → (T ; T ; τS , κS) is called pre-continuous (resp.
semi-continuous, β-continuous) if F←(G) ∈ PO(S) (resp. F←(G) ∈ SO(S); F←(G) ∈ βO(S))
for every G ∈ O(T ). It is called pre-cocontinuous (resp. semi-cocontinuous, β-cocontinuous) if
F←(K) ∈ PC(S) (resp. F←(K) ∈ SC(S); F←(K) ∈ βC(S)) for every K ∈ C(T ).

We denote by PO(S; T ; τ, κ) (βO(S; T ; τ, κ)), more simply by PO(S) (βO(S)), the set of
pre-open sets (β-open sets) in S. Likewise, PC(S; T ; τ, κ) (βC(S; T ; τ, κ)), PC(S) (βC(S))
will denote the set of pre-closed (β-closed sets) sets.

§2. α-T -open and α-T -closed sets

A texture ideal is defined as a nonempty collection I of subsets of texture space satisfying
the following two conditions:

(i) If A ∈ I and B ⊂ A and B ∈ T , then B ∈ I.

(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.

A Ditopological ideal texture space denoted by (S, T, τ, κ, I) is a Ditopological texture
space (S, T, τ, κ) with an texture ideal I on X. For a subset A of X, A∗(I) = {x ∈ T :
U ∩A 6∈ I for each neighbourhood U of x} is called the local function of A with respect to I and
τ . Here cl∗T (A) = A ∪A∗ and additionally, int∗T (A) = {x ∈ S/G ⊂ A

⋃
J, for some J ∈ I}.

Definition 2.1. Let (S; T ; τ, κ, I) be ditopological ideal texture space and A ∈ T .

(i) If A ⊆ int(cl∗(int(A))) then A is α-T -open.

(ii) If cl(int∗(cl(A))) ⊆ A then A is α-T -closed.

We denote by Oα∗(S; T ; τ, κ, I), or when there can be no confusion by Oα∗(S), the
set of α-T -open sets in S. Likewise, Cα∗(S; T ; τ, κ, I), or Cα∗(S) will denote the set of
α-T -closed sets.

Proposition 2.1. For a given ditopological ideal texture space (S; T ; τ, κ, I):

(i) O(S) ⊆ Oα∗(S) and C(S) ⊆ Cα∗(S).

(ii) Arbitrary join of α-T -open sets is α-T -open.

(iii) Arbitrary intersection of α-T -closed sets is α-T -closed.

Proof. (i) Let G ∈ O(S). Since intG = G we have G ⊆ int(cl∗(int(G))). Thus G ∈
Oα∗(S). Secondly, let K ∈ C(S). Since clK = K we have cl(int∗(cl(K))) ⊆ K and so K ∈
Cα(S).

(ii) Let {Aj}j∈J be a family of α-T -open sets. Then for each j ∈ J , Aj ⊆ int(cl∗(int(Aj))).
Now, ∨Aj ⊆ ∨ int(cl∗(int(Aj))) ⊆ int ∨ cl∗(int(Aj)) = int(cl∗ ∨ int(Aj)) = int(cl∗(int ∨ Aj).
Hence ∨Aj is a α-T -open set. The result (iii) is dual of (ii).
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Generally there is no relation between the α-T -open and α-T -closed sets, but for a com-
plemented ditopological space we have the following result.

Examples 2.1. The following are some examples of complemented ditopological texture
space. If (X; T ) is a texture space then (X; P (X); πX , τ ; τc) is a complemented ditopological
texture space. Here πX(Y ) = X\Y for Y ⊆ X is the usual complementation on (X; P (X)) and
τc = {πX(G)ˆG ∈ τ}, I = {P (A)/A ⊂ X}. Clearly the α-T -open, α-T -closed sets in (X; τ)
correspond precisely to the α-T -open, α-T -closed respectively, in (X; P (X); I, πX , τ, τc).

Definition 2.2. Let (S; T ; τ, κ, I) be a ditopological ideal texture space. For A ∈ T ,
we define:

(i) The α-T -closure clα∗(A) of A under (τ, κ) by the equality clα∗(A) = ∩{B\B ∈ Cα∗(S)
and A ⊆ B}.

(ii) The α-T -interior intα∗A of A under (τ, κ) by the equality intα∗(A) = ∨{B\B ∈ Oα(S)
and B ⊆ A}.

From the Proposition 2.1, it is obtained, intα∗(A) ∈ Oα∗(S), clα(A) ∈ Cα(S).
Proposition 2.2. Let (S; T ; τ, κ, I) be a ditopological ideal texture space. Then the

following are true:
(i) clα∗(φ) = φ.
(ii) clα∗(A) is α-T -closed, for all A ∈ T .
(iii) If A ⊆ B then clα∗(A) ⊆ clα∗(B), for every A; B ∈ T .
(iv) clα∗(clα∗(A)) = clα∗(A).
Definition 2.3. For a ditopological ideal texture space (S; T ; τ, κ, I):
(i) A ∈ T is called pre-T -open (resp. semi-T -open, β-T -open) if A ⊆ int(cl∗(A)) (resp.

A ⊆ cl∗intA; A ⊆ cl∗(int(cl∗(A))).
(ii) B ∈ T is called pre-T -closed (resp. semi-T -closed, β-T -closed) if cl(int∗(B)) ⊆ B (resp.

int∗(cl(B)) ⊆ B; int∗(cl(int∗(B))) ⊆ B).
Theorem 2.1. For a ditopological texture space (S; T ; τ, κ, I):
(i) Every α-T -open is pre-T -open.
(ii) Every α-T -open is semi-T -open.
(iii) Every pre-T -open is β-T -open.
(iv) Every semi-T -open is β-T -open.
Proof. The proof is obivious.
Remark 2.1. For a ditopological ideal texture space (S; T ; τ, κ, I) the converse of the

above results need not be always true.
Example 2.2. For a ditopological ideal texture space (S; T ; τ, κ, I). Let S = {a, b, c, d}

and T = P (S). τ = {φ, S, {b}, {c, d}, {b, c, d}}, κ = {φ, S, {a}, {b}, {a, b}} and I =
{φ, {d}}. Let A = {a, b, c}, then A is pre-T -open but not α-T -open.

Remark 2.2. We know that every α-T -open set is α open in ideal topological space, but
this is not always true in the case of ditopological ideal texture space, here they are independent
sets. It is given in the following example:

Example 2.3. In a ditopological ideal texture space (S; T ; τ, κ, I) . Let S = {a, b, c}
and T = P (S), τ = {φ, S, {a}}, κ = {φ, S, {a}} and I = {φ, {b}}. Let A = {a, c}, then A

is α-T -open but not α-open.
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Example 2.4. In a ditopological ideal texture space (S; T ; τ, κ, I). Let S = {a, b, c, d}
and T = P (S), τ = {φ, S, {a}, {b}, {a, b}}, κ = {φ, S, {a}, {b, c}, {a, b, c}} and I =
{φ, {a}, {b}, {a, b}}. Let A = {a, b, c}, then A is α open but not α-T -open.

Remark 2.3. From above, the results is shown in the following figure:
α-open ←− open
6↑ 6↓ ↙

semi-T -open ←− α-T -open −→ pre-T -open
↘ ↙

β-T -open

§3. α-T -continuous functions and α-T -cocontinuous func-

tions

Definition 3.1. Let (Sj ; Tj ; τj , κj , I), j = 1, 2 be ditopological texture spaces and
(f ; F ) : (S1; T1) → (S2; T2) a difunction.

(i) It is called α-T -continuous, if F←(G) is α-T -open, for every G ∈ O(S2).
(ii) It is called α-T -cocontinuous, if f←(K) is α-T -closed in S1, for every K ∈ C(S2).
(iii) It is called α-T -bicontinuous, if it is α-T -continuous and α-T -cocontinuous.
Definition 3.2. A difunction (f ; F ) : (S1; T1; τS , κS) → (S2; T2; τS , κS) is called
(i) pre-T -continuous (resp. semi-T -continuous, β-T -continuous) if F←(G) ∈ PTO(S)

(resp. F←(G) ∈ STO(S); F←(G) ∈ βTO(S)) for every G ∈ O(T ).
(ii) It is called pre-T -cocontinuous (resp. semi-T -cocontinuous, β-T -cocontinuous) if f←(K) ∈

PIC(S) (resp. f←(K) ∈ SIC(S); f←(K) ∈ βIC(S)) for every K ∈ C(T ).
We denote by PTO(S; T ; τ, κ, I) (βTO(S; T ; τ, κ, I), more simply by PTO(S) (βTO(S)),

the set of pre-T -open sets (β-T -open sets) in S. Likewise, PTC(S; T ; τ, κ) (βTC(S; T ; τ, κ)),
PTC(S) (βTC(S)) will denote the set of pre-T -closed (β-T -closed sets) sets.

Proposition 3.1. Let (f ; F ) : (S1; T1; τ1; κ1) → (S2; T2; τ2; κ2) be a difunction.
(1) The following are equivalent:
(i) (f ; F ) is α-T -continuous.
(ii) int(F→A) ⊆ F→(intα∗A), for all A ∈ T1.
(iii) f←(intB) ⊆ intα∗(f←B), for all B ∈ T2.
(2) The following are equivalent:
(i) (f ; F ) is α-T -cocontinuous.
(ii) f→(clα∗A) ⊆ cl(f→A), for all A ∈ T1.
(iii) clα∗(F←B) ⊆ F←(clB), for all B ∈ T1.
Proof. (i)⇒(ii) Take A ∈ T1. From the definition of interior, f←int(F←A) ⊆ f←(F→A) ⊆

A. Since inverse image and coimage under a difunction is equal, f←int(F→A) = F←int(F→A).
Thus, f←int(F→A) ∈ Oα∗(S1), by α-T -continuity. Hence f←int(F→A) ⊆ intα∗(A) and apply-
ing (ii) gives int(F→A) ⊆ F→ f←int(F→A) ⊆ F→(intα∗A), which is the required inclusion.

(ii)⇒(iii) Let B ∈ T2. Applying inclusion (ii) to A = f←B and using [4, Theorem
2.4 (2b)] gives int(B) ⊂ int(F→(f←B)) ⊂ F→(intα∗(f←B)). Hence, we have f←(intB) ⊂
f←F→intα∗(f←B) ⊂ intα∗(f←B) by [4, Theorem 2.24 (2a)].
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(iii)⇒(i) Applying (iii) for B ∈ O(S2) gives f←B = f←(int(B)) ⊂ intα∗(f←B), so F←B =
f←B = intα∗(f←B) ∈ αTO(S1). Hence, (f ; F ) is α-T -continuous.

Corollary 3.1. Let (f ; F ) : (S1; T1; τ1; κ1) → (S2; T2; τ2; σ2) be a difunction.
(1) If (f ; F ) is α-T -continuous then:
(i) f→(clA) ⊂ cl(f→(A)), for every A ∈ PO(T1).
(ii) cl(f←(B)) ⊂ f←(clB), for every B ∈ O(T2).
(2) If (f ; F ) is α-T -cocontinuous then:
(i) int(F→(A)) ⊂ F→(intA), for every A ∈ PC(T1).
(ii) F←(intB) ⊂ int(F←B), for every B ∈ C(T2).
Proof. (i) Let A ∈ PO(T1). Then clA ⊂ clintclA and so f→(clA) ⊂ f → (clintclA).

Then, we have, f→(clA) ⊂ cl(f→(A)).
(ii) Let B ∈ O(S2). From the assumption, f←(B) is α-T -open and by Remark 2.3, f←(B) ∈

PO(T1). Hence, f←(B) ⊂ intcl(f←(B)) and so cl(f←(B)) ⊂ clintcl(f←(B)). Then, we have
cl(f←(B)) ⊂ f←(clB).

Theorem 3.1. For a ditopological texture space (S; T ; τ, κ):
(i) Every α-T -continuous is pre-T -continuous.
(ii) Every α-T -continuous is semi-T -continuous.
(iii) Every pre-T -continuous is β-T -continuous.
(iv) Every semi-T -continuous is β-T -continuous.
Proof. The proof is obivious from Theorem 2.1.
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§1. Introduction

The idea of grill on a topological space was first introduced by Choquet in 1947. From
subsequent investigations concept of grills has shown to be a powerful supporting and useful
tool like nets and filters, further we get a deeper insight into studying some topological notions
such as proximity spaces, closure spaces and the theory of compactifications and extension
problems of different kinds. In this paper, we explore the concept of semi-closed sets to define
a new class of generalized semi closed sets via Grills.

§2. Preliminaries

Definition 2.1.[4] A collection G of non empty subsets of a space X is called a grill on X

if
(i) A ∈ G and A ⊆ B ⊆ X =⇒ B ∈ G and
(ii) A, B ⊆ X and A ∪B ∈ G =⇒ A ∈ G or B ∈ G.
Definition 2.2.[4] Let (X, τ) be a topological space and G be a grill on X. We define

a mapping Φ : P (X) −→ P (X) denoted by ΦG(A, τ) (for A ∈ P (X)) or ΦG(A) or simply
Φ(A), called the operator associated with the grill G and the topology τ , and is defined by
ΦG(A) = {x ∈ X : A ∩ U ∈ G, ∀U ∈ τ(x)}. For any point x of a topological space (X, τ), we
shall let τ(x) to stand for the collection of all open neighbourhood of x.

Definition 2.3.[4] Let G be grill on a space X. We define a map Ψ : P (X) −→ P (X) by
Ψ(A) = A ∪ Φ(A) for all A ∈ P (X).
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Definition 2.4.[11] Corresponding to a grill G on a topological space (X, τ) there exist
a unique topology τG (say) on X given by τG = {U ⊆ X : Ψ(X/U) = X/U} where for any
A ⊆ X, Ψ(A) = A ∪ Φ(A) = τG − cl(A).

Definition 2.5.[10] Let (X, τ) be a topological space and G be a grill on X. Then for any
A, B ⊆ X the following hold:

(i) Φ(A ∪B) = Φ(A) ∪ Φ(B).
(ii) Φ(Φ(A)) ⊆ Φ(A) = cl(Φ(A)) ⊆ cl(A), and hence Φ(A) is closed in (X, τ), for all

A ⊆ X.
(iii) A ⊆ B =⇒ Φ(A) ⊆ Φ(B).
Definition 2.6.[15] A subset A of a topological space X is said to be θ-closed if A = θcl(A))

where θcl(A) is defined as θcl(A) = {x ∈ X/cl(U) ∩A 6= φ} for every U ∈ τ and x ∈ U .
Definition 2.7.[15] A subset A of X is said to be θ-open if X/A is θ-closed.
Definition 2.8.[15] A subset A of a topological space X is said to be δ-closed if A = δcl(A))

where δcl(A) is defined as δcl(A) = {x ∈ X/intcl(U) ∩A 6= φ} for every U ∈ τ and x ∈ U .
Definition 2.9.[15] A subset A of X is said to be δ-open if X/A is δ-closed.
Definition 2.10.[1] A subset A of a topological space X is said to be θg-closed if θcl(A) ⊆ U

whenever A ⊆ U and U is open.
Definition 2.11.[1] A subset A of a topological space X is said to be gθ-closed if cl(A) ⊆ U

whenever A ⊆ U and U is θ-open.
Definition 2.12.[1] A subset A of X is said to be gθ-open (θg-open) if X/A is gθ-closed

(θg-closed).

§3. Generalized semiclosed sets with respect to a grill

Definition 3.1. A subset A of a topological space X is said to be gs-closed if cl(A) ⊆ U

whenever A ⊆ U and U is semi open.
Definition 3.2. Let (X, τ) be a topological space and G be a grill on X. Then a subset

A of X is said to be gs-closed with respect to the grill G (G-gs-closed, for short) if Φ(A) ⊆ U

whenever A ⊆ U and U is semiopen in X.
Definition 3.3. A subset A of X is said to be G-gs-open if X/A is G-gs-closed.
Proposition 3.1. For a topological space (X, τ) and a grill G on X,
(i) Every closed set in X is G-gs-closed.
(ii) For any subset A in X, Φ(A) is G-gs-closed.
(iii) Every τG-closed set is G-gs-closed .
(iv) Any non member of G is G-gs-closed.
(v) Every G-gs-closed set is G-g-closed.
(vi) Every gs-closed set is G-gs-closed.
(vii) Every θ-closed set in X is G-gs-closed.
(viii) Every δ-closed set in X is G-gs-closed.
Proof. (i) Let A be a closed set then cl(A) = A. Let U be a semi open set in X 3 A ⊆ U .

Then, Φ(A) ⊆ cl(A) = A ⊆ U =⇒ Φ(A) ⊆ U =⇒ A is G-gs-closed.
(ii) Let A be a subset in X. Then Φ(Φ(A)) ⊆ Φ(A) ⊆ U =⇒ Φ(A) is G-gs-closed.
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(iii) Let A be a τG-closed set then τG − cl(A) = A =⇒ A ∪ Φ(A) = A =⇒ Φ(A) ⊆ A.
Therefore, Φ(A) ⊆ U whenever A ⊆ U and U is semi open in X. This implies A is G-gs-closed.

(iv) Let A /∈ G then Φ(A) = φ =⇒ A is G-gs-closed.
(v) Let A be a G-gs-closed and A ⊆ U and U is open in X, we get Φ(A) ⊆ U =⇒ A is

G-g-closed. Therefore, every G-gs-closed set is G-g-closed.
(vi) Let A be a gs-closed set and U be a semiopen set in X, such that A ⊆ U , then

cl(A) ⊆ U , consider Φ(A) ⊆ cl(A) ⊆ U =⇒ A is G-gs-closed. Thus every gs-closed set is
G-gs-closed.

(vii) Let A be θ-closed then A = θcl(A). Let U be a semi open set in X such that A ⊆ U ,
then Φ(A) ⊆ cl(A) ⊆ θcl(A) = A ⊆ U . Thus A is G-gs-closed.

(viii) Let A be δ-closed then A = δcl(A). Let U be a semi open set in X such that A ⊆ U ,
then Φ(A) ⊆ cl(A) ⊆ δcl(A) = A ⊆ U . Thus A is G-gs-closed.

Remark 3.1. gθ-closed and G-gs-closed are independent from each other. Similarly
θg-closed and G-gs-closed are independent from each other.

Remark 3.2. Every gs-closed set is G-gs-closed but the converse is not true as shown by
the following example:

Example 3.1. Let X = {a, b, c}, τ = {φ,X, {b}, {b, c}}, G = {X, {a}, {c}, {a, c}, {a, b},
{b, c}}, then (X, τ) is a topological space and G is a grill on X. Let A = {b} then Φ(A) = φ.
Therefore, A is G-gs-closed. But A ⊆ {b, c} and cl(A) = X does not a subset of {b, c}.
Therefore, A is not gs-closed.

Definition 3.4. Let X be a space and (φ 6=)A ⊆ X. Then [A] = {B ⊆ X : A ∩B 6= φ} is
a grill on X, called the principal grill generated by A.

Proposition 3.2. In the case of [X] principal grill generated by X, it is known that
τ = τ[X] so that any [X]-gs-closed set becomes simply a gs-closed set and vice-versa.

Theorem 3.1. Let (X, τ) be a topological space and G be a grill on X. If a subset A of
X is G-gs-closed then τG − cl(A) ⊆ U whenever A ⊆ U and U is semi open.

Proof. Let A be a G-gs-closed set and U be a semi open in X such that A ⊆ U then
Φ(A) ⊆ U =⇒ A ∪ Φ(A) ⊆ U =⇒ τG − cl(A) ⊆ U . Thus τG − cl(A) ⊆ U whenever A ⊆ U and
U is semiopen.

Theorem 3.2. Let (X, τ) be a topological space and G be a grill on X. If a subset A of
X is G-gs-closed then for all x ∈ τG − cl(A), cl({x}) ∩A 6= φ.

Proof. Let x ∈ τG − cl(A). If cl({x}) ∩ A = φ =⇒ A ⊆ X/cl({x}) then by Theorem
3.1, τG − cl(A) ⊆ X/cl({x}) which is a contradiction to our assumption that x ∈ τG − cl(A).
Therefore, cl({x}) ∩A 6= φ.

Theorem 3.3. Let (X, τ) be a topological space and G be a grill on X. If a subset A

of X is G-gs-closed then τG − cl(A)/A contains no non-empty closed set of (X, τ). Moreover
Φ(A)/A contains no non-empty closed set of (X, τ).

Proof. Let F be a closed set contained in τG − cl(A)/A and let x ∈ F , since F ∩ A = φ

we get cl({x})∩A = φ Which is a contradiction to the fact that cl({x})∩A 6= φ. τG− cl(A)/A
contains no non-empty closed set of (X, τ). Since Φ(A)/A = τG− cl(A)/A,Φ(A)/A contains no
non-empty closed set of (X, τ).

Corollary 3.1. Let (X, τ) be a T1-space and G be a grill on X. Then every G-gs-closed
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set is τG-closed.
Proof. Let A be a G-gs-closed set and x ∈ Φ(A) then x ∈ τG − cl(A). By Theorem 3.2,

cl({x}) ∩A 6= φ, {x} ∩A 6= φ, x ∈ A. Therefore, Φ(A) ⊆ A. Thus A is τG-closed.
Corollary 3.2. Let (X, τ) be a T1-space and G be a grill on X. Then A (⊆ X) is

G-gs-closed set iff A is τG-closed.
Proposition 3.3. Let G be a grill on a space (X, τ) and A be a G-gs-closed set. Then

the following are equivalent:
(i) A is τG-closed.
(ii) τG − cl(A)/A is closed in (X, τ).
(iii) Φ(A)/A is closed in (X, τ).
Proof. (i)=⇒(ii) Let A be τG-closed then τG− cl(A)/A = φ so τG− cl(A)/A is a closed set.
(ii)=⇒(iii) Since τG − cl(A)/A = Φ(A)/A.

(iii)=⇒(i) Let φ(A)/A be closed in (X, τ). Since A is G-gs-closed by Theorem 3.3,
Φ(A)/A = φ. So A is τG-closed.

Lemma 3.1. Let (X, τ) be a space and G be a grill on X. If A(⊆ X) is τG-dense in itself,
then Φ(A) = cl(Φ(A)) = τG − cl(A) = cl(A).

Proof. A is τG-dense in itself =⇒ A ⊆ Φ(A) =⇒ cl(A) ⊆ cl(Φ(A)) = Φ(A) ⊆ cl(A) =⇒
cl(A) = Φ(A) = cl(Φ(A)) now by definition τG − cl(A) = A ∪ Φ(A) = A ∪ cl(A) = cl(A).
Therefore, Φ(A) = cl(Φ(A)) = τG − cl(A) = cl(A).

Theorem 3.4. Let G be a grill on a space (X, τ). If A(⊆ X) is τG-dense in itself and
G-gs-closed, then A is gs-closed.

Proof. Follows from Lemma 3.1.
Corollary 3.3. For a grill G on a space (X, τ). Let A(⊆ X) be τG-dense in itself. Then

A is G-gs-closed iff it is A is gs-closed.
Proof. Follows from Proposition 3.1(vi) and Theorem 3.4.
Theorem 3.5. For any grill G on a space (X, τ) the following are equivalent:
(i) Every subset of X is G-gs-closed.
(ii) Every semiopen subset of (X, τ) is τG-closed.
Proof. (i)=⇒(ii) Let A be semiopen in (X, τ) then by (i), A is G-gs-closed so that

Φ(A) ⊆ A =⇒ A is τG-closed.
(ii)=⇒(i) Let A ⊆ X and U be semi open in (X, τ) such that A ⊆ U . Since U is semiopen

by (ii), Φ(U) ⊆ U . Now A ⊆ U =⇒ Φ(A) ⊆ Φ(U) ⊆ U =⇒ A is G-gs-closed.
Theorem 3.6. For any subset A of a space (X, τ) and a grill G on X. If A is G-gs-closed

then A ∪ (X/Φ(A)) is G-gs-closed.
Proof. Let A ∪ (X/Φ(A)) ⊆ U , where U is semi open in X. Then X/U ⊆ X/(A ∪

(X/Φ(A))) = Φ(A)/A. Since A is G-gs-closed, by Theorem 3.2, we have X/U = φ, i.e., X = U .
Since X is the only semi open set containing A ∪ (X/Φ(A)), A ∪ (X/Φ(A)) is G-gs-closed.

Proposition 3.4. For any subset A of a space (X, τ) and a grill G on X, the following
are equivalent:

(i) A ∪ (X/Φ(A)) is G-gs-closed.
(ii) Φ(A) A is G-gs-open.
Proof. Follows from the fact that X/(Φ(A)/A) = A ∪ (X/Φ(A)).
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Theorem 3.7. Let (X, τ) be a space, G be a grill on X and A, B be subsets of X such
that A ⊆ B ⊆ τG − cl(A). If A is G-gs-closed, then B is G-gs-closed.

Proof. Let B ⊆ U , where U is semi open in X. Since A is G-gs-closed, Φ(A) ⊆ U =⇒
τG − cl(A) ⊆ U . Now, A ⊆ B ⊆ τG − cl(A) =⇒ τG − cl(A) ⊆ τG − cl(B) ⊆ τG − cl(A). Thus
τG − cl(B) ⊆ U and hence B is G-gs-closed.

Corollary 3.4. τG-closure of every G-gs-closed set is G-gs-closed.
Theorem 3.8. Let G be a grill on a space (X, τ) and A, B be subsets of X such that

A ⊆ B ⊆ Φ(A). If A is G-gs-closed. Then A and B are gs-closed.
Proof. A ⊆ B ⊆ Φ(A) =⇒ A ⊆ B ⊆ τG − cl(A) and hence by Theorem 3.7, B is G-gs-

closed. Again, A ⊆ B ⊆ Φ(A) =⇒ Φ(A) ⊆ Φ(B) ⊆ Φ(Φ(A)) ⊆ Φ(A) =⇒ Φ(A) = Φ(B). Thus
A and B are τG-dense in itself and hence by Theorem 3.4, A and B are gs-closed.

Theorem 3.9. Let G be a grill on a space (X, τ). Then a subset A of X is G-gs-open iff
F ⊆ τG − int(A) whenever F ⊆ A and F is closed.

Proof. Let A be G-gs-open and F ⊆ A, where F is closed in (X, τ). Then X/A ⊆ X/F =⇒
Φ(X/A) ⊆ X/F =⇒ τG − cl(X/A) ⊆ X/F =⇒ F ⊆ τG − int(A). Conversely, X/A ⊆ U where
U is open in (X, τ) =⇒ X/U ⊆ τG− int(A) =⇒ τG− cl(X/A) ⊆ U . Thus (X/A) is G-gs-closed
and hence A is G-gs-open.

§4. Some characterizations of regular and normal spaces

Theorem 4.1. Let X be a normal space and G be a grill on X then for each pair of disjoint
closed sets F and K , there exist disjoint G-gs-open sets U and V such that F ⊆ U and K ⊆ V .

Proof. It is obvious, since every open set is G-gs-open.
Theorem 4.2. Let X be a normal space and G be a grill on X then for each closed

set F and any open set V containing F , there exist a G-gs-open set U such that F ⊆ U ⊆
τG − cl(U) ⊆ V .

Proof. Let F be a closed set and V an open set in (X, τ) such that F ⊆ V . Then F and
X/V are disjoint closed sets. By Theorem 4.1, there exist disjoint G-gs-open sets U and W

such that F ⊆ U and X/V ⊆ W . Since W is G-gs-open and X/V ⊆ W where X/V is closed,
X/V ⊆ τG − int(W ). So X/τG − int(W ) ⊆ V . Again, U ∩W = φ =⇒ U ∩ τG − int(W ) = φ.
Hence τG − cl(U) ⊆ X/τG − int(W ) ⊆ V . Thus F ⊆ U ⊆ τG − cl(U) ⊆ V , where U is a
G-gs-open set.

The following theorems gives characterizations of a normal space in terms of gs-open sets
which are the consequence of Theorems 4.1, 4.2 and Proposition 3.2 if one takes G = [X].

Theorem 4.3. Let X be a normal space and G be a grill on X then for each pair of
disjoint closed sets F and K, there exist disjoint gs-open sets U and V such that F ⊆ U and
K ⊆ V .

Theorem 4.4. Let X be a normal space and G be a grill on X then for each closed set F

and any open set V containing F , there exist a gs-open set U such that F ⊆ U ⊆ τG−cl(U) ⊆ V .
Theorem 4.5. Let X is regular and G be a grill on a space (X, τ). Then for each closed

set F and each x ∈ X/F , there exist disjoint G-gs-open sets U and V such that x ∈ U and
F ⊆ V .
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Proof. The proof is obvious.
Theorem 4.6. Let X be a regular space and G be a grill on a space (X, τ). Then for

each open set V of (X, τ) and each point x ∈ V there exist a G-gs-open set U such that
x ∈ U ⊆ τG − cl(U) ⊆ V .

Proof. Let V be any semi-open set in (X, τ) containing a point x of X. Then by Theorem
4.5, there exist disjoint G-gs-open sets U and W such that x ∈ U and X/V ⊆ W . Now,
U ∩W = φ implies τG − cl(U) ⊆ X/W ⊆ V . Thus x ∈ U ⊆ τG − cl(U) ⊆ V .

The following theorems gives characterizations of a regular space in terms of gs-open sets
which are the consequence of Theorems 4.5, 4.6 and Proposition 3.2 if one takes G = [X].

Theorem 4.7. Let X be a regular and G be a grill on a space (X, τ). Then for each closed
set F and each x ∈ X/F , there exist disjoint gs-open sets U and V such that x ∈ U and F ⊆ V .

Theorem 4.8. Let X be a regular space and G be a grill on a space (X, τ). Then
for each open set V of (X, τ) and each point x ∈ V there exist a gs-open set U such that
x ∈ U ⊆ τG − cl(U) ⊆ V .
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Abstract The Smarandache friendly numbers have been defined by Murthy [1]. This paper

finds the Smarandache friendly numbers by solving the associated Pell’s equation.
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§1. Introduction

Murthy [1] defines the Smarandache friendly numbers as follows :
Definition 1.1. A pair of positive integers (m, n) (with n > m) is called the Smarandache

friendly numbers if

m + (m + 1) + · · ·+ n = mn.

For example, (3, 6) is a Smarandache friendly pair, since

3 + 4 + 5 + 6 = 18 = 3× 6.

Recently, Khainar, Vyawahare and Salunke [2] have treated the problem of finding Smarandache
friendly pairs and Smarandache friendly primes.

In this paper, we show that the problem of finding the Smarandache friendly pairs can
be reduced to solving a particular type of Pell’s equation, which can then be used to find the
sequence of all Smarandache friendly pairs.

In section 2, we give some preliminary results that would be necessary in the next section
which gives the main results of this paper. It is conjectured that, if (m,n) is a Smarandache
friendly pair of numbers, then (m + 2n, 2m + 5n− 1) is also a friendly pair. We also prove this
conjecture in the affirmative.

§2. Some preliminary results

The following result is well-known (see, for example, Hardy and Wright [3]).
Lemma 2.1. The general solution of the Diophantine equation x2 − 2y2 = −1 is

x +
√

2y = (1 +
√

2)2ν+1; ν ≥ 0. (1)

Note that, the Diophantine equation

x2 − 2y2 = −1 (2)
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is a particular type of Pell’s equation.
Lemma 2.2. Denoting by (xν , yν) the ν-th solution of the Diophantine equation (2),

(xν , yν) satisfies the following recurrence relation:

xν+1 = 3xν + 4yν , yν+1 = 2xν + 3yν ; ν ≥ 1, (3)

with
x1 = 7, y1 = 9. (4)

Proof. Since

xν+1 +
√

2 yν+1 = (1 +
√

2)2ν+3

= (xν +
√

2 yν)(1 +
√

2)2

= (xν +
√

2 yν)(3 + 2
√

2)

= (3xν + 4 yν) +
√

2(2xν + 3 yν),

the result follows.
Lemma 2.2 enables us to calculate the solutions of the Diophantine equation (2) recursively,

starting with x1 = 7, y1 = 9.

§3. Main results

We now consider the problem of finding the pair of integers (m, n), with n > m > 0, such
that

m + (m + 1) + · · ·+ n = mn. (5)

Writing
n = m + k for some integer k > 0, (6)

(5) takes the form
m + (m + 1) + · · ·+ (m + k) = m(m + k),

which, after some simple algebraic manipulations, gives

k(k + 1) = 2m(m− 1). (7)

In Eq.(7), we substitute

k = K +
1
2
, m = M +

1
2
,

to get

K2 − 1
4

= 2(M2 − 1
4
), (8)

that is,
4K2 − 8M2 = −1,

that is,
x2 − 2y2 = −1, (9)
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where
x = 2K, y = 2M. (10)

Note that, though K and M are not integers, each of x and y is a positive integer.
Lemma 3.1. The sequence of Smarandache friendly pair of numbers, {(mν , nν}∞ν=1, is

given by

mν = Mν +
1
2

=
1
2
(yν + 1),

kν = Kν − 1
2

=
1
2
(xν − 1),

nν = mν + kν =
1
2
(xν + yν), (11)

where
xν +

√
2 yν = (1 +

√
2)2ν+1; ν ≥ 1. (12)

Proof. Since x and y satisfy the Diophantine equation (9), with solutions given by (12),
the result follows.

Lemma 3.2. The sequence of Smarandache friendly pair of numbers {(mν , nν}∞ν=1 satis-
fies the following recurrence relation:

mν+1 = mν + 2nν , nν+1 = 2mν + 5nν − 1; ν ≥ 1,

with
m1 = 3, n1 = 6.

Proof. By Lemma 3.1, together with Lemma 2.2,

mν+1 =
1
2
(yν+1 + 1) =

1
2
(2xν + 3yν + 1) = xν + yν +

1
2
(yν + 1) = 2nν + mν ,

nν+1 =
1
2
(xν+1 + yν+1) =

1
2
[(3xν + 4yν) + (2xν + 3yν)]

=
5
2
(xν + yν) + yν = 5nν + (2mν − 1),

and we get the desired results.
Lemma 3.2 shows that, if (xν , yν) is a Smarandache friendly pair of numbers, so is the

pair (mν + 2nν , 2mν + 5nν − 1), which is the result conjectured in [2]; moreover, it is the next
pair in the sequence. Thus, starting with the smallest friendly pair (3, 6), the other pairs can
be obtained recursively, using Lemma 3.2.

§4. Open problems

A pair of primes (p, q) with q > p ≥ 2 is called a pair of Smarandache friendly primes if
the sum of the primes from p through q is equal to pq.

Open problem 1. Find all the pairs of Smarandache friendly primes.
Open problem 2. Is the sequence of pairs of Smarandache primes finite?
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§1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single
sequences, respectively. We write w2 for the set of all complex sequences (xmn), where m, n ∈ N,

the set of positive integers. Then, w2 is a linear space under the Coordinatewise addition and
scalar multiplication.

Some initial work on double sequence spaces were found in Bromwich [4]. Later on, they
were investigated by Hardy [13], Moricz [19], Moricz and Rhoades [20], Basarir and Solankan [3],
Tripathy [37], Tripathy and Dutta ([41],[42]), Tripathy and Sarma ([43],[44],[45],[46]), Tripathy and
Sen [48], Turkmenoglu [49], and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞
}

,

Cp (t) :=
{

(xmn) ∈ w2 : P - limm,n→∞ |xmn − L|tmn = 0 for some L ∈ C
}

,

C0p (t) :=
{

(xmn) ∈ w2 : P - limm,n→∞ |xmn − L|tmn = 0
}

,

Lu (t) :=
{

(xmn) ∈ w2 :
∑∞

m=1

∑∞
n=1 |xmn|tmn < ∞

}
,

Cbp (t) := Cp (t)
⋂Mu (t) and C0bp (t) = C0p (t)

⋂Mu (t),
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where t = (tmn) is the sequence of positive reals for all m, n ∈ N and P -limm,n→∞ denotes the
limit in the Pringsheim’s sense. In the case tmn = 1 for all m, n ∈ N; Mu (t) , Cp (t) , C0p (t) , Lu

(t) , Cbp (t) and C0bp (t) reduce to the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we
may summarize the knowledge given in some document related to the double sequence spaces.
Gökhan and Colak [11,12] have proved that Mu (t) and Cp (t) , Cbp (t) are complete paranormed
spaces of double sequences and obtained the α-, β-, γ-duals of the spaces Mu (t) and Cbp (t) .

