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A new refinement of the inequality
∑

sin A
2 ≤

√
4R+r

2r

Marius Dragan† and Mihály Bencze‡

E-mail: benczemihaly@gmail.com

Abstract The purpose of this paper is to give a new provement to inequality
∑

sin A
2
≤√

4R+r
2r

, who are given in [1], to prove that this is the better inequality of type:
∑

sin A
2
≤√

αR+βr
R

, when

√
αR + βr

R
≤ 3

2
, (1)

and to refine this inequality with an equality of type: “better of the type”:

∑
sin

A

2
≤ αR + βr

R
,

when

αR + βr

R
≤ 3

2
(2)

or in an equivalent from:

∑
sin

A

2
≤
√

2R +
(
3− 2

√
2
)
r

R
. (3)

We denote
R

r
= x, d =

√
R2 − 2Rr, dx =

√
x2 − 2x.

Keywords Geometrical inequalities.

2010 Mathematics Subject Classification: 26D15, 26D15, 51M16.

§1. Main results

Lemma 1.1. In all triangle ABC holds:
√

2R +
(
3− 2

√
2
)
r

R
≤

√
4R + r

2R
. (4)

Proof. The inequality (4) will be written as:

√
2 +

3− 2
√

2
x

≤
√

4x + 1
2x
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and after squaring we shall obtain:

2 +
17− 12

√
2

x2
+

6
√

2− 8
x

≤ 4x + 1
2x

⇔ 4x2 + 34− 24
√

2 +
(
12
√

2− 16
)

x ≤ 4x2 + x

⇔
(
17− 12

√
2
)

(x− 2) ≥ 0.

Theorem 1.1. In all triangle ABC holds:

∑
sin

A

2
≤ r

R + d
+

√
R + d

R
. (5)

Proof. The inequality (5) will be given in [2].
We shall give a new prove of this inequality. In [3] it was proved the following inequality:

∑ √
p− a

a
≤

√
R− r + d

2r
+ 2

√
R− d

2R
.

We have:
(∑

sin
A

2

)2

=
∑ (

sin
A

2

)2

+ 2
∑

sin
B

2
sin

C

2

=
∑ (p− b) (p− c)

bc
+ 2

√
(p− a) (p− b) (p− c)

abc

∑ √
p− a

a
,

or in an equivalent form:

∑
sin

A

2
=

√
2R− r

2R
+

√
r

R

∑ √
p− a

a

≤
√√√√2R− r

2R
+

√
r

R

(√
R− r + d

2r
+ 2

√
R− d

2R

)

=

√
2R− r

2R
+

√
R− r + d

2R
+

2
R

√
r (R− d)

2

and because
(R + d)2 = 2R (R− r + d) (R− d) (R + d) = 2Rr

and
(R− r − d) (R− r + d) = r2,

it shall result

∑
sin

A

2
≤

√
R + d

R
+

2R− r

2R
− R + d

2R
+

2r

R + d

√
R + d

R

=
r

R + d
+

√
R + d

R
.

In the following we shall prove (1).
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3

From inequality (5):

sin
A

2
+ sin

B

2
+ sin

C

2
≤

√
R + d

R
+

r

R + d
≤ 3

2
,

because the inequality (5) is the better of the type:
∑

sin A
2 ≤ f (R, r) . It follows that:

√
R + d

R
+

1
R + d

≤
√

αR + βr

R
≤ 3

2

or

1
1 + dx

+

√
x + dx

x
≤

√
αx + β

x
≤ 3

2
, ∀x ≥ 2. (6)

In the case of equilateral triangle we have x = 2. We shall obtain

4α +
2
3

= 9.

The inequality (6) may be written in the case of the isosceles triangle with sides: b− c = 1,
a = 0 (R = 1

2 , r = 0) or putting x →∞ in an equivalent from as: a ≥ 2.

Because: (2α− 4) x + 4x + 9− 4α ≥ 2 (2α− 4) + 4x + 9− 4α = 4x + 1 it shall result:

√
αx + β

x
≥

√
4x + 1

2x
.

In the following will be sufficient to prove that:

√
x + dx

x
+

1
x + dx

≤
√

4x + 1
2x

. (7)

Theorem 1.2. In all triangle ABC holds

∑
sin

A

2
≤

√
4R + r

2r
.