Quite recently, in her PhD thesis, Zelter [50] has essentially studied both the theory of topolog-
ical double sequence spaces and the theory of summability of double sequences. Mursaleen and
Edely [21] and Tripathy [35] have recently introduced the statistical convergence and Cauchy
for double sequences independently and given the relation between statistical convergent and
strongly Cesàro summable double sequences. Later, Mursaleen [22] and Mursaleen and Edely
[23] have defined the almost strong regularity of matrices for double sequences and applied
these matrices to establish a core theorem and introduced the M -core for double sequences
and determined those four dimensional matrices transforming every bounded double sequences
x = (xjk) into one whose core is a subset of the M -core of x. More recently, Altay and Basar
[1] have defined the spaces BS, BS (t) , CSp, CSbp, CSr and BV of double sequences consisting
of all double series whose sequence of partial sums are in the spaces Mu, Mu (t) , Cp, Cbp, Cr

and Lu, respectively, and have also examined some properties of those sequence spaces and
determined the α-duals of the spaces BS, BV, CSbp and the β (ϑ)-duals of the spaces CSbp

and CSr of double series. Quite recently Basar and Sever [5] have introduced the Banach space
Lq of double sequences corresponding to the well-known space `q of single sequences and have
examined some properties of the space Lq. Quite recently Subramanian and Misra ([29],[30],[33])

have studied the space χ2
M (p, q, u) and the generalized gai of double sequences and have proved

some inclusion relations.
We need the following inequality in the sequel of the paper. For a, b ≥ 0 and 0 < p < 1,

we have

(a + b)p ≤ ap + bp. (1)

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence (smn)
is convergent, where smn =

∑m,n
i,j=1 xij(m,n ∈ N).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|1/m+n
< ∞. The vector

space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called
double entire sequence if |xmn|1/m+n → 0 as m,n → ∞. The double entire sequences will be
denoted by Γ2. A sequence x = (xmn) is called double gai sequence if ((m + n)! |xmn|)1/m+n →
0 as m,n → ∞. The double gai sequences will be denoted by χ2. Let φ denote the set of all
finite sequences.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is defined
by x[m,n] =

∑ m,n
i,j=0xij=ij for all m, n ∈ N ; where =ij denotes the double sequence whose only

non-zero term is 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

An FK-space (or a metric space) X is said to have AK property if (=mn) is a Schauder
basis for X or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; locally
convex topology under which the coordinate mappings x = (xk) → (xmn) (m,n ∈ N) are also
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continuous.
Orlicz [25] used the idea of Orlicz function to construct the space

(
LM

)
. Lindenstrauss and

Tzafriri [16] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz
sequence space `M contains a subspace isomorphic to `p (1 ≤ p < ∞) . subsequently, different
classes of sequence spaces were defined by Parashar and Choudhary [26], Mursaleen et al. [23],
Tripathy et al. [36], Rao and Subramanian [6], and many others. The Orlicz sequence spaces
are the special cases of Orlicz spaces studied in [25].

Recalling [14] and [25], an Orlicz function is a function M : [0,∞) → [0,∞) which is
continuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for x > 0 and M (x) →∞
as x → ∞. If convexity of Orlicz function M is replaced by subadditivity of M, then this
function is called modulus function, defined by Nakano [24] and further discussed by Ruckle [27]

and Maddox [18], Tripathy and Chandra [40] and many others.
An Orlicz function M is said to satisfy the ∆2-condition for all values of u if there exists

a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) . The ∆2-condition is equivalent to
M (Lu) ≤ KLM (u) , for all values of u and for L > 1.

Lindenstrauss and Tzafriri [16] used the idea of Orlicz function to construct Orlicz sequence
space

`M =
{

x ∈ w :
∑∞

k=1 M
(
|xk|

ρ

)
< ∞, for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf
{

ρ > 0 :
∑∞

k=1 M
(
|xk|

ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) = tp (1 ≤ p < ∞) ,

the spaces `M coincide with the classical sequence space `p.

If X is a sequence space, we give the following definitions:
(i) X

′
= the continuous dual of X.

(ii) Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for each x ∈ X

}
.

(iii) Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for each x ∈ X

}
.

(iv) Xγ =
{

a = (amn) : supm,n ≥ 1
∣∣∣∑M,N

m,n=1 amnxmn

∣∣∣ < ∞, for each x ∈ X
}

.

(v) let X be an FK-space ⊃ φ, then Xf =
{

f(=mn) : f ∈ X
′
}

.

(vi) Xδ =
{

a = (amn) : supm,n |amnxmn|1/m+n
< ∞, for each x ∈ X

}
.

Xα, Xβ , Xγ and Xδ are called α- (or Köthe-Toeplitz) dual of X, β- (or generalized-
Köthe-Toeplitz) dual of X, γ-dual of X, δ-dual of X respectively. It is clear that xα ⊂ Xβ

and Xα ⊂ Xγ , but Xα ⊂ Xγ does not hold, since the sequence of partial sums of a double
convergent series need not be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz
[15] as follows:

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z},

for Z = c, co and `∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, co and `∞ denote
the classes of all, convergent, null and bounded scalar valued single sequences respectively. The
above spaces are Banach spaces normed by



22 N. Subramanian and C. Murugesan No. 2

‖x‖ = |x1|+ supk≥1 |∆xk|.

Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
,

where Z = Λ2, Γ2 and χ2 respectively. ∆xmn = (xm,n − xm,n+1) − (xm+1,n − xm+1,n+1) =
xm,n − xm,n+1 − xm+1,n + xm+1,n+1 for all m, n ∈ N.

Let r ∈ N be fixed, then

Z (∆r) = {(xmn) : (∆rxmn) ∈ Z} for Z = χ2, Γ2 and Λ2,

where ∆rxmn = ∆r−1xmn −∆r−1xm,n+1 −∆r−1xm+1,n + ∆r−1xm+1,n+1.

Now we introduced a generalized difference double operator as follows:
Let r, µ ∈ N be fixed, then

Z
(
∆r

η

)
=

{
(xmn) :

(
∆r

ηxmn

) ∈ Z
}

for Z = χ2, µ2 and Λ2,

where ∆r
ηxmn = ∆r−1

η xmn −∆r−1
η xm,n+1 −∆r−1

η xm+1,n + ∆r−1
η xm+1,n+1 and ∆0

ηxmn = xmn

for all m, n ∈ N.

The notion of a modulus function was introduced by Nakano [24]. We recall that a modulus
f is a function from [0,∞) → [0,∞) , such that

(i) f (x) = 0 if and only if x = 0.
(ii) f (x + y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0.

(iii) f is increasing.
(iv) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from

condition (iv) that f is continuous on [0,∞) .

It is immediate from (ii) and (iv) that f is continuous on [0,∞) . Also from condition (ii),
we have f (nx) ≤ nf (x) for all n ∈ N and n−1f (x) ≤ f

(
xn−1

)
, for all n ∈ N.

§2. Definitions and preliminaries

Let w2 denote the set of all complex double sequences. A sequence x = (xmn) is said to be
double analytic if supmn |xmn|1/m+n

< ∞. The vector space of all prime sense double analytic
sequences will be denoted by Λ2. A sequence x = (xmn) is called prime sense double entire
sequence if |xmn|1/m+n → 0 as m, n →∞. The double entire sequences will be denoted by Γ2.

The space Λ2 and Γ2 is a metric space with the metric

d(x, y) = sup
mn

{
|xmn − ymn|1/m+n : m,n : 1, 2, 3, · · ·

}
(2)

for all x = {xmn} and y = {ymn} in Γ2.

Let π = {πmn} be a sequence of positive numbers. If X is a sequence space, we write
Xπ =

{
x ∈ X :

{
xmn

πmn

}
∈ X

}
, where X = Γ2, Λ2.
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A sequence x = (xmn) is called prime sense double gai sequence if ((m + n)! |xmn|)1/m+n →
0 as m, n → ∞. The double gai sequences will be denoted by χ2. The space χ2 is a metric
space with the metric

d̃(x, y) = sup
mn

{
((m + n)! |xmn − ymn|)1/m+n : m,n : 1, 2, 3, · · ·

}
(3)

for all x = {xmn} and y = {ymn} in χ2.

Definition 2.1. A sequence t is called a double analytic growth sequence for a set Λ2 of

sequences if xmn = O (tmn) for all x ∈ Λ2 ⇔
∣∣∣xmn

tmn

∣∣∣
1/m+n

≤ M, ∀m, n.

§3. Main results

Theorem 3.1. If Λ2 has a growth sequence, then Λ2
π has a growth sequence.

Proof. Let be a growth sequence for Λ2. Then |xmn|1/m+n ≤ M |tmn| for some M > 0.

Let x ∈ Λ2
π. Then

{
xmn

πmn

}1/m+n

∈ Λ2. We have
∣∣∣xmn

πmn

∣∣∣
1/m+n

≤ |xmn|1/m+n ≤ M |tmn|1/m+n

which means that |xmn|1/m+n ≤ M |tmnπmn|1/m+n
. Thus {πmntmn} is a growth sequence of

Λ2
mn. In other words, Λ2

π has the growth sequence πt.

Theorem 3.2. Let Λ2 be a BK-space. Then the rate space Λ2
π has a growth sequence.

Proof. Let x ∈ Λ2
π. Then

{
xmn

πmn

}1/m+n

∈ Λ2. Put Pmn (x) =
(

xmn

πmn

)1/m+n

, ∀x ∈
Λ2

π. Then Pmn is a continuous functional on Λ2
π. Hence ‖|Pmn|‖1/m+n

< ∞. Also for ev-
ery positive integer m, n, we have |xmn|1/m+n = |Pmn (x)πmn|1/m+n = |Pmn (xπ)|1/m+n ≤
‖|Pmn|‖1/m+n ‖|xπ|‖1/m+n = ‖|Pmnπmn|‖1/m+n ‖|xmn|‖1/m+n

. Hence xmn = O (Pmnπmn) .

Thus {Pmnπmn} is a growth sequence for Λ2
π.

Theorem 3.3.
(
Γ2

π

)α = Λ2
1/π.

Proof. Let x ∈ Λ2
1/π. Then there exists M > 0 with |πmnxmn| ≤ Mm+n, ∀m, n ≥ 1.

Choose ε > 0 such that εM < 1.

If y ∈ Γ2
π, we have

∣∣∣ ymn

πmn

∣∣∣ ≤ εm+n, ∀m, n ≥ m0n0 depending on ε.

Therefore
∑ |xmnymn| ≤

∑
(Mε)m+n

< ∞, Hence

Λ2
1/π ⊂

(
Γ2

π

)α
. (4)

On the other hand, let x ∈ (
Γ2

π

)α. Assume that x /∈ Λ2
1/π. Then there exists an increasing

sequence {pmnqmn} of positive integers such that |πpmnqmn
xpmnqmn

| > (m + n)2(pmn+qmn)
, ∀m,

n > m0n0. Take y = {ymn} by

ymn =





πmn

(m+n)(pmn+qmn) , for (p, q) = (pm, qn) ,

0, for (p, q) 6= (pm, qn) .
(5)

Then {ymn} ∈ Γ2
π, but

∑ |xmnymn| = ∞, a contradiction. This contradiction shows that

(
Γ2

π

)α ⊂ Λ2
1/π. (6)

From (4) and (6) it follows that
(
Γ2

π

)α = Λ2
1/π.
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Theorem 3.4.
[
Λ2

Mπ

]β =
[
Λ2

Mπ

]α =
[
Λ2

Mπ

]γ = η2
Mπ, where η2

M =
⋂

N∈N−{1}

{
x = xmn :

∑
m,n

(
M

( | xmn
πmntmn |Nm+n

ρ

))
< ∞

}
.

Proof. (i) First we show that η2
Mπ ⊂

[
Λ2

Mπ

]β
. Let x ∈ η2

Mπ and y ∈ Λ2
Mπ. Then we can

find a positive integer N such that
(
|ymn|1/m+n

)
< max

(
1, supm,n≥1

(
|ymn|1/m+n

))
< N, for

all m, n.

Hence we may write

∣∣∣∣∣
∑
m,n

xmnymn

∣∣∣∣∣ ≤
∑
m,n

|xmnymn| ≤
∑
mn

(
M

( |xmnymn|
ρ

))
≤

∑
m,n


M




∣∣∣ xmn

πmntmn

∣∣∣ Nm+n

ρ





 .

Since x ∈ η2
Mπ, the series on the right side of the above inequality is convergent, whence

x ∈ [
Λ2

Mπ

]β
. Hence η2

Mπ ⊂
[
Λ2

Mπ

]β
.

Now we show that
[
Λ2

Mπ

]β ⊂ η2
Mπ.

For this, let x ∈ [
Λ2

Mπ

]β
, and suppose that x /∈ Λ2

Mπ. Then there exists a positive integer

N > 1 such that
∑

m,n

(
M

( | xmn
πmntmn |Nm+n

ρ

))
= ∞.

If we define ymn = (Nm+n/πmntmn) Sgn (xmn)m,n = 1, 2, · · · , then y ∈ Λ2
Mπ. But, since∣∣∣∑m,n xmnymn

∣∣∣ =
∑

mn

(
M

(
|xmnymn|

ρ

))
=

∑
m,n

(
M

(
|xmn|(Nm+n/πmntmn)

ρ

))
= ∞, we get

x /∈ [
Λ2

Mπ

]β
, which contradicts to the assumption x ∈ [

Λ2
Mπ

]β
. Therefore x ∈ η2

Mπ. Therefore[
Λ2

Mπ

]β = η2
Mπ.

(ii) and (iii) can be shown in a similar way of (i). Therefore we omit it.
Theorem 3.5. Let M be an Orlicz function or modulus function which satisfies the

∆2-condition and if Γ2
Mπ is a growth sequence then Γ2

π ⊂ Γ2
Mπ.

Proof. Let
x ∈ Γ2

π. (7)

Then
(
(|xmn/πmntmn|)1/m+n

)
≤ ε for sufficiently large m, n and every ε > 0. But then by

taking ρ ≥ 1/2,

(
M

(
(|xmn/πmntmn|)1/m+n

ρ

))
≤

(
M

(
ε

ρ

))
(because M is non-decreasing)

≤ (M (2ε)) .

⇒
(

M

(
(|xmn/πmntmn|)1/m+n

ρ

))pmn

≤ KM (ε) (by the ∆2-condition, for some k > 0)

≤ ε (by defining M (ε) < ε/K).
(

M

(
(|xmn/πmntmn|)1/m+n

ρ

))pmn

→ 0 as m, n →∞. (8)

Hence
x ∈ Γ2

Mπ. (9)

From (7) and (9) we get Γ2
π ⊂ Γ2

Mπ. This completes the proof.
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Theorem 3.6. If Γ2
Mπ is a growth sequence then η2

Mπ ⊂
[
Γ2

Mπ

]β $ Λ2
π.

Proof. (i) First we show that η2
Mπ ⊂

[
Γ2

Mπ

]β
. We know that Γ2

Mπ ⊂ Λ2
Mπ,

[
Λ2

Mπ

]β ⊂
[ΓMπ]β . But

[
Λ2

Mπ

]β = η2
Mπ, by Theorem 3.4, therefore

η2
Mπ ⊂ Γ2

Mπ. (10)

(ii) Now we show that
[
Γ2

Mπ

]β $ Λ2
π. Let y = {ymn} be an arbitrary point in

(
Γ2

Mπ

)β
. If

y is not in Λ2
π, then for each natural number q, we can find an index mqnq such that

(
M

(
(|ymqnq /πmqnq tmqnq |)1/mq+nq

ρ

))
> q, (1, 2, 3, · · · ).

Define x = {xmn} by
(
M

(
(xmnπmntmn

ρ

))
= 1

qm+n for (m,n) = (mq, nq) for some q ∈ N, and(
M

(
xmnπmntmn

ρ

))
= 0 otherwise.

Then x is in Γ2
Mπ, but for infinitely mn,

(
M

( |ymnxmn|
ρ

))pmn

> 1. (11)

Consider the sequence z = {zmn} , where
(
M

(
z11/π11t11

ρ

))
=

(
M

(
x11/π11t11

ρ

))
− s with

s =
∑(

M
(

(m+n)!xmn

ρ

))
, and

(
M

(
zmn/πmntmn

ρ

))
=

(
M

(
xmn/πmntmn

ρ

))
(m,n = 1, 2, 3, · · · ).

Then z is a point of Γ2
Mπ. Also

∑(
M

(
zmn/πmntmn

ρ

))
= 0. Hence z is in Γ2

Mπ. But, by the

equation (11),
∑(

M
(

zmnymn

ρ

))
does not converge ⇒ ∑

xmnymn diverges.

Thus the sequence y would not be in
(
Γ2

Mπ

)β
. This contradiction proves that

(
Γ2

Mπ

)β ⊂ Λ2
π. (12)

If we now choose M = id, where id is the identity and y1n/π1nt1n = x1n/π1nt1n = 1 and
ymn/πmntmn = xmn/πmntmn = 0 (m > 1) for all n, then obviously x ∈ Γ2

Mπ and y ∈ Λ2
π, but∑∞

m,n=1 xmnymn = ∞, hence

y /∈ (
Γ2

Mπ

)β
. (13)

From (12) and (13) we are granted (
Γ2

Mπ

)β $ Λ2
π. (14)

Hence (10) and (14)we are granted η2
Mπ ⊂

[
Γ2

Mπ

]β $ Λ2
π. This completes the proof.
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Abstract The aim of this paper is to solve the general Sylvester matrix equation A1X1B1 +

A2X2B2 + · · · + A5X5B5 = C with unknown matrix X1, symmetric X2, generalized centro-

symmetric X3, generalized bisymmetric X4 and (R, S)-symmetric X5. Motivated by the idea

of the conjugate gradient method, an iterative method is proposed to find the solution of the

above matrix equation. Meantime, the optimal approximation problem is also considered.

Numerical examples illustrate the efficiency of this method.

Keywords Generalized Sylvester matrix equation, iterative method, symmetric matrices,

generalized centro-symmetric matrices, generalized bisymmetric matrices, (R, S)-symmetric

matrices, optimal approximation.

§1. Introduction

In this work, we will use the following notations: Let Rm×n be the set of all m × n real
matrices, and SRn×n be the set of all n × n real symmetric matrices, and SORn×n be the
set of all n × n symmetric orthogonal matrices. For matrix A ∈ Rm×n, AT , tr(A), R(A)
denotes the transpose, trace, column space of A, respectively. The symbol vec(A) stands for
the stretching function that is defined by vec(A) = (aT

1 aT
2 · · · aT

n )T , where ai is the ith column
of A. A ⊗ B represents the Kronecker product of matrices A = (aij)m×n and B. Moreover,
tr(BT A) denotes the inner product of matrices A and B, which generates the Frobenius norm
denoted by ‖A‖ =

√
tr(AT A). If tr(BT A) = 0, we say that A, B are orthogonal each other.

Definition 1.1. Let R ∈ SORm×m, S ∈ SORn×n, i.e., RT = R = R−1, ST = S = S−1.
A matrix X ∈ Rm×m is called generalized centro-symmetric (generalized bisymmetric) with
respect to the matrix R if RXR = X (XT = X = RXR). More, we say that matrix Y ∈ Rm×n

is (R, S)-symmetric if RY S = Y .
The set of all n × n generalized centro-symmetric matrices, generalized bisymmetric ma-

trices, and m× n (R, S)-symmetric matrices are denoted by GCSRn×n, GBSRn×n, RSRn×n,
respectively.

These matrices play important roles in information theory, linear system theory, linear

1This work is supported by the Science Foundations of Tianshui Normal University (TSA1104).
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estimate theory and numerical analysis [1-4], and have been widely studied (see, e.g., [5-11])
by generalized inverse, the singular value decomposition (SV D), the generalized SV D [12], or
the canonical correlation decomposition (CCD) [13]. Meanwhile, the iterative method was also
involved (see, e.g., [14]).

The researching for matrices always goes with matrix equation, the latter is one of the
topics of very active research in scientific computing. There have been a number of papers to
discuss the solvability of matrix equation(s) over kinds of matrix spaces (see, e.g., [15-18]). The
well-known matrix Sylvester equation and Lyapunov equation are very important in control
theory and many other branches of engineering [19,20], which are the particular cases of matrix
equations

AX − Y B = C, AXB + CY D = F

with unknown matrices X and Y (see, e.g., [21-25]).
Naturally, the constrained matrix equation problems with more general forms, for instance

q∑

j=1

AjXjBj = C (1)

have taken many authors’ attentions, where Xi fulfill some particular structures. Feng Ding,
Guan-ren Duan and their collaborators have made much work on this equation or its special
cases [26−29]. Motivated by the idea of conjugate gradient method and [30], in this paper, we
will solve the following generalized Sylvester matrix equation

A1X1B1 + A2X2B2 + · · ·+ A5X5B5 = C, (2)

where Ai, B1, B5, Bj , C are known, and Xl (l = 1, 2, · · · , 5) to be determined have different
structures, which generalizes the results of [30].

For given R3 ∈ SORp3×p3 , R4 ∈ SORp4×p4 , R5 ∈ SORp5×p5 and S5 ∈ SORq5×q5 , let

Φ =



(X1, X2, X3, X4, X5)

∣∣∣∣∣∣
X1 ∈ Rp1×q1 , X2 ∈ SRp2×p2 , X3 ∈ GCSRp3×p3 ,

X4 ∈ GBSRp4×p4 , X5 ∈ RSRp5×q5



 .

Then the problems to be discussed in present paper can be stated as follows:
Problem 1.1. Given Ai ∈ Rm×pi , B1 ∈ Rq1×n, B5 ∈ Rq5×n, Bj ∈ Rpj×n, and C ∈ Rm×n,

i = 1, · · · , 5, j = 2, 3, 4. Find (X1, X2, · · · , X5) ∈ Φ satisfies (1).
Problem 1.2. If the Problem 1.1 is solvable, then, for given matrices X1 ∈ Rp1×q1 ,

X2 ∈ Rp2×p2 , X3 ∈ Rp3×p3 , X4 ∈ Rp4×p4 , X5 ∈ Rp5×q5 , find (X̂1, X̂2, · · · , X̂5) ∈ SΦ such that

5∑

l=1

||X̂l −X l||2 = min
(X1,X2,··· ,X5)∈SΦ

5∑

l=1

||Xl −X l||2,

where SΦ is the solution set of Problem 1.1.
Problem 1.2 is to find the optimal approximation solution for given matrices X l in the

solution set of Problem 1.1. This problem is so-called the optimal approximation problem with
respect to matrix equation (2) (see e.g., [35,8,11-17,24]).
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§2. The iterative method for matrix equation (2)

In this section, we will establish an algorithm to obtain the solution of matrix equation
(2).

The following Lemma is necessary.
Lemma 2.1. For given symmetric orthogonal matrices R3 ∈ Rp3×p3 , R4 ∈ Rp4×p4 ,

R5 ∈ Rp5×p5 and S5 ∈ Rq5×q5 , then matrix equation (2) is solvable if and only if the following
matrix equations are consistent, namely





A1X1B1 + A2X2B2 + A3X3B3 + A4X4B4 + A5X5B5 = C,

A1X1B1 + A2X2B2 + A3X3B3 + A4R4X4R4B4 + A5X5B5 = C,

A1X1B1 + A2X
T
2 B2 + A3R3X3R3B3 + A4X

T
4 B4 + A5R5X5S5B5 = C,

A1X1B1 + A2X
T
2 B2 + A3R3X3R3B3 + A4R4X

T
4 R4B4 + A5R5X5S5B5 = C.

(3)

In particular, if Xi ∈ Φ, then the two matrix equations are equivalent.
Proof. If matrix equation (2) is consistent, we can easily verify that matrix equation (3)

is also consistent.
Conversely, suppose that (X1, X2, · · · , X5) is a solution group of matrix equation (3), let

X̃1 = X1, X̃2 =
X2 + XT

2

2
, X̃3 =

X3 + R3X3R3

2
,

X̃4 =
X4 + XT

4 + R4(X4 + XT
4 )R4

4
, X̃5 =

X5 + R5X5S5

2
.

Obviously, (X̃1, X̃2, · · · , X̃5) ∈ Φ. Then

5∑

l=1

AlX̃lBl

= A1X̃1B1 + A2
X2 + XT

2

2
B2 + A3

X3 + R3X3R3

2
B3

+A4
X4 + XT

4 + R4(X4 + XT
4 )R4

4
B4 + A5

X5 + R5X5S5

2
B5

=
1
4
[A1X1B1 + A2X2B2 + A3X3B3 + A4X4B4 + A5X5B5]

+
1
4
[A1X1B1 + A2X2B2 + A3X3B3 + A4R4X4R4B4 + A5X5B5]

+
1
4
[A1X1B1 + A2X

T
2 B2 + A3R3X3R3B3 + A4X

T
4 B4 + A5R5X5S5B5]

+
1
4
[A1X1B1 + A2X

T
2 B2 + A3R3X3R3B3 + A4R4X

T
4 R4B4 + A5R5X5S5B5]

=
1
4
C × 4 = C,

which implies that (X̃1, X̃2, · · · , X̃5) ∈ Φ is a solution group of matrix equation (3), it is
consistent.

Now, the iterative algorithm for solving Problem 1.1 can be stated as follows:
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Algorithm 2.1. Step 1: Given matrices Ai ∈ Rm×pi , B1 ∈ Rq1×n, B5 ∈ Rq5×n, Bj ∈
Rpj×n, i = 1, 2, 3, 4, 5, j = 2, 3, 4. Input arbitrary (X1(0), X2(0), X3(0), X4(0), X5(0)) ∈ Φ.

Step 2: Calculate

R(0) = C −∑5
l=1 AlXl(0)Bl,

Pl(0) = AT
l R(0)BT

l , l = 1, 2, · · · , 5,

Q1(0) = P1(0),

Q2(0) =
1
2
(P2(0) + P2(0)T ),

Q3(0) =
1
2
(P3(0) + R3P3(0)R3),

Q4(0) =
1
4
(P4(0) + P4(0)T + R4[P4(0) + P4(0)T ]R4),

Q5(0) =
1
2
(P5(0) + R5P5(0)S5),

k := 0.

Step 3 : Calculate

Xl(k + 1) = Xl(k) + αkQl(k), l = 1, 2, · · · , 5, αk = ‖R(k)‖2∑5
l=1 ‖Ql(k)‖2 .

Step 4 : Calculate

R(k + 1) = C −∑5
l=1 AlXl(k + 1)Bl= R(k)− αk

∑5
l=1 AlQl(k)Bl,

Pl(k + 1) = AT
l R(k + 1)BT

l , l = 1, 2, · · · , 5,

Q1(k + 1) = P1(k + 1) + βkQ1(k),

Q2(k + 1) =
1
2
[P2(k + 1) + P2(k + 1)T ] + βkQ2(k),

Q3(k + 1) =
1
2
[P3(k + 1) + R3P3(k + 1)R3] + βkQ3(k),

Q4(k + 1) =
1
4
[P4(k + 1) + P4(k + 1)T + R4(P4(k + 1) + P4(k + 1)T )R4] + βkQ4(k),

Q5(k + 1) =
1
2
[P5(k + 1) + R5P5(k + 1)S5] + βkQ5(k),

βk =
‖R(k + 1)‖2
‖R(k)‖2 .

Step 5 : If R(k) = 0 or R(k) 6= 0 but Ql(k) = 0, stop. Otherwise k := k + 1, go to Step 3.

From Algorithm 2.1, we know that

(X1(k), X2(k), · · · , X5(k)), (Q1(k), Q2(k), · · · , Q5(k)) ∈ Φ.

Moreover, if R(k) = 0, then Xl(k) is a solution pair of matrix equation (2). However, the
residual R(k) may unequal to zero exactly because of the influences of the roundoff errors. In
practical, we regard R(k) as zero matrix if ‖R(k)‖ < ε, in which ε is a small positive number,
in this case, the iteration will be stopped.
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Now we analysis the properties of Algorithm 2.1.
Lemma 2.2. Suppose that {R(k)}, {Ql(k)} (l = 1, 2, · · · , 5, k = 1, 2, · · · ) are the se-

quences generated by Algorithm 2.1, then

tr
(R(i)TR(j)

)
= 0,

5∑

l=1

tr
(
Ql(i)T Ql(j)

)
= 0, i, j = 1, 2, · · · , i 6= j. (4)

Proof. Similar to the proof of Lemma 6 in [30].
Lemma 2.2 implies that {R(k)} (k = 1, 2, · · · ) is an orthogonal sequence in matrix space

Rm×n.
Lemma 2.3. Suppose that the matrix equation (2) is consistent, and (X∗

1 , X∗
2 , · · · , X∗

5 ), is
any solution group of which, then for any initial iterative matrix group (X1(0), X2(0), · · · , X5(0))
∈ Φ, the iteration sequences {Xl(k)}, {Ql(k)}, {R(k)} (l = 1, 2, · · · , 5) generated by Algorithm
2.1 satisfy

5∑

l=1

tr
(
(Xl(i)∗ −Xl)T Ql(i)

)
= ‖R(i)‖2, (5)

for i = 0, 1, 2, · · · .

Proof. Similar to the proof of Lemma 6 in [30].
From Lemma 2.3, if Ql(s) = 0 (l = 1, 2, · · · , 5) for some s but R(s) 6= 0, which follows from

(5) that matrix equation (2) is not consistent. That is to say, the solvability of Problem 1.1
can be determined automatically by Algorithm 2.1. Based on Lemma 2.2 and 2.3, we obtain
the main result of this paper.

Theorem 2.1. If Problem 1.1 is consistent, then for any initial iteration matrix group
(X1(0), X2(0), X3(0), X4(0), X5(0)) ∈ Φ, a solution to Problem 1.1 can be obtained by Algo-
rithm 2.1 within finite iteration steps in the absence of roundoff errors.

Proof. If R(i) 6= 0 for i = 1, 2, · · · ,mn, it follows from Lemma 2.3 that Ql(i) 6= 0
(l = 1, 2, · · · , 5), then, by Algorithm 2.1, we get R(mn + 1) and tr

(R(mn + 1)TR(i)
)

= 0.
Hence {R(i), i = 1, 2, · · · ,mn} is an orthogonal basis of matrix space Rm×n, which indicates
that R(mn + 1) = 0 and (X1(mn + 1), X2(mn + 1), · · · , X5(mn + 1)) is a solution of Problem
1.1. This completes the proof.

The following Lemma is restated in [14].
Lemma 2.4. Assume that linear system Ax = b is consistent and y ∈ R(A) is a solution

of which, then y is its least-norm solution.
Theorem 2.2. Suppose that Problem 1.1 is consistent. For any H ∈ Rm×n, choose the

initial iteration matrices

X1(0) = 4AT
1 HBT

1 , X2(0) = 2[AT
2 HBT

2 + B2H
T A2],

X3(0) = 2[AT
3 HBT

3 + R3A
T
3 HBT

3 R3],

X4(0) = AT
4 HBT

4 + B4H
T A4 + R4[AT

4 HBT
4 + B4H

T A4]R4,

X5(0) = 2[AT
5 HBT

5 + R5A
T
5 HBT

5 S5],

then the solution group (X̃1, X̃2, · · · , X̃5) generated by Algorithm 2.1 is the least-norm solution
of matrix equation (3).
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Proof. From Algorithm 2.1, if we choose the initial iteration matrices Xl(0) as above
forms, then the solution group (X̃1, X̃2, · · · , X̃5) of Problem 1.1 has the form of

X̃1(0) = 4AT
1 FBT

1 , X̃2(0) = 2[AT
2 FBT

2 + B2F
T A2],

X̃3(0) = 2[AT
3 FBT

3 + R3A
T
3 FBT

3 R3],

X̃4(0) = AT
4 FBT

4 + B4F
T A4 + R4[AT

4 FBT
4 + B4F

T A4]R4,

X̃5(0) = 2[AT
5 FBT

5 + R5A
T
5 FBT

5 S5].

for some F ∈ Rm×n. Now it is enough to prove that (X̃1, X̃2, · · · , X̃5) is the least-norm solution.

Let Π ∈ Rmn×mn be the permutation matrix such that vec(FT ) = Πvec(F ). Then accord-
ing to the definition of stretching operator, we have




vec(X̃1)

vec(X̃2)

vec(X̃3)

vec(X̃4)

vec(X̃5)




=




B1 ⊗AT
1 B1 ⊗AT

1 B1 ⊗AT
1 B1 ⊗AT

1

B2 ⊗AT
2 B2 ⊗AT

2 (AT
2 ⊗B2)Π (AT

2 ⊗B2)Π

B3 ⊗AT
3 B3 ⊗AT

3 R3B3 ⊗R3A
T
3 R3B3 ⊗R3A

T
3

B4 ⊗AT
4 R4B4 ⊗R4A

T
4 (AT

4 ⊗B4)Π (R4A
T
4 ⊗R4B4)Π

B5 ⊗AT
5 B5 ⊗AT

5 S5B5 ⊗R5A
T
5 S5B5 ⊗R5A

T
5







f

f

f

f

f




∈ R







BT
1 ⊗A1 BT

2 ⊗A2 BT
3 ⊗A3 B4 ⊗AT

4 BT
5 ⊗A5

BT
1 ⊗A1 BT

2 ⊗A2 BT
3 ⊗A3 BT

4 R4 ⊗A4R4 BT
5 ⊗A5

BT
1 ⊗A1 ΠT (A2 ⊗BT

2 ) BT
3 R3 ⊗A3R3 ΠT (A4 ⊗BT

4 ) BT
5 S5 ⊗A5R5

BT
1 ⊗A1 ΠT (A2 ⊗BT

2 ) BT
3 R3 ⊗A3R3 ΠT (A4R4 ⊗BT

4 R4) BT
5 S5 ⊗A5R5




T



(6)

On the other hand, by Lemma 2.1, matrix equation (2) is equivalent to matrix equation
(3). The solvability of matrix equation (3) is equivalent to that of the following linear systems




BT
1 ⊗A1 BT

2 ⊗A2 BT
3 ⊗A3 B4 ⊗AT

4 BT
5 ⊗A5

BT
1 ⊗A1 BT

2 ⊗A2 BT
3 ⊗A3 BT

4 R4 ⊗A4R4 BT
5 ⊗A5

BT
1 ⊗A1 ΠT (A2 ⊗BT

2 ) BT
3 R3 ⊗A3R3 ΠT (A4 ⊗BT

4 ) BT
5 S5 ⊗A5R5

BT
1 ⊗A1 ΠT (A2 ⊗BT

2 ) BT
3 R3 ⊗A3R3 ΠT (A4R4 ⊗BT

4 R4) BT
5 S5 ⊗A5R5




×




vec(X1)

vec(X2)

vec(X3)

vec(X4)

vec(X5)




=




vec(C)

vec(C)

vec(C)

vec(C)

vec(C)




. (7)

(6) and (7), it follows from Lemma 2.4 that (X̃1, X̃2, · · · , X̃5) is the least-norm solution group
of Problem 1.1.
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§3. The solution of Problem 1.2

Without loss of generality, let (X1, X2, · · · , X5) ∈ Φ. In fact, for any X1 ∈ Rp1×q1 ,
X2 ∈ Rp2×p2 , X3 ∈ Rp3×p3 , X4 ∈ Rp4×p4 , X5 ∈ Rp5×q5 , we have

‖X2‖2 = ‖X2 + XT
2

2
+

X2 −XT
2

2
‖2 = ‖X2 + XT

2

2
‖2 + ‖X2 −XT

2

2
‖2,

‖X3‖2 = ‖X3 + R3X3R3

2
+

X3 −R3X3R3

2
‖2 = ‖X3 + R3X3R3

2
‖2 + ‖X3 −R3X3R3

2
‖2,

‖X4‖2

= ‖X4 + XT
4

2
+

X4 −XT
4

2
‖2 = ‖X4 + XT

4

2
‖2 + ‖X4 −XT

4

2
‖2

= ‖X4 + XT
4 + R4(X4 + XT

4 )R4

4
+

X4 + XT
4 −R4(X4 + XT

4 )R4

4
‖2 + ‖X4 −R4X4R4

2
‖2

= ‖X4 + XT
4 + R4(X4 + XT

4 )R4

4
‖2 + ‖X4 + XT

4 −R4(X4 + XT
4 )R4

4
‖2 + ‖X4 −R4X4R4

2
‖2,

‖X5‖2 = ‖X5 + R5X5S5

2
+

X5 −R5X5S5

2
‖2 = ‖X5 + R5X5S5

2
‖2 + ‖X5 −R5X5S5

2
‖2.

Moreover, it is easy to verify that the solution set SΦ is a closed and convex set in Φ, hence the
solution to Problem 1.2 is unique.

Denote C =
∑5

l=1 AlX lBl, then matrix equation (2) is equivalent to

5∑

l=1

Al(Xl −X l)Bl = C − C, (8)

which indicates that the solution to Problem 1.2 can be obtained by the least-norm solution of
matrix equation (8). The least-norm solution can also be derived by Algorithm 2.1. Assume
that the least-norm solution group of matrix equation (8), generated by Algorithm 2.1, is
(X1, X2, · · · , X5), then the unique optimal approximation solution group can be represented
by (X̂1, X̂2, · · · , X̂5) = (X1 + X1, X2 + X2, · · · , X5 + X5).

§4. Numerical experiment

In this section, we offer some numerical experiments to illustrate the efficiency of Algorithm
2.1. All the tests are performed by using MATLAB software in real field. In the experiments,
we always choose the initial iterative matrices as zero matrices for convenience, which means
the solutions obtained by Algorithm 2.1 is the least-norm solution.

Example 4.1. Given matrices Al, Bl, l = 1, 2, · · · , 5,

A1 =




−15 80 0 46 −59 93

45 −33 43 −63 22 −35

−38 21 −74 −4 83 −16

−95 88 82 −22 33 −13

82 95 14 −33 74 −9

90 −96 11 40 −67 −35




, B1 =




0 8 7 −6 −7 −2

−3 0 0 3 −8 9

6 1 −3 3 7 2

−4 7 8 −1 8 1

2 1 2 8 5 5

−1 −4 7 1 −9 0




,
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A2 =




−84 −41 72 −84 −30 72

58 −99 −10 −4 36 27

−39 −53 47 70 −20 85

−60 94 12 −51 38 10

77 34 80 −42 91 27

−39 82 −50 36 −4 59




, B2 =




−6 5 4 −4 1 7

1 3 5 7 4 6

7 0 1 6 −8 2

6 −3 2 3 2 9

7 3 4 2 −3 7

6 7 −8 0 −9 0




,

A3 =




80 35 44 59 75 −89

−79 −20 −84 52 −95 −16

4 56 65 39 −96 −60

−12 −40 61 −90 −22 36

−91 −22 44 25 −67 41

−81 −11 15 −83 19 −37




, B3 =




0 −7 2 7 −9 −9

−9 8 −4 1 9 4

−5 3 −6 1 2 0

8 3 2 −5 3 6

−5 7 9 4 1 7

1 −5 3 −4 −8 −9




,

A4 =




−44 71 71 −24 −72 −18

37 43 1 47 30 −32

−92 62 −16 14 21 31

−9 12 35 −48 −96 −67

61 40 −64 −20 29 81

86 77 29 65 −54 −11




, B4 =




−5 5 5 9 −5 −7

7 −7 7 2 0 −9

4 −1 5 −3 9 −6

2 6 −2 2 4 −7

3 5 9 0 0 4

−7 −9 −4 −6 −5 −3




,

A5 =




25 −83 −82 −16 −45 39

64 2 −41 −85 19 51

−78 48 17 −95 −66 −28

69 −68 −97 −91 −64 −13

−34 2 −24 2 −85 −58

23 −58 96 13 56 97




, B5 =




−8 6 9 −6 −7 −2

0 −4 0 −7 0 2

−8 −7 −8 1 2 −9

−9 0 4 −5 −7 0

4 0 −1 5 0 5

−6 1 −8 −7 −8 −8




.

For the convenience of making the experiments, let Ri = diag(−1,−1,−1,−1, 1,−1), S5 =
diag(−1, 1, 1,−1,−1, 1), i = 3, 4, 5.

Furthermore, because of the influence of roundoff errors, the R(k) generated by Algo-
rithm 2.1 always unequal to zeros in the iteration processing, we regard R(k) as zero matrix if
‖R(k)‖ < ε, where ε = 1.0e− 010.

By Theorem 2.2, for initial matrices Xl(0) = 0 (l = 1, 2, · · · , 5), after iterating 45 times,
we get the least-norm solution group to Problem 1.1, and the residual ‖R(45)‖ = 3.7092e−011,
and the convergent behavior of the R(k) in the iterating process is described in Figure 1.
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Figure 1. The curve for the Frobenius norm of ‖R(k)‖

Moreover, for the above given matrices, suppose that the given matrices X l, l = 1, 2, · · · , 5
as follows:

X1 =




−15 30 0 46 −19 13

45 −33 43 −63 22 −35

−38 21 −34 −4 83 −16

−95 −8 22 −27 33 −13

−2 55 17 −33 −4 −9

−10 −11 11 40 −17 −35




, X2 =




36 57 −71 −45 23 21

57 −94 15 −67 −85 −34

−71 15 −6 −24 −13 −47

−45 −67 −24 70 33 −32

23 −85 −13 33 72 93

21 −34 −47 −32 93 −28




,

X3 =




−8 18 −10 14 0 −6

16 8 12 −12 0 −12

−6 14 −14 −4 0 18

2 2 −14 −4 0 −18

0 0 0 0 −6 0

−16 8 2 −2 0 −10




, X4 =




−8 6 10 −20 0 −8

6 16 −2 10 0 22

10 −2 −16 −14 0 −12

−20 10 −14 8 0 −8

0 0 0 0 16 0

−8 22 −12 −8 0 −36




,

X5 =




14 0 0 12 −4 0

−4 0 0 −2 6 0

4 0 0 0 18 0

−16 0 0 −2 −8 0

0 −14 −4 0 0 −12

−4 0 0 −8 −4 0




.

Then, by Algorithm 2.1 and after iterating 45 times, we obtain the least-norm solution of matrix

equation
∑5

l=1 Al(Xl −Xl)Bl = C − C with C =
∑5

l=1 AlXlBl, that is
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X∗
1 (45) =




7.4187 2.3654 7.6994 −26.4537 −0.8903 9.4889

−1.1403 20.4710 −8.6811 8.2127 6.7695 30.2093

−22.2824 −29.0397 13.4388 13.3700 3.4800 −2.5437

45.7184 19.0782 −2.6727 −1.5547 0.7860 10.3316

−28.9806 −9.4720 4.3301 25.8083 22.9224 −8.9168

14.0796 32.0582 −19.6352 −30.4605 −25.1264 24.0960




,

X∗
2 (45) =




−17.3093 −9.2962 2.6959 0.9381 −13.2859 −17.2062

−9.2962 87.4075 35.9680 18.7095 48.6826 15.0530

2.6959 35.9680 4.0843 12.0422 4.4637 −7.0350

0.9381 18.7095 12.0422 −43.4020 3.1580 13.6863

−13.2859 48.6826 4.4637 3.1580 5.2112 −20.8418

−17.2062 15.0530 −7.0350 13.6863 −20.8418 25.4151




,

X∗
3 (45) =




−7.0614 −6.4590 5.5163 −1.3336 0 11.5782

−1.1300 13.9465 16.7789 −11.0282 0 −1.1532

1.7971 10.1066 −8.4409 16.0665 0 −20.2646

−6.6603 −14.3232 11.7888 −16.0541 0 23.4535

0 0 0 0 5.8469 0

23.9338 −14.0819 −18.5068 −4.6412 0 −2.0883




,

X∗
4 (45) =




−2.4318 20.5025 −1.2077 7.9609 0 3.7445

20.5025 −7.2216 1.0598 5.2355 0 −9.5683

−1.2077 1.0598 6.9559 −2.2644 0 −8.3176

7.9609 5.2355 −2.2644 24.1933 0 0.9316

0 0 0 0 −39.9411 0

3.7445 −9.5683 −8.3176 0.9316 0 −24.4600




,

X∗
5 (45) =




−24.6346 0 0 −4.7582 −15.2988 0

−2.7290 0 0 10.9070 −2.3425 0

14.4704 0 0 −27.2356 18.8535 0

15.8764 0 0 3.2471 24.5090 0

0 −0.3068 20.8887 0 0 31.0194

−9.9946 0 0 −9.7552 −10.0312 0




.

Hence, the unique optimal approximation solution group of Problem 1.2 is

X̂1 =




−7.5813 32.3654 7.6994 19.5463 −19.8903 22.4889

43.8597 −12.5290 34.3189 −54.7873 28.7695 −4.7907

−60.2824 −8.0397 −20.5612 9.3700 86.4800 −18.5437

−49.2816 11.0782 19.3273 −28.5547 33.7860 −2.6684

−30.9806 45.5280 21.3301 −7.1917 18.9224 −17.9168

4.0796 21.0582 −8.6352 9.5395 −42.1264 −10.9040




,
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X̂2 =




18.6907 47.7038 −68.3041 −44.0619 9.7141 3.7938

47.7038 −6.5925 50.9680 −48.2905 −36.3174 −18.9470

−68.3041 50.9680 −1.9157 −11.9578 −8.5363 −54.0350

−44.0619 −48.2905 −11.9578 26.5980 36.1580 −18.3137

9.7141 −36.3174 −8.5363 36.1580 77.2112 72.1582

3.7938 −18.9470 −54.0350 −18.3137 72.1582 −2.5849




,

X̂3 =




−15.0614 11.5410 −4.4837 12.6664 0 5.5782

14.8700 21.9465 28.7789 −23.0282 0 −13.1532

−4.2029 24.1066 −22.4409 12.0665 0 −2.2646

−4.6603 −12.3232 −2.1112 −20.0541 0 5.4535

0 0 0 0 −0.1531 0

7.9338 −6.0819 −16.5068 −6.6412 0 −12.0883




,

X̂4 =




−10.4318 26.5025 8.7923 −12.0391 0 −4.2555

26.5025 8.7784 −0.9402 15.2355 0 12.4317

8.7923 −0.9402 −9.0441 −16.2644 0 −20.3176

−12.0391 15.2355 −16.2644 32.1933 0 −7.0684

0 0 0 0 −23.9411 0

−4.2555 12.4317 −20.3176 −7.0684 0 −60.4600




,

X̂5 =




−10.6346 0 0 7.2418 −19.2988 0

−6.7290 0 0 8.9070 3.6575 0

18.4704 0 0 −27.2356 36.8535 0

−0.1236 0 0 1.2471 16.5090 0

0 −14.3068 16.8887 0 0 19.0194

−13.9946 0 0 −17.7552 −14.0312 0




.

In this case, ‖R(45)‖ = 1.4129e−010,and the norm-cove of the residualR(k) = C−C−∑5
l=1 Al(Xl(k)−

Xl)Bl is described in Figure 2.
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Figure 2. The curve for the Frobenius norm of ‖R(k)‖.
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Abstract and definitions and statement of results In this paper, we give the proof of a

simple Theorem which simultaneously implies the Sophie Germain primes conjecture and the

Mersenne primes conjecture, by using only elementary combinatoric, elementary arithmetic

congruences, elementary logic, induction and reasoning by reduction to absurd. In addition

we also show that the previous two conjectures that we solved elementary were an immediate

consequence of the Fermat’s last conjecture. Moreover, our paper clearly shows that the

Mersenne primes conjecture and the Sophie Germain primes conjecture were only simple

arithmetic conjectures, so that strong investigations used in the past to try to solve the

previous two conjectures were clearly not welcome. we recall that a Mersenne prime (see

[1],[4],[6],[9],[10]) is a prime of the form Mm = 2m − 1, where m is prime, for example M13

and M19 are Mersenne prime. Mersenne primes are known for some integers > M19 and it is

conjectured that there are infinitely many Mersenne primes. We recall, (see [2]), that a prime h

is called a Sophie Germain prime, if both h and 2h+1 are prime; the first few Sophie Germain

primes are 2, 3, 5, 11, 23, 29, 41, · · · and it is easy to check that 233 is a Sophie Germain prime.

Sophie Germain primes are known for some integers > 233 and it is conjectured that there

are infinitely many couples of the form (h, 2h + 1), where h and 2h + 1 are prime, the Sophie

Germain primes conjecture. Finally, we recall ([3],[4],[5],[7],[8],[11]) that the Fermat’s last

conjecture solved by A. Wiles in a paper of at least 105 pages long (see [11]), and resolved by

Ikorong Nemron in a detailled paper of only 19 pages long (see [8]) states that when n is an

integer ≥ 3, the equation xn + yn = zn has no non-zero integer solutions for x, y and z, in

other words, no three integers of the form x ≥ 1, y ≥ 1 and z ≥ 1 can satisfy the equation

xn + yn = zn.

Keywords Sophie Germain primes, Mersenne primes.

2000 AMS Classification : 05XX and 11XX.

§1. Denotations and simple properties

For every integer n ≥ 2, we define M(n), mn and mn,1; H(n), hn and hn,1 as follow:

M(n) = {x; 1 < x < 2n and x is a Mersenne prime},
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observing by using Abstract and definitions that M13 is a Mersenne prime, then it becomes
immediate to deduce that for every integer n ≥ M13, M13 ∈ M(n), mn = max

m∈M(n)
m, and

mn,1 = mmn
n ; H(n) = {x; 1 < x < 2n and x is a Sophie Germain prime}, observing that 233 is

a Sophie Germain prime (see Abstract and definitions), then it becomes immediate to deduce
that for every integer n ≥ 233, 233 ∈ H(n), hn = max

h∈H(n)
h, and hn,1 = hhn

n . Using the previous

definitions and denotations, let us remark.
Remark 1.1. Let n be an integer ≥ M19, look at M(n), mn and mn,1. Then we have the

following two simple properties:
(i) −1 + M19 < mn < mn,1, mn,1 = mmn

n , and mn,1 ≥ MM19
19 .

(ii) If mn < n− 200, then n > M19 and mn = mn−1 and mn,1 = mn−1,1.
Proof. Property (i) is trivial, indeed, it suffices to use the definition of mn and mn,1, and

the fact that M19 ∈ M(n), note that M19 is a Mersenne prime (see Abstract and definitions),
since n is an integer ≥ M19. Property (ii) is immediate, indeed, if mn < n − 200, clearly
n > M19, use the definition of mn and observe that M19 ∈M(n), since n is an integer ≥ M19,
and so mn < n − 200 < 2n − 2, since n > M19 by the previous and mn < n − 200 by the
hypothesis, consequently

mn < 2n− 2. (1)

Inequality (1) immediately implies that M(n) = M(n− 1) and therefore

mn = mn−1. (2)

Equality (2) immediately implies that mn,1 = mn−1,1. Property (ii) follows and Remark 1.1
immediately follows.

Remark 1.2. Let n be an integer ≥ M19, look at H(n), hn and hn,1. Then we have the
following two simple properties:

(i) 232 < hn < hn,1, hn,1 = hhn
n , and hn,1 ≥ 233233.

(ii) If hn < n− 200, then n > 233 and hn = hn−1 and hn,1 = hn−1,1.
Proof. Property (i) is trivial, it suffices to use the definition of hn and hn,1, and the fact

that 233 ∈ H(n), note that 233 is a Sophie Germain prime (see Abstract and definitions), since
n is an integer ≥ M19 with M19 > 233. Property (ii) is immediate and is analogous to property
(ii) of Remark 1.1, where we replace mn by hn, M19 by 233, M(n) by H(n), M(n − 1) by
H(n− 1), mn−1 by hn−1, mn,1 by hn,1 and mn−1,1 by hn−1,1. Remark 1.2 follows.

From the previous, let us define.
Definition 1.1. For every integer n ≥ 2, we put

MH(n, 1) = {mn,1}
⋃
{hn,1}.

Using Definition 1.1, let us Remark.
Remark 1.3. Let n be an integer ≥ M19 and consider MH(n, 1). Now let xn,1 ∈

MH(n, 1) and via xn,1, look at xn. Then we have the following:
(i) If xn,1 = mn,1, then xn = mn and we are playing with the Mersenne primes.
(ii) If xn,1 = hn,1, then xn = hn and we are playing with the Sophie Germain primes.
Proof. Immediate, indeed, it suffices to use the definition of xn and xn,1, where xn,1 ∈

MH(n, 1).
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Now using Remarks 1.1, 1.2, and 1.3, then the following proposition becomes immediate.
Proposition 1.1. Let n be an integer ≥ M19 and consider MH(n, 1). Now let xn,1 ∈

MH(n, 1), and via xn,1, look at xn. We have the following two simple properties:
(i) 232 < xn < xn,1, xn,1 = xxn

n , and xn,1 ≥ 233233.
(ii) If xn < n− 200, then n > 233 and xn = xn−1 and xn,1 = xn−1,1.
Proof. (i) Indeed, let xn,1 ∈ MH(n, 1), if xn,1 = mn,1 and therefore xn = mn, use

property (i) of Remark 1.1 and apply property (i) of Remark 1.3, if xn,1 = hn,1 and therefore
xn = hn, use property (i) of Remark 1.2 and apply property (ii) of Remark 1.3. Property (i)
follows.

(ii) Indeed, let xn,1 ∈ MH(n, 1) such that xn < n − 200, if xn,1 = mn,1 and therefore
xn = mn, use property (ii) of Remark 1.1 and apply property (i) of Remark 1.3, if xn,1 = hn,1

and therefore xn = hn, use property (ii) of Remark 1.2 and apply property (ii) of Remark 1.3.
Property (ii) follows and Proposition 1.1 immediately follows.

Using the definition of mn,1 and hn,1, then the following remark and corollary become
immediate.

Remark 1.4. We have the following three simple properties:
(i) If lim

n→+∞
10mn,1 = +∞, then there are infinitely many Mersenne primes.

(ii) If lim
n→+∞

10hn,1 = +∞, then there are infinitely many Sophie Germain primes.

(iii) If lim
n→+∞

10mn,1 = +∞ and lim
n→+∞

10hn,1 = +∞, then the Mersenne primes and the

Sophie Germain primes are all infinite.
Proof. Properties (i) and (ii) are immediate. Indeed, it suffices to use definitions of mn,1

and hn,1, and property (iii) follows by using properties (i) and (ii).
Corollary 1.1. If for every integer n ≥ M19, we have 10mn,1 > n − 200 and 10hn,1 >

n− 200, then the Mersenne primes and the Sophie Germain primes are all infinite.
Proof. Clearly, lim

n→+∞
10mn,1 = +∞ and lim

n→+∞
10hn,1 = +∞, therefore the Mersenne

primes and the Sophie Germain primes are all infinite, by using the previous two equalities and
by applying property (iii) of Remark 1.4.

Proposition 1.2. If for every integer n ≥ M19, and for every xn,1 ∈ MH(n, 1), we have
10xn,1 > n− 200, then the Mersenne primes and the Sophie Germain primes are all infinite.

Proof. Indeed, using the definition of MH(n, 1), we immediately deduce that for every
integer n ≥ M19, 10mn,1 > n − 200 and 10hn,1 > n − 200, therefore the Mersenne primes
and the Sophie Germain primes are all infinite, by using the previous two inequalities and by
applying Corollary 1.1.

Proposition 1.2 clearly says that: if for every integer n ≥ M19, and for every xn,1 ∈
MH(n, 1), we have 10xn,1 > n − 200, then the Mersenne primes and the Sophie Germain
primes are all infinite, this is what we will do in Section.2, by using only Proposition 1.2,
elementary combinatoric, elementary arithmetic congruences, elementary logic, induction and
reasoning by reduction to absurd. Proposition 1.2 is stronger than all the investigations which
have done on the Mersenne primes and the Sophie Germain primes in the past. Morerover, the
reader can easily see that Proposition 1.2 is completely different from all the investigations that
have been done on the Mersenne primes and the Sophie Germain primes in the past. So, in
Section.2, when we will prove the Mersenne primes conjecture and the Sophie Germain primes
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conjecture, and the fact that the previous two conjectures are connected to the Fermat’s last
conjecture, we will not need strong investigations that have been done on the previous two
conjectures in the past, and this will not be surprising, since or topic is original, via our original
simple remarks and proposition stated above.

§2. Proofs of stated results

In this section, the definition of MH(n, 1) (see Definition 1.1) is fundamental and crucial.
Now let us recall.

Recalls and Denotations:
(i) We recall that a statement S(n) is an assertion which can be true or which can be false.

In this paper, if S(n) is a statement k(n), we will simply write S(n) =: k(n). So S(n) =: k(n)
means S(n) is statement k(n). For example, let xn,1 ∈MH(n, 1), then S(n) =: 10xn,1 > n+71
means S(n) is statement 10xn,1 > n + 71.

Example 2.1. Let n be an integer ≥ M19 and consider xn,1 ∈ MH(n, 1) (see Definition
1.1), now let S(n) be the following statement. S(n) =: 10xn,1 > n + 71. Then, S(n) is false, if
and only if 10xn,1 ≤ n + 71.

(ii) We also recall that assertion E and assertion E′ are equivalent and we denote by
E ⇔ E′, if E and E′ are simultaneously true or if E and E′ are simultaneously false.

Example 2.2. Let n be an integer ≥ M19, consider xn,1 ∈ MH(n, 1) (see Definition
1.1), and let S(n) and S′(n) be the following two statements. S(n) =: 10xn,1 > n + 71 and
S′(n) =: 10xn,1 > n + 70. If 10xn,1 ≤ n + 70, then S(n) and S′(n) are equivalent, to see that,
it suffices to observe that 10xn,1 ≤ n + 71, since 10xn,1 ≤ n + 70, consequently, S(n) and S′(n)
are simultaneously false, and therefore S(n) and S′(n) are equivalent.

Example 2.3. Let n be an integer ≥ M19, consider xn,1 ∈ MH(n, 1), and let statements
S(n) and S′(n) defined above. If 10xn,1 > n + 71, then S(n) and S′(n) are equivalent, to see
that, it suffices to observe that 10xn,1 > n + 70, since 10xn,1 > n + 71, consequently, S(n) and
S′(n) are simultaneously true, and therefore S(n) and S′(n) are equivalent.

(iii) Finally, we recall that assertion F and assertion F ′ are not equivalent and we denote
by F 6⇔ F ′ if F is true and F ′ is false or if F is false and F ′ true.

Example 2.4. Let n be an integer ≥ M19 and consider xn,1 ∈ MH(n, 1) (see Definition
1.1). Now look at statements S(n) and S′(n) defined in Example 2.2 of Recall (i). If 10xn,1 ≤
n + 71 and if 10xn,1 > n + 70, then S(n) and S′(n) are not equivalent, to see that, it suffices
to observe that S(n) is false, since 10xn,1 ≤ n + 71 and S′(n) is true, since 10xn,1 > n + 70,
consequently S(n) and S′(n) are not equivalent, since S(n) is false and S′(n) is true.

Example 2.5. Let n be an integer ≥ M19 and consider xn,1 ∈ MH(n, 1) (see Definition
1.1). Now look at statements S(n) and S′(n) defined in Example 2.2 of Recall (i). If 10xn,1 =
n + 71, then S(n) and S′(n) are not equivalent, to see that, it suffices to observe that S′(n) is
true, since 10xn,1 = n + 71 and so 10xn,1 > n + 70 and S(n) is false, since 10xn,1 = n + 71
and so 10xn,1 ≤ n+71, consequently S(n) and S′(n) are not equivalent, since S(n) is false and
S′(n) is true.

Having made the previous elementary recalls, let us define.
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Definitions 2.1. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and
λ′(n) are integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Now consider
xn,1 ∈ MH(n, 1). Then Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)) are statements defined as
follow. Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n), if and only if 10xn,1 >

n + 71, it is immediate that the previous clearly says that Z(xn,1, λ(n), λ′(n)) =: 10xn,1 >

λ(n) 6⇔ 10xn,1 > λ′(n), if and only if 10xn,1 ≤ n + 71, Y (xn,1, λ(n), λ′(n)) =: 10xn,1 >

λ(n) ⇔ 10xn,1 > λ′(n), if and only if statement Z(xn,1, λ(n), λ′(n)) is true, it is trivial that
the previous clearly says that Y (xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n), if and
only if statement Z(xn,1, λ(n), λ′(n)) is false.

For every integer n ≥ M19, for every λ(n) and λ′(n), where λ(n) and λ′(n) are integers
such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71, and for every xn,1 ∈ MH(n, 1), it is
easy to see that statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)) are well defined, it is
immediate to see that statement Z(xn,1, λ(n), λ′(n)) can be true or can be false, and it is also
immediate to see that statement Y (xn,1, λ(n), λ′(n)) can be true or can be false. Now using
Definitions 2.1, then the following remark becomes immediate.

Remark 2.1. Let n be an integer ≥ M19 and look at xn,1 ∈ MH(n, 1) (see Definition
1.1), suppose that 10xn,1 = n + 71. Now let γ(n) and γ′(n), where γ(n) and γ′(n) are integers
such that 1 ≤ γ(n) ≤ n+71 and 1 ≤ γ′(n) ≤ n+71, and look at statements Z(xn,1, γ(n), γ′(n))
and Y (xn,1, γ(n), γ′(n)) introduced in Definitions 2.1. We have the following three elementary
properties:

(i) If Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n), then Z(xn,1, γ(n), γ′(n)) is
false.

(ii) If Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n), then Z(xn,1, γ(n), γ′(n)) is
true.

(iii) Z(xn,1, γ(n), γ′(n)) 6⇔ Y (xn,1, γ(n), γ′(n)).
Proof. Property (i) is immediate, indeed, observe by the definition of statement Z(xn,1,

γ(n), γ′(n)) that

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n), if and only if 10xn,1 > n + 71. (3)

That being so, if statement Z(xn,1, γ(n), γ′(n)) is of the form

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n),

remarking via the hypotheses that 10xn,1 = n + 71, clearly 10xn,1 ≤ n + 71, now using the
previous inequality and (3), then it becomes trivial to deduce that statement Z(xn,1, γ(n), γ′(n))
is false, otherwise, Z(xn,1, γ(n), γ′(n)) is true, and using (3), then we clearly deduce that
10xn,1 > n + 71. A contradiction, since 10xn,1 = n + 71, by the hypotheses.

Property (ii) is trivial, indeed, it is trivial by using the definition of statement Z(xn,1, γ(n),
γ′(n)) that

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n), if and only if 10xn,1 ≤ n + 71. (4)

That being so, if statement Z(xn,1, γ(n), γ′(n)) is of the form

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n),
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remarking via the hypotheses that 10xn,1 = n + 71, clearly 10xn,1 ≤ n + 71, now using the
previous inequality and (4), then it becomes trivial to deduce that statement Z(xn,1, γ(n), γ′(n))
is true, otherwise, Z(xn,1, γ(n), γ′(n)) is false, and using (4), then we clearly deduce that it is
false that 10xn,1 ≤ n + 71, therefore, 10xn,1 > n + 71. A contradiction, since 10xn,1 = n + 71,
by the hypotheses.

(iii) Z(xn,1, γ(n), γ′(n)) 6⇔ Y (xn,1, γ(n), γ′(n)). Otherwise, we reason by reduction to
absurd

Z(xn,1, γ(n), γ′(n)) ⇔ Y (xn,1, γ(n), γ′(n)), (5)

and we are going to distinguish two cases, namely case where Z(xn,1, γ(n), γ′(n)) is true and
case where Z(xn,1, γ(n), γ′(n)) is false.

Case 2.1. Statement Z(xn,1, γ(n), γ′(n)) is true, application of property (i). In this case,
using the definition of Y (xn,1, γ(n), γ′(n)) (see Definitions 2.1), then we immediately deduce
that statement Y (xn,1, γ(n), γ′(n)) is of the form

Y (xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n). (6)

That being so, we observe the following:
Observation (i). Statement Z(xn,1, γ(n), γ′(n)) and statement Y (xn,1, γ(n), γ′(n)) are si-

multaneously true. Indeed, remarking by (5) that Z(xn,1, γ(n), γ′(n)) ⇔ Y (xn,1, γ(n), γ′(n)),
and recalling that we are in the case where Z(xn,1, γ(n), γ′(n)) is true, then, using the previous,
it becomes trivial to deduce that Z(xn,1, γ(n), γ′(n)) and Y (xn,1, γ(n), γ′(n)), are simultane-
ously true. Observation (i) follows.

Observation (ii). Look at statement Z(xn,1, γ(n), γ′(n)), then Z(xn,1, γ(n), γ′(n)) is of
the form Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n). Otherwise, using the
definition of statement Z(xn,1, γ(n), γ′(n)) (see Definitions 2.1), then we immediately deduce
that statement Z(xn,1, γ(n), γ′(n)) is of the form

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n). (7)

Now look at statement Y (xn,1, γ(n), γ′(n)) and remark by (6) that Y (xn,1, γ(n), γ′(n)) is of the
form

Y (xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n). (8)

That being so, using (7) and (8), then it becomes trivial to see that statement Z(xn,1, γ(n), γ′(n))
and statement Y (xn,1, γ(n), γ′(n)) are not simultaneously true, and this contradicts Observation
(i). Observation (ii) follows.

Having made the previous two elementary observations, look at Z(xn,1, γ(n), γ′(n)), observ-
ing by using Observation (i), that Z(xn,1, γ(n), γ′(n)) is true and remarking that Z(xn,1, γ(n),
γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n) (use Observation (ii)), then using the previous, it
becomes trivial to deduce that

Z(xn,1, γ(n), γ′(n)) is true and Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n), (9)

(9) clearly contradicts property (i) of Remark 2.1. Case 2.1 follows.
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Case 2.2. Statement Z(xn,1, γ(n), γ′(n)) is false, application of property (ii) of Remark
2.1. In this case, using the definition of Y (xn,1, γ(n), γ′(n)) (see Definitions 2.1), then we
immediately deduce that statement Y (xn,1, γ(n), γ′(n)) is of the form

Y (xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n). (10)

That being so, we observe the following:
Observation (iii). Statement Z(xn,1, γ(n), γ′(n)) and statement Y (xn,1, γ(n), γ′(n)) are si-

multaneously false. Indeed, remarking by (5) that Z(xn,1, γ(n), γ′(n)) ⇔ Y (xn,1, γ(n), γ′(n)),
and recalling that we are in the case where Z(xn,1, γ(n), γ′(n)) is false, then, using the previous,
it becomes trivial to deduce that Z(xn,1, γ(n), γ′(n)) and Y (xn,1, γ(n), γ′(n)), are simultane-
ously false. Observation (iii) follows.

Observation (iv). Look at statement Z(xn,1, γ(n), γ′(n)), then Z(xn,1, γ(n), γ′(n)) is of
the form Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n). Otherwise, using the
definition of statement Z(xn,1, γ(n), γ′(n)) (see Definitions 2.1), then we immediately deduce
that statement Z(xn,1, γ(n), γ′(n)) is of the form

Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) ⇔ 10xn,1 > γ′(n). (11)

Now look at statement Y (xn,1, γ(n), γ′(n)) and remark by (10) that Y (xn,1, γ(n), γ′(n)) is of
the form

Y (xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n). (12)

That being so, using (11) and (12), then it becomes trivial to see that statement Z(xn,1, γ(n),
γ′(n)) and statement Y (xn,1, γ(n), γ′(n)) are not simultaneously false, and this contradicts
Observation (iii). Observation (iv) follows.

Having made the previous two elementary observations, look at statement Z(xn,1, γ(n),
γ′(n)), observing by Observation (iii) that Z(xn,1, γ(n), γ′(n)) is false and noticing that Z(xn,1,

γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n) (use Observation (iv)), then using the previ-
ous, it becomes trivial to deduce that

Z(xn,1, γ(n), γ′(n)) is false and Z(xn,1, γ(n), γ′(n)) =: 10xn,1 > γ(n) 6⇔ 10xn,1 > γ′(n), (13)

(13) clearly contradicts property (ii) of Remark 2.1. Case 2.2 follows.
That being so, using Case 2.1 (case where statement Z(xn,1, γ(n), γ′(n)) is true), or using

Case 2.2 (case where statement Z(xn,1, γ(n), γ′(n)) is false), we have a contradiction, so in all
the cases, we have a contradiction. Property (iii) follows and Remark 2.1 immediately follows.

Now we are quasily ready to state the elementary Theorem which implies stated results.
Before, let us introduce the following last definitions:

Definitions 2.2. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and
λ′(n) are integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈
MH(n, 1) (see Definition 1.1), look at statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n))
introduced in Definitions 2.1, and define ε(λ(n), λ′(n)) as follow: if Z(xn,1, λ(n), λ′(n)) ⇔
Y (xn,1, λ(n), λ′(n)), then ε(λ(n), λ′(n)) = 0, and if Z(xn,1, λ(n), λ′(n)) 6⇔ Y (xn,1, λ(n), λ′(n)),
then ε(λ(n), λ′(n)) = 1. It is trivial to see that for every integer n ≥ M19, ε(λ(n), λ′(n)) is
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well defined. That being so, let λ(n) and λ′(n), where λ(n) and λ′(n) are integers such that
1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈MH(n, 1) (see Definition 1.1) and
look at ε(λ(n), λ′(n)) defined just above. Then statement S(xn,1, ε(λ(n), λ′(n))) is defined as
follow:

S(xn,1, ε(λ(n), λ′(n))) =: Y (xn,1, λ(n), λ′(n)) is false,

implies that
λ(n) + λ′(n) ≡ ε(λ(n), λ′(n)) mod [2].

It is clear that the previous says that S(xn,1, ε(λ(n), λ′(n))) is statement, Y (xn,1, λ(n), λ′(n))
is false, implies that λ(n) + λ′(n) ≡ ε(λ(n), λ′(n)) mod [2].

For every integer n ≥ M19, for every λ(n) and λ′(n), where λ(n) and λ′(n) are integers
such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71, for every xn,1 ∈ MH(n, 1) and for
every ε(λ(n), λ′(n)), it is immediate to see that statement S(xn,1, ε(λ(n), λ′(n))) is well defined
( recall that ε(λ(n), λ′(n)) is introduced in Definitions 2.2). Now using Definitions 2.2, then the
following two remarks become immediate to prove:

Remark 2.2. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and λ′(n) are
integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈ MH(n, 1) (see
Definition 1.1), look at statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)) introduced in
Definitions 2.1. Now consider ε(λ(n), λ′(n)) introduced in Definitions 2.2 and look at statement
S(xn,1, ε(λ(n), λ′(n))) introduced in Definitions 2.2. Now suppose that 10xn,1 = n + 71. We
have the following four elementary properties:

(i) ε(λ(n), λ′(n)) = 1.
(ii) If statement Z(xn,1, λ(n), λ′(n)) is false, then statement Y (xn,1, λ(n), λ′(n)) is true and

is of the form Y (xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n).
(iii) If statement Z(xn,1, λ(n), λ′(n)) is true, then statement Z(xn,1, λ(n), λ′(n)) is of the

form Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n).
(iv) If statement Y (xn,1, λ(n), λ′(n)) is false and if statement S(xn,1, ε(λ(n), λ′(n))) is true,

then λ(n) + λ′(n) ≡ 1 mod [2].
Proof. Property (i) is immediate, indeed, let statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1,

λ(n), λ′(n)), observing via the hypotheses that 10xn,1 = n + 71, then using property (iii) of
Remark 2.1, where we replace γ(n) by λ(n) and γ′(n) by λ′(n)), it becomes trivial to deduce
that

Z(xn,1, λ(n), λ′(n)) 6⇔ Y (xn,1, λ(n), λ′(n)). (14)

Now using (14) and the definition of ε(λ(n), λ′(n)) introduced in Definitions 2.2, then it becomes
trivial to deduce that ε(λ(n), λ′(n)) = 1. Property (i) follows.

Property (ii) is also immediate, indeed, if statement Z(xn,1, λ(n), λ′(n)) is false, then using
Definitions 2.1, it becomes trivial to deduce that statement Y (xn,1, λ(n), λ′(n)) is of the form

Y (xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). (15)

Now let statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)), observing via the hypotheses
that 10xn,1 = n+71, then using property (iii) of Remark 2.1, it becomes trivial to deduce that

Z(xn,1, λ(n), λ′(n)) 6⇔ Y (xn,1, λ(n), λ′(n)). (16)
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Recalling that statement Z(xn,1, λ(n), λ′(n)) is false and using (16), then it becomes trivial to
deduce that

Statement Y (xn,1, λ(n), λ′(n)) is true, (17)

since Z(xn,1, λ(n), λ′(n)) 6⇔ Y (xn,1, λ(n), λ′(n)) by (16) and since statement Z(xn,1, λ(n),
λ′(n)) is supposed to be false. Now using (17) and (15), then it becomes trivial to deduce that
statement Y (xn,1, λ(n), λ′(n)) is true and is of the form

Y (xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n).

Property (ii) follows.
Property (iii) is trivial, indeed, if statement Z(xn,1, λ(n), λ′(n)) is true, then Z(xn,1, λ(n),

λ′(n)) is of the form

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). (18)

Otherwise, we reason by reduction to absurd, using (18), then it becomes trivial to deduce that
statement Z(xn,1, λ(n), λ′(n)) is of the form

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). (19)

Recalling that statement Z(xn,1, λ(n), λ′(n)) is true and using (19), then it becomes immediate
to deduce that

Z(xn,1, λ(n), λ′(n)) is true and Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). (20)

Now observe by the definition of statement Z(xn,1, λ(n), λ′(n)) introduced in Definitions 2.1
that

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n), if and only if 10xn,1 > n+71. (21)

That being so, using (20) and (21), then it becomes trivial to deduce that 10xn,1 > n + 71, we
have a contradiction, since 10xn,1 = n + 71, by the hypotheses. Property (iii) follows.

Property (iv) is also trivial, indeed, if statement Y (xn,1, λ(n), λ′(n)) is false and if state-
ment S(xn,1, ε(λ(n), λ′(n))) is true, then using the previous and the definition of statement
S(xn,1, ε(λ(n), λ′(n))), introduced in Definitions 2.2, it becomes trivial to deduce that

λ(n) + λ′(n) ≡ ε(λ(n), λ′(n)) mod [2]. (22)

Now look at ε(λ(n), λ′(n)), remarking by property (i) that ε(λ(n), λ′(n)) = 1 and using (22),
then it becomes trivial to deduce that λ(n) + λ′(n) ≡ 1 mod [2]. Property (iv) follows and
Remark 2.2 immediatelly follows.