Proof. The inequality (7) may be written in an equivalent form as:

√
x + dx

x
+

1
x + dx

≤
√

4x + 1
2λ

⇔ 1
x + dx

≤
√

4x + 1
2x

−
√

x + dx

x

⇔
√

4x + 1
2x

+

√
x + dx

x

≤ (x + dx)
(

4x + 1− 2x− 2dx

2x

)

=
dx + 5x

2x

⇔ dx + 5x ≥
√

2x (4x + 1) +
√

4x (x + dx).
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After squaring we shall obtain:

x2 − 2x + 25x2 + 10xdx ≥ 8x2 + 2x + 4x2 + 4xdx + 4x
√

2 (4x + 1) (x + dx)

⇔ 14x2 − 4x + 6xdx ≥ 4x
√

2 (4x + 1) (x + dx)

⇔ 7x− 2 + 3dx ≥ 2
√

(8x + 2) (x + dx)

⇔ 49x2 + 4 + 9x2 − 18x− 28x− 12dx + 42xdx

≥ 32x2 + 32xdx + 8x + 8dx

⇔ 26x2 − 54x + 4 + 10xdx − 20dx ≥ 0

⇔ (13x− 1 + 5dx) (x− 2) ≥ 0.

In the following we shall determine α, β with the property (2).
According with the inequality (6) it follows that

√
R + d

R
+

r

R + d
≤ αR + βr

R
≤ 3

2

or in an equivalent form
√

x + dx

x
+

1
x + dx

≤ α +
β

x
≤ 3

2
. (8)

In the case of equilateral triangle we shall obtain 2α + β = 3.

In the inequality (8) we shall consider x →∞. It follows that a ≥ √
2.

Because
(
α−

√
2
)

R + (3− 2α) r ≥
(
2α− 2

√
2 + 3− 2α

)
r =

(
3− 2

√
2
)

r,

it follows that
αR + βr

R
≥
√

2R +
(
3− 2

√
2
)
r

R
.

In the following will be sufficient to prove the inequality (3).
Theorem 1.3. In all triangle ABC holds

∑
sin

A

2
≤
√

2R +
(
3− 2

√
2
)
r

R
.

Proof. From the inequality (5) it follows that in order to prove the inequality (3) it will
be sufficient to prove: √

R + d

R
+

r

R + d
≤
√

2R =
(
3− 2

√
2
)
r

R

or in an equivalent form:
√

x + dx

x
+

1
x + dx

≤
√

2x + 3− 2
√

2
x

⇔
√

x + dx

x
≤
√

2x2 +
(
3− 2

√
2
)
x +

√
2xdx +

(
3− 2

√
2
)
dx − x

x (x + dx)
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⇔
√

x + dx

x
≤
√

2x2 + (2− 2
√

x) x +
√

2xdx +
(
3− 2

√
2
)
dx

x (x + dx)
. (9)

We denote
ux =

dx

x
.

The inequality (9) may be written in an equivalent form as:

x + dx

x
≤ x2

[√
2x + 2− 2

√
2 +

√
2dx +

(
3− 2

√
2
)
ux

]2
2x3 (x + dx − 1)

⇔ (2x + 2dx) (x + dx − 1)

≤
[√

2x + 2− 2
√

2 +
√

2dx +
(
3− 2

√
2
)

ux

]

⇔ 2x2 + 2xdx − 2x + 2xdx + 2x2 − 4x− 2x

≤ 2x2 + 12− 8
√

2 + 2x2 − 4x +
(
17− 12

√
2
)

u2
x

+
(
4
√

2− 8
)

x + 4xdx +
(
6
√

2− 8
)

xux +
(
4
√

2− 8
)

dx

+
(
28− 20

√
2
)

ux +
(
4
√

2− 8
)

dx +
(
6
√

2− 8
)

uxdx

⇔ 4xdx − 6x− 2dx

≤ 12− 8
√

2 +
(x− 2)

x

(
17− 12

√
2
)
− 4x +

(
4
√

2− 8
)

x

+
(
6
√

2− 8
)

dx + 4xdx +
(
28− 20

√
2
) dx

x

+
(
4
√

2− 8
)

dx + (x− 2)
(
6
√

2− 8
)

⇔ 4x2dx − 6x2 − 2xdx

≤
(
12− 8

√
2
)

x +
(
17− 12

√
2
)

x
√−34+24

√
2− 4x2

+
(
4
√

2− 8
)

x2 +
(
6
√

2− 8
)

xdx + 4x2dx +
(
28− 20

√
2
)

dx

+
(
4
√

2− 8
)

xdx +
(
6
√

2− 8
)

x2 −
(
12
√

2− 16
)

x

⇔
[
4x2 − 2x−

(
6
√

2− 8
)

x− 4x2 − 28 + 20
√

2−
(
4
√

2− 8
)

x
]
dx

≤
(
6− 4 + 4

√
2− 8 + 6

√
2− 8

)
x2

+
(
12− 8

√
2 + 17− 12

√
2− 12

√
2 + 16

)
x− 34 + 24

√
2

⇔ dx

[(
−2− 6

√
2 + 8− 4

√
2 + 8

)
x− 28 + 20

√
2
]