Remark 2.3. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and λ′(n) are
integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈ MH(n, 1) (see
Definition 1.1), look at statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)) introduced in
Definitions 2.1. Now consider ε(λ(n), λ′(n)) introduced in Definitions 2.2 and look at statement
S(xn,1, ε(λ(n), λ′(n))) introduced in Definitions 2.2. Now suppose that 10xn,1 > n + 71. We
have the following five elementary properties:
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(i) Statement Z(xn,1, λ(n), λ′(n)) is true and is of the form Z(xn,1, λ(n), λ′(n)) =: 10xn,1 >

λ(n) ⇔ 10xn,1 > λ′(n).
(ii) Statement Y (xn,1, λ(n), λ′(n)) is true and is of the form Y (xn,1, λ(n), λ′(n)) =: 10xn,1 >

λ(n) ⇔ 10xn,1 > λ′(n).
(iii) Statements S(xn,1, ε(λ(n), λ′(n))) and Y (xn,1, λ(n), λ′(n)) and Z(xn,1, λ(n), λ′(n)) are

simultaneously true.
(iv) S(xn,1, ε(λ(n), λ′(n))) ⇔ Y (xn,1, λ(n), λ′(n)) ⇔ Z(xn,1, λ(n), λ′(n)).
(v) ε(λ(n), λ′(n)) = 0.
Proof. Property (i) is immediate, indeed, let λ(n) and λ′(n), note that λ(n) and λ′(n) are

integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71, noticing via the hypotheses that
10xn,1 > n + 71, and using the previous inequality, then it becomes trivial to deduce that

10xn,1 > λ(n) and 10xn,1 > λ′(n). (23)

That being so, we observe the following:
Observation (v). 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). Indeed, noticing by (23) that

10xn,1 > λ(n) and 10xn,1 > λ′(n), then it becomes trivial to deduce that 10xn,1 > λ(n) ⇔
10xn,1 > λ′(n). Observation (v) follows.

Observation (vi). Statement Z(xn,1, λ(n), λ′(n)) is of the form

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n).

Otherwise, we reason by reduction to absurd, it becomes trivial to deduce that statement
Z(xn,1, λ(n), λ′(n)) is of the form

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). (24)

By using the definition of statement Z(xn,1, λ(n), λ′(n)) introduced in Definitions 2.1, it is
immediate to see that

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n), if and only if 10xn,1 ≤ n + 71. (25)

Now, using (24) and (25), then we immediately deduce that 10xn,1 ≤ n + 71, a contradiction,
since 10xn,1 > n + 71, by the hypotheses. Observation (vi) follows.

Observation (vii). Statement Z(xn,1, λ(n), λ′(n)) is true. Otherwise, we reason by reduc-
tion to absurd Z(xn,1, λ(n), λ′(n)) is false, and using Observation (vi), then we immediately
deduce that 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n) and this contradicts Observation (v). Observa-
tion (vii) follows.

The previous trivial observations made, using Observation (vii) and Observation(vi), then
it becomes immediate to deduce that statement Z(xn,1, λ(n), λ′(n)) is true and is of the form

Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n).

Property (i) follows.
Property (ii) is also immediate, indeed, look at statement Y (xn,1, λ(n), λ′(n)), remarking

by using property (i) that statement Z(xn,1, λ(n), λ′(n)) is true, then it becomes trivial to
deduce that statement Y (xn,1, λ(n), λ′(n)) is of the form

Y (xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). (26)
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Now noticing by using again property (i) that

Z(xn,1, λ(n), λ′(n)) is true and Z(xn,1, λ(n), λ′(n)) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n), (27)

then, using (27) and (26), then it becomes trivial to deduce that statement Y (xn,1, λ(n), λ′(n))
is true and is of the form Y (xn,1, λ(n), λ′(n))) =: 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). Property
(ii) follows.

Property (iii) is trivial, indeed, look at statement S(xn,1, ε(λ(n), λ′(n))) (see Definitions
2.2), noticing by using property (ii) that statement Y (xn,1, λ(n), λ′(n)) is true, then using the
definition of statement S(xn,1, ε(λ(n), λ′(n))), it becomes trivial to deduce that

Statement S(xn,1, ε(λ(n), λ′(n))) is true. (28)

Now observe by using properties (ii) and (i) that

Statement Y (xn,1, λ(n), λ′(n)) is true and statement Z(xn,1, λ(n), λ′(n)) is true. (29)

That being so, using (28) and (29), then it becomes trivial to deduce that statement S(xn,1,

ε(λ(n), λ′(n))) and statement Y (xn,1, λ(n), λ′(n)) and statement Z(xn,1, λ(n), λ′(n)) are simul-
taneously true. Property (iii) follows.

Property (iv) follows immediately by using property (iii).
Property (v) is trivial, indeed, observing that S(xn,1, ε(λ(n), λ′(n))) ⇔ Y (xn,1, λ(n), λ′(n))

⇔ Z(xn,1, λ(n), λ′(n)) (use property (iv)), then in particular, we have clearly

Y (xn,1, λ(n), λ′(n)) ⇔ Z(xn,1, λ(n), λ′(n)). (30)

Now using (30) and the definition of ε(λ(n), λ′(n)) introduced in Definitions 2.2, then it becomes
trivial to deduce that ε(λ(n), λ′(n)) = 0. Property (v) follows and Remark 2.3 immediately
follows.

The previous simple definitions and remarks made, now the following Theorem immediately
implies stated results.

Theorem 2.1. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and λ′(n)
are integers such that 1 ≤ λ(n) ≤ n+71 and 1 ≤ λ′(n) ≤ n+71. Consider xn,1 ∈MH(n, 1) (see
Definition 1.1), look at statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n)) introduced in
Definitions 2.1. Now consider ε(λ(n), λ′(n)) introduced in Definitions 2.2 and look at statement
S(xn,1, ε(λ(n), λ′(n))) introduced in Definitions 2.2. Then the following two properties (i) and
(ii) are simultaneously satisfied by (n, xn,1, ε(λ(n), λ′(n))):

(i) S(xn,1, ε(λ(n), λ′(n))) ⇔ Y (xn,1, λ(n), λ′(n)) ⇔ Z(xn,1, λ(n), λ′(n)).
(ii) 10xn,1 > n + 71.
We are going to prove simply Theorem 2.1. But before doing so, let us propose the following

four simple propositions.
Proposition 2.1. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and

λ′(n) are integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈
MH(n, 1) (see Definition 1.1), look at statements Z(xn,1, λ(n), λ′(n)) and Y (xn,1, λ(n), λ′(n))
introduced in definitions 2.1. Now consider ε(λ(n), λ′(n)) introduced in Definitions 2.2 and look
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at statement S(xn,1, ε(λ(n), λ′(n))) introduced in Definitions 2.2. We have the following two
trivial properties:

(i) If 10xn,1 > n + 71, then Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))).
(ii) If n ≤ 233233, then Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))).
Proof. Property (i) is immediate, indeed, let n be an integer ≥ M19 and let xn,1 ∈

MH(n, 1), if 10xn,1 > n + 71, then, using property (iv) of Remark 2.3, we immediately deduce
that

S(xn,1, ε(λ(n), λ′(n))) ⇔ Y (xn,1, λ(n), λ′(n)) ⇔ Z(xn,1, λ(n), λ′(n)). (31)

Now using (31) and the fact that 10xn,1 > n+71, then it becomes trivial to see that properties
(i) and (ii) of Theorem 2.1 are simultaneously satisfied by (n, xn,1, ε(λ(n), λ′(n))), therefore
Theorem 2.1 is clearly satisfied by (n, xn,1, ε(λ(n), λ′(n))).

Property (ii) is also immediate, indeed let n be an integer ≥ M19 and let xn,1 ∈MH(n, 1),
observing by using property (i) of Proposition 1.1 that

xn,1 ≥ 233233, (32)

if n ≤ 233233, then using (32), we immediately deduce that

xn,1 ≥ 233233 ≥ n, (33)

(33) immediately implies that xn,1 ≥ n and consequently

10xn,1 ≥ 10n. (34)

Now remarking via the hypotheses that n ≥ M19 and using inequality (34), it becomes imme-
diate to deduce that 10xn,1 ≥ 10n > n + 71, so

10xn,1 > n + 71. (35)

Consequently, Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))), by using inequality (35) and
property (i). Property (ii) follows, and Proposition 2.1 follows.

Proposition 2.2. Let n be an integer ≥ M19, and let λ(n) and λ′(n), where λ(n) and λ′(n)
are integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71. Consider xn,1 ∈ MH(n, 1)
(see Definition 1.1), and via xn,1, look at xn (see Definition 1.1 and Remark 1.3 of Section.1 for
the definition of xn). If xn ≥ n− 200, then Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))).

Proof. Indeed, let n be an integer ≥ M19 and let xn,1 ∈MH(n, 1), now, via xn,1, look at
xn. Observe by using property (i) of Proposition 1.1 that

xn,1 = xxn
n and xn,1 ≥ 233233. (36)

That being so, if xn ≥ n − 200, then using (36) and the fact that n ≥ M19, it becomes trivial
to deduce that xn,1 > −1 + xxn

n > −2 + (n− 200)n−200 > n + 71, consequently

xn,1 > n + 71. (37)

Therefore, Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))), by using inequality (37) and
property (i) of Proposition 2.1. Proposition 2.2 follows.
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From Propositions 2.1 and 2.2, it comes:

Proposition 2.3. Suppose that Theorem 2.1 is false. Then there exists (n, xn,1, ε(λ(n), λ′

(n))) such that (n, xn,1, ε(λ(n), λ′(n))) is a counter-example to Theorem 2.1 with n minimum
and λ(n) + λ′(n) maximum.

Proof. Immediate, by observing that λ(n) and λ′(n) are integers such that 1 ≤ λ(n) ≤
n + 71 and 1 ≤ λ′(n) ≤ n + 71.

Proposition 2.4.(Application of Proposition 2.3) Suppose that Theorem 2.1 is false, and
let (n, xn,1, ε(λ(n), λ′(n))) be a counter-example to Theorem 2.1 with n minimum and λ(n) +
λ′(n) maximum, such a (n, xn,1, ε(λ(n), λ′(n))) exists, by using Proposition 2.3. Now, via xn,1,
look at xn (see Definition 1.1 and Remark 1.3 of Section.1 for the definition of xn). Then we
have the following three properties:

(i) 10xn,1 ≤ n + 71 and n > 233233.

(ii) xn < n− 200.

(iii) xn,1 = xn−1,1.

Proof. (i) 10xn,1 ≤ n + 71. Otherwise, we reason by reduction to absurd 10xn,1 >

n + 71, now using the previous inequality and property (i) of Proposition 2.1, then it becomes
immediate to deduce that Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))), and we have a
contradiction, since in particular (n, xn,1, ε(λ(n), λ′(n))) is a counter-example to Theorem 2.1.
Having proved this fact, we have n > 233233. Otherwise, we reason by reduction to absurd,
clearly n ≤ 233233, now using the previous inequality and property (ii) of Proposition 2.1,
then it becomes immediate to deduce that Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))),
and we have a contradiction, since in particular (n, xn,1, ε(λ(n), λ′(n))) is a counter-example to
Theorem 2.1. Property (i) follows.

(ii) We have xn < n − 200. Otherwise, we reason by reduction to absurd, clearly xn ≥
n−200, now using the previous inequality and Proposition 2.2, then it becomes trivial to deduce
that Theorem 2.1 is satisfied by (n, xn,1, ε(λ(n), λ′(n))), and we have a contradiction, since in
particular (n, xn,1, ε(λ(n), λ′(n))) is a counter-example to Theorem 2.1. Property (ii) follows.

(iii) Indeed, observing by using property (ii) that xn < n − 200, then using the previous
inequality and property (i) of Proposition 1.1, it becomes trivial to deduce that xn,1 = xn−1,1.
Property (iii) follows, and Proposition 2.4 immediately follows.

Now, we are ready to give an elementary proof stated results, but before, let us propose
the following three elementary propositions:

Proposition 2.5. The elementary using of the minimality of n. Suppose that Theorem 2.1
is false, and let (n, xn,1, ε(λ(n), λ′(n))) be a counter-example to Theorem 2.1 with n minimum
and λ(n) + λ′(n) maximum, such a (n, xn,1, ε(λ(n), λ′(n))) exists, by using Proposition 2.3.
Then 10xn,1 = n + 71.

Proof. Indeed, via (n, xn,1, ε(λ(n), λ′(n))), look at (n − 1, xn−1,1, ε(λ(n − 1), λ′(n − 1))),
observing by using property (i) of Proposition 2.4 that n > 233233, clearly n − 1 > −1 +
233233 > M19 and n − 1 < n, then, by the minimality of n, (n − 1, xn−1,1, ε(λ(n − 1), λ′(n −
1))) satisfies Theorem 2.1, therefore, properties (i) and (ii) are simultaneously satisfied by
(n− 1, xn−1,1, ε(λ(n− 1), λ′(n− 1))), in particular property (ii) of Theorem 2.1 is satisfied by
(n− 1, xn−1,1, ε(λ(n− 1), λ′(n− 1))), and consequently 10xn−1,1 > (n− 1) + 71. The previous
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inequality clearly says that
10xn−1,1 > n + 70. (38)

Now, observing by property (iii) of Proposition 2.4 that xn,1 = xn−1,1 and using the previous
equality, then it becomes trivial to deduce that inequality (38) clearly says that

10xn,1 > n + 70. (39)

Noticing that 10xn,1 and n + 70 are integers, then it becomes trivial to deduce that inequality
(39) clearly says that

10xn,1 ≥ n + 71. (40)

That being so, observe by using property (i) of Proposition 2.4 that

10xn,1 ≤ n + 71. (41)

Now using (40) and (41), then it becomes trivial to deduce that 10xn,1 = n + 71. Proposition
2.5 follows.

Proposition 2.6. Let n be an integer ≥ M19, and let γ(n) and γ′(n), where γ(n) and γ′(n)
are integers such that 1 ≤ γ(n) ≤ n + 71 and 1 ≤ γ′(n) ≤ n + 71. Consider un,1 ∈ MH(n, 1)
(see Definition 1.1), look at statements Z(un,1, γ(n), γ′(n)) and Y (un,1, γ(n), γ′(n)) introduced
in Definitions 2.1. Consider ε(γ(n), γ′(n)) introduced in Definitions 2.2 and let statement
S(un,1, ε(γ(n), γ′(n))) introduced in Definitions 2.2. Now look at (n, un,1, ε(γ(n), γ′(n))) and
suppose that 10un,1 = n + 71. Then we have the following two trivial properties:

(i) Y (un,1, γ(n), γ′(n)) 6⇔ Z(un,1, γ(n), γ′(n)).
(ii) Property (i) of Theorem 2.1 is not satisfied by (n, un,1, ε(γ(n), γ′(n))).
Proof. (i) Indeed, noticing via the hypotheses that 10un,1 = n + 71 and using property

(iii) of Remark 2.1, where we replace xn,1 by un,1, then it becomes trivial to deduce that

Y (un,1, γ(n), γ′(n)) 6⇔ Z(un,1, γ(n), γ′(n)).

Property (i) follows.
(ii) Property (i) of Theorem 2.1 is not satisfied by (n, un,1, ε(γ(n), γ′(n))), otherwise, we

reason by reduction absurd, clearly

S(un,1, ε(γ(n), γ′(n))) ⇔ Y (un,1, γ(n), γ′(n)) ⇔ Z(un,1, γ(n), γ′(n)), (42)

since property (i) of Theorem 2.1 is satisfied by (n, un,1, ε(γ(n), γ′(n))). Using (42), then it
trivially follows that Y (un,1, γ(n), γ′(n)) ⇔ Z(un,1, γ(n), γ′(n)) and this contradicts property
(i). Property (ii) follows and Proposition 2.6 immediately follows.

From Proposition 2.5 and Proposition 2.6, it comes:
Proposition 2.7. The elementary using of the maximality of λ(n) + λ′(n). An obvious

application of Proposition 2.5 and Proposition 2.6. Suppose that Theorem 2.1 is false, and let
(n, xn,1, ε(λ(n), λ′(n))) be a counter-example to Theorem 2.1 with n minimum and λ(n)+λ′(n)
maximum, such a (n, xn,1, ε(λ(n), λ′(n))) exists, by using Proposition 2.3. Then λ(n) = λ′(n) =
n + 71.
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Proof. Otherwise, we reason by reduction to absurd, clearly

λ(n) 6= n + 71 or λ′(n) 6= n + 71, (43)

and we observe the following:
Observation (viii). Look at (n, xn,1, ε(λ(n), λ′(n))). Then λ(n)+λ′(n) ≤ 2n+141. Indeed,

recalling that λ(n) and λ′(n) are integers such that 1 ≤ λ(n) ≤ n + 71 and 1 ≤ λ′(n) ≤ n + 71,
then, using the previous and using (43), it becomes trivial to deduce that λ(n)+λ′(n) ≤ 2n+141.
Observation (viii) follows.

Observation (ix). Look at (n, xn,1, ε(λ(n), λ′(n))), recall that (n, xn,1, ε(λ(n), λ′(n))) is a
counter-example to Theorem 2.1 with n minimum and λ(n) + λ′(n) maximum. Now let α(n)
and α′(n) be integers such that α(n) = α′(n) = n + 71, and look at (n, xn,1, ε(α(n), α′(n))).
Then

α(n) + α′(n) > λ(n) + λ′(n) and (n, xn,1, ε(α(n), α′(n))) satisfies Theorem 2.1.

Indeed, it is immediate that
α(n) + α′(n) = 2n + 142, (44)

since α(n) = α′(n) = n + 71. Now remarking by using Observation (viii) that λ(n) + λ′(n) ≤
2n + 141 and using equality (44), then it becomes trivial to deduce that

α(n) + α′(n) > λ(n) + λ′(n). (45)

That being so, look at (n, xn,1, ε(α(n), α′(n))), noticing by (45) that α(n) + α′(n) > λ(n) +
λ′(n), then, by the maximality of λ(n) + λ′(n), clearly (n, xn,1, ε(α(n), α′(n))) is not a counter-
example to Theorem 2.1, since (n, xn,1, ε(λ(n), λ′(n))) is a counter-example to Theorem 2.1
with n minimum and λ(n) + λ′(n) maximum, and (n, xn,1, ε(α(n), α′(n))) is such that α(n) +
α′(n) > λ(n) + λ′(n), so, by the maximality of λ(n) + λ′(n), (n, xn,1, ε(α(n), α′(n))) is not a
counter-example to Theorem 2.1. Consequently, (n, xn,1, ε(α(n), α′(n))) satisfies Theorem 2.1.
Observation (ix) follows.

Having made the previous two simple obervations, look at (n, xn,1, ε(α(n), α′(n))), observ-
ing by Observation (ix) that (n, xn,1, ε(α(n), α′(n))) satisfies Theorem 2.1, then property (i)
and property (ii) of Theorem 2.1 are simultaneously satisfied by (n, xn,1, ε(α(n), α′(n))), in
particular

property (i) of Theorem 2.1 is satisfied by (n, xn,1, ε(α(n), α′(n))), (46)

(46) clearly contradicts property (ii) of Proposition 2.6, by remarking that 10xn,1 = n+71 (use
Proposition 2.5), and by replacing in Proposition 2.6, un,1 by xn,1, γ(n) by α(n) and γ′(n) by
α′(n). Proposition 2.7 follows.

The previous simple propositions made, we now prove simply Theorem 2.1.
Proof of Theorem 2.1. Otherwise, we reason by reduction to absurd, let (n, xn,1, ε(λ(n),

λ′(n))) be a counter-example to Theorem 2.1 with n minimum and λ(n)+λ′(n) maximum, such
a (n, xn,1, ε(λ(n), λ′(n))) exists, by using Proposition 2.3. We observe the following:

Observation (x). Look at (n, xn,1, ε(λ(n), λ′(n))). Then Property (i) of Theorem 2.1 is not
satisfied by (n, xn,1, ε(λ(n), λ′(n))).
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Indeed, look at (n, xn,1, ε(λ(n), λ′(n))), observing by Proposition 2.5, that 10xn,1 = n+71,
where n ≥ M19 and xn,1 ∈ MH(n, 1), then using the previous, it becomes immediate to
deduce that (n, xn,1, ε(λ(n), λ′(n))) satisfies all the hypotheses of Proposition 2.6, therefore,
(n, xn,1, ε(λ(n), λ′(n))) satisfies the conclusion of Proposition 2.6, in particular, (n, xn,1, ε(λ(n),
λ′(n))) satisfies property (ii) of Proposition 2.6, and consequently

property (i) of Theorem 2.1 is not satisfied by (n, xn,1, ε(λ(n), λ′(n))),

by replacing in Proposition 2.6, un,1 by xn,1, γ(n) by λ(n) and γ′(n) by λ′(n). Observation (x)
follows.

Observation (xi). Look at (n, xn,1, ε(λ(n), λ′(n))). Then 10xn,1 > λ(n) ⇔ 10xn,1 >

λ′(n).
Indeed look at (n, xn,1, ε(λ(n), λ′(n))), recall that (n, xn,1, ε(λ(n), λ′(n))) is a counter-

example to Theorem 2.1 with n minimum and λ(n) + λ′(n) maximum, noticing by Proposition
2.7 that

λ(n) = λ′(n) = n + 71, (47)

and remarking by Proposition 2.5 that

10xn,1 = n + 71, (48)

then, using (47) and (48), then it becomes trivial to deduce that

10xn,1 = λ(n) and 10xn,1 = λ′(n). (49)

Using (49), then it becomes trivial to deduce that

10xn,1 ≤ λ(n) and 10xn,1 ≤ λ′(n). (50)

It is trivial to see that (50) immediately implies that

10xn,1 ≤ λ(n) ⇔ 10xn,1 ≤ λ′(n). (51)

Now look at (51), then using the definition of the relation “⇔”(see property (ii) of Recalls
and Denotations for the definition of E ⇔ E′), it becomes trivial to deduce that (51) clearly
implies that 10xn,1 > λ(n) ⇔ 10xn,1 > λ′(n). Observation (xi) follows.

Observation (xii) Look at (n, xn,1, ε(λ(n), λ′(n))). Then λ(n) + λ′(n) ≡ 0 mod [2].
Indeed look at (n, xn,1, ε(λ(n), λ′(n))) recall that (n, xn,1, ε(λ(n), λ′(n))) is a counter-exam-

ple to Theorem 2.1 with n minimum and λ(n) + λ′(n) maximum, noticing by Proposition 2.7
that λ(n) = λ′(n) = n + 71, then it becomes trivial to deduce that

λ(n) + λ′(n) = 2n + 142. (52)

Since it is immediate that 2n + 142 is even, then, using equality (52) and the previous, it
becomes trivial to deduce that λ(n) + λ′(n) ≡ 0 mod [2]. Observation (xii) follows.

Observation (xiii). Let (n, xn,1, ε(λ(n), λ′(n))) and consider ε(λ(n), λ′(n)). Then ε(λ(n),
λ′(n)) = 1.
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Indeed, look at (n, xn,1, ε(λ(n), λ′(n))), observing by Proposition 2.5 that 10xn,1 = n + 71,
where n ≥ M19 and xn,1 ∈ MH(n, 1), then, using the previous, it becomes immediate to
deduce that (n, xn,1, ε(λ(n), λ′(n))) satisfies all the hypotheses of Proposition 2.6, therefore,
(n, xn,1, ε(λ(n), λ′(n))) satisfies the conclusion of Proposition 2.6, in particular, (n, xn,1, ε(λ(n),
λ′(n))) satisfies property (i) of Proposition 2.6, and consequently

Y (xn,1, λ(n), λ′(n))) 6⇔ Z(xn,1, λ(n), λ′(n)), (53)

by replacing in Proposition 2.6, un,1 by xn,1, γ(n) by λ(n) and γ′(n) by λ′(n). Now using
(53) and the definition of ε(λ(n), λ′(n)) introduced in Definitions 2.2, then it becomes trivial to
deduce that ε(λ(n), λ′(n)) = 1. Observation (xiii) follows.

Observation (xiv). Let (n, xn,1, ε(λ(n), λ′(n))) recall that (n, xn,1, ε(λ(n), λ′(n))) is a counter-
example to Theorem 2.1 with n minimum and λ(n)+λ′(n) maximum. Now look at statements
Y (xn,1, λ(n), λ′(n)) and S(xn,1, ε(λ(n), λ′(n))), Y (xn,1, λ(n), λ′(n)) is introduced in Definition
2.1 and S(xn,1, ε(λ(n), λ′(n))) is introduced in Definitions 2.2. Then, S(xn,1, ε(λ(n), λ′(n))) ⇒
Y (xn,1, λ(n), λ′(n)).

Otherwise, we reason by reduction to absurd, clearly

Y (xn,1, λ(n), λ′(n)) is false. (54)

Now noticing (under the hypothese) that S(xn,1, ε(λ(n), λ′(n))) is true, and using (54) via the
definition of S(xn,1, ε(λ(n), λ′(n))), then it becomes trivial to deduce that

λ(n) + λ′(n) ≡ ε(λ(n), λ′(n)) mod [2], (55)

since statement Y (xn,1, λ(n), λ′(n)) is false by (54) and since statement S(xn,1, ε(λ(n), λ′(n)))
is supposed to be true. That being so, look at ε(λ(n), λ′(n)), observing by Observation (xiii)
that ε(λ(n), λ′(n)) = 1 and using the previous equality, then it becomes trivial to deduce that
congruence (55) clearly says that λ(n) + λ′(n) ≡ 1 mod [2], and this contradicts Observation
(xii). So S(xn,1, ε(λ(n), λ′(n))) ⇒ Y (xn,1, λ(n), λ′(n)). Observation (xiv) follows.

Observation (xv). Let (n, xn,1, ε(λ(n), λ′(n))). Now look at statements Y (xn,1, λ(n), λ′(n))
and Z(xn,1, λ(n), λ′(n)) introduced in Definitions 2.1. Then Y (xn,1, λ(n), λ′(n)) ⇒ Z(xn,1, λ(n),
λ′(n)).

Otherwise, we reason by reduction to absurd, clearly

Z(xn,1, λ(n), λ′(n)) is false. (56)

That being so, look at statement Y (xn,1, λ(n), λ′(n)), then we have the following elementary
two facts:

Fact 2.1. Statement Y (xn,1, λ(n), λ′(n)) is true and is of the form Y (xn,1, λ(n), λ′(n))) =:
10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). Indeed observing by Proposition 2.5 that 10xn,1 = n + 71,
where n ≥ M19 and xn,1 ∈ MH(n, 1), and noticing by (56) that Z(xn,1, λ(n), λ′(n)) is false,
then, using the previous and property (ii) of Remark 2.2, it becomes trivial to deduce that
statement Y (xn,1, λ(n), λ′(n)) is true and is of the form

Y (xn,1, λ(n), λ′(n))) =: 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n).
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Fact 2.1 follows.
Fact 2.2. 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). Indeed, this fact is an immediate conse-

quence of Fact 2.1. Fact 2.2 follows.
Having made the previous elementary two Facts, then it becomes trivial to see that Fact

2.2 clearly contradicts Observation (xi). So Y (xn,1, λ(n), λ′(n)) ⇒ Z(xn,1, λ(n), λ′(n)). Ob-
servation (xv) follows.

Observation (xvi). Let (n, xn,1, ε(λ(n), λ′(n))). Now look at statements Z(xn,1, λ(n), λ′(n))
and S(xn,1, ε(λ(n), λ′(n))), Z(xn,1, λ(n), λ′(n)) is introduced in Definitions 2.1 and S(xn,1,

ε(λ(n), λ′(n))) is introduced in Definitions 2.2. Then Z(xn,1, λ(n), λ′(n)) ⇒ S(xn,1, ε(λ(n),
λ′(n))).

Otherwise, we reason by reduction to absurd, clearly

Z(xn,1, λ(n), λ′(n)) is true and S(xn,1, ε(λ(n), λ′(n))) is false. (57)

That being so, look at statement Z(xn,1, λ(n), λ′(n)), then we have the following elementary
two facts:

Fact 2.3. Statement Z(xn,1, λ(n), λ′(n)) is true and is of the form Z(xn,1, λ(n), λ′(n)) =:
10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). Indeed observing by using (57) that Z(xn,1, λ(n), λ′(n))
is true and noticing by Proposition 2.5 that 10xn,1 = n + 71, where n ≥ M19 and xn,1 ∈
MH(n, 1), then, using the previous and property (iii) of Remark 2.2, it becomes trivial to
deduce that statement Z(xn,1, λ(n), λ′(n)) is true and is of the form Z(xn,1, λ(n), λ′(n)) =:
10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). Fact 2.3 follows.

Fact 2.4. 10xn,1 > λ(n) 6⇔ 10xn,1 > λ′(n). Indeed, this fact is an immediate conse-
quence of Fact 2.3. Fact 2.4 follows.

Having made the previous elementary two Facts, then it becomes trivial to see that Fact
2.4 clearly contradicts Observation (xi). So Z(xn,1, λ(n), λ′(n)) ⇒ S(xn,1, ε(λ(n), λ′(n))) and
Observation (xvi) follows.

These seven simple observations made, look at statements S(xn,1, ε(λ(n), λ′(n))), Y (xn,1,

λ(n), λ′(n)) and Z(xn,1, λ(n), λ′(n)), and observe by Observation (xiv) that

S(xn,1, ε(λ(n), λ′(n))) ⇒ Y (xn,1, λ(n), λ′(n)). (58)

Now noticing by Observation (xv) that

Y (xn,1, λ(n), λ′(n)) ⇒ Z(xn,1, λ(n), λ′(n)), (59)

and remarking by Observation (xvi) that

Z(xn,1, λ(n), λ′(n)) ⇒ S(xn,1, ε(λ(n), λ′(n))), (60)

then, using (58), (59) and (60), then it becomes trivial to deduce that

S(xn,1, ε(λ(n), λ′(n))) ⇔ Y (xn,1, λ(n), λ′(n)) ⇔ Z(xn,1, λ(n), λ′(n)), (61)

(61) clearly says that property (i) of Theorem 2.1 is satisfied by (xn,1, ε(λ(n), λ′(n))), and this
contradicts Observation (x). Theorem 2.1 follows.
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Theorem 2.1 immediately implies the Mersenne primes problem and the Sophie Germain
primes problem, and their connection to the Fermat’s last conjecture.

Theorem 2.2. The Mersenne primes and the Sophie Germain primes, are all infinite.
Proof. Observe by using property (ii) of Theorem 2.1 that for every integer n ≥ M19 and

for every xn,1 ∈ MH(n, 1), we have 10xn,1 > n + 71, now using the previous inequality, then
it becomes trivial to deduce that for every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we
have 10xn,1 > n + 71 > n− 200, and therefore,

for every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 10xn,1 > n− 200. (62)

Consequently, the Mersenne primes and the Sophie Germain primes are all infinite, by using
(62) and Proposition 1.2.

Definition 2.3. We say that e is wiles, if e is an integer ≥ 3 and if the equation xe+ye = ze

has no solution in integers ≥ 1, for example, it is known many years ago, and it is not very
difficult to prove that if e = 3, then e is wiles. The Fermat’s last conjecture solved by Wiles
in a paper of at least 105 pages long (see [11]), and resolved by Ikorong Nemron in a detailled
paper of only 19 pages long (see [8]) asserts that every integer e ≥ 3 is wiles. Now, for every
integer n ≥ 3, we define W(n) and wn as follow: W(n) = {x, 2 < x ≤ n and x is wiles}, and
wn = 2 max

w∈W(n)
w clearly 3 ∈ W(n) and consequently wn ≥ 6.

Using Definition 2.3, then it comes.
Remark 2.4. The following are equivalent:
(i) The Fermat’s last conjecture is true.
(ii) For every integer n ≥ 3, we have wn = 2n.
Proof. Immediate, by using the definition of wn and the definition of the Fermat’s last

conjecture.
Theorem 2.3. The Mersenne primes problem and the Sophie Germain primes problem

were only immediate consequence of the Fermat’s last conjecture.
Proof. Observe by using property (ii) of Theorem 2.1 that

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 10xn,1 > n + 71, (63)

(63) clearly says that

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 20xn,1 > 2n + 142. (64)

Now, since it is immediate to see that wn ≤ 2n, then, using (64) and the fact that wn ≤ 2n, it
becomes trivial to deduce that

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 20xn,1 > wn. (65)

Now look at (65) and suppose that the Fermat’s last conjecture is true, then, using Remark 2.4
and (65), then it becomes trivial to deduce that

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 20xn,1 > 2n, (66)

(66) clearly says that

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 10xn,1 > n > n− 200,
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and therefore,

For every integer n ≥ M19 and for every xn,1 ∈MH(n, 1), we have 10xn,1 > n− 200. (67)

Consequently, the Mersenne primes and the Sophie Germain primes are all infinite, by using
(67) and Proposition 1.2. So, the Mersenne primes problem and the Sophie Germain primes
problem that we have solved elementary, via Theorem 2.1 and Theorem 2.2, were only immediate
consequence of the Fermat’s last conjecture.
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§1. Introduction

We consider the integral equation

∫ b

a

K(t, x, y)u(t, y)dy +
∫ t

t0

H(t, x, s)u(s, x)ds +
∫ t

t0

∫ x

a

C(t, x, s, y)u(s, y)dyds

= f(t, x), (t, x) ∈ G =
{
(t, x) ∈ R2 : t0 ≤ t ≤ T, a ≤ x ≤ b

}
, (1)

where

K(t, x, y) =





A(t, x, y), t0 ≤ t ≤ T, a ≤ y ≤ x ≤ b,

B(t, x, y), t0 ≤ t ≤ T, a ≤ x ≤ y ≤ b.
(2)

A(t, x, y), B(t, x, y), H(t, x, s), C(t, x, s, y) are given continuous functions, respectively,
on the domains

G1 = {(t, x, y) : t0 ≤ t ≤ T, a ≤ y ≤ x ≤ b} ;

G2 = {(t, x, y) : t0 ≤ t ≤ T, a ≤ x ≤ y ≤ b} ;

G3 = {(t, x, s) : t0 ≤ s ≤ t ≤ T, a ≤ x ≤ b} ;

G4 = {(t, x, s, y) : t0 ≤ s ≤ t ≤ T, a ≤ y ≤ x ≤ b} .

u(t, x) and f(t, x) are the desired and given functions respectively, (t, x) ∈ G.

Various issues concerning of integral equations of the first kind were studied in [1-9]. More
specifically, fundamental results for Fredholm integral equations of the first kind were obtained
in [7], where regularizing operators in the sense of M. M. Lavrent’ev vere constructed for
solutions of linear Fredholm integral equations of the first kind. For linear Volterra integral
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equations of the first and third kinds with smooth kernels, the existence of a multiparameter
family of solutions was proven in [8]. The regularization and uniqueness of solutions to systems
of nonlinear Volterra integral equations of the first kind were investigated in [5,6]. In this paper,
while analyzing the uniqueness of solutions to the equation (1).