≤
(
10
√

2− 14
)

x2 +
(
45− 32

√
2
)

x− 34 + 24
√

2

⇔ dx

[(
14− 10

√
2
)

x + 20
√

2− 28
]

≤
(
10
√

2− 14
)

x2 +
(
45− 32

√
2
)

x− 34 + 24
√

2

⇔ dx

[(
14− 10

√
2
)

x + 20
√

2− 28
]

≤
(
10
√

2− 14
)

x2 +
(
45− 32

√
2
)

x− 34 + 24
√

2

⇔ dx

(
14− 10

√
2
)

(x− 2) ≤ (x− 2)
[(

10
√

2− 14
)

x + 17− 12
√

2
]
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⇔ (x− 2)
[(

10
√

2− 14
)

x +
(
10
√

2− 14
)

dx + 17− 12
√

2
]
≥ 0.

Corollary 1.1. In all triangle ABC holds

∑
cos

A

2
≥ 3S

2
(√

2R +
(
3− 2

√
2
)
r
) .

Proof. Using the Chebyshev’s inequality to sin A
2 , sin B

2 , sin C
2 and cos A

2 , cos B
2 , cos C

2 we
get (

1
3

∑
sin

A

2

)(
1
3

∑
cos

A

2

)
≥

(
1
3

∑
sin

A

2
cos

A

2

)

or ∑
sin

A

2

∑
cos

A

2
≥ 3

2

∑
sinA

or ∑
cos+ ≥ 3

∑
sinA

2
∑

sin A
2

≥ 3
∑

sinAR

2
[√

2R +
(
3− 2

√
2
)
r
] =

3S

2
(√

2R +
(
3− 2

√
2
)
r
) .

Corollary 1.2. If λ ∈ (0, 1] , then in all triangle ABC holds:

∑ (
sin

A

2

)λ

≤ 3

(√
2R +

(
3− 2

√
2
)
r

3R

)λ

.

Proof. Using the Jensen’s inequality we get:

∑ (
sin

A

2

)λ

≤ 3
(

1
3

∑
sin

A

2

)λ

= 3

(√
2R +

(
3− 2

√
2
)
r

3R

)λ

.

Corollary 1.3. If λ ≥ 1 then in all triangle ABC holds

∑ (
cos

A

2

)λ

≥ 3

(
S

2
(√

2R +
(
3− 2

√
2
)
r
)
)λ

.

Proof. From Jensen’s inequality we get:

∑ (
cos

A

2

)λ

≥ 3
(

1
3

cos
A

2

)λ

≥ 3

(
S

2
(√

2R +
(
3− 2

√
2
)
r
)
)λ

.

Corollary 1.4. In all triangle ABC holds

∑
cos

A

2
≥ 2S + 3

√
3R

4R
.

Proof. From Popoviciu’s inequality

∑
f (x) + 3f

(
x + y + z

3

)
≥ 2

∑
f

(
x + y

2

)
.

applied to function f : (0, π) → R, f (x) = sin x we get:

∑
sinA + 3 sin

π

3
≤ 2

∑
sin

A + B

2
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∑

sin A
2
≤

√
4R+r

2r
7

or
S

R
+

3
√

3
2

≤ 2
∑

cos
A

2
or ∑

cos
A

2
≥ 2S + 3

√
3R

4R
.

Corollary 1.5. In all triangle ABC are true the following equality:

2R
∑

cos
A

2

(∑
sin

A

2
− 1

)
= S. (10)

Proof. We shall consider the triangle ABC obtained with the exterior bisectors of the
triangle ABC.

We denote with SA1B1C1 the semiperimeter of A1B1C1 trianle.
We have: 2SA1B1C1 = A1B1 + B1C1 + A1C1.

We shall calculate:

B1C1 = AB1 + AC1

= 4R sin
C

2
cos

B

2
+ 4R sin

B

2
cos

C

2

= 4R cos
A

2

and the others.
We shall obtain: SA1B1C1 = 2R

∑
cos A

2 .

We have:
SABC1 + SBCA1 + SACB1 = SABC + SA1B1C1

and

2SABC1 = 4R sin
C

2
cos

B

2
+ 4R sin

C

2
cos

C

2

= 4R sin
C

2

∑
cos

A

2
.
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It follows that

2R

(∑
cos

A

2

)
sin

C

2
+ 2R

(∑
cos

A

2

)
sin

B

2
+ 2R

(∑
cos

A

2

)
sin

A

2
= S + 2R

∑
cos

A

2

or

2R
∑

cos
A

2

(∑
sin

A

2
− 1

)
= S.