§2. Integral equations

Using A(t, x, y) and B(t, x, y) we define the following function:

P (t, x, y) = A(t, x, y) + B(t, y, x), (t, x, y) ∈ G1. (3)

Assume that the following conditions are satisfied:
(i) P (t, b, a) ∈ C[t0, T ], P (t, b, a) ≥ 0 for all t ∈ [t0, T ], P

′
y(s, y, a) ∈ C(G), P

′
y(s, y, a) ≤

0 for all (s, y) ∈ G, P
′
z(s, b, z) ∈ C(G), P

′
z(s, b, z) ≥ 0 for all (s, z) ∈ G, P

′′
zy(s, y, z) ∈

C(G1), P
′′
zy(s, y, z) ≤ 0 for all (s, y, z) ∈ G1, H(T, y, t0) ∈ C[a, b], H(T, y, t0) ≥ 0 for all y ∈

[a, b], H
′
s(s, y, t0) ∈ C(G), H

′
s(s, y, t0) ≤ 0 for all (s, y) ∈ G, H

′
τ (T, y, τ) ∈ C(G), H

′
τ (T, y, τ) ≥ 0

for all (y, τ) ∈ G, H
′′
τs(s, y, τ) ∈ C(G3), H

′′
τs(s, y, τ) ≤ 0 for all (s, y, τ) ∈ G3;

(ii) C(T, b, t0, a) ≥ 0, C
′
s(s, b, t0, a) ∈ C[t0, T ], C

′
s(s, b, t0, a) ≤ 0 for all s ∈ [t0, T ],

C
′
τ (T, b, τ, a) ∈ C[t0, T ], C

′
τ (T, b, τ, a) ≥ 0 for all τ ∈ [t0, T ], C

′
y(T, y, t0, a) ∈ C[a, b], C

′
y(T, y, t0,

a) ≤ 0 for all y ∈ [a, b], C
′
z(T, b, t0, z) ∈ C[a, b], C

′
z(T, b, t0, z) ≥ 0 for all z ∈ [a, b], C

′′
sy(s, y, t0, a)

∈ C(G), C
′′
sy(s, y, t0, a) ≥ 0 for all (s, y) ∈ G, C

′′
τy(T, y, τ, t0) ∈ C(G), C

′′
τy(T, y, τ, t0) ≤ 0 for

all (y, τ) ∈ G, C
′′
zs(s, b, t0, z) ∈ C(G), C

′′
zs(s, b, t0, z) ≤ 0 for all (s, z) ∈ G, C

′′
τz(T, b, τ, z) ∈

C(G), C
′′
τz(T, b, τ, z) ≥ 0 for all (τ, z) ∈ G, C

′′′
τsy(s, y, τ, a) ∈ C(G3), C

′′′
τsy(s, y, τ, a) ≥ 0 for all

(s, y, τ) ∈ G3, C
′′′
τzs(s, b, τ, z) ∈ C(G3), C

′′′
τzs(s, b, τ, z) ≤ 0 for all (s, z, τ) ∈ G3, C

′′′
zsy(s, y, t0, z) ∈

C(G1), C
′′′
zsy(s, y, t0, z) ≥ 0 for all (s, y, z) ∈ G1, C

′′′
τzy(T, y, τ, z) ∈ C(G1), C

′′′
τzy(T, y, τ, z) ≤ 0

for all (τ, y, z) ∈ G1, CIV
τzsy(s, y, τ, z) ∈ C(G4), CIV

τzsy(s, y, τ, z) ≥ 0 for all (s, y, τ, z) ∈ G4,

C
′′
τs(s, b, τ, a) ∈ C(G5), C

′′
τs(s, b, τ, a) ≤ 0 for all (s, τ) ∈ G5 = {(s, τ) : t0 ≤ τ ≤ s ≤ T} ,

C
′′
zy(T, y, t0, z) ∈ C(G6), C

′′
zy(T, y, t0, z) ≤ 0 for all (y, z) ∈ G6 = {(y, z) : a ≤ z ≤ y ≤ b} ;

(iii) For almost all (s, y, τ, z) ∈ G4 the quadratic form

L(s, y, τ, z, α1, α2, α3, α4)

=
1

(s− t0)(y − a)

{
−P

′
y(s, y, a)α2

1 −H
′
s(s, y, t0)α2

2 − 2C(s, y, t0, a)α1α2

−(s− t0)
[
H
′′
τs(s, y, τ)α2

3 + 2C
′
τ (s, y, τ, a)α3α1

]

−(y − a)
[
2C

′
z(s, y, t0, z)α2α4 + P

′′
zy(s, y, z)α2

4

]

−2(s− t0)(y − a)C
′′
τz(s, y, τ, z)α3α4

}
,

is non-negative, i.e., L(s, y, τ, z, α1, α2, α3, α4) ≥ 0 for all α1, α2, α3, α4 ∈ R;
(iv) If for almost all (s, y, τ, z) ∈ G4, L(s, y, τ, z, α1, α2, α3, α4) = 0, then it follow that

α1 = 0, or α2 = 0, or α3 = 0 or α4 = 0.

Theorem 2.1. Let conditions (i)-(iv) be satisfied. Then the solution of the equation (1)
is unique in L2(G).
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Proof. Taking into account (2) from (1), we obtain
∫ x

a

A(t, x, y)u(t, y)dy +
∫ b

x

B(t, x, y)u(t, y)dy +
∫ t

t0

H(t, x, s)u(s, x)dx

+
∫ t

t0

∫ x

a

C(t, x, s, y)u(s, y)dyds

= f(t, x), (t, x) ∈ G. (4)

Taking the multiplication of both sides of the equation (4) with u(t, s), integrating the
results on G, we obtain

∫ b

a

∫ T

t0

∫ y

a

A(s, y, z)u(s, z)u(s, y)dzdsdy +
∫ b

a

∫ T

t0

∫ b

y

B(s, y, z)u(s, z)u(s, y)dzdsdy

+
∫ b

a

∫ T

t0

∫ s

t0

H(s, y, τ)u(τ, y)u(s, y)dτdsdy

+
∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(s, y, τ, z)u(τ, z)u(s, y)dzdτdsdy

=
∫ b

a

∫ T

t0

f(s, y)u(s, y)dsdy. (5)

Using the Dirichlet formula and taking into account (3) from (5), we have
∫ T

t0

∫ b

a

∫ y

a

P (s, y, z)u(s, z)u(s, y)dzdyds +
∫ b

a

∫ T

t0

∫ s

t0

H(s, y, τ)u(τ, y)u(s, y)dτdsdy

+
∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(s, y, τ, z)u(τ, z)u(s, y)dzdτdsdy

=
∫ b

a

∫ T

t0

f(s, y)u(s, y)dsdy. (6)

Integrating by parts and using the Dirichlet formula we obtain
∫ T

t0

∫ b

a

∫ y

a

P (s, y, z)u(s, z)u(s, y)dzdyds

= −
∫ T

t0

∫ b

a

∫ y

a

P (s, y, z)
∂

∂z

(∫ y

z

u(s, ν)dν

)
dzu(s, y)dyds

=
1
2

∫ T

t0

∫ b

a

P (s, y, a)

[
∂

∂y

(∫ y

a

u(s, ν)dν

)2
]

dyds

+
1
2

∫ t

t0

∫ b

a

∫ b

z

P
′
z(s, y, z)

[
∂

∂y

(∫ y

z

u(s, ν)dν

)2
]

dydzds

=
1
2

∫ T

t0

P (s, b, a)

(∫ b

a

u(s, ν)dν

)2

ds− 1
2

∫ T

t0

∫ b

a

P
′
y(s, y, a)

(∫ y

a

u(s, ν)dν

)2

dyds

+
1
2

∫ T

t0

∫ b

a

P
′
y(s, b, y)

(∫ b

y

u(s, ν)dν

)2

dyds

−1
2

∫ T

t0

∫ b

a

∫ y

a

P
′′
zy(s, y, z)

(∫ y

z

u(s, ν)dν

)2

dzdyds, (7)
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where P
′
y(s, b, y) = [P

′
z(s, b, z)]|z=y. Similarly integrating by parts and using the Dirichlet for-

mula we have

∫ b

a

∫ T

t0

∫ s

t0

H(s, y, τ)u(τ, y)u(s, y)dτdsdy

= −
∫ b

a

∫ T

t0

∫ s

t0

H(s, y, τ)
∂

∂τ

(∫ s

τ

u(ξ, y)dξ

)
× dτu(s, y)dsdy

=
1
2

∫ b

a

∫ T

t0

H(s, y, t0)

[
∂

∂s

(∫ s

t0

u(ξ, y)dξ

)2
]

dsdy

+
1
2

∫ b

a

∫ T

t0

∫ T

τ

H
′
τ (s, y, τ)

[
∂

∂s

(∫ s

τ

u(ξ, y)dξ

)2
]

dsdτdy

=
1
2

∫ b

a

H(T, y, t0)

(∫ T

t0

u(ξ, y)dξ

)2

dy − 1
2

∫ b

a

∫ T

t0

H
′
s(s, y, t0)

(∫ s

t0

u(ξ, y)dξ

)2

dsdy

+
1
2

∫ b

a

∫ T

t0

H
′
s(T, y, s)

(∫ T

s

u(ξ, y)dξ

)2

dsdy

−1
2

∫ b

a

∫ T

t0

∫ s

t0

H
′′
τs(s, y, τ)

(∫ s

τ

u(ξ, y)dξ

)2

dτdsdy, (8)

where H
′
s(T, y, s) = (H

′
τ (T, y, τ))|τ=s.

Further we use the following formula

Cν
′′
τz = (Cν)

′′
τz − (C

′
τν)

′
z − (C

′
zν)

′
τ + C

′′
τzν.

Then integrating by parts and using the Dirichlet formula, we obtain

∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(s, y, τ, z)u(τ, z)u(s, y)dzdτdsdy

=
∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(s, y, τ, z)
∂2

∂τ∂z

(∫ s

τ

∫ y

z

u(ξ, ν)dνdξ

)
dzdτu(s, y)dsdy

=
∫ b

a

∫ T

t0

C(s, y, t0, a)
(∫ s

t0

∫ y

a

u(ξ, ν)dνdξ

)
u(s, y)dsdy

+
∫ b

a

∫ T

t0

∫ T

τ

C
′
τ (s, y, τ, a)

(∫ s

τ

∫ y

a

u(ξ, ν)dνdξ

)
u(s, y)dsdτdy

+
∫ b

a

∫ T

t0

∫ b

z

C
′
z(s, y, t0, z)

(∫ s

t0

∫ y

z

u(ξ, ν)dνdξ

)
u(s, y)dydsdz

+
∫ b

a

∫ T

t0

∫ T

τ

∫ b

z

C
′′
τz(s, y, τ, z)

(∫ s

τ

∫ y

z

u(ξ, ν)dνdξ

)
u(s, y)dydsdτdz. (9)

Further we apply the following formula:

Cνν
′′
sy =

1
2
(Cν2)

′′
sy −

1
2
(C

′
sν

2)
′
y −

1
2
(C

′
yν2)

′
s +

1
2
C
′′
syν2 − Cν

′
yν

′
s
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and using the Dirichlet formula we obtain
∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(s, y, τ, z)u(τ, z)u(s, y)dzdτdsdy

=
1
2
C(T, b, t0, a)

(∫ b

a

∫ T

t0

u(ξ, ν)dξdν

)2

− 1
2

∫ T

t0

C
′
s(s, b, t0, a)

(∫ b

a

∫ s

t0

u(ν, ξ)dνdξ

)2

ds

−1
2

∫ b

a

C
′
y(T, y, t0, a)

(∫ y

a

∫ T

t0

u(ν, ξ)dνdξ

)2

dy

+
1
2

∫ b

a

∫ T

t0

C
′′
sy(s, y, t0, a)

(∫ s

t0

∫ y

a

u(ξ, ν)dνdξ

)2

dsdy

−
∫ b

a

∫ T

t0

C(s, y, t0, a)
(∫ s

t0

u(ξ, y)dξ

)(∫ y

a

u(s, ν)dν

)
dsdy

+
1
2

∫ T

t0

C
′
s(T, b, s, a)

(∫ T

s

∫ b

a

u(ξ, ν)dνdξ

)2

ds

−1
2

∫ T

t0

∫ s

t0

C
′′
τs(s, b, τ, a)

(∫ s

τ

∫ b

a

u(ξ, ν)dνdξ

)2

dτds

−1
2

∫ b

a

∫ T

t0

C
′′
sy(T, y, s, t0)

(∫ T

s

∫ y

a

u(ξ, ν)dνdξ

)2

dsdy

+
1
2

∫ b

a

∫ T

t0

∫ s

t0

C
′′′
τsy(s, y, τ, a)

(∫ s

τ

∫ y

a

u(ξ, ν)dνdξ

)2

dτdsdy

−
∫ b

a

∫ T

t0

∫ s

t0

C
′
τ (s, y, τ, a)

(∫ s

τ

u(ξ, y)dξ

)(∫ y

a

u(s, ν)dν

)
dτdsdy

+
1
2

∫ b

a

C
′
y(T, b, t0, y)

(∫ T

t0

∫ b

y

u(ξ, ν)dνdξ

)2

dy

−1
2

∫ b

a

∫ T

t0

C
′′
ys(s, b, t0, y)

(∫ s

t0

∫ b

y

u(ξ, ν)dνdξ

)2

dsdy

−1
2

∫ b

a

∫ y

a

C
′′
zy(T, y, t0, z)

(∫ T

t0

∫ y

z

u(ξ, ν)dνdξ

)2

dzdy

+
1
2

∫ b

a

∫ T

t0

∫ y

a

C
′′′
zsy(s, y, t0, z)

(∫ s

t0

∫ y

z

u(ξ, ν)dνdξ

)2

dzdsdy

−
∫ b

a

∫ T

t0

∫ y

a

C
′
z(s, y, t0, z)

(∫ s

t0

u(ξ, y)dξ

)(∫ y

z

u(s, ν)dν

)
dzdsdy

+
1
2

∫ b

a

∫ T

t0

C
′′
τz(T, b, τ, z)

(∫ T

τ

∫ b

z

u(ξ, ν)dνdξ

)2

dτdz

−1
2

∫ b

a

∫ T

t0

∫ y

a

C
′′′
szy(T, y, s, z)

(∫ T

s

∫ y

z

u(ξ, ν)dνdξ

)2

dzdsdy

−1
2

∫ b

a

∫ T

t0

∫ s

t0

C
′′′
τys(s, b, τ, y)

(∫ s

τ

∫ b

y

u(ξ, ν)dνdξ

)2

dτdsdy
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+
1
2

∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C(IV )
τzsy (s, y, τ, z)

(∫ s

τ

∫ y

z

u(ξ, ν)dνdξ

)2

dzdτdsdy

−
∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

C
′′
τz(s, y, τ, z)

(∫ s

τ

u(ξ, y)dξ

)(∫ y

z

u(s, ν)dν

)
dzdτdsdy, (10)

where C
′
s(T, b, s, a) = (C

′
τ (T, b, τ, a))|τ=s, C

′
y(T, b, t0, y) = (C

′
z(T, b, t0, z))|z=y.

Taking into account (7), (8) and (9), from (6) we obtain

1
2
C(T, b, t0, a)

(∫ b

a

∫ T

t0

u(ξ, ν)dξdν

)2

+
1
2

∫ T

t0

{
P (s, b, a)

(∫ b

a

u(s, ν)dν

)2

− C
′
s(s, b, t0, a)

(∫ b

a

∫ s

t0

u(ν, ξ)dνdξ

)2

+C
′
s(T, b, s, a)

(∫ T

s

∫ b

a

u(ξ, ν)dξdν

)2 }
ds

+
1
2

∫ b

a

{
H(T, y, t0)

(∫ T

t0

u(ξ, y)dξ

)2

− C
′
y(T, y, t0, a)

(∫ y

a

∫ T

t0

u(ν, ξ)dνdξ

)2

+C
′
y(T, b, t0, y)

(∫ T

t0

∫ b

y

u(ξ, ν)dνdξ

)2 }
dy

+
1
2

∫ b

a

∫ T

t0

∫ s

t0

∫ y

a

{
L(s, y, τ, z,

∫ y

a

u(s, ν)dν,

∫ s

t0

u(ξ, y)dξ,

∫ s

τ

u(ξ, y)dξ,

∫ y

z

u(s, ν)dν)

+
1

(s− t0)(y − a)


P

′
y(s, b, y)

(∫ b

y

u(s, ν)dν

)2

+ H
′
s(T, y, s)

(∫ T

s

u(ξ, y)dξ

)2



+
1

(s− t0)(y − a)

[
C
′′
sy(s, y, t0, a)

(∫ s

t0

∫ y

a

u(ξ, ν)dνdξ

)2

−C
′′
sy(T, y, s, a)

(∫ T

s

∫ y

a

u(ξ, ν)dνdξ

)2

− C
′′
ys(s, b, t0, y)

(∫ s

t0

∫ b

y

u(ξ, ν)dνdξ

)2

+C
′′
sy(T, b, s, y)

(∫ T

s

∫ b

y

u(ξ, ν)dνdξ

)2 ]

+
1

y − a

[
C
′′′
τsy(s, y, τ, a)

(∫ s

τ

∫ y

a

u(ξ, ν)dνdξ

)2

− C
′′′
τys(s, b, τ, y)

(∫ s

τ

∫ b

y

u(ξ, ν)dνdξ

)2 ]

+
1

s− t0

[
C
′′′
zsy(s, y, t0, z)

(∫ s

t0

∫ y

z

u(ξ, ν)dνdξ

)2

−C
′′′
szy(T, y, s, z)

(∫ T

s

∫ y

z

u(ξ, ν)dνdξ

)2 ]

+C(IV )
τsyz (s, y, τ, z)

(∫ s

τ

∫ y

z

u(ξ, ν)dνdξ

)2 }
dzdτdsdy
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−1
2

∫ T

t0

∫ s

t0

C
′′
τs(s, b, τ, a)

(∫ s

τ

∫ b

a

u(ξ, ν)dνdξ

)2

dτds− 1
2

∫ b

a

∫ y

a

C
′′
zy(T, y, t0, z)

×
(∫ T

t0

∫ y

z

u(ξ, ν)dνdξ

)2

dzdy

=
∫ b

a

∫ T

t0

f(s, y)u(s, y)dsdy. (11)

Let f(t, x) = 0 for all (t, x) ∈ G. Then by virtue of conditions (i)-(iv), from (10) we obtain∫ y

a
u(s, ν)dν = 0 for all (s, y) ∈ G, or

∫ s

t0
u(ξ, y)dξ = 0 for all (s, y) ∈ G. Here u(t, x) = 0 for all

(t, x) ∈ G. The Theorem 2.2 is proven.
Example 2.1. We consider the equation (1) for

A(t, x, y) = m0(t)β0(x)γ0(y), B(t, x, y) = m0(t)m1(x)β0(y),

H(t, x, s) = m2(t)β1(x)β2(s), C(t, x, s, y) = γ1(t)γ2(x)γ3(s)γ4(y),

where m0(t), m2(t), m
′
2(t), β2(t), β

′
2(t), γ1(t), γ

′
1(t), γ3(t), γ

′
3(t) ∈ C[t0, T ], β0(x), β

′
0(x), γ0

(x), γ
′
0(x), m1(x), m

′
1(x), β1(x), γ2(x), γ

′
2(x), γ4(x), γ

′
4(x) ∈ C[a, b], m0(t) ≥ 0, m2(t) ≥

0, m
′
2(t) ≤ 0, β2(t) ≥ 0, β

′
2(t) ≥ 0, γ1(t) ≥ 0, γ

′
1(t) ≤ 0, γ3(t) ≥ 0 and γ

′
3(t) ≥ 0 for all

t ∈ [t0, T ], β0(x) ≥ 0, β
′
0(x) ≤ 0, γ0(x) + m1(x) ≥ 0, γ

′
0(x) + m

′
1(x) ≥ 0, β1(x) ≥ 0, γ2(x) ≥

0, γ
′
2(x) ≤ 0, γ4(x) ≥ 0, γ

′
4(x) ≥ 0 for all x ∈ [a, b], γ3(t0) = 0, γ4(a) = 0, γ0(a) + m1(a) 6=

0, m0(t)β
′
0(x) < 0 for almost (t, x) ∈ G, m0(s)β

′
0(y)[γ0(z)+m1(z)]m

′
2(s)β1(y)β

′
2(τ)− (s− t0)×

(y − a)
[
γ1(s)γ2(y)γ

′
3(τ)γ

′
4(z)

]2

≥ 0 for all (s, y, τ, z) ∈ G4.

In this case
P (t, x, y) = m0(t)β0(x)[γ0(y) + m1(y)], (t, x, y) ∈ G1,

L(s, y, τ, z, α1, α2, α3, α4)

=
1

(s− t0)(y − a)

{
−m0(s)β

′
0(y)[γ0(a) + m1(a)]α2

1

−m
′
2(s)β1(y)β2(t0)α2

2 − [(s− t0)m
′
2(s)β1(y)β

′
2(τ)α2

3 + (y − a)m0(s)β
′
0(y)

×[γ0(z) + m1(z)]α2
4 + 2(s− t0)(y − a)γ1(s)γ2(y)γ

′
3(τ)γ

′
4(z)α3α4]

}
, (s, y, τ, z) ∈ G4.

Then the conditions (i)-(iv) are satisfied.
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§1. Introduction

Let S(n) be the Smarandache (or Kempner-Smarandache) function, i.e., the function that
associates to each positive integer n the smallest positive integer k such that n|k!. Let σ(n)
denote the sum of distinct positive divisors of n, while σ∗(n) the sum of distinct unitary divisors
of n (introduced for the first time by E. Cohen, see e.g. [7] for references and many informations
on this and related functions). Put ω(n) = number of distinct prime divisors of n, where n > 1.
In paper [4] we have proved the inequality

S(σ(n)) ≤ 2n− ω(n), (1)

for any n > 1, with equality if and only if ω(n) = 1 and 2n− 1 is a Mersenne prime.
In what follows we shall prove the similar inequality

S(σ∗(n)) ≤ n + ω(n), (2)

for n > 1. Remark that n + ω(n) ≤ 2n− ω(n), as 2ω(n) ≤ n follows easily for any n > 1. On
the other hand 2n− ω(n) ≤ 2n− 1, so both inequalities (1) and (2) are improvements of

S(g(n)) ≤ 2n− 1, (3)

where g(n) = σ(n) or g(n) = σ∗(n).
We will consider more general inequalities, for the composite functions f(g(n)), where f ,

g are arithmetical functions satisfying certain conditions.
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§2. Main results

Lemma 2.1. For any real numbers a ≥ 0 and p ≥ 2 one has the inequality

pa+1 − 1
p− 1

≤ 2pa − 1, (4)

with equality only for a = 0 or p = 2.
Proof. It is easy to see that (4) is equivalent to

(pa − 1)(p− 2) ≥ 0,

which is true by p ≥ 2 and a ≥ 0, as pa ≥ 2a ≥ 1 and p− 2 ≥ 0.
Lemma 2.2. For any real numbers yi ≥ 2 (1 ≤ i ≤ r) one has

y1 + . . . + yr ≤ y1 . . . yr (5)

with equality only for r = 1.
Proof. For r = 2 the inequality follows by (y1 − 1)(y2 − 1) ≥ 1, which is true, as

y1 − 1 ≥ 1, y2 − 1 ≥ 1. Now, relation (5) follows by mathematical induction, the induction
step y1 . . . yr + yr+1 ≤ (y1 . . . yr)yr+1 being an application of the above proved inequality for
the numbers y′1 = y1 . . . yr, y′2 = yr+1.

Now we can state the main results of this paper.
Theorem 2.1. Let f, g : N → R be two arithmetic functions satisfying the following

conditions:
(i) f(xy) ≤ f(x) + f(y) for any x, y ∈ N.
(ii) f(x) ≤ x for any x ∈ N.
(iii) g(pα) ≤ 2pα − 1, for any prime powers pα (p prime, α ≥ 1).
(iv) g is multiplicative function.
Then one has the inequality

f(g(n)) ≤ 2n− ω(n), n > 1. (6)

Theorem 2.2. Assume that the arithmetical functions f and g of Theorem 2.1 satisfy
conditions (i), (ii), (iv) and

(iii)’ g(pα) ≤ pα + 1 for any prime powers pα.
Then one has the inequality

f(g(n)) ≤ n + ω(n), n > 1. (7)

Proof of Theorem 2.1. As f(x1) ≤ f(x1) and

f(x1x2) ≤ f(x1) + f(x2),

it follows by mathematical induction, that for any integers r ≥ 1 and x1, . . . , xr ≥ 1 one has

f(x1 . . . xr) ≤ f(x1) + . . . + f(xr). (8)
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Let now n = pα1
1 . . . pαr

r > 1 be the prime factorization of n, where pi are distinct primes
and αi ≥ 1 (i = 1, . . . , r). Since g is multiplicative, by inequality (8) one has

f(g(n)) = f(g(pα1
1 ) . . . g(pαr

r )) ≤ f(g(pα1
1 )) + . . . + f(g(pαr

r )).

By using conditions (ii) and (iii), we get

f(g(n)) ≤ g(pα1
1 ) + . . . + g(pαr

r ) ≤ 2(pα1
1 + . . . + pαr

r )− r.

As pαi
i ≥ 2, by Lemma 2.2 we get inequality (6), as r = ω(n).

Proof of Theorem 2.2. Use the same argument as in the proof of Theorem 2.1, by
remarking that by (iii)’

f(g(n)) ≤ (pα+1
1 + . . . + pαr

r ) + r ≤ pα1
1 . . . pαr

r + r = n + ω(n).

Remark 2.1. By introducing the arithmetical function B1(n) (see [7], Ch.IV.28)

B1(n) =
∑

pα‖n
pα = pα1

1 + . . . + pαr
r .

(i.e., the sum of greatest prime power divisors of n), the following stronger inequalities can be
stated:

f(g(n)) ≤ 2B1(n)− ω(n), (6′)

(in place of (6)); as well as:
f(g(n)) ≤ B1(n) + ω(n), (7′)

(in place of (7)).
For the average order of B1(n), as well as connected functions, see e.g. [2], [3], [8], [7].

§3. Applications

1. First we prove inequality (1).
Let f(n) = S(n). Then inequalities (i), (ii) are well-known (see e.g. [1], [6], [4]). Put

g(n) = σ(n). As σ(pα) = pα+1−1
p−1 , inequality (iii) follows by Lemma 2.1. Theorem 2.1 may be

applied.
2. Inequality (2) holds true.
Let f(n) = S(n), g(n) = σ∗(n). As σ∗(n) is a multiplicative function, with σ∗(pα) = pα+1,

inequality (iii)’ holds true. Thus (2) follows by Theorem 2.2.
3. Let g(n) = ψ(n) be the Dedekind arithmetical function, i.e., the multiplicative function

whose value of the prime power pα is

ψ(pα) = pα−1(p + 1).

Then ψ(pα) ≤ 2pα − 1 since

pα + pα−1 ≤ 2pα − 1; pα−1 + 1 ≤ pα; pα−1(p− 1) ≥ 0,
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which is true, with strict inequality.
Thus Theorem 2.1 may be applied for any function f satisfying (i) and (ii).
4. There are many functions satisfying inequalities (i) and (ii) of Theorems 2.1 and 2.2.
Let f(n) = log σ(n).
As σ(mn) ≤ σ(m)σ(n) for any m, n ≥ 1, relation (i) follows. The inequality f(n) ≤ n

follows by σ(n) ≤ en, which is a consequence of e.g. σ(n) ≤ n2 < en (the last inequality may
be proved e.g. by induction).

Remark 3.1. More generally, assume that F (n) is a submultiplicative function, i.e.,
satisfying

F (mn) ≤ F (m)F (n) for m,n ≥ 1. (i′)

Assume also that
F (n) ≤ en. (ii′)

Then f(n) = log F (n) satisfies relations (i) and (ii).
5. Another nontrivial function, which satisfies conditions (i) and (ii) is the following

f(n) =





p, if n = p (prime),

1, if n = composite or n = 1.
(9)

Clearly, f(n) ≤ n, with equality only if n = 1 or n = prime. For y = 1 we get f(x) ≤
f(x) + 1 = f(x) + f(1), when x, y ≥ 2 one has

f(xy) = 1 ≤ f(x) + f(y).

6. Another example is
f(n) = Ω(n) = α1 + . . . + αr, (10)

for n = pα1
1 . . . pαr

r , i.e., the total number of prime factors of n. Then f(mn) = f(m) + f(n), as
Ω(mn) = Ω(m) + Ω(n) for all m, n ≥ 1. The inequality Ω(n) < n follows by n = pα1

1 . . . pαr
r ≥

2α1+...+αr > α1 + . . . + αr.
7. Define the additive analogue of the sum of divisors function σ, as follows: If n =

pα1
1 . . . pαr

r is the prime factorization of n, put

Σ(n) = Σ
(

pα+1 − 1
p− 1

)
=

r∑

i=1

pαi+1
i − 1
pi − 1

. (11)

As σ(n) =
∏r

i=1
p

αi+1
i −1

p−1 , and pα+1−1
p−1 > 2, clearly by Lemma 2.2 one has

Σ(n) ≤ σ(n). (12)

Let f(n) be any arithmetic function satisfying condition (ii), i.e., f(n) ≤ n for any n ≥ 1.
Then one has the inequality:

f(Σ(n)) ≤ 2B1(n)− ω(n) ≤ 2n− ω(n) ≤ 2n− 1 (13)

for any n > 1.
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Indeed, by Lemma 2.1, and Remark 2.1, the first inequality of (13) follows. Since B1(n) ≤ n

(by Lemma 2.2), the other inequalities of (13) will follow. An example:

S(Σ(n)) ≤ 2n− 1, (14)

which is the first and last term inequality in (13).
It is interesting to study the cases of equality in (14). As S(m) = m if and only if m = 1,

4 or p (prime) (see e.g. [1], [6], [4]) and in Lemma 2.2 there is equality if ω(n) = 1, while in
Lemma 2.1, as p = 2, we get that n must have the form n = 2α. Then Σ(n) = 2α+1 − 1 and
2α+1 − 1 6= 1, 2α+1 − 1 6= 4, 2α+1 − 1 = prime, we get the following theorem:

There is equality in (14) iff n = 2α, where 2α+1 − 1 is a prime.
In paper [5] we called a number n almost f -perfect, if f(n) = 2n− 1 holds true. Thus, we

have proved that n is almost S ◦ Σ-perfect number, iff n = 2α, with 2α+1 − 1 a prime (where
“◦”denotes composition of functions).
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§1. Introduction

Fermat’s Last Theorem states that if n > 2, then the equation

an + bn = cn

has no solution in nonzero integers a, b, c. This theorem had been studied for hundred years
and A. Wiles completed the proof of Fermat’s Last Theorem with the aid of elliptic curves.
The first instances of elliptic curves occur in the works of Diophantus and Fermat.

An elliptic curve is a curve given by an equation

E : y2 = f (x)

for a cubic or quartic polynomial of x.
Elliptic curves are plane curves that are the locus of points satisfying a cubic equation in

two variables. If the elliptic curve is defined on Euclidean plane, the points which are related
to this elliptic curve will be affine rational points corresponding to the solutions of the equation
[8].

In this article, we consider the general Diophantine equation xp+yq = zr. This Diophantine
equation in integers p > 1, q > 1, r > 1 and x, y, z is a generalization of the well-known
Fermat equation xn + yn = zn.

There are a vast amount of results related to the equation Axp+Byq = Czr. A special case
of interest is when A = B = C = 1. In many such cases the solution set has been found. Below



76 Selin Inag Cenberci and Bilge Peker No. 2

it can be listed the exponent triples (p, q, r) of solved equations together with the non-trivial
solutions (xyz 6= 0).

Bruin [2] determined all the solutions of the equation xp + yq = zr where (p, q, r) ∈
{(2, 4, 6), (2, 6, 4), (4, 6, 2), (2, 8, 3)}. Bruin applied elliptic Chabauty method and other methods
to prove that the only solutions of x8+y3 = z2 are non-zero relatively prime integers (±1, 2,±3)
and (±43, 96222,±30042907). Bruin [3] also found that the integer solutions x, y, z such that
(p, q, r) = (3, 9, 2) and gcd(x, y, z) = 1.

Beukers [1] gave a partial solution of x2 + y8 = z3 by using stepwise descent methods.
Poonen [5] researched the solutions of the equation for (p, q, r) ∈ {(5, 5, 2), (9, 9, 2), (5, 5, 3)}.
In the light of these studies we consider the equation x8 + y3 = z2k. In order to calculate

some values related to these equations, we use GP/Pari [9] is widely used computer algebra sys-
tem designed for fast computations in number theory. This programme is originally (1985-1996)
developed at Universite Bordeaux I by a team led by Henri Cohen.

§2. The equation x8 + y3 = z4

In our main general equation x8 + y3 = z2k, firstly we consider the case k = 2 and we give
our main theorem.

Theorem 2.1. The Diophantine equation x8 + y3 = z4 has no relatively prime positive
integer solutions.

Proof. Suppose that there are infinitely many primitive solutions to the Diophantine
equation

x8 + y3 = z4. (1)

Now we rewrite equation (1) as

y3 = (z2 − x4)(z2 + x4).

If x or z is even, then the other one must be odd. Therefore the two factors on the right
hand side are coprime, so we have integers m, n such that

m3 = z2 + x4, n3 = z2 − x4.

From these we get integers x and z of the form

z2 =
m3 + n3

2
, (2)

x4 =
m3 − n3

2
. (3)

We have two different cases for the above equations. The first one is that m and n are
both odd. The second one is that m and n are both even.

The case: m and n are both odd.
If m and n are both odd, then x4 and z2 are clearly integers. There are several ways of

constructing an infinitely family with this property.
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(i) If m = 2k + 1 and n = 2k − 1, then the equation (2) becomes

z2 = 8k3 + 6k.

If we write k =
K

2
, we get

z2 = K3 + 3K.

This implies an elliptic curve in reduced Weierstrass form.
By using GP/Pari, it is obvious that the curve is minimal and the rational points of this

curve are (K, z) ∈ {(0, 0), (1, 2), (3, 6), (12, 42)}.
Now we try to find possible situations. For (K, z) = (0, 0), we have k = 0 and then z = 0.

Since m = 2k +1, n = 2k− 1 and k = 0, we get m = 1 and n = −1. From equation (3), we find
that x = ±1. Therefore we find (x, y, z) ∈ {(1,−1, 0), (−1,−1, 0)}. This gives a contradiction.
By checking the other (K, z) values, one can see that there is no solution for the equation (1)
with xyz 6= 0.

(ii) If m = 2k + 1 and n = 2k − 1, then the equation (3) becomes

x4 − 12k2 = 1.

Setting x2 = a, the equation becomes a Pell equation such that

a2 − 12k2 = 1.

By the usual methods we have the solutions with the form

an +
√

12kn = (7 + 2
√

12)n, n = 0, 1, 2, 3, · · ·

from this kn = 0, 2, 28, 390, · · · and in general by the recurrence relation

kn+2 = 14kn+1 − kn, for n = 0, 1, 2, 3, · · · .

Obviously the other variable of the Pell equation has the same recurrence relation. By
checking the values of general recurrence for the equation x2 = a, we can not obtain any value
of a which implies a square of an integer. So we can not find an integer solution for x.

The case: m and n are both even.
If m and n are both even, then x4 and z2 are clearly integer.
(i) If m = 2k + 2 and n = 2k − 2, then the equation (2) becomes

z2 = 8k3 + 24k.

If we write k =
K

2
, then we have

z2 = K3 + 12K.

This implies an elliptic curve in reduced Weierstrass form. From GP/Pari, this curve has
only one affine rational point, namely (K, z) = (0, 0). Hence we find the solution as z = 0. This
is not a solution for equation (1).

(ii) If m = 2k + 2 and n = 2k − 2, then the equation (3) becomes

x4 = 24k2 + 8.
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Setting x2 = a, the equation becomes a Pell equation such that

a2 − 24k2 = 8.

For this equation it is easy to see that a is even. So let a = 2A. Then we obtain equation
below

A2 − 6k2 = 2.

We see that A must be even, too. So let A = 2B. From this equality, we obtain

2B2 = 3k2 + 1.

Now we consider both sides of the equation above for mod 8. As squares are congruent to
0, 4 or 1 (mod 8), the left hand side is congruent to 2 or 0 (mod 8), whereas the right hand
side is congruent to 1, 4 or 5 (mod 8) and this gives a contradiction. This means that our main
equation x4 = 24k2 + 8 has no solution in integers.

This completes the proof.

§3. The equation x8 + y3 = z8

Now we consider our main equation for k = 4.

Theorem 3.1. The Diophantine equation x8 + y3 = z8 has no relatively prime positive
integer solutions.

Proof. Suppose that there are infinitely many primitive solutions to the Diophantine
equation

x8 + y3 = z8. (4)

Now we rewrite equation (4) as
y3 = z8 − x8,

y3 = (z4 − x4)(z4 + x4).

If x or z is even, then the other one must be odd. Therefore the two factors on the right
hand side are coprime, so we have integers m, n such that

m3 = z4 + x4, n3 = z4 − x4.

From these we get integers x, z of the form

z4 =
m3 + n3

2
, (5)

x4 =
m3 − n3

2
. (6)

From equation (5) we get 2z4 = m3 + n3. This equation is solved by S. Quinning and
W. Yunkui. They gave only trivial solution with (m,n) = 1 and z > 0 for the equation
2z4 = m3 + n3.

If we consider the trivial solution, we find that x = 0 from the equation (6). Hence our
main equation has no solution with xyz 6= 0.

This completes the proof.
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§1. Introduction

Definition 1.1. A sequence of numbers {an} is called an arithmetic-geometric alternate
sequence of numbers if the following conditions are satisfied:

(i) for any k ∈ N,
a2k

a2k−1
= r,

(ii) for any k ∈ N, a2k+1 − a2k = d,
where r and d are called the common ratio and common difference of the sequence {an}

respectively.
Example 1.1. The number sequence 1, 1/2, 3/2, 3/4, 7/4, 7/8, 15/8, 15/16, 31/16, 31/32,

· · · is an arithmetic-geometric sequence of numbers with alternate common ratio and difference,
where r = 1/2 and d = 1.

Obviously, the number sequence {an} has the following form:

a1, a1r, a1r + d, (a1r + d)r, (a1r + d)r + d, ((a1r + d)r + d)r, · · ·

§2. Main results

Theorem 2.1. The formula of the general term of the sequence {an} is

an = a1r
bn

2 c +

(
1− rbn

2 c
1− r

)
d +

(⌊
n− 1

2

⌋
−

⌊n

2

⌋)
d. (1)

Proof. We prove this theorem using induction on n.
Obviously, (1) holds for n = 1, 2, and 3. Suppose (1) holds when n = k, then

ak = a1r
b k

2 c +

(
1− rb k

2 c
1− r

)
d +

(⌊
k − 1

2

⌋
−

⌊
k

2

⌋)
d.
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We need to show that P(k + 1) also holds for any k ∈ N.

(i) If k = 2m− 1, where m ∈ N, then ak+1 = ak · r,

ak+1 =

(
a1r

b k
2 c +

(
1− rb k

2 c
1− r

)
d +

(⌊
k − 1

2

⌋
−

⌊
k

2

⌋)
d

)
· r

= a1r
b 2m−1

2 c+1 +

(
1− rb 2m−1

2 c
1− r

)
dr +

(⌊
2m− 1− 1

2

⌋
−

⌊
2m− 1

2

⌋)
dr

= a1r
(m−1)+1 +

(
1− rm−1

1− r

)
dr

= a1r
m +

(
1− rm−1

1− r

)
dr

= a1r
m + (1 + r + r2 + . . . + rm−3 + rm−2)dr

= a1r
m + (1 + r + r2 + r3 + . . . + rm−2 + rm−1)d− d

= a1r
b k+1

2 c +

(
1− rb k+1

2 c
1− r

)
d +

(⌊
(k + 1)− 1

2

⌋
−

⌊
k + 1

2

⌋)
d.

So, P(k + 1) holds for k = 2m− 1.

(ii) If k = 2m, where m ∈ N, then ak+1 = ak + d,

ak+1 = a1r
b k

2 c +

(
1− rb k

2 c
1− r

)
d +

(⌊
k − 1

2

⌋
−

⌊
k

2

⌋)
d + d

= a1r
m +

(
1− rm

1− r

)
d + ((m− 1)−m)d + d

= a1r
b k+1

2 c +

(
1− rb k+1

2 c
1− r

)
d +

(⌊
(k + 1)− 1

2

⌋
−

⌊
k + 1

2

⌋)
d.

So, P(k + 1) holds for k = 2m.

Therefore, (1) holds when n = k + 1. This proves the theorem.

Lemma 2.1. For any integer m > 0,

n∑

i=1

rei = m− 1 + rm

(
1− ren−1

1− r

)
+ (n + 1−men) ren , where ei =

⌊
i

m

⌋
.

Proof. Let ei =
⌊

i
m

⌋
and q = en =

⌊
n
m

⌋
,

n∑

i=1

rei = re1 + re2 + . . . + rem−1 + rem + rem+1 + rem+2 + . . . + re2m−1 +

re2m + re2m+1 + . . . + reqm−1 + reqm + reqm+1 + . . . + ren−1 + ren

=
m−1∑

i=1

rei +
2m−1∑

i=m

rei + . . . +
mq−1∑

i=m(q−1)

rei +
n∑

i=mq

rei
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= m− 1 +
2m−1∑

i=m

rei + . . . +
mq−1∑

i=m(q−1)

rei +
n∑

i=mq

rei

= m− 1 +
q−1∑

j=1




(j+1)m−1∑

i=jm

rei


 +

n∑

i=mq

rei

= m− 1 + rm

q−1∑

j=1

rj−1 +
n∑

i=mq

rei

= m− 1 + rm

(
1− ren−1

1− r

)
+ (n + 1−men) ren .

Theorem 2.2. The formula for the sum of the first n terms of the sequence is given by

Sn =
nd

1− r
− den +

(
a− d

1− r

)(
2r

(
1− ren−1

1− r

)
+ (n− 2en + 1) ren + 1

)
,

where en =
⌊

n
2

⌋
.

Proof. Let ei =
⌊

i
2

⌋
and q = en =

⌊
n
2

⌋
,

Sn =
n∑

i=1

(
a1r

ei +
(

1− rei

1− r

)
d +

(⌊
i− 1

2

⌋
−

⌊
i

2

⌋)
d

)

=
n∑

i=1

(
d

1− r
+

(
a− d

1− r

)
rei − 1

2
(1 + (−1)n) d

)

=
d

1− r

n∑

i=1

1 +
(

a− d

1− r

) n∑

i=1

rei − 1
2
d

n∑

i=1

(1 + (−1)n)

=
nd

1− r
+

(
a− d

1− r

)(
1 + 2r

(
1− ren−1

1− r

)
+ (n + 1− 2en) ren

)
− den.
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§1. Introduction and preliminaries

The Pochhammer’s symbol or Appell’s symbol or shifted factorial or rising factorial or
generalized factorial function is defined by

(b, k) = (b)k =
Γ(b + k)

Γ(b)
=





b(b + 1)(b + 2) · · · (b + k − 1); if k = 1, 2, 3, · · ·
1 ; if k = 0

k! ; if b = 1, k = 1, 2, 3, · · ·
(1)

where b is neither zero nor negative integer and the notation Γ stands for Gamma function.

Generalized Gaussian Hypergeometric Function: Generalized ordinary hypergeo-
metric function of one variable is defined by

AFB




a1, a2, · · · , aA;

z

b1, b2, · · · , bB ;


 =

∞∑

k=0

(a1)k(a2)k · · · (aA)kzk

(b1)k(b2)k · · · (bB)kk!

or

AFB




(aA);

z

(bB);


 ≡ AFB




(aj)A
j=1;

z

(bj)B
j=1;


 =

∞∑

k=0

((aA))kzk

((bB))kk!
, (2)

where denominator parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B

are non-negative integers.
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§2. Main indefinite integrals

∫
cos x cos(πx

2a )√
(1− cos x)

dx

=
1√

1− cos x
a sin

x

2

[
1

(a + π)(3a + π)
e
−ι(a+π)x

2a

×
{

(3a + π)2F1




1,−a+π
2a ;

eιx

a−π
2a ;


− (a + π)e

ι(2a+π)x
a 2F1




1, 3a+π
2a ;

eιx

5a+π
2a ;




}

+
1

(π − 3a)(π − a)
e−

ι(π−3a)x
2a

{
(π − a)2F1




1, 3a−π
2a ;

eιx

5a−π
2a ;




−(π − 3a) e
ι(π−2a)x

a 2F1




1, π−a
2a ;

eιx

a+π
2a ;




}]
+ Constant. (3)

∫
sinhx cos(πx

2a )√
(1− sinx)

dx

=
1

2
√

1− sinx

(
cos

x

2
− sin

x

2

)
×

[
1

5a2 − 2πa + π2

{
(1− ι)a

(
cosh

(2a + (π − a)ι
2a

)
x

− sinh
(2a + (π − a)ι

2a

)
x

)
(π − a + 2aι)2F1




1, a−π+2aι
2a ;

sinx− ι cos x

3a−π+2aι
2a ;




−(π − a− 2aι)
(

sinh(2x) + cosh(2x)
)

2F1




1, a−π−2aι
2a ;

sinx− ι cos x

3a−π−2aι
2a ;




}]

+

[
1

((2 + ι)a + ιπ)(π + (1 + 2ι)a)
(1 + ι)a e

ι(π+(1+2ι)a)x
2a

×
{

(π + (1 + 2ι)a)e2x
2F1




1, (1−2ι)a+π
2a ;

− ιeιx

(3−2ι)a+π
2a ;




−(π + (1− 2ι)a)2F1




1, (1+2ι)a+π
2a ;

− ιeιx

(3+2ι)a+π
2a ;




}]
+ Constant. (4)
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∫
cosh x cos(πx

2a )√
(1− sinx)

dx

=
1√

1− sinx

(
1− ι

2

)
a
(

cos
x

2
− sin

x

2

)

[
1

5a2 + 2πa + π2

{
e

ι(π+(1+2ι)a)x
2a

(
(π + a + 2aι)e2x

2F1




1, a+π−2aι
2a ;

− ιeιx

3a+π−2aι
2a ;




+(π + a− 2aι)2F1




1, a+π−2aι
2a ;

− ιeιx

3a+π−2aι
2a ;




)}]

+

[
1

((2 + ι)a + ιπ)(π + (1 + 2ι)a)
(1 + ι)a e

ι(π+(1+2ι)a)x
2a

×
{

(π + (1 + 2ι)a)e2x
2F1




1, (1−2ι)a+π
2a ;

− ιeιx

(3−2ι)a+π
2a ;




−(π + (1− 2ι)a)2F1




1, (1+2ι)a+π
2a ;

− ιeιx

(3+2ι)a+π
2a ;




}]

−
[{

ι sin
(

(−π + (1 + 2ι)a)x
2a

)
+ cos

(
(−π + (1 + 2ι)a)x

2a

)}

×
{

(π − (1− 2ι)a)2F1




1, a+2aι−π
2a ;

sinx− ι cos x

3a+2aι−π
2a ;




+(π − (1 + 2ι)a)
(

sinh(2x) + cosh(2x)
)

2F1




1, a−2aι−π
2a ;

sinx− ι cos x

3a−2aι−π
2a ;




}]

+Constant. (5)

∫
cos x cosh(πx

2a )√
(1− sinx)

dx =
2a{π cos x sinh(πx

2a ) + a(sinx− 1) cosh(πx
2a )}

(a2 + π2)
√

1− sinx
+ Constant. (6)

∫
cos x cos(πx

2a )√
(1− sinx)

dx

=
1√

1− sinx

(
1
2

+
ι

2

)
a

(
cos

x

2
− sin

x

2

)
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×
[
− ι

{e
ι(π−a)x

2a 2F1

(
1, 1

2 (π
a − 1); a+π

2a ;−ιeιx

)

π − a
+

e
ι(π+3a)x

2a 2F1

(
1, 1

2 (π
a + 3); 5a+π

2a ;−ιeιx

)

π + 3a

}

+
1

(π − 3a)

{
sin

( (π − 3a)x
2a

)
+ ι cos

( (π − 3a)x
2a

)}

×2F1

(
1,

3
2
− π

2a
;
5a− π

2a
; sin x− ι cos x

)

+

(
sin

(
(a+π)x

2a

)
+ ι cos

(
(a+π)x

2a

))
2F1

(
1,−a+π

2a ; a−π
2a ; sin x− ι cos x

)

a + π

]
+ Constant. (7)

∫
sinx cos(πx

2a )√
(1− cos x)

dx

=
1√

1− sinx
ιa sin

x

2

[
1

(a + π)(3a + π)
e

ι(a+π)x
2a

×
{

(3a + π)2F1

(
1,−a + π

2a
;
a− π

2a
; eιx

)
+ (a + π) e

ι(2a+π)x
a 2F1

(
1,

3a + π

2a
;
5a + π

2a
; eιx

)}

+
1

(π − 3a)(π − a)
e−

ι(π−3a)x
2a

{
(a− π)2F1

(
1,

3a− π

2a
;
5a− π

2a
; eιx

)

−(π − 3a) e
ι(π−2a)x

a 2F1

(
1,

π − a

2a
;
a + π

2a
; eιx

)}]
+ Constant. (8)

∫
sinx cos(πx

2a )
1− cos x

dx

=
1

π2 − 4πa2
a e−

ιπx
2a

[
(π2 − 4a2) 2F1

(
1,− π

2a
;
2a− π

2a
; eιx

)

−(π2 − 4a2) e
ιπx

a
2F1

(
1,

π

2a
;
2a + π

2a
; eιx

)
+ π

{
(2a + π) eιx

2F1

(
1,−2a− π

2a
;
4a− π

2a
; eιx

)

−(π − 2a) e
ι(a+π)x

a 2F1

(
1,−2a + π

2a
;
4a + π

2a
; eιx

)}]
+ Constant. (9)

∫
sinx cos(πx

2a )√
(1− sinx)

dx

=
1√

1− sinx

(
1
2

+
ι

2

)
a

(
cos

x

2
− sin

x

2

)

×
[
− ι

{e
ι(π−a)x

2a 2F1

(
1, 1

2 (π
a − 1); a+π

2a ;−ιeιx

)

π − a
−

e
ι(π+3a)x

2a 2F1

(
1, 1

2 (π
a + 3); 5a+π

2a ;−ιeιx

)

π + 3a

}

+
1

(π − 3a)

{
cos

( (π − 3a)x
2a

)
− ι sin

( (π − 3a)x
2a

)}
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×2F1

(
1,

3
2
− π

2a
;
5a− π

2a
; sin x− ι cos x

)

−

(
cos

(
(a+π)x

2a

)
− ι sin

(
(a+π)x

2a

))
2F1

(
1,−a+π

2a ; a−π
2a ; sin x− ι cos x

)

a + π

]

+Constant. (10)

§3. Derivation of the integrals

Applying the same method which is used in [4], integrals will be established.

§4. Applications

The integrals which are presented here are very special integrals. These are applied in the
field of engineering and other allied sciences.

§5. Conclusion

In our work we have established certain indefinite integrals involving Hypergeometric func-
tion. However, one can establish such type of integrals which are very useful for different field
of engineering and sciences by involving these integrals. Thus we can only hope that the de-
velopment presented in this work will stimulate further interest and research in this important
area of classical special functions.

References

[1] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1970.

[2] Hancock Harris, Elliptic integrals, John Wiley&sons, Inc., 1917.
[3] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and C. W. Clark, NIST

Handbook of Mathematical Functions, Cambridge University Press, 2010.
[4] M. I. Qureshi, Salahuddin, M. P. Chaudhary and K. A. Quraishi, Evaluation of Certain

Elliptic Type Single, Double Integrals of Ramanujan and Erdélyi, J. Mathematics Research,
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§1. Introduction

Choquet [3] introduced the concept of grills in 1947. The idea of grills was found to be
very useful device like nets and filters. Also for the investigations of many topological notions
like compactifications, proximity spaces, theory of grill topology was used.

The notion of paracompactness in ideals was initiated by Hamlett et al [6] in the year
1997. B. Roy and M. N. Mukherjee [10] extended the concept of para compactness in terms
of grills. Following their work we formulate the new definition of θ-paracompactness via grills.
Also we attempted to achieve a general form of the well known Michaels theorem on regular
paracompact spaces perticularly for θ-open sets.

§2. Preliminaries

Definition 2.1.[3] A colletion G of nonempty subsets of a set X is called a grill if
(i) A ∈ G and A ⊆ B ⊆ X implies that B ⊆ G, and
(ii) A ∪ B ∈ G (A,B ⊆ X) implies that A ∈ G or B ∈ G.
Definition 2.2.[8] Let (X, τ) be a topological space and G be a grill on X. We define

a mapping Φ : P(X) → P(X), denoted by ΦG(A, τ) or simply Φ(A), is called the operator
associated with the grill G and the topology τ , and is defined by Φ(A)= {x ∈ X: A ∩ U ∈
G, ∀ U ∈ τ(x)}.

Definition 2.3.[8] The topology τ of a topological space (X, τ) is said to be suitable for a
grill G on X if for any A ⊆ X, A\Φ(A) /∈ G.

Definition 2.4.[8] A grill G is called a µ grill if any arbitrary family {Aα: α ∈ Λ} of
subsets of X, ∪αAα ∈ G then Aα ∈ G for atleast one α ∈ Λ.

Definition 2.5.[7] A topological space (X, τ) is said to be G θ-regular if for any θ-closed
set F in X with x /∈ F , there exist disjoint θ-open sets U and V such that x ∈ U , and F\V /∈ G.

Definition 2.6.[15] A paracompact space (X, τ) is a Hausdorff space with the property
that every open cover of X has an open locally finite refiniment.
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Definition 2.7.[15] In a Lindelof space (X, τ), for every open cover there exists a subcover
of X, which is having countable collection of open sets.

§3. G-paracompactness through θ-open sets

Definition 3.1. Let G be a grill on a topological space (X, τ). Then the space X is said
to be θ-paracompact with respect to the grill or simply G-θ-paracompact if every θ-open cover
U={Uα : α ∈ λ} of X has a precise locally finite θ-open refiniment U∗ such that X\∪ U∗ 6∈G.
Also a cover has a precise refinement means, there exists a collection V = {Vα : α ∈ Λ} of
subsets of X such that Vα ⊆ Uα, for all α ∈ Λ.

Remark 3.1. (i) Every θ-paracompact space X is G-θ-paracompact, for every grill G on
X.

(ii) For the grill G =P(X)\ø, the concepts of θ-paracompactness and G-θ-paracompactness
coincide for any space X, where P(X) denotes the power set of X.

(iii) If G1 and G2 are two grills on a space with G1 ⊆ G2, then G2-θ-paracompactness of X ⇒
G1-θ-paracompactness of X. Moreover, it may so happen that a space X is G1-θ-paracompact
as well as G2-θ-paracompact while the grills G1 and G2 are non-comparable.

(iv) Considering G θ paracompactness, refinement need not be a cover.
Theorem 3.1. Let G be a µ grill on a topological space (X, τ). Then (X, τG) is G-θ-

paracompact if (X, τ) is so.
Proof. Let us consider a cover W of X by basic θ-open sets of (X, τG), given by W={Wα :

α ∈ Λ}, where for each α ∈ Λ, Wα=Uα\ Aα with Uα ∈ τ also θ-open set and Aα /∈ G. Then U
= {Uα : α ∈ Λ} is a τ θ-open cover of X. By G-θ-paracompactness of (X, τ), U has a τ locally
finite τ θ-open precise refinement V={Vα : α ∈ Λ} such that X\(∪α∈ΛVα)/∈ G. It suffices to
show that W∗ = { Vα\Aα: α ∈ Λ} is a precise τG -locally finite τG θ open refinement of W.

W∗ is a τG θ-open precise refinement of W. Also W is τ -locally finite and τ ⊆ τG , V is τG-
locally finite, and hence W∗ is τG-locally finite. It thus remains to show that X\∪α∈Λ(Vα\Aα)/∈
G. Then, X\∪α∈Λ(Vα\Aα)= X\[∪α∈Λ(Vα∩AC

α )]=∩α∈Λ[X\(Vα∩(X\Aα))]= ∩α∈Λ[(X\Vα)∪Aα]
=[∩α∈Λ(X\Vα)]∪[∩α∈ΛAα]= [∪Λ((∩α∈Λ1(X\Vα))∩(∩β∈Λ2Aα))], where

Λ1 ∪ Λ2 = Λ and Λ1 ∩ Λ2 = ø. (1)

The union over Λ stands for all possible partition (1) holds. Now ∩α∈Λ(X\Vα) = X\(∪V)/∈
G and ∩α∈ΛAα /∈ G (since Aα /∈ G for each α). Furthermore, for any partition {Λ1,Λ2} of Λ
with the property (1), ∩α∈Λ1(X\Vα)]∩[∩β∈Λ2Aβ ]⊆ [∩β∈Λ2Aβ ]/∈ G. Thus ∪Λ[(∩α∈Λ1(X\Vα)) ∩
(∩β∈Λ2Aβ)]/∈ G. Hence the result.

Theorem 3.2. Let G be a grill on a space (X, τ) such that τ\{ø}⊆ G. If τ is suitable for
G and (X, τG) is G-θ-paracompact, then (X, τ) is G-θ-paracompact.

Proof. Let U={Uα : α ∈ Λ} be a τ θ-open cover of X. Then U is a τG θ-open cover of
X. Hence U is a τG-locally finite precise refinement {Vα\Aα: α ∈ Λ, Vα ∈ τ and Aα /∈ G} such
that

X\ ∪α∈Λ (Vα\Aα) /∈ G. (2)
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We now show that V= {Vα : α ∈ Λ} is τ locally finite. In fact, for each x ∈ X there exists
some U ∈ τG such that U∩(Vα\Aα)=ø, for all α 6= α1, α2, · · · , αn(assumption). But U = V \A,
where V ∈ τ and A /∈ G. Thus for any α 6= α1, α2, · · · , αn, (V \A) ∩ (Vα\Aα) = ø, That is
(V ∩ Vα)\ (A ∩ Aα) = ø. Then either V ∩ Vα=ø or (V ∩ Vα)(6= ø)⊆A ∪ Aα. We claim that
V ∩ Vα = ø. For otherwise, V ∩ Vα is nonempty τθ-open set ⇒ V ∩ Vα ∈ G ⇒ A ∪ Aα ∈ G a
contradiction. Thus V is τ locally finite.

Again, Vα\Aα ⊆ Uα and Vα\Aα ⊆ Vα ⇒ Vα\Aα ⊆ Uα∩Vα ⇒ ∪α∈Λ(Vα\Aα) ⊆ ∪α∈Λ(Uα∩
Vα) ⇒ X\∪α∈Λ(Vα\Aα ⊇ X\∪α∈Λ(Uα ∩Vα) and hence by (2), X\∪α∈Λ(Uα ∩Vα)/∈ G. Now W
= {Uα ∩ Vα : α ∈ Λ} is τ locally finite τθ-open precise refiniment of U such that X\(∪W)/∈ G.
Thus (X, τ) is G-θ-paracompact.

Corollary 3.1. Let (X, τ) be a topological space and G a µ-grill on X such that τ\{ø}⊆ G
and τ is suitable for G. Then (X, τ) is G θ-compact iff (X, τG) is G-θ-paracompact.

Corollary 3.2.[11] For any topological space X, Gδ= {A ⊆ X : intclA 6= ø} is a grill on
X.

A weaker form of paracompactness is almost paracompactness and the definition for almost
θ-paracompactness is,

Definition 3.2. A topological space (X, τ) is said to be almost θ-paracompact if every
θ-open cover U of X has a locally finite θ-open refinement U∗ such that X\cl(∪ U∗)= ø.

Theorem 3.3. A topological space (X, τ) is almost θ-para compact iff X is Gδ θ-
paracompact.

Proof. Let U be an θ-open cover of an almost θ-paracompact space (X, τ). Then there
exists a precise locally finite θ-open refinement U∗ of U such that X\cl(U∗)= ø. We claim that
X\(∪ U∗)/∈ G. For otherwise, X\(∪ U∗)∈ G ⇒ intcl(X\(∪ U∗))6= ø ⇒X\clint(∪ U∗)6= ø ⇒
X\cl(∪ U∗)6= ø, a contradiction. Thus (X, τ) is a Gδ θ-paracompact.

We now prove a stronger converse that whenever G is any grill on X with τ\{ø} ⊆ G, then
the almost θ-paracompactness of (X, τ) is implied by the Gθ-paracompactness of X. We first
observe that for such a grill G, we have intA = ø whenever A(⊆ X) /∈ G. Now let U be an
θ-open cover of X. Then by the definition of Gθ-paracompactness there exists a precise locally
finite θ-open refinement U∗ of U such that X\(∪ U∗)/∈ G. Thus int (X\(∪ U∗))=ø, That is X

= cl(∪U∗), proving (X, τ) to be almost θ-paracompact.

§4. Principal grill [A], its regularity and θ-paracompactness

Definition 4.1.[11] Let X be a nonempty set and (ø 6=)A ⊆ X. Then the principal [A] is
defined as [A]= {B ⊆ X : A ∩B 6= ø}.

Remark 4.1. In the grill topological space X, if G=[X], then [X]-θ-paracompactness
reduces simply to θ-paracompactness.

Definition 4.2. G is a grill on a topological space (X, τ), the space X is said to be G-θ
regular if for each θ-closed subset F of X and each x ∈ X\F , there exist disjoint θ-open sets U

and V such that x ∈ U and F\V /∈ G.
Remark 4.2. From the above two definitions the principal grill [X] generated by X is, in

fact, P(X)\{ø} and hence a space (X, τ) is [X]-θ-regular iff (X, τ) is θ-regular.
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Remark 4.3. Every regular space is G-θ-reguler for any grill on X.

Theorem 4.1. Let X be any nonempty subset of a space (X, τ). Then (X, τ) is [A]-θ-
regular iff for each θ-closed subset F of X and each x /∈ F , there exist disjoint θ-open sets U

and V such that x ∈ U and F ∩A ⊆ V .

Proof. Let (X, τ) be a [A]-θ-regular and F a θ-closed subset of X and x ∈ X\F . Then
there exist disjoint θ-open sets U and V such x ∈ U and F\V /∈ [A]. Now, F\V /∈ [A]
⇒(F\V )∩A= ø ⇒F ∩A∩(X\V )= ø⇒ F ∩A ⊆ V .

Conversely, let the given condition hold and let F be a θ-closed subset of X with x ∈ X\F .
Then there exist disjoint θ-open sets U and V such that x ∈ U and F ∩A ⊆ V . Now, F ∩A ⊆ V

⇒ F ∩A∩(X\V )= ø ⇒ F∩(X\V ) /∈ [A] ⇒ (F\V )/∈ [A].

We modify the E. Micheal’s theorem for θ-open sets.

Theorem 4.2. Let G be a grill on a space (X, τ). If X is G-θ-paracompact and θT2 space,
then X is G-θ-regular.

Proof. Let F be a θ-closed subset of X and y ∈ X\F . Then the Hausdorffnes of X implies
that for each x ∈ F , there exist disjoint θ-open sets Gx and Hx such that y ∈ Gx and x ∈ Hx.
Clearly y /∈ clHx. Then U= {Hx : x ∈ F}∪{X\F} is an θ-open cover of X. Thus there exists
a precise locally finite θ-open refinement U∗= {H ′

x : x ∈ F}∪{W} such that H
′
x ⊆ Hx for each

x ∈ F , W ⊆ X\F and X\(∪ U∗)/∈ G. Let G= X\ ∪ {clH ′
x : x ∈ F}. Then G and H are two

nonempty disjoint θ-open sets, such that y ∈ G, F\H /∈ G. Hence (X, τ) is G-θ-regular.

Corollary 4.1. Let A be a nonempty subset of a space (X, τ). If X is an [A]-θ-paracompact
Hausdorff space, then it is [A]-θ-regular.

Corollary 4.2. A θ-paracompact space is θ-regular. The proof is immediate.

Lemma 4.1. For a nonempty subset A of a Hausdorff space (X, τ), let X be [A]-θ-
paracompact. Then for each x ∈ X and each θ-open set U containing x, there exists a θ-open
neighbourhood V of x such that clV \U ⊆ X\A. That is (clV \U)∩A = ø, and hence clV ∩A ⊆ U .

Proof. Let x ∈ X and U be an θ-open neighbourhood of x. Then X\U is a θ-closed subset
of X, not containing x. As (X, τ) is [A]-θ-regular, by theorem 4.3, there exists two disjoint
θ-open sets G and V such that x ∈ V and (X\U)∩A ⊆ G. Now, G∩clV = ø ⇒[(X\U)∩A]∩clV

= ø⇒(X\U)∩A ∩ clV = ø⇒ clV ∩(X\U)⊆ X\A. That is clV \U ⊆ X\A and hence the proof.

Theorem 4.3. Let (X, τ) be an [A]-θ-paracompact, Hausdorff space for some nonempty
subset A of X and U= {Uα : α ∈ Λ} be a θ-open cover of X. Then there exists a precise locally
finite θ-open refinement {Gα : α ∈ Λ} of U such that A ⊆ ∪{Gα : α ∈ Λ} and clGα∩A ⊆ Uα∩A.

Proof. Let U= {Uα : α ∈ Λ} be a θ-open cover of X. Then by the Lemma 4.1, for each
α ∈ Λ and each x ∈ Uα, there exists Vα,x ∈ τ with x ∈ Vα,x such that clVα,x ∩ A ⊆ Uα. Now
V={Vα,x : α ∈ Λ} is a θ-open cover of X.

Hence by [A]-θ-paracompactness of X, there exists a precise locally finite θ-open refinement
W={Wα,x : x ∈ Uα, α ∈ Λ} of V such that X\(∪ {Wα,x : x ∈ Uα, α ∈ Λ})/∈[A]. That is
A ⊆ ∪{Wα,x : x ∈ Λ}. Now, for any x ∈ Uα and α ∈ Λ, Wα,x ⊆ Vα,x ⇒ clWα,x ∩ A ⊆
clVα,x ∩ A ⊆ Uα ∩ A. Let Gα= ∪x∈UαWα,x for each α ∈ Λ, Wα ⊆ Vα,x ⇒ clWα,x ∩ A ⊆
clVα,x ∩ A ⊆ Uα ∩ A. Let Gα= ∪x∈ΛWα,x for each α ∈ Λ. Then clearly {Gα : α ∈ Λ} is
a precise locally finite θ-open refinement of U , and clGα= cl(∪x∈ΛWα,x)= ∪x∈ΛclWα,x. So,
(clGα)∩A= ∪x∈Λ(clWα,x ∩A)⊆ Uα ∪A.
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Theorem 4.4. Let (X, τ) be a Hausdorff space and A a dense subset of X. Then the
following statements are equivalent:

(i) (X, τ) is [A]-θ-paracompact.
(ii) Each θ-open cover of X has a precise locally finite refinement that covers A and consists

of sets which are not necessarily closed or open.
(iii) For each θ-open cover U={Uα : α ∈ Λ} of X, there exists a locally finite θ-closed cover

{Fα : α ∈ Λ} of X such that Fα ∩A ⊆ Uα for each α ∈ Λ.
Proof. (i)⇒(ii) It is trivial.
(ii)⇒(iii) Let {Uα : α ∈ Λ} be a θ-open cover of X. Then for any x ∈ X, there exists

some Uα(x) ∈ U such that x ∈ Uα(x). Then by Lemma 4.1, there exists some Hx ∈ τ with
x ∈ Hx such that clHx ∩ A ⊆ Uα(x). Thus H= {Hx : x ∈ X} is a θ-open cover of X,
and hence there is a precise locally finite refinement {Ax : x ∈ X} of H such that A ⊆{Ax:
x ∈ X}. Since {Ax : x ∈ X} is locally finite, so is {clAx : x ∈ X}. Thus ∪{clAx : x ∈ X}=
cl[∪{Ax : x ∈ X}]⊇ clA = X ⇒ X = ∪{clAx : x ∈ X}. As Ax ⊆ Hx ⇒ clAx ⊆ clHx

⇒ clAx ∩A ⊆ clHx ∩A ⊆ Uα(x).
For each α ∈ Λ, set Fα= ∪{clAx : α=α(x)}. Then Fα is θ-closed for each α ∈ Λ, as it

is a union of locally finite θ-closed sets. Thus {Fα : α ∈ Λ} is locally finite and a cover of X.
Finally Fα ∩A= ∪{clAx : α=α(x)}∩A= ∪{clAx ∩A : α=α(x)}⊆ Uα ∩A, for each α ∈ Λ.

(iii)⇒(i) Let U= {Uα : α ∈ Λ} be a θ-open cover of X. Let {Fα : α ∈ Λ} be a locally finite
θ-closed cover of X such that Fα ∩A ⊆ Uα for each α ∈ Λ. For any x ∈ X, there exists Vx ∈ τ

with x ∈ Vx such that Vx ∩ Fα 6=ø for atmost finitely many α ∈ Λ. Now, V={Vx : x ∈ X} is a
cover of X. So there exists a locally finite θ-closed cover {Bx : x ∈ X} such that Bx ∩A ⊆ Vx,
for all x ∈ X. Thus {Bx ∩A : x ∈ A} is a cover of A.

Let us now consider U(Fα)= X\∪{Bx : Bx ∩ Fα ∩ A=ø}. We first note that U(Fα) is
θ-open for each α ∈ Λ. Now, Fα∩A ⊆ U(Fα). In fact, y ∈ Fα∩A and y /∈ U(Fα) ⇒ y ∈ Fα∩A

and y ∈ By′ for some y′ ∈ X ⇒ By′∩Fα∩A=ø. But y ∈ Fα∩A and y ∈ By′⇒ y ∈ By′∩Fα∩A,
a contradiction.

We show that {U(Fα : α ∈ Λ)} is locally finite. Each x ∈ X has some θ-open neigh-
bourhood W intersecting finitely many B′

xs, say Bx1 , Bx2 , · · · , Bxn . Then W is contained in
∪n

i=1Bxi
(since {Bx : α ∈ Λ} is a θ-cover of X). Now Bx∩U(Fα) 6= ø ⇒ Bx∩Fα∩A 6= ø. Each

Bx ∩ A is contained in Vx, where Vx intersects atmost finitely many Fα ⇒ Bx ∩ A intersects
atmost finitely many Fα ⇒ each set Bx intersects atmost finitely many U(Fα) ⇒ W intersects
atmost finitely many U(Fα). Thus {U(Fα) : α ∈ Λ} is locally finite. Also {U(Fα) : α ∈ Λ}
covers A, because Fα ∩A ⊆ Uα and {Fα ∩ Uα : α ∈ Λ} is a θ-cover of A.

Let U∗= {U(Fα) ∩ Uα : α ∈ Λ}. Then U∗ is a precise locally finite θ-open refinement of
U . Thus Fα ∩ A ⊆ Uα ∩ U(Fα), for all α ∈ Λ ⇒ A ⊆ ∪α∈Λ(Fα ∩ A) ⊆ ∪α∈Λ(Uα ∩ U(Fα))⇒
A ⊆ ∪ U∗ ⇒ A ∩ (X\(∪ U∗))=ø ⇒ X\(∪ U∗) /∈ [A], Thus (X, τ) to be [A]-θ-paracompact.

Corollary 4.3. In a regular space X, the following are equivalent:
(i) X is θ-paracompact.
(ii) Every θ-open cover of X has a locally finite refinement consisting of sets not necessarily

θ-open or θ-closed.
(iii) Each θ-open cover of X has a closed locally finite refinement.
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Theorem 4.5. Let G and G′ be two grills respectively on two topological spaces (X, τ)
and (Y, τ

′
). Let f : (X, τ)→(Y, τ

′
) be a θC homeomorphism and f(G) ⊇ G′ . If (X, τ) is Gθ-

paracompact then (Y, τ
′
) is G′θ-paracompact. Here f(G) stands for {f(G) : G ∈ G} which is

clearly a grill in Y .
Proof. Let {Vα : α ∈ Λ} be a θ-open cover of Y . Then by continuity and surjectiveness of

f , {f−1(Vα) : α ∈ Λ} is a θ-open cover of X. Hence by Gθ-compactness of (X, τ), there exists a
locally finite precise θ-open refinement {Wα : α ∈ Λ} of {f−1(Vα)} such that X\∪α∈Λ Wα /∈ G.
Since f is an θC homeomorphism, f is bijective, f and f−1 both are θ-irresolute maps. We have
{f(Wα) : α ∈ Λ} is an θ-open precise refinement of {Vα : α ∈ Λ} in (Y, τ

′
). We note {Wα : α ∈

Λ} is locally finite as f is a homeomorphism. Now, as X\∪α∈Λ Wα /∈ G, Y \∪α∈Λ f(Wα) /∈ f(G)
and hence Y \ ∪α∈Λ f(Wα) /∈ G′ . Thus (Y, τ

′
) is G′θ-paracompact.

Corollary 4.4. Let (X, τ) and (Y, τ
′
) be two topological spaces, A(6= ø) ⊆ X, and

f : (X, τ)→ (Y, τ
′
) a homeomorphism. If (X, τ) is [A]-θ-paracompact then (Y, τ

′
) is [f(A)]θ-

paracompact.
Proof. If we put [f(A)] = f([A]) then we can get the result using the previous theorem.
Let A = X in the previous theorem we get the next Corollary.
Corollary 4.5. Let (X, τ) and (Y, τ

′
) be two topological spaces. f : (X, τ)→ (Y, τ

′
) a

homeomorphism. If (X, τ) is θ-paracompact then (Y, τ
′
) is θ-paracompact.

§5. Relations among other compactness with G-paracompact

ness through θ-open sets

Definition 5.1. A space X is T -Lindelof if for every θ-open cover there exists a θ-open
subcover for X, which is having countable collection of θ-open sets.

Theorem 5.1. Every G θ-regular, T -Lindelof space is G θ-paracompact.
Proof. Let (X, τ) be a θ-regular, T -Lindelof space. Let U be a θ-open cover of X. Since

(X, τ) is a T -Lindelof, there exists a countable subcollection V of U that covers X. Then V is
a θ-open refiniment of U . Since (X, τ) is θ-regular the space (X, τ) is G θ-paracompact.

Remark 5.1. (i) Every G θ-compact space is G θ-paracompact.
(ii) Every θT2, G θ-paracompact space is θ-normal.
Remark 5.2. From the above results we have the following implications:

Compact =⇒ G-Compact

⇓ +T2 ⇓

Paracompact =⇒ G-paracompact

⇓ ⇓

θ-paraCompact =⇒ G-θ-paraCompact

+θT2
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↙ ↘ ↙ ↘

θ-regular θ-normal G θ-regular Gθ-normal

Note 5.1. From [5], [14], we have τδ ⊆ τθ ⊆ τ and that τθ = τ if and only if (X, τ) is
regular. So, if the space is regular the concept of θ-paracompactness coincide with paracom-
pactness.
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§1. Introduction

The pseudo Smarandache function, Z(n), introduced by Kashihara [1], is as follows:
Definition 1.1. For any integer n ≥ 1, the pseudo Smarandache function Z(n) is the

smallest positive integer m such that 1 + 2 + · · ·+ m ≡ m(m+1)
2 is divisible by n. Thus,

Z(n) = min{m : m ∈ Z+, n|m(m + 1)
2

}, n ≥ 1,

where Z+ is the set of all positive integers.
Some of the properties satisfied by Z(n) are given in Majumdar [2], which also gives the

explicit forms of Z(n) in some particular cases. It seems that there is no single closed form
expression of Z(n).