Corollary 1.6. In all triangle ABC holds:

∑
cos

A

2
≥ S

2
[(√

2− 1
)
R +

(
3− 2

√
2
)
r
] . (11)

Proof. Using the equality (10) and inequality (3) we shall obtain:

∑
cos

A

2
=

S

2R
· 1∑

sin A
2 − 1

≥ S

2R
· R(√

2− 1
)
R +

(
3− 2

√
2
)
r

=
S

2
[(√

2− 1
)
R +

(
3− 2

√
2
)
r
] .

Corollary 1.7. If λ ≥ 1 then in all triangle ABC holds:

∑ (
cos

A

2

)λ

≥ 3

(
S

6
((√

2− 1
)
R +

(
3− 2

√
2
)
r
)
)λ

.

Proof. From Jensen’s inequality and inequality (11) we get:

∑ (
cos

A

2

)λ

≥ 3
(

1
3

∑
cos

A

2

)λ

≥ 3

(
S

6
((√

2− 1
)
R +

(
3− 2

√
2
)
r
)
)λ

.

Corollary 1.8. In all triangle ABC holds:

∑
cos

A

2
≥ 2S + 3

√
3R

4R
≥ 3S

2
(√

2R +
(
3− 2

√
2
)
r
) . (12)

Proof. The first side of the inequality (12) i just Corollary 3.4.
The right side

2S + 3
√

3R

4R
≥ 3S

2
(√

2R +
(
3− 2

√
2
)
r
)

will may be written in an equivalent form as:
[(

6− 2
√

2
)

R−
(
6− 4

√
2
)

r
]
S ≤ 3

√
6R2 +

(
9
√

3− 6
√

6
)

Rr. (13)

From Blundon’s inequality S ≤ 2R +
(
3
√

3− 4
)
r it follows that to demonstrate the in-

equality (13) it will be sufficient to prove that:
[(

6− 2
√

2
)

R−
(
6− 4

√
2
)

r
] [

2R +
(
3
√

3− 4
)

r
]
≤ 3

√
6R2 +

(
9
√

3− 6
√

6
)

Rr

or
(
3
√

6 + 4
√

2− 12
)

x2 +
(
36− 9

√
3− 16

√
2
)

x + 18
√

3− 12
√

6 + 16
√

2− 24 ≥ −24x
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∑

sin A
2
≤

√
4R+r

2r
9

or

(x− 2)
[(

3
√

6 + 4
√

2− 12
)

x + 6
√

6− 8
√

2− 9
√

3 + 12
]
≥ 0,

But

(3
√

6 + 4
√

2− 24 + 6
√

6− 8
√

2− 9
√

3 + 12)

≥
√

6 + 8
√

2− 24 + 6
√

6− 8
√

2− 9
√

3 + 12

= 12
√

6− 9
√

3− 12 > 0,

who are true.
Corollary 1.9. In all triangle ABC holds:

S2 ≤ 2 (4R + r)
(√

2R +
(
3− 2

√
2
)
r
)2

3R
.

Proof. From the identity:

∑
cos2

A

2
=

4R + r

2R
, (14)

Corollary 1.3 and
∑

cos2
A

2
≥ 1

3

(∑
cos

A

2

)2

,

it shall result inequality of the statement.
Corollary 1.10. In all triangle ABC holds:

S ≤
√

6R (4R + r)− 3
√

3
2

R.

Proof. Result from the identity (14), Jensen’s inequality

∑
cos2

A

2
≥ 3

(
1
3

∑
cos

A

2

)2

and Corollary 1.4 we get:

4R + r

2R
≥ 1

3
·
(
2S + 3

√
3R

)2

16R2
.

After performing some calculation we shall obtain the inequality of the statement.
Corollary 1.11. In all triangle ABC holds:

S2 ≤ 6
(
3− 2

√
2
)
(4R + r)

(
R +

(√
2− 1

)
r
)2

R
.

Proof. Result from inequality

∑
cos2

A

2
≥ 1

3

(∑
cos

A

2

)2

,

equality (14) and (12).
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§1. Introduction and preliminaries

Let H be the class of functions analytic in the open unit disk E = {z : |z| < 1}. Let A
be the class of all functions f which are analytic in E and normalized by the conditions that
f(0) = f ′(0)− 1 = 0. Thus, f ∈ A, has the Taylor series expansion

f(z) = z +
∞∑

k=2

akzk.