Of particular interest is the values of Z(p.2k), where p is a prime and k ∈ Z+. Majumdar
[2] gives the explicit forms of Z(p.2k) for p = 3, 5, 7, 11, 13, 17, 19, 31. In this paper, we derive
the explicit form of Z(p.2k) when p is a prime of the form p = 2q − 1. This is given in the next
section.

§2. Closed form expression of Z(p.2k), p = 2q − 1

First note that, for any integer a ≥ 1,

2q(a+1) − 1 = 2q(2qa − 1) + 2q − 1.

Therefore, it follows by induction on a that p divides 2qa − 1 for any integer a ≥ 1.
The closed form expression of Z(p.2k), when p = 2q − 1, is given in the theorem below.
Theorem 2.1. Let p be a prime of the form p = 2q − 1, q ≥ 1. Then

Z(p.2k) =





(p− 1)2k,

2k+q−i,

if q divides k,

if q divides k − i, 1 ≤ i ≤ q−1.
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Proof. First note that, if p = 2q − 1 is prime, then by the Cataldi-Fermat Theorem, q

must be a prime (see, for example, Theorem 4 in Daniel Shanks [3]).
Now, by definition,

Z(p.2k) = min{m : p.2k|m(m + 1)
2

} = min{m : p.2k+1|m(m + 1)}. (1)

Here, 2k+1 must divide one of m and m + 1, and p must divide the other. We now consider all
the possible cases below:

Case (1): When k is of the form k = qa for some integer a ≥ 1. Let p = 2P +1. Now, since

P.2k+1 + 1 = 2P (2k − 1) + (2P + 1),

it follows that p divides P.2k+1 + 1, so that p.2k+1 divides P.2k+1(P.2k+1 + 1). Therefore, the
minimum m in (1) can be taken as P.2k+1, and hence,

Z(p.2k) = P.2k+1 = (p− 1)2k.

Case (2): When k is of the form k = qa + 1 for some integer a ≥ 0. Here,

2q−2.2k+1 − 1 = 2q(2qa − 1) + 2q − 1,

so that, p divides 2k+q−1− 1 and hence, p.2k+1 divides 2k+q−1(2k+q−1− 1). Thus, in this case,
the minimum m in (1) may be taken as 2k+q−1 − 1, so that Z(p.2k) = 2k+q−1 − 1.

Case (3): When k is of the form k = qa + 2 for some integer a ≥ 0. In this case, since

2q−3.2k+1 − 1 = 2q(2qa − 1) + 2q − 1,

it follows that, p.2k+1 divides 2k+q−2(2k+q−2 − 1), and hence, Z(p.2k) = 2k+q−2 − 1.
...

Case (q) : When k is of the form k = qa + q − 1 for some integer a ≥ 0. Here,

2k+1 − 1 = 2q(a+1) − 1,

so that p.2k+1 divides 2k+1(2k+1 − 1), and consequently, Z(p.2k) = 2k+1 − 1.
All these complete the proof of the theorem.

§3. Some special cases

Some special cases of Theorem 2.1 are Z(3.2k) (corresponding to q = 2), Z(7.2k) (corre-
sponding to q = 3), and Z(31.2k) (corresponding to q = 4). The explicit forms of Z(3.2k),
Z(7.2k) and Z(31.2k) are given below.

Corollary 3.1. For any integer k ≥ 1,

Z(3.2k) =





2k+1 − 1,

2k+1,

if k is odd,

if k is even.
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Proof. Since this case corresponds to q = 2, q divides k if and only if k is even. The result
then follows from Theorem 2.1 immediately.

Corollary 3.2. For any integer k ≥ 1,

Z(7.2k) =





3.2k+1, if 3|k,

2k+2 − 1, if 3|(k − 1),

2k+1 − 1, if 3|(k − 2).

Proof. This case corresponds to q = 3, and so, there are three possibilities, namely, k is
one of the three forms k = 3a, 3a + 1, 3a + 2. Then, appealing to Theorem 2.1, we get the
desired expression for Z(7.2k).

Corollary 3.3. For any integer k ≥ 1,

Z(31.2k) =





15.2k+1, if 5|k,

2k+4 − 1, if 5|(k− 1),

2k+3 − 1, if 5|(k− 2),

2k+2 − 1, if 5|(k− 3),

2k+1 − 1, if 5|(k− 4).

Proof. Here, k can be one of the five forms k = 5a, 5a + 1, 5a + 2, 5a + 3, 5a + 4. When
k = 5a, by Theorem 2.1, Z(31.2k) = 30.2k = 15.2k+1. Similarly, the other four cases follow
from Theorem 2.1.
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§1. Introduction

The study of fuzzy subsets and their application to mathematical concepts has reached to
what is commonly called as fuzzy mathematics. Fuzzy algebra is an important branch in it.

In 1965, Lofti A. Zadeh [14] introduced the notion of a fuzzy subset and Goguen [4] gener-
alized the notion of fuzzy subset of X to that of an L-fuzzy subset. Then Intuitionistic Fuzzy
Subset was defined by K. T. Atanassov [2] in 1986.

Y. Imai and K. Iseki [5] introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class
of BCI-algebras. Then Neggers and H. S. Kim [10] introduced B-algebras. Recently, in 2007,
Andrzej Walendziak [1] defined a BF -algebra.

Since then many research work have been introduced using fuzzy subsets and Intuitionistic
fuzzy sets in the various classes of abstract algebraic structures like BCI/BCK/BCC algebras.
Recently fuzzy BF -subalgebras of were developed by A. Borumand Saeid and M. A. Rezvani
[3] in 2009.

Motivated by these, we have introduced Intuitionistic L-fuzzy ideals of BF -algebras [9] and
Intuitionistic L-fuzzy H-ideal of BF -algebras [6]. In this paper, we investigate Intuitionistic L-
fuzzy p-ideal of a BF -algebra and establish some of their basic properties.
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§2. Preliminaries

In this section the basic definitions of a BF -Algebra and Intuitionistic L-Fuzzy subset are
recalled. We start with,

Definition 2.1.[1] A BF -algebra is a non-empty set X with a constant 0 and a single
binary operation ∗ satisfying the following axioms:

(i) x ∗ x = 0.

(ii) x ∗ 0 = x.

(iii) 0 ∗ (x ∗ y) = y ∗ x, for all x, y ∈ X.

Example 2.1. Let X = {0, 1, 2, 3, 4} be a set with the following table :

∗ 0 1 2 3 4

0 0 4 3 2 1

1 1 0 4 3 2

2 2 1 0 4 3

3 3 2 1 0 4

4 4 3 2 1 0

Then (X, ∗, 0) is a BF -algebra.
Definition 2.2. A binary relation “≤”on X can be defined as x ≤ y if and only if

x ∗ y = 0.

Definition 2.3.[3] A non-empty subset S of a BF -algebra X is said to be a subalgebra if
x ∗ y ∈ S, ∀x, y ∈ S.

Definition 2.4.[3] A non-empty subset I of a BF -algebra X is said to be an ideal of X if
(i) 0 ∈ I.
(ii) x ∗ y ∈ I and y ∈ I ⇒ x ∈ I, ∀ x, y ∈ X.

Definition 2.5.[1] An ideal I of X is called closed if 0 ∗ x ∈ I, ∀ x ∈ I.

Definition 2.6.[6] A non-empty subset I of a BF -algebra X is said to be a H-ideal of X

if
(i) 0 ∈ I.
(ii) x ∗ (y ∗ z) ∈ I and y ∈ I ⇒ x ∈ I, ∀ x, y, z ∈ X.

Definition 2.7.[6] A H-ideal I of X is called closed if 0 ∗ x ∈ I, ∀ x ∈ X.

Definition 2.8.[11] A non-empty subset A of a BF -algebra X is called a p-ideal of X, if
(i) 0 ∈ A.
(ii) (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A ⇒ x ∈ A, ∀ x, y, z ∈ X.

Definition 2.9. A p-ideal I of X is called closed if 0 ∗ x ∈ I, ∀ x ∈ X.

Definition 2.10.[2] Let (L,≤) be a complete lattice with least element 0 and greatest
element 1 and an involutive order reversing operation N : L → L. Then an Intuitionistic
L-fuzzy subset (ILFS) A in a non-empty set X is defined as an object of the form

A = {< x, µA(x), νA(x) > /x ∈ X} ,

where µA : X → L is the degree membership and νA : X → L is the degree of nonmembership
of the element x ∈ X satisfying µA(x) ≤ N(νA(x)).
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Definition 2.11.[8] An ILFS A in a BF -algebra X with the degree membership µA :
X → L and degree of nonmembership νA : X → L is said to have Sup-Inf property if for any
subset T of X there exists x0 ∈ T such that

µA(x0) = sup
t∈T

µA(t) and νA(x0) = inf
t∈T

νA(t).

Definition 2.12.[8] Let f : X → Y be a function and A and B be the ILFS of X and Y

respectively where A = {< x, µA(x), νA(x) > |x ∈ X} and B = {< x, µB(x), νB(x) > |x ∈ Y } .

Then the image of A under f is defined as f(A) =
{
< y, µf(A)(y), νf(A) > |y ∈ Y

}
such that

µf(A)(y) =





sup
z∈f−1(y)

µA(z), if f−1(y) = {x : f(x) = y} 6= φ,

0, otherwise.

and

νf(A)(y) =





inf
z∈f−1(y)

νA(z), if f−1(y) = {x : f(x) = y} 6= φ,

0, otherwise.

Definition 2.13.[8] Let f : X → Y be a function and A and B be the intuitionistic
L-fuzzy subsets of X and Y respectively such that A = {< x, µA(x), νA(x) > |x ∈ X} and
B = {< x, µB(x), νB(x) > |x ∈ Y } . Then the inverse image of B under f is defined as f−1(B) ={
< x, µf−1(B)(x), νf−1(B)(x) > |x ∈ X

}
such that µf−1(B)(x) = µ(B)(f(x)) and νf−1(B)(x) =

ν(B)(f(x)), ∀x ∈ X.

Definition 2.14.[7] Let (X, ∗X , 0X), (Y, ∗Y , 0Y ) be two BF -algebras. The cartesian prod-
uct of X and Y is defined to be the set

X × Y = {(x, y)/x ∈ X, y ∈ Y } .

In X × Y we define the product ∗X×Y as follows:

(x1, y1) ∗X×Y (x2, y2) = (x1 ∗X x2, y1 ∗Y y2).

One can easily verify that the cartesian product of two BF -algebras is again a BF -algebra.

§3. Intuitionistic L-fuzzy p-ideal

This section introduces the notion of Intuitionistic L-fuzzy p-ideal of a BF -algebra X.
Here after X represents a BF -algebra, unless otherwise soecified. We start with,

Definition 3.1. An ILFS A in a BF -algebra X is said to be an Intuitionistic L-fuzzy
p-ideal (ILF -p-ideal) of X if

(i) µA(0) ≥ µA(x).
(ii) νA(0) ≤ νA(x).
(iii) µA(x) ≥ µA((x ∗ z) ∗ (y ∗ z)) ∧ µA(y).
(iv) νA(x) ≤ νA((x ∗ z) ∗ (y ∗ z)) ∨ νA(y), ∀ x, y, z ∈ X.
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Example 3.1. Consider the BF -algebra X = {0, 1, 2, 3} with the Cayley table given
below.

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

A = {< x, µA(x), νA(x) >| x ∈ X} is the ILFS of X defined as

µA(x) =





1 , x = 0, 1,

0.5 , x = 2, 3.
and νA(x) =





0 , x = 0, 1,

0.5 , x = 2, 3.

is an ILF -p-ideal of X.

Definition 3.2. An ILFS A in a BF -algebra X is said to be an Intuitionistic L-fuzzy
closed p-ideal (ILFC-p-ideal) of X if

(i) µA(x) ≥ µA((x ∗ z) ∗ (y ∗ z)) ∧ µA(y).

(ii) νA(x) ≤ νA((x ∗ z) ∗ (y ∗ z)) ∨ νA(y).

(iii) µA(0 ∗ x) ≥ µA(x).

(iv) νA(0 ∗ x) ≤ νA(x), ∀ x, y, z ∈ X.

Example 3.2. Consider the BF -algebra X = {0, 1, 2, 3} with the Cayley table given
below.

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

A = {< x, µA(x), νA(x) >| x ∈ X} is the ILFS of X defined as

µA(x) =





0.8 , x = 0, 1,

0.1 , x = 2, 3.
and νA(x) =





0.1 , x = 0, 1,

0.5 , x = 2, 3.

is an ILFC-p-ideal of X.

Proposition 3.1. Every ILFC-p-ideal is an ILF -p-ideal.

Proof. It is clear.

The converse of the above proposition is not true, in general, as seen from the following.

Example 3.3. Consider the BF -algebra X = {0, 1, 2, 3} with the Cayley table given
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below.
∗ 0 1 2 3

0 0 3 0 1

1 1 0 1 3

2 2 3 0 1

3 3 1 3 0

A = {< x, µA(x), νA(x) >| x ∈ X} is the ILFS of X defined as

µA(x) =





0.6 , x = 0, 1,

0.2 , x = 2, 3.
and νA(x) =





0.2 , x = 0, 1,

0.5 , x = 2, 3.

is an ILF -p-ideal of X but not ILFC-p-ideal, since µA(0 ∗ 1) < µA(1) and νA(0 ∗ 1) > νA(1).
Proposition 3.2. If A is Intuitionistic L-fuzzy p-ideal of X with x ≤ y for any x, y ∈ X

then µA(x) ≥ µA(y) and νA(x) ≤ νA(y).
That is µA is order-reversing and νA is order-preserving.
Proof. Let x, y, z ∈ X such that x ≤ y ≤ z. Then by the partial ordering ≤ defined in

X, we have x ∗ y = 0 and y ∗ z = 0.

Thus

µA(x) ≥ µA((x ∗ y) ∗ (y ∗ z)) ∧ µA(y)

≥ µA((0 ∗ 0) ∧ µA(y))

= µA(0) ∧ µA(y)

= µA(y).

And

νA(x) ≤ νA((x ∗ y) ∗ (y ∗ z)) ∨ νA(y)

≤ νA((0 ∗ 0) ∨ νA(y))

= νA(0) ∨ νA(y)

= νA(y).

This completes the proof.
Proposition 3.3. A is an ILFS of X. A is in ILF -ideal of X is ILF -p-ideal of X if and

only if µA(x) ≥ µA((0) ∗ (0 ∗ x)) and νA(x) ≤ νA((0) ∗ (0 ∗ x)).
Theorem 3.1. If A is ILFC-p-ideal of X, then the sets J = {x ∈ X ; µA(x) = µA(0)}

and K = {x ∈ X ; νA(x) = νA(0)} are p-ideals of X.

Proof. Clearly 0 ∈ J and 0 ∈ K. Hence J 6= φ and K 6= φ.

Let (x ∗ y) ∗ (y ∗ z) ∈ J and y ∈ J.

⇒ µA((x ∗ y) ∗ (y ∗ z)) = µA(y) = 0.
⇒ µA(x) ≥ µA((x ∗ y) ∗ (y ∗ z)) ∧ µA(y) = 0 ∧ 0 = 0.

But µA(0) ≥ µA(x).
⇒ µA(x) = 0.
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⇒ x ∈ J .

Hence J is p-ideal of X.

Similarly K is p-ideal of X.

Theorem 3.2. Intersection of any two Intuitionistic L-fuzzy p-ideals of X is also an
Intuitionistic L-fuzzy p-idea of X.

Proof. Let A and B be any two Intuitionistic L-fuzzy p-ideals of X. Let A = {<
x, µA(x), νA(x) >| x ∈ X} and B = {< x, µB(x), νB(x) >| x ∈ X} . Take C = A ∩ B =
{< x, µC(x), νC(x) >| x ∈ X}, where µC(x) = µA(x) ∧ µB(x) and νC(x) = νA(x) ∨ νB(x). Let
x, y ∈ X. Now µC(0) = µA(0)∧µB(0) ≥ µA(x)∧µB(x) = µC(x) and νC(0) = νA(0)∨ νB(0) ≤
νA(x) ∨ νB(x) = νC(x).

µC(x) = µA(x) ∧ µB(x)

≥ (µA((x ∗ z) ∗ (y ∗ z)) ∧ µA(y)) ∧ (µB((x ∗ z) ∗ (y ∗ z)) ∧ µB(y))

= (µA((x ∗ z) ∗ (y ∗ z)) ∧ µB((x ∗ z) ∗ (y ∗ z))) ∧ (µA(y) ∧ µB(y))

= µC((x ∗ z) ∗ (y ∗ z)) ∧ µC(y).

Similarly νC(x) ≤ νC((x ∗ z) ∗ (y ∗ z)) ∨ νC(y).

This completes the proof.

The above theorem can be generalized as follows.

Theorem 3.3. The intersection of a family of Intuitionistic L-fuzzy p-ideals of X is an
Intuitionistic L-fuzzy p-ideal of X.

Analogously we prove the following.

Theorem 3.4. Intersection of any two Intuitionistic L-fuzzy closed p-ideal of X is also an
Intuitionistic L-fuzzy closed p-ideal of X and hence the intersection of a family of Intuitionistic
L-fuzzy closed p-ideal of X is also an Intuitionistic L-fuzzy closed p-ideal of X.

Theorem 3.5. An ILFS A = {< x, µA(x), νA(x) >| x ∈ X} is an ILF -p-ideal of X if
and only if the L-fuzzy subsets µA and ν̄A are L-fuzzy p-ideals of X.

Proof. Let A = {< x, µA(x), νA(x) >| x ∈ X} be an ILF -p-ideal of X. Then clearly µA

is a L-fuzzy p-ideal of X. Now ν̄A(0) = 1− νA(0) ≥ 1− νA(x) = ν̄A(x).

And for all x, y, z ∈ X, νA(x) ≤ νA((x ∗ z) ∗ (y ∗ z)) ∨ νA(y).

⇒ 1− ν̄A(x) ≤ [1− ν̄A((x ∗ z) ∗ (y ∗ z))] ∨ [1− ν̄A(y)].

⇒ ν̄A(x) ≥ 1− {[1− ν̄A((x ∗ z) ∗ (y ∗ z))] ∨ [1− ν̄A(y)]}.
⇒ ν̄A(x) ≥ (1− νA((x ∗ z) ∗ (y ∗ z))) ∧ (1− νA(y)).

⇒ ν̄A(x) ≥ ν̄A((x ∗ z) ∗ (y ∗ z)) ∧ ν̄A(y).

∴ ν̄A is a L-fuzzy p-ideal of X.

Conversely, assume µA and ν̄A are L-fuzzy p-ideals of X.

Hence to prove A = {< x, µA(x), νA(x) >| x ∈ X} is an ILF -p-ideal of X it is enough to
prove νA(0) ≤ νA(x) and νA(x) ≤ νA((x ∗ z) ∗ (y ∗ z)) ∨ νA(y), ∀ x, y, z ∈ X.

For, 1− νA(0) = ν̄A(0) ≥ ν̄A(x) = 1− νA(x) ⇒ νA(0) ≤ νA(x).
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Also

1− νA(x) = ν̄A(x) ≥ ν̄A((x ∗ z) ∗ (y ∗ z)) ∧ ν̄A(y)

= (1− νA((x ∗ z) ∗ (y ∗ z))) ∧ (1− νA(y))

= 1− [νA((x ∗ y) ∗ (y ∗ z)) ∨ νA(y)].

⇒ νA(x) ≤ νA((x ∗ z) ∗ (y ∗ z)) ∨ νA(y)), ∀ x, y, z ∈ X.

This completes the proof.

Using this theorem we have the following.

Theorem 3.6. An ILFS A = {< x, µA(x), νA(x) >| x ∈ X} is an ILF -p-ideal (ILFC-p-
ideal) of X if and only if

(i) ¤A = {< x, µA(x), µ̄A(x) > ∀ x ∈ X} and

(ii) ♦A = {< x, ν̄A(x), νA(x) > ∀ x ∈ X} are also ILF -p-ideals (ILFC-p-ideals) of X.

§4. Homomorphism on intuitionistic L-fuzzy p-ideal

In this section the homomorphic properties of an image and pre-image of an Intuitionistic
L-fuzzy p-Ideal of a BF -algebra has been verified.

Definition 4.1.[8] A function f : X → Y of BF -algebras is said to be homomorphism on
X if f(x ∗ y) = f(x) ∗ f(y), ∀ x, y ∈ X.

Remark 4.1. If f : X → Y is a homomorphism on BF -algebras then f(0X) = 0Y .

Definition 4.2.[8] A function f : X → Y of BF -algebras is said to be anti-homomorphism
on X if f(x ∗ y) = f(y) ∗ f(x), ∀ x, y ∈ X.

Theorem 4.1. Let f be a homomorphism on BF -algebras X onto Y and A be an ILF -
p-ideal of X with Sup-Inf property. Then the image of A, f(A) = {< y, µf(A)(y), νf(A)(y) >|
y ∈ Y } is an ILF -p-ideal of Y.

Proof. Let a, b, c ∈ Y with x0 ∈ f−1(a), y0 ∈ f−1(b) and z0 ∈ f−1(c) such that

µA(x0) = sup
t∈f−1(a)

µA(t) ; µA(y0) = sup
t∈f−1(b)

µA(t) ; µA(z0) = sup
t∈f−1(c)

µA(t)

and

νA(x0) = inf
t∈f−1(a)

νA(t) ; νA(y0) = inf
t∈f−1(b)

νA(t) ; νA(z0) = inf
t∈f−1(c)

νA(t).

By Definitions 2.11 and 2.12 we have the following:

µf(A)(0) = sup
t∈f−1(0)

µA(t) ≥ µA(0) ≥ µA(x0) = sup
t∈f−1(a)

µA(t) = µf(A)(a)

and

νf(A)(0) = inf
t∈f−1(a)

νA(t) ≤ νA(0) ≤ νA(x0) = inf
t∈f−1(a)

νA(t) = νf(A)(a).
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Now

µf(A)((a ∗ c) ∗ (b ∗ c)) ∧ µf(A)(b) = sup
t∈f−1((a∗c)∗(b∗c))

µA(t) ∧ sup
t∈f−1(b)

µA(t)

≤ µA((x0 ∗ z0) ∗ (y0 ∗ z0)) ∧ µA(y0)

≤ µA(x0)

= sup
t∈f−1(a)

µA(t)

= µf(A)(a).

νf(A)((a ∗ c) ∗ (b ∗ c)) ∨ νf(A)(b) = inf
t∈f−1((a∗c)∗(b∗c))

νA(t) ∨ inf
t∈f−1(b)

νA(t)

≥ νA((x0 ∗ z0) ∗ (y0 ∗ z0)) ∨ νA(y0)

≥ νA(x0)

= inf
t∈f−1(a)

νA(t)

= νf(A)(a).

Hence the image f(A) =
{
< y, µf(A)(y), νf(A)(y) >| y ∈ Y

}
is an ILF -p-ideal of Y .

Theorem 4.2. Let f be a homomorphism from BF -algebras X onto Y and A be an ILFC-
p-ideal of X with Sup-Inf property. Then the image of A, f(A) = {< y, µf(A)(y), νf(A)(y) >|
y ∈ Y } is an ILFC-p-ideal of Y .

Proof. Let x ∈ Y with x0 ∈ f−1(x) such that

µA(x0) = sup
t∈f−1(x)

µA(t) ; νA(x0) = inf
t∈f−1(x)

νA(t).

Then

µf(A)(x) = sup
t∈f−1(x)

µA(t) ≤ µA(x0) ≤ µA(0 ∗ x0)

= sup
t∈f−1(0∗x)

µA(t)

= µf(A)(0 ∗ x)

and

νf(A)(x) = inf
t∈f−1(x)

νA(t) ≥ νA(x0) ≥ νA(0 ∗ x0)

= inf
t∈f−1(0∗x)

νA(t)

= νf(A)(0 ∗ x).

Hence by the above theorem the image f(A) = {< y, µf(A)(y), νf(A)(y) >| y ∈ Y } is an
ILF -p-ideal of Y .

Theorem 4.3. Let f be a homomorphism from BF -algebras X onto Y and B be an ILF -
p-ideal of Y . Then the inverse image of B, f−1(B) =

{
< x, µf−1(B)(x), νf−1(B)(x) >| x ∈ X

}

is an ILF -p-ideal of X.
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Proof. Let x, y ∈ X. Now it is clear that

µf−1(B)(0) = µB(f(0)) ≥ µB(f(x)) = µf−1(B)(x)

and
νf−1(B)(0) = νB(f(0)) ≤ νB(f(x)) = νf−1(B)(x).

Then

µf−1(B)(x) = µB(f(x))

≥ µB((f(x) ∗ f(z)) ∗ (f(y) ∗ f(z))) ∧ µB(f(y))

= µf1(B)((x ∗ z) ∗ (y ∗ z)) ∧ µf−1(B)(y).

Also

νf−1(B)(x) = νB(f(x))

≤ νB((f(x) ∗ f(z)) ∗ (f(y) ∗ f(z))) ∨ νB(f(y))

= νf−1(B)((x ∗ z) ∗ (y ∗ z)) ∨ νf−1(B)(y).

Then the inverse image of B, f−1(B) = {< x, µf−1(B)(x), νf−1(B)(x) >| x ∈ X} is an
ILF -p-ideal of X.

Theorem 4.4. Let f be a homomorphism from BF -algebras X onto Y and B be an ILFC-
p-ideal of Y . Then the inverse image of B, f−1(B) = {< x, µf−1(B)(x), νf−1(B)(x) >| x ∈ X}
is an ILFC-p-ideal of X.

Proof. Let x ∈ X. Then

µf−1(B)(0 ∗ x) = µB(f(0 ∗ x))

= µB(f(0) ∗ f(x))

≥ µB(f(x))

= µf−1(B)(x).

Also

νf−1(B)(0 ∗ x) = νB(f(0 ∗ x))

= νB(f(0) ∗ f(x))

≤ νB(f(x))

= νf−1(B)(x).

Hence by the above theorem the inverse image f−1(B) = {< x, µf−1(B)(x), νf−1(B)(x) >|
x ∈ X} is an ILFC-p-ideal of X.

In the similar way we can prove the following:
Theorem 4.5. Let f be an anti-homomorphism from X onto Y and A be an ILF -p-ideal

of X with Sup-Inf property. Then the image of A, f(A) = {< y, µf(A)(y), νf(A)(y) >| y ∈ Y }
is an ILF -p-ideal of Y .
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Theorem 4.6. Let f be an anti-homorphism from X onto Y and B be an ILF -p-ideal
of Y . Then the inverse image of B, f−1(B) = {< x, µf−1(B)(x), νf−1(B)(x) >| x ∈ X} is an
ILF -p-ideal of X.

Theorem 4.7. Let f be an anti-homorphism from X onto Y and A be an ILFC-p-ideal
of X with Sup-Inf property. Then the image of A, f(A) = {< y, µf(A)(y), νf(A)(y) >| y ∈ Y }
is an ILFC-p-ideal of Y .

Theorem 4.8. Let f be an anti-homomorphism from X onto Y and B be an ILFC-p-
ideal of Y . Then the inverse image of B, f−1(B) = {< x, µf−1(B)(x), νf−1(B)(x) >| x ∈ X} is
an ILFC-p-ideal of X.

§5. Product on intuitionistic L-fuzzy p-ideal

In this section the Cartisean product of two Intuitionistic L-fuzzy p-Ideal has been defined
and some results are also proved using the product.

Definition 5.1. Let A and B be any two ILFS of X. The Cartesian product of A and
B is defined as A × B = (X × X, µA × µB , νA × νB) with (µA × µB)(x, y) = µA(x) ∧ µB(y)
and (νA × νB)(x, y) = νA(x) ∨ νB(y) where µA × µB : X × X → L and νA × νB : X × X →
L, ∀ x, y ∈ X.

Definition 5.2. Let A and B be any two ILFS of X and Y respectively. The Cartesian
product of A and B is defined as A×B = (X × Y, µA × µB , νA × νB) with (µA × µB)(x, y) =
µA(x)∧µB(y) and (νA× νB)(x, y) = νA(x)∨ νB(y) where µA×µB : X ×Y → L and νA× νB :
X × Y → L, ∀ x ∈ X ; y ∈ Y.

Theorem 5.1. Let A and B be any two Intuitionistic L-fuzzy p-ideals of X and Y

respectively. Then A×B is an Intuitionistic L-fuzzy p-ideal of X × Y.

Proof. Take (x, y) ∈ X × Y. Then

(µA × µB)(0, 0) = µA(0) ∧ µB(0)

≥ µA(x) ∧ µB(y) ∀ x ∈ X ; y ∈ Y

= (µA × µB)(x, y).

And

(νA × νB)(0, 0) = νA(0) ∨ νB(0)

≤ νA(x) ∨ νB(x) ∀ x ∈ X ; y ∈ Y

= (νA × νB)(x, y)

Take (x1, y1), (x2, y2) and (x3, y3) ∈ X × Y, ∀ xi ∈ X : yi ∈ Y ; i = 1, 2, 3. Then

(µA × µB)(x1, y1)

= µA(x1) ∧ µB(y1)

≥ (µA((x1 ∗ x3) ∗ (x2 ∗ x3)) ∧ µA(x2)) ∧ (µB((y1 ∗ y3) ∗ (y2 ∗ y3)) ∧ µB(y2))

≥ (µA((x1 ∗ x3) ∗ (x2 ∗ x3)) ∧ µB((y1 ∗ y3) ∗ (y2 ∗ y3))) ∧ (µA(x2) ∧ µB(y2))

= (µA × µB)[((x1 ∗ x3) ∗ (x2 ∗ x3)), ((y1 ∗ y3) ∗ (y2 ∗ y3))] ∧ (µA × µB)(x2, y2)

= (µA × µB)[((x1, y1) ∗ (x3, y3)) ∗ ((x2, y2) ∗ (x3, y3))] ∧ (µA × µB)(x2, y2).
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And

(νA × νB)(x1, y1)

= νA(x1) ∨ νB(y1)

≤ (νA((x1 ∗ x3) ∗ (x2 ∗ x3)) ∨ νA(x2)) ∨ (νB((y1 ∗ y3) ∗ (y2 ∗ y3)) ∨ νB(y2))

≤ (νA((x1 ∗ x3) ∗ (x2 ∗ x3)) ∨ νB((y1 ∗ y3) ∗ (y2 ∗ y3))) ∨ (νA(x2) ∨ νB(y2))

= (νA × νB)[((x1 ∗ x3) ∗ (x2 ∗ x3)), ((y1 ∗ y3) ∗ (y2 ∗ y3))] ∨ (νA × νB)(x2, y2)

= (νA × νB)[((x1, y1) ∗ (x3, y3)) ∗ ((x2, y2) ∗ (x3, y3))] ∨ (νA × νB)(x2, y2).

This completes the proof.
Theorem 5.2. Let A and B be any two Intuitionistic L-fuzzy closed p-ideals of X and Y

respectively. Then A×B is an Intuitionistic L-fuzzy closed p-ideal of X × Y.

Proof. For any (x, y) ∈ X × Y we have

(µA × µB)((0, 0) ∗ (x, y)) = (µA × µB)(0 ∗ x, 0 ∗ y)

= µA(0 ∗ x) ∧ µB(0 ∗ y)

≥ µA(x) ∧ µB(y)

= (µA × µB)(x, y)

and

(νA × νB)((0, 0) ∗ (x, y)) = (νA × νB)(0 ∗ x, 0 ∗ y)

= νA(0 ∗ x) ∨ νB(0 ∗ y)

≤ νA(x) ∨ νB(y)

= (νA × νB)(x, y).

Thus A×B is an Intuitionistic L-fuzzy closed p-ideal of X × Y.

Theorem 5.3. Let A and B be any two Intuitionistic L-fuzzy p-ideals of X and Y. In the
Intuitionistic L-fuzzy p-ideal A×B of X × Y, we have

(i) µA(0) ≥ µB(y) and µB(0) ≥ µA(x).
(ii) νA(0) ≤ νB(y) and νB(0) ≤ νA(x), ∀ x ∈ X ; y ∈ Y .
Proof. Assume µB(y) > µA(0) and µA(x) > µB(0) for some x ∈ X ; y ∈ Y. Then

(µA × µB)(x, y) = µA(x) ∧ µB(y) ≥ µB(0) ∧ µA(0) = (µA × µB)(0, 0).

Which is a ⇒⇐ .

Similarly,assume νA(y) < νB(0) and νB(x) < νA(0) for some x ∈ X ; y ∈ Y. Then

(νA × νB)(x, y) = νA(x) ∨ νB(y) ≤ νB(0) ∨ νA(0) = (νA × νB)(0, 0).

Which is a ⇒⇐.
Hence proved.
Theorem 5.4. If A × B is an Intuitionistic L-fuzzy p-ideal of X × Y, then either A is

Intuitionistic L-fuzzy p-ideal of X or B is Intuitionmistic L-fuzzy p-ideal of Y.
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Proof. Now by above theorem if we take µA(0) ≥ µB(y) and νA(0) ≤ νB(y) then

(µA × µB)(0, y) = µA(0) ∧ µB(y) = µB(y)

and

(νA × νB)(0, y) = νA(0) ∨ νB(y) = νB(y). (1)

Since A×B is an Intuitionistic L-fuzzy p-ideal of X × Y,

(µA × µB)(x1, y1)

≥ (µA × µB)[((x1, y1) ∗ (x3, y3)) ∗ ((x2, y2) ∗ (x3, y3))] ∧ (µA × µB)(x2, y2). (2)

Putting x1 = x2 = x3 = 0 in (2) we get,

(µA × µB)(0, y1)

≥ (µA × µB)[((0, y1) ∗ (0, y3)) ∗ ((0, y2) ∗ (0, y3))] ∧ (µA × µB)(0, y2).

(µA × µB)(0, y1)

≥ (µA × µB)[0, ((y1 ∗ y3) ∗ (y2 ∗ y3))] ∧ (µA × µB)(0, y2). (3)

Using equation (1) in (3), we have,

µB(y1) ≥ µB((y1 ∗ y3) ∗ (y2 ∗ y3)) ∧ µB(y2).

In the similar way we can prove

νB(y1) ≤ νB((y1 ∗ y3) ∗ (y2 ∗ y3)) ∨ νB(y2).

This proves B is Intuitionistic L-fuzzy p-ideal of Y.

This completes the proof.
Theorem 5.5. For any Intuitionistic L-fuzzy p-ideals A and B of X and Y respec-

tively. A × B is an Intuitionistic L-fuzzy p-ideal of X × Y if and only if (µA × µB)(x, y) and
( ¯νA × νB)(x, y) are L-fuzzy p-ideals of X × Y.

Proof. Let A×B is an Intuitionistic L-fuzzy p-ideal of X × Y.

Clearly (µA × µB)(x, y) = µA(x) ∧ µB(y) is L-fuzzy p-ideal of X × Y.

We have (νA × νB)(x, y) = νA(x) ∨ νB(y).
⇒ 1− (ν̄A × ν̄B)(x, y) = (1− ¯νA(x)) ∨ (1− ¯νB(y)).
⇒ 1− {

(1− ¯νA(x)) ∨ (1− ¯νB(y))
}

= (ν̄A × ν̄B)(x, y).
⇒ (ν̄A × ν̄B)(x, y) = ¯νA(x) ∧ ¯νB(y) is L-fuzzy p-ideal of X × Y.

Conversely, assume (µA × µB)(x, y) and ( ¯νA × νB)(x, y) are L-fuzzy p-ideals of X × Y.

Now A×B = (X × Y, µA × µB , νA × νB).
Since (ν̄A × ν̄B)(x, y) = ¯νA(x) ∧ ¯νB(y) ⇒ (νA × νB)(x, y) = νA(x) ∨ νB(y).
We can easily observe that A×B is an Intuitionistic L-p-ideal of X × Y.

Theorem 5.6. For any ILFS A and B, A and B are Intuitionistic L-fuzzy p-ideals of X

and Y respectively, if and only if
(i) ¤(A×B) = (X ×X, µA × µB , µ̄A × µ̄B) and
(ii) ♦(A×B) = (X ×X, ν̄A × ν̄B , νA × νB) are Intuitionistic L-fuzzy p-ideals of X × Y.

Proof. Since (µA × µB)(x, y) = µA(x) ∧ µB(y) ⇒ (µ̄A × µ̄B)(x, y) = ¯µA(x) ∨ ¯µB(y) and
(νA × νB)(x, y) = νA(x) ∨ νB(y) ⇒ (ν̄A × ν̄B)(x, y) = ¯νA(x) ∧ ¯νB(y), the proof is clear.
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§6. Conclusion

In this article, we have introduced the notion of Intuitionistic L-fuzzy p-ideal of BF -
Algebras. In [1], it is proved that if (A, ∗, 0) is a BF -algebra, than A is a BG-algebra. Hence
it is clear that all the results proved in this paper for a BF -algebra are valid for a BG-algebra.
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Abstract In this paper we prove some results towards classifying Smarandache groupoids

which are in Z∗(n) and not in Z(n) when n is even and n is odd.

Keywords Groupoids, Smarandache groupoids.

§1. Introduction and preliminaries

In [3] and [4], W. B. Kandasamy defined new classes of Smarandache groupoids using Zn.
In this paper we prove some theorems for construction of Smarandache groupoids according as
n is even or odd.

Definition 1.1. A non-empty set of elements G is said to form a groupoid if in G is
defined a binary operation called the product denoted by ∗ such that a ∗ b ∈ G, ∀ a, b ∈ G.

Definition 1.2. Let S be a non-empty set. S is said to be a semigroup if on S is defined
a binary operation ∗ such that

(i) for all a, b ∈ S we have a ∗ b ∈ S (closure).
(ii) for all a, b, c ∈ S we have a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative law).

(S, ∗) is a semi-group.
Definition 1.3. A Smarandache groupoid G is a groupoid which has a proper subset

S ⊂ G which is a semi-group under the operation of G.
Example 1.1. Let (G, ∗) be a groupoid on the set of integer modulo 6, given by the

following table.

* 0 1 2 3 4 5

0 0 5 0 5 0 5

1 1 3 1 3 1 3

2 2 4 2 4 2 4

3 3 1 3 1 3 1

4 4 2 4 2 4 2

5 5 0 5 0 5 0
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Here, {0, 5}, {1, 3}, {2, 4} are proper subsets of G which are semigroups under ∗.
Definition 1.4. Let Zn = {0, 1, 2, · · · , n − 1}, n ≥ 3. For a, b ∈ Zn\{0} define a binary

operation ∗ on Zn as: a ∗ b = ta + ub (mod n) where t, u are 2 distinct elements in Zn\{0} and
(t, u) = 1. Here “+”is the usual addition of two integers and “ta”mean the product of the
two integers t and a.

Elements of Zn form a groupiod with respect to the binary operation. We denote these
groupoids by {Zn(t, u), ∗} or Zn(t, u) for fixed integer n and varying t, u ∈ Zn\{0} such that
(t, u) = 1. Thus we define a collection of groupoids Z(n) as follows

Z(n) = {Zn(t, u), ∗| for integers t, u ∈ Zn\{0} such that (t, u) = 1}.

Definition 1.5. Let Zn = {0, 1, 2, · · · , n − 1}, n ≥ 3. For a, b ∈ Zn\{0}, define a binary
operation ∗ on Zn as: a ∗ b = ta + ub (mod n) where t, u are two distinct elements in Zn\{0}
and t and u need not always be relatively prime but t 6= u. Here “+”is usual addition of two
integers and “ta”means the product of two integers t and a.

For fixed integer n and varying t, u ∈ Zn\{0} s.t t 6= u we get a collection of groupoids
Z∗(n) as: Z∗(n) = {Zn(t, u), ∗| for integers t, u ∈ Zn\{0} such that t 6= u}.

Remarks 1.1. (i) Clearly, Z(n) ⊂ Z∗(n).
(ii) Z∗(n)\Z(n) = Φ for n = p + 1 for prime p = 2, 3.
(iii) Z∗(n)\Z(n) 6= Φ for n 6= p + 1 for prime p.
We are interested in Smarandache Groupoids which are in Z∗(n) and not in Z(n) i.e.,

Z∗(n)\Z(n).

§2. Smarandache groupoids when n is even

Theorem 2.1. Let Zn(t, lt) ∈ Z∗(n)\Z(n). If n is even, n > 4 and for each t =
2, 3, · · · , n

2 − 1 and l = 2, 3, 4, · · · such that lt < n, then Zn(t, lt) is Smarandache groupoid.
Proof. Let x = n

2 .
Case 1. t is even.
x ∗ x = xt + ltx = (l + 1)tx ≡ 0 mod n.
x ∗ 0 = xt ≡ 0 mod n.
0 ∗ x = lxt ≡ 0 mod n.
0 ∗ 0 = 0 mod n.

∴ {0, x} is semigroup in Zn(t, lt).
∴ Zn(t, lt) is Smarandache groupoid when t is even.

Case 2. t is odd.

(a) If l is even.
x ∗ x = xt + ltx = (l + 1)tx ≡ x mod n.
{x} is semigroup in Zn(t, lt).
∴ Zn(t, lt) is Smarandache groupoid when t is odd and l is even.
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(b) If l is odd then (l + 1) is even.
x ∗ x = xt + ltx = (l + 1)tx ≡ 0 mod n.
x ∗ 0 = xt ≡ x mod n.
0 ∗ x = ltx ≡ x mod n.
0 ∗ 0 ≡ 0 mod n.
⇒ {0, x} is semigroup in Zn(t, lt).
∴ Zn(t, lt) is Smarandache groupoid when t is odd and l is odd.

Theorem 2.2. Let Zn(t, u) ∈ Z∗(n)\Z(n), n is even n > 4 where (t, u) = r and r 6= t, u

then Zn(t, u) is Smarandache groupoid.
Proof. Let x = n

2 .
Case 1. Let r be even i.e t and u are even.

x ∗ x = tx + ux = (t + u)x ≡ 0 mod n.
0 ∗ x = ux ≡ 0 mod n.
x ∗ 0 = tx ≡ 0 mod n.
0 ∗ 0 = 0 mod n.
{0, x} is semigroup in Zn(t, lt).

∴ Zn(t, lt) is Smarandache groupoid when t is even and u is even.

Case 2. Let r be odd.

(a) when t is odd and u is odd,
⇒ t + u is even.
x ∗ x = tx + ux = (t + u)x ≡ 0 mod n.
x ∗ 0 = tx ≡ x mod n.
0 ∗ x ≡ ux ≡ x mod n.
0 ∗ 0 ≡ 0 mod n.
{0, x} is a semigroup in Zn(t, u).
∴ Zn(t, u) is Smarandache groupoid when t is odd and u is odd.

(b) when t is odd and u is even,
⇒ t + u is odd.
x ∗ x = tx + ux = (t + u)x ≡ x mod n.
{x} is a semigroup in Zn(t, u).
∴ Zn(t, u) is Smarandache groupoid when t is odd and u is even.

(c) when t is even and u is odd,
⇒ t + u is odd.
x ∗ x = tx + ux = (t + u)x ≡ x mod n.
{x} is a semigroup in Zn(t, u).
∴ Zn(t, u) is Smarandache groupoid when t is even and u is odd.

By the above two theorems we can determine Smarandache groupoids in Z∗(n)\Z(n) when
n is even and n > 4.

We find Smarandache groupoids in Z∗(n)\Z(n) for n = 22 by Theorem 2.1.
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t l lt < 22 Zn(t, lt) Proper subset Smarandache groupoid

which is semigroup inZ∗(n)\Z(n)

2 4 Z22(2, 4) {0, 11} Z22(2, 4)

3 6 Z22(2, 6) {0, 11} Z22(2, 6)

4 8 Z22(2, 8) {0, 11} Z22(2, 8)

2 5 10 Z22(2, 10) {0, 11} Z22(2, 10)

6 12 Z22(2, 12) {0, 11} Z22(2, 12)

7 14 Z22(2, 14) {0, 11} Z22(2, 14)

8 16 Z22(2, 16) {0, 11} Z22(2, 16)

9 18 Z22(2, 18) {0, 11} Z22(2, 18)

10 20 Z22(2, 20) {0, 11} Z22(2, 20)

2 6 Z22(3, 6) {11} Z22(3, 6)

3 9 Z22(3, 9) {0, 11} Z22(3, 9)

3 4 12 Z22(3, 12) {11} Z22(3, 12)

5 15 Z22(3, 15) {0, 11} Z22(3, 15)

6 18 Z22(3, 18) {11} Z22(3, 18)

7 21 Z22(3, 21) {0, 11} Z22(3, 21)

2 8 Z22(4, 8) {0, 11} Z22(4, 8)

4 3 12 Z22(4, 12) {0, 11} Z22(4, 12)

4 16 Z22(4, 16) {0, 11} Z22(4, 16)

5 20 Z22(4, 20) {0, 11} Z22(4, 20)

2 10 Z22(5, 10) {11} Z22(5, 10)

5 3 15 Z22(5, 15) {0, 11} Z22(5, 15)

4 20 Z22(5, 20) {11} Z22(5, 20)

2 12 Z22(6, 12) {0, 11} Z22(6, 12)

6 3 18 Z22(6, 18) {0, 11} Z22(6, 18)

2 14 Z22(7, 14) {11} Z22(7, 14)

7 3 21 Z22(7, 21) {0, 11} Z22(7, 21)

8 2 16 Z22(8, 16) {0, 11} Z22(8, 16)

9 2 18 Z22(9, 18) {11} Z22(9, 18)

10 2 20 Z22(10, 20) {0, 11} Z22(10, 20)

Next, we find Smarandache groupoids in Z∗(n)\Z(n) for n = 22 by Theorem 2.2.



Vol. 8 Some results on Smarandache groupoids 115

t u (t, u) = r Zn(t, u) Proper subset Smarandache groupoid

r 6= t, u which is semigroup inZ∗(n)\Z(n)

6 (4,6)=2 Z22(4, 6) {0, 11} Z22(4, 6)

4 10 (4,10=2 Z22(4, 10) {0, 11} Z22(4, 10)

14 (4,14)=2 Z22(4, 14) {0, 11} Z22(4, 14)

18 (4,18)=2 Z22(4, 18) {0, 11} Z22(4, 18)

8 (6,8)=2 Z22(6, 8) {0, 11} Z22(6, 8)

9 (6,9)=3 Z22(6, 9) {11} Z22(6, 9)

10 (6,10)=2 Z22(6, 10) {0, 11} Z22(6, 10)

6 14 (6,14)=2 Z22(6, 14) {0, 11} Z22(6, 14)

16 (6,16)=2 Z22(6, 16) {0, 11} Z22(6, 16)

20 (6,20)=2 Z22(6, 20) {0, 11} Z22(6, 20)

21 (6,21)=3 Z22(6, 21) {11} Z22(6, 21)

10 (8,10)=2 Z22(8, 10) {0, 11} Z22(8, 10)

12 (8,12)=4 Z22(8, 12) {0, 11} Z22(8, 12)

8 14 (8,14)=2 Z22(8, 14) {0, 11} Z22(8, 14)

18 (8,18)=2 Z22(8, 18) {0, 11} Z22(8, 18)

20 (8,20)=4 Z22(8, 20) {0, 11} Z22(8, 20)

9 21 (9,21)=3 Z22(9, 21) {0, 11} Z22(9, 21)

12 (10,12)=2 Z22(10, 12) {0, 11} Z22(10, 12)

14 (10,14)=2 Z22(10, 14) {0, 11} Z22(10, 14)

10 16 (10,16)=2 Z22(10, 16) {0, 11} Z22(10, 16)

18 (10,18)=2 Z22(10, 18) {0, 11} Z22(10, 19)

14 (12,14)=2 Z22(12, 14) {0, 11} Z22(12, 14)

15 (12,15)=3 Z22(12, 15) {11} Z22(12, 15)

12 16 (12,16)=4 Z22(12, 16) {0, 11} Z22(12, 16)

18 (12,18)=6 Z22(12, 18) {0, 11} Z22(12, 18)

20 (12,20)=4 Z22(12, 20) {0, 11} Z22(12, 20)

21 (12,21)=3 Z22(12, 21) {11} Z22(12, 21)

16 (14,16)=2 Z22(14, 16) {0, 11} Z22(14, 16)

18 (14,18)=2 Z22(14, 18) {0, 11} Z22(14, 18)

14 20 (14,20)=2 Z22(14, 20) {0, 11} Z22(14, 20)

21 (14,21)=7 Z22(14, 21) {11} Z22(14, 21)

15 20 (15,20)=5 Z22(15, 20) {11} Z22(15, 20)

18 (16,18)=2 Z22(16, 18) {0, 11} Z22(16, 18)

16 20 (16,20)=4 Z22(16, 20) {0, 11} Z22(16, 20)

18 20 (18,20)=2 Z22(18, 20) {0, 11} Z22(18, 20)
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§3. Smarandache groupoids when n is odd

Theorem 3.1. Let Zn(t, u) ∈ Z∗(n)\Z(n). If n is odd, n > 4 and for each t = 2, · · · , n−1
2 ,

and u = n− (t− 1) such that (t, u) = r then Zn(t, u) is Smarandache groupoid.

Proof. Let x ∈ {0, · · · , n− 1}.

x ∗ x = xt + xu = (n + 1)x ≡ x mod n.

∴ {x} is semigroup in Zn.
∴ Zn(t, u) is Smarandanche groupoid.

By the above theorem we can determine the Smarandache groupoids in Z∗(n)\Z(n) when
n is odd and n > 4.

Also we note that all {x} where x ∈ {0, · · · , n−1} are proper subsets which are semigroups
in Zn(t, u).

Let us consider the examples when n is odd. We will find the Smarandache groupoids in
Z∗(n)\Z(n) by Theorem 3.1.

n t u = n − (t − 1) (t, u) = r Zn(t, u) Smarandache groupoid

(S.G.) in Z∗(n)\Z(n)

5 2 4 (2, 4) = 2 Z5(2, 4) is S.G. in Z∗(5)\Z(5)

7 2 6 (2, 6) = 3 Z7(2, 6) is S.G. in Z∗(7)\Z(7)

9 2 8 (2, 8) = 2 Z9(2, 8) is S.G. in Z∗(9)\Z(9)

4 6 (4, 6) = 2 Z9(4, 6) is S.G. in Z∗(9)\Z(9)

2 10 (2, 10) = 2 Z11(2, 10) is S.G. in Z∗(11)\Z(11)

11 3 9 (3, 9) = 3 Z11(3, 9) is S.G. in Z∗(11)\Z(11)

4 8 (4, 8) = 4 Z11(4, 8) is S.G. in Z∗(11)\Z(11)

2 12 (2, 12) = 2 Z13(2, 12) is S.G. in Z∗(13)\Z(13)

13 4 10 (4, 10) = 2 Z13(4, 10) is S.G. in Z∗(13)\Z(13)

6 8 (6, 8) = 2 Z13(6, 8) is S.G. in Z∗(13)\Z(13)

2 14 (2, 14) = 2 Z15(2, 14) is S.G. in Z∗(15)\Z(15)

15 4 12 (4, 12) = 4 Z15(4, 12) is S.G. in Z∗(15)\Z(15)

6 10 (6, 10) = 2 Z15(6, 10) is S.G. in Z∗(15)\Z(15)

2 16 (2, 16) = 2 Z17(2, 16) is S.G. in Z∗(17)\Z(17)

3 15 (3, 15) = 3 Z17(3, 15) is S.G. in Z∗(17)\Z(17)

17 4 14 (4, 14) = 2 Z17(4, 14) is S.G. in Z∗(17)\Z(17)

6 12 (6, 12) = 6 Z17(6, 12) is S.G. in Z∗(17)\Z(17)

8 10 (8, 10) = 2 Z17(8, 10) is S.G. in Z∗(17)\Z(17)
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n t u = n − (t − 1) (t, u) = r Zn(t, u) Smarandache groupoid

(S.G.) in Z∗(n)\Z(n)

2 18 (2, 18) = 2 Z19(2, 18) is S.G. in Z∗(19)\Z(19)

4 16 (4, 16) = 4 Z19(4, 16) is S.G. in Z∗(19)\Z(19)

19 5 15 (5, 15) = 5 Z19(5, 15) is S.G. in Z∗(19)\Z(19)

6 14 (6, 14) = 2 Z19(6, 14) is S.G. in Z∗(19)\Z(19)

8 12 (8, 12) = 4 Z19(8, 12) is S.G. in Z∗(19)\Z(19)

2 20 (2, 20) = 2 Z21(2, 20) is S.G. in Z∗(21)\Z(21)

4 18 (4, 18) = 2 Z21(4, 18) is S.G. in Z∗(21)\Z(21)

21 6 16 (6, 16) = 2 Z21(6, 16) is S.G. in Z∗(21)\Z(21)

8 14 (8, 14) = 2 Z21(8, 14) is S.G. in Z∗(21)\Z(21)

10 12 (10, 12) = 2 Z21(10, 12) is S.G. in Z∗(21)\Z(21)

Open Problems:

1. Let n be a composite number. Are all groupoids in Z∗(n)\Z(n) Smarandache groupoids?

2. Which class will have more number of Smarandache groupoids in Z∗(n)\Z(n)?

(a) When n + 1 is prime.

(b) When n is prime.
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Abstract In this paper, we investigate the influence of E-supplemented and SS-quasinormal

subgroups on the structure of finite groups. Some recent results are generalized and unified.

Keywords E-supplemented, SS-quasinormal, p-nilpotent, supersoluble.

§1. Introduction

All groups considered in this article are finite. A subgroup H of a group G is said to
be S-quasinormal in G if H permutes with every Sylow subgroups of G. This concept was
introduced by Kegel in [5]. There has been many generalizations of S-quasinormal subgroups
in the literature.

Definition 1.1.[8] A subgroup H of a group G is said to be an SS-quasinormal subgroup
of G if there is a subgroup B such that G = HB and H permutes with every Sylow subgroup
of B.

Definition 1.2.[1] A subgroup H of G is said to be S-quasinormally embedded in G if
for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some
S-quasinormal subgroup of G.

In 2012, C. Li proposed the following concept which covers properly both S-quasinormally
embedding property and Skiba’s weakly S-supplementation (see [15]).

Definition 1.3.[6] A subgroup H is said to be E-supplemented in G if there is a subgroup
K of G such that G = HK and H∩K ≤ HeG, where HeG denotes the subgroup of H generated
by all those subgroups of H which are S-quasinormally embedded in G.

There are examples to show that E-supplemented subgroups are not SS-quasinormal sub-
groups and in general the converse is also false. The aim of this article is to prove Theorem
3.2. As its applications, some known results are generalized and unified.

1The project is supported by the Natural Science Foundation of China (No.11071229) and the Natural Science

Foundation of the Jiangsu Higher Education Institutions (No.10KJD110004).
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§2. Preliminaries

Lemma 2.1.[6] Let H be a E-supplemented subgroup of a group G.
(i) If H ≤ L ≤ G, then H is E-supplemented in L.
(ii) If N C G and N ≤ H ≤ G, then H/N is E-supplemented in G/N .
(iii) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is E-

supplemented in G/N .
Lemma 2.2.[8] Let H be an ss-quasinormal subgroup of a group G.
(i) If H ≤ L ≤ G, then H is ss-quasinormal in L.
(ii) If N E G, then HN/N is ss-quasinormal in G/N .
Lemma 2.3.[3] If H is a subgroup of G with |G : H| = p, where p is the smallest prime

divisor of |G|, then H E G.
Lemma 2.4.[3] Suppose that G is a group which is not p-nilpotent but whose proper

subgroups are all p-nilpotent for some prime p. Then
(i) G has a normal Sylow p-subgroup P and G = PQ, where Q is a non-normal cyclic

q-subgroup for some prime q 6= p.
(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).
(iii) The exponent of P is p or 4.
Lemma 2.5.[13] Suppose that P is a p-subgroup of G contained in Op(G). If P is s-

quasinormally embedded in G, then P is s-quasinormal in G.
Lemma 2.6.[4] Let G be a group and N ≤ G.
(i) If N E G, then F ∗(N) ≤ F ∗(G).
(ii) If G 6= 1, then F ∗(G) 6= 1. In fact, F ∗(G)/F (G) = Soc (F (G)CG(F (G))/F (G)).
(iii) F ∗(F ∗(G)) = F ∗(G) ≥ F (G). If F ∗(G) is soluble, then F ∗(G) = F (G).

§3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of a group G, where p is the smallest prime
dividing |G|. If every maximal subgroup of P is either E-supplemented or SS-quasinormal in
G, then G is p-nilpotent.

Proof. Let H be a maximal subgroup of P . We will prove H is E-supplemented in G.
If H is SS-quasinormal in G, then there is a subgroup B ≤ G such that G = HB and

HX = XH for all X ∈ Syl(B). From G = HB, we obtain |B : H ∩ B|p = |G : H|p = p, and
hence H ∩B is of index p in Bp, a Sylow p-subgroup of B containing H ∩B. Thus S * H for
all S ∈ Sylp(B) and HS = SH is a Sylow p-subgroup of G. In view of |P : H| = p and by
comparison of orders, S ∩H = B ∩H, for all S ∈ Sylp(B). Therefore

B ∩H =
⋂

b∈B

(Sb ∩H) =≤
⋂

b∈B

Sb = Op(B).

We claim that B has a Hall p′-subgroup. Because |Op(B) : B ∩ H| = p or 1, it follows
that |B/Op(B)|p = p or 1. Since p is the smallest prime dividing |G|, we have B/Op(B) is
p-nilpotent, and hence B is p-soluble. So B has a Hall p′-subgroup. Thus the claim holds.
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Now, let K be a p′-subgroup of B, π(K) = {p2, ···, ps} and Pi ∈ Sylpi
(K). By the condition,

H permutes with every Pi and so H permutes with the subgroup < P2, · · ·, Ps >= K. Thus
HK ≤ G. Obviously, K is a Hall p′-subgroup of G and HK is a subgroup of index p in G. Let
M = HK and so M E G by Lemma 2.3. It follows that H is normally embedded in G, and so
E-supplemented in G.

Since every maximal subgroup of P is E-supplemented in G, we have G is p-nilpotent by
[6, Theorem 3.2].

Corollary 3.1. Let p be the smallest prime dividing the order of a group G and H a
normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of
H such that every maximal subgroup of P is either E-supplemented or SS-quasinormal in G,
then G is p-nilpotent.

Proof. By Lemmas 2.1 and 2.2, every maximal subgroup of P is either E-supplemented
or SS-quasinormal in H. By Theorem 3.1, H is p-nilpotent. Now, let Hp′ be the normal
p-complement of H. Then Hp′ C G. If Hp′ 6= 1, then we consider G/Hp′ . It is easy to see
that G/Hp′ satisfies all the hypotheses of our corollary for the normal subgroup H/Hp′ of
G/Hp′ by Lemmas 2.1 and 2.2. Now by induction, we see that G/Hp′ is p-nilpotent and so
G is p-nilpotent. Hence we assume Hp′ = 1 and therefore H = P is a p-group. Since G/H

is p-nilpotent, we may let K/H be the normal p-complement of G/H. By Schur–Zassenhaus
Theorem, there exists a Hall p′-subgroup Kp′ of K such that K = HKp′ . By Theorem 3.1,
K is p-nilpotent and so K = H × Kp′ . Hence Kp′ is a normal p-complement of G, i.e., G is
p-nilpotent.

Corollary 3.2. Suppose that every maximal subgroup of any Sylow subgroup of a group
G is either E-supplemented or SS-quasinormal in G. Then G is a Sylow tower group of
supersoluble type.

Proof. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. By
Theorem 3.1, G is p-nilpotent. Let U be the normal p-complement of G. By Lemmas 2.1 and
2.2, U satisfies the hypothesis of the corollary. It follows by induction that U , and hence G is
a Sylow tower group of supersoluble type.

Theorem 3.2. Let F be a saturated formation containing U , the class of all supersoluble
groups. A group G ∈ F if and only if there is a normal subgroup H of G such that G/H ∈ F
and every maximal subgroup of any Sylow subgroup of H is either E-supplemented or SS-
quasinormald in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the
assertion is false and let G be a counterexample of minimal order.

By Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of H is either
E-supplemented or SS-quasinormald in H. By Corollary 3.2, H is a Sylow tower group of
supersoluble type. Let p be the largest prime divisor of |H| and let P be a Sylow p-subgroup
of H. Then P is normal in G. We consider G/P . From Lemmas 2.1 and 2.2, it is easy to see
that (G/P, H/P ) satisfies the hypothesis of the Theorem. By the minimality of G, we have
G/P ∈ F . If the maximal P1 of P is SS-quasinormal in G, then P1 is S-quasinormal in G by
Lemma 2.5. Thus every maximal subgroup of P is E-supplemented in G. Applying Theorem
[6, Theorem 4.1], G ∈ F , a contradiction.
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Corollary 3.3. If every maximal subgroup of any Sylow subgroup of a group G is either
E-supplemented or SS-quasinormal in G, then G is supersoluble.

Theorem 3.3. Let F be a saturated formation containing U , the class of all supersoluble
groups. If there is a normal subgroup H of a group G such that G/H ∈ F and every cyclic
subgroup of H with prime order or order 4 is either E-supplemented or SS-quasinormald in G,
then G ∈ F .

Proof. Suppose that the assertion is false and let (G,H) be a counterexample for which
|G||H| is minimal. Let K be any proper subgroup of H. By Lemmas 2.1 and 2.2, the hypothesis
of the theorem still holds for (K, K). By the choice of G, K is supersoluble. By [2, Theorem
3.11.9], H is soluble. Since G/H ∈ F , GF ≤ H. Let M be a maximal subgroup of G such
that GF * M (that is, M is an F-abnormal maximal subgroup of G). Then G = MH. We
claim that the hypothesis holds for (M, M ∩H). In fact, M/M ∩H ∼= MH/H = G/H ∈ F .
Let < x > be any cyclic subgroup of M ∩ H with prime order or order 4. It is clear that
< x > is also a cyclic subgroup of H with prime order or order 4. By Lemmas 2.1 and 2.2,
< x > is either E-supplemented or SS-quasinormald in M . Therefore the hypothesis holds for
(M, M ∩H). By the choice of G, M ∈ F . Then, by [2, Theorem 3.4.2], GF is a p-group, where
GF is the F-residual of G. In view of Lemma 2.5, every cyclic subgroup of GF with prime order
and order 4 of is E-supplemented in G. Applying [6, Theorem 4.3], G ∈ F , a contradiction.

Corollary 3.4. If every cyclic subgroup of a group G with prime order or order 4 is either
E-supplemented or SS-quasinormald in G, then G is supersoluble.

Theorem 3.4. Let F be a saturated formation containing U , the class of all supersoluble
groups. Suppose that G is a group with a normal subgroup H such that G/H ∈ F . Then
G ∈ F if and only if one of the following conditions holds:

(i) every maximal subgroup of any Sylow subgroup of F ∗(H) is either E-supplemented or
SS-quasinormald in G.

(ii) every cyclic subgroup of any Sylow subgroup of F ∗(H) with prime order or order 4 is
either E-supplemented or SS-quasinormald in G.

Proof. We only need to prove the “if”part. If the condition (1) holds, then every max-
imal subgroup of any Sylow subgroup of F ∗(H) is either E-supplemented or SS-quasinormald
in F ∗(H) by Lemmas 2.1 and 2.2. From Corollary 3.3, we have that F ∗(H) is supersoluble. In
particular, F ∗(H) is soluble. By Lemma 2.6, F ∗(H) = F (H). Since S-quasinormal subgroup
is E-supplemented subgroup, it follows that every maximal subgroup of any Sylow subgroup of
F ∗(H) is E-supplemented in G by Lemma 2.5. Applying Theorem [6, Theorem 4.5], G ∈ F , If
the condition (2) holds, then we have also G ∈ F using similar arguments as above.

Corollary 3.5. Let F be a saturated formation containing U , the class of all supersoluble
groups. Suppose that G is a group with a soluble normal subgroup H such that G/H ∈ F .
Then G ∈ F if and only if one of the following conditions holds:

(i) every maximal subgroup of any Sylow subgroup of F (H) is either E-supplemented or
SS-quasinormald in G.

(ii) every cyclic subgroup of any Sylow subgroup of F (H) with prime order or order 4 is
either E-supplemented or SS-quasinormald in G.
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§4. Some applications

Corollary 4.1.[14] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of any Sylow
subgroup of F ∗(H) are S-quasinormal in G, then G ∈ F .

Corollary 4.2.[16] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of any Sylow
subgroup of F ∗(H) are c-normal in G, then G ∈ F .

Corollary 4.3.[17] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of any Sylow
subgroup of F ∗(H) are c-supplemented in G, then G ∈ F .

Corollary 4.4.[9] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups of any Sylow
subgroup of F ∗(H) are weakly S-supplemented in G, then G ∈ F .

Corollary 4.5.[7] Let F be a saturated formation containing U . Suppose that G is a group
with a normal subgroup H such that G/H ∈ F . Then G ∈ F if and only if every maximal
subgroup of any Sylow subgroup of F ∗(H) is SS-quasinormal in G.

Corollary 4.6.[12] Let F be a saturated formation containing U and let G be a group. If
there is a normal subgroup H such that G/H ∈ F and all maximal subgroups of any Sylow
subgroup of F ∗(H) are π-quasinormally embedded in G, then G ∈ F .

Corollary 4.7.[11] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If every cyclic subgroup of any Sylow
subgroup of F ∗(H) of prime order or order 4 is S-quasinormal in G, then G ∈ F .

Corollary 4.8.[16] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If every cyclic subgroup of any Sylow
subgroup of F ∗(H) of prime order or order 4 is c-normal in G, then G ∈ F .

Corollary 4.9.[17] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . If every cyclic subgroup of any Sylow
subgroup of F ∗(H) of prime order or order 4 is c-supplemented in G, then G ∈ F .

Corollary 4.10.[12] Let F be a saturated formation containing U and let G be a group. If
there is a normal subgroup H such that G/H ∈ F and the subgroups of prime order or order
4 of F ∗(H) are π-quasinormally embedded in G, then G ∈ F .

Corollary 4.11.[10] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . Then G ∈ F if and only if every cyclic
subgroup of any Sylow subgroup of F ∗(H) of prime order or order 4 weakly S-supplemented in
G.

Corollary 4.12.[12] Let F be a saturated formation containing U . Suppose that G is a
group with a normal subgroup H such that G/H ∈ F . Then G ∈ F if and only if every cyclic
subgroup of any Sylow subgroup of F ∗(H) of prime order or order 4 is SS-quasinormal in G.
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Abstract A subset of vertices in a graph is called a dominating set if every vertex is either

in the subset or adjacent to a vertex in the subset. A dominating set is connected if it induces

a connected subgraph. A subset of vertices in a graph is independent if no two vertices are

connected by an edge. Many constructions for approximating the minimum connected dom-

inating set are based on the construction of a maximal independent set. Let |mis(G)| and

|mcds(G)| be the size of a maximum independent set and the size of a minimum connected

dominating set in the same graph G respectively. In [Theoretical Computer Science 352 (2006)

1-7] Wu et al by showing that |mis(G)| ≤ 3.8|mcds(G)|+1.2, they have really shown the rela-

tion between |mis(G)| and |mcds(G)| plays an important role in establishing the performance

ratio of those approximation algorithms. They have also conjectured ”the neighbor area of a

4-star subgraph in a unit disk graph contains at most 20 independent vertices”. In this paper

we show that |mis(G)| ≤ 3.5|mcds(G)| for all unit disk graphs and improve the conjecture.

Keywords Connected dominating set, independent set, unit disk graph.
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§1. Introduction

Let G = (V, E) be a graph. A subset of vertices in a graph G is called a dominating set
if every vertex is either in the subset or adjacent to a vertex in the subset. A dominating set
is connected if it induces a connected subgraph. A subset I ⊆ V is called independent if all
vertices are not connected. It is also called maximal independent set if it cannot be extended by
the addition of any other vertex from the graph without violating the independence property.
An independent set is a maximal if and only if it is a dominating set. A maximum independent
set (mis) is a maximum cardinality subset of V such that there is no edge between any two
vertices of it. Given G = (V, E) and a vertex v, we use N(v) to denote the set of vertices
adjacent to v; as the neighborhood of v, see [4]. Let |mis(G)| and |mcds(G)| be the size of a
maximum independent set and the size of a minimum connected dominating set in the same
graph G respectively. A graph is a unit disk graph (UDG) if its vertices can be drown as circular
disks of equal radius in the plane in such a way that there is an edge between two vertices if
and only if the two disks have non-empty intersection. (It is assumed that the tangent circles

1This research was in part supported by a grant from IPM (No. 90050045).
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intersect.) Without lose of generality, the radius of each circle (disk) is assumed to be 1. Unit
disk graphs (UDGs) are probably the most prominent class of graphs used to model the wireless
networks and have been used to model broadcast networks [2,3] and optimal facility location [5].
A connected dominating set can be used as a virtual backbone in wireless sensor networks to
improve communication and storage performance [1]. In this note we improve the Theorem 1
and Conjecture of [6].

§2. Preliminaries

The followings are useful.
Lemma 2.1. The neighborhood of a vertex in unit disk graph, contains at most five

independent vertices.
Proof. Assume v is a vertex of unit disk graph G which has six independent vertices.

Let v1, · · · , v6 be independent vertices adjacent to v, and let v1, · · · , v6 lie counter-clockwise
around v. There are two vertices vi and vj such that ∠vivvj ≤ 60◦. It means that the distance
between vi and vj is at most 1, which implies that vi and vj are adjacent and contradicting our
assumption.

Lemma 2.2.[6] The neighbor area of two adjacent vertices contains at most eight inde-
pendent vertices.

Theorem 2.1.[6] For any unit disk graph G, |mis(G)| ≤ 3.8|mcds(G)|+ 1.2.
The following conjecture has been proposed in [6].
Conjecture 2.1.[6] The neighbor area of a 4-star subgraph in a unit disk graph contains

at most 20 independent vertices.

§3. Main results

Here we improve the Theorem 2.1 and Conjecture 2.1.
Lemma 3.1. The neighborhood of two adjacent vertices in unit disk graph G contains at

most seven independent vertices.
Proof. Let u and v be two adjacent vertices in unit disk graph G. We consider two steps

to prove this lemma.
State 1. We first assume that u has five independent vertices, u1, · · · , u5 in its neighbor-

hood. We show that N(v) cannot contains more than two independent vertices, v1, v2 from
themselves and from u1, · · · , u5. Let u1, · · · , u5 lie counter-clockwise in N(u). By Lemma 2.1,
we know that for independence ui, uj should have ∠uiuuj > 60◦. Without lose of generality
assume that every angles ∠u1uu2, ∠u2uu3, ∠u3uu4 and ∠u4uu5 are (60 + ε1)◦. Then we have
∠u1uu5 = (120 − 4ε1)◦. Let v1, v2 be two independent vertices that lie counter-clockwise
in N(v). It is easy to see that for independence v1 and v2 from u1, · · · , u5, we should have
∠v1vv2 < (120 − 4ε1)◦. (Note that in case that the quadrilateral u1v1uv is a parallelogram,
the disks corresponding to u1 and v1 are tangent and therefore are adjacent, and while the
quadrilateral u2v5uv is a parallelogram, disks corresponding to u5 and v2 are tangent.) Since
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∠v1vv2 < (120 − 4ε1)◦, it follows that no independent vertex from v1, v2 and u1, · · · , u5 can
adjacent to v.

State 2. Now assume that there are four independent vertices u1, · · · , u4 which lie counter-
clockwise in N(u), we show that N(v) contains at most three independent vertices from them-
selves and from u1, · · · , u4. Without lose of generality assume that the angles ∠u1uu2, ∠u2uu3

and ∠u3uu4 are (60+ε2)◦. Therefore ∠u1uu4 = (180−3ε2)◦. Let v1 and v2 be two independent
vertices, lie counter-clockwise in N(v), similar to State 1, we see that for independence v1, v2

from u1, · · · , u4, we should have ∠v1vv2 < (180 − 3ε2)◦, thus we follow N(v) cannot contains
more than one independent vertex from v1, v2 and u1, · · · , u4 as desired.

Theorem 3.1. For any unit disk graph G, |mis(G)| ≤ 3.5|mcds(G)|.
Proof. According to the Lemma 3.1, every neighborhood of two adjacent vertices in

unit disk graph G contains at most seven independent vertices. That is, any of these two
adjacent vertices dominates some of these independent vertices, and this set is the minimum
set that dominates these seven independent vertices. Thus both of them have to be member
of a minimum dominating set. In particular, for any two members of a minimum connected
dominating set (mcds), there are at most seven independent vertices in maximum independent
set, that is |mis| ≤ 3.5|mcds|.

As an immediate result of Theorem 3.1 we have.
Corollary 3.1. For any unit disk graph G, the cardinality of a maximal independent set

is at most 3.5|mcds(G)|.
Proof. Note that the cardinality of any maximal independent set is smaller than or equal

to the maximum independent set, so the result holds.
Remark 3.1. Unit disk graph has been presented in [4] and elsewhere. A unit disk graph

is a disk with radius one. A unit disk graph is associated with a set of unit disks in the Euclidean
plane. Each vertex is the center of a unit disk. An edge exists between two vertices u and v if
and only if | uv |≤ 1 where | uv | is the Euclidean distance between u and v. This means that
two vertices are connected by an edge if and only if u’s disk covers v and v’s disk cover u. We
call a unit disk (including its boundary) at center v, the neighbor area of v, denoted by N(v).
Therefore, two vertices u and v are said to be adjacent if | uv |≤ 1 and independent if | uv |> 1.

Using Remark 3.1 and the proof of the Lemma 3.1, the Conjecture 2.1 is improved as
follows.

Conjecture 3.1. The neighbor area of a 4-star subgraph in a unit disk graph contains at
most 14 independent vertices.
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