Let S denote the class of all analytic functions f ∈ A which are univalent in E.
For two analytic functions f and g in the unit disk E, we say that f is subordinate to g

in E and write as f ≺ g if there exists a Schwarz function w analytic in E with w(0) = 0 and
|w(z)| < 1, z ∈ E such that f(z) = g(w(z)), z ∈ E. In case the function g is univalent, the
above subordination is equivalent to : f(0) = g(0) and f(E) ⊂ g(E).

Let φ : C2 × E → C and let h be univalent in E. If p is analytic in E and satisfies the
differential subordination

φ(p(z), zp′(z); z) ≺ h(z), φ(p(0), 0; 0) = h(0), (1)

then p is called a solution of the first order differential subordination (1). The univalent function
q is called a dominant of the differential subordination (1) if p(0) = q(0) and p ≺ q for all p

satisfying (1). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1), is said to be the
best dominant of (1).

In 2005, Kyohei Ochiai [2] studied the classes M(α) and N (α) defined below: Let

M(α) =
{

f ∈ A :
∣∣∣∣

f(z)
zf ′(z)

− 1
2α

∣∣∣∣ <
1
2α

, 0 < α < 1, z ∈ E
}

,

and they defined the class N (α) as f(z) ∈ N (α) if and only if zf ′(z) ∈M(α). They proved the
following results.
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Theorem 1.1. If f ∈ A satisfies
∣∣∣∣
zf ′(z)
f ′(z)

−
(

1 +
zf ′′(z)
f ′(z)

)∣∣∣∣ < 1− 2α

for some α( 1/4 ≤ α < 1/2), then
∣∣∣∣

f(z)
zf ′(z)

− 1
∣∣∣∣ <

1
2α

− 1, z ∈ E,

therefore, f ∈M(α).
Theorem 1.2. If f ∈ A satisfies

∣∣∣∣
zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

∣∣∣∣ < 1− 2α

for some α( 1/4 ≤ α < 1/2), then
∣∣∣∣

f ′(z)
f ′(z) + zf ′′(z)

− 1
∣∣∣∣ <

1
2α

− 1, z ∈ E,

therefore, f ∈ N (α).
To prove our main result, we shall use the following lemma of Miller and Mocanu [1].

Lemma 1.1. Let q, q(z) 6= 0 be univalent in E such that
zq′(z)
q(z)

is starlike in E. If an

analytic function p, p(z) 6= 0 in E, satisfies the differential subordination

zp′(z)
p(z)

≺ zq′(z)
q(z)

= h(z),

then

p(z) ≺ q(z) = exp
[∫ z

0

h(t)
t

dt

]

and q is the best dominant.

§2. Main results and applications

Theorem 2.1. Let q, q(z) 6= 0 be univalent in E such that
zq′(z)
q(z)

(= h(z)) is starlike in

E.
If f ∈ A,

f(z)
zf ′(z)

6= 0 for all z in E, satisfies

zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ h(z), z ∈ E,

then
f(z)

zf ′(z)
≺ q(z) = exp

[∫ z

0

h(t)
t

dt

]
.

Proof. By setting p(z) =
f(z)

zf ′(z)
in Lemma 1.1, proof follows.
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Theorem 2.2. Let q, q(z) 6= 0 be univalent in E such that
zq′(z)
q(z)

(= h(z)) is starlike in

E.
If f ∈ A,

f ′(z)
f ′(z) + zf ′′(z)

6= 0

for all z in E, satisfies

zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

≺ h(z), z ∈ E,

then
f ′(z)

f ′(z) + zf ′′(z)
≺ q(z) = exp

[∫ z

0

h(t)
t

dt

]
.

Proof. By setting p(z) =
f ′(z)

f ′(z) + zf ′(z)
in Lemma 1.1, proof follows.

Remark 2.1. Consider the dominant

q(z) =
1 + (1− 2α)z

1− z
, 0 ≤ α < 1, z ∈ E

in above theorem, we have

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
= <

(
1 +

1
1− z

− (1− 2α)z
1 + (1− 2α)z

)
> 0, z ∈ E

for all 0 ≤ α < 1. Therefore,
zq′(z)
q(z)

is starlike in E and we immediately get the following result.

Theorem 2.3. If f ∈ A,
f(z)

zf ′(z)
6= 0 for all z in E, satisfies

zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ 2(1− α)z

(1− z)(1 + (1− 2α)z)
,

then
f(z)

zf ′(z)
≺ 1 + (1− 2α)z

1− z
, 0 ≤ α < 1, z ∈ E.

Theorem 2.4. Let f ∈ A,
f ′(z)

f ′(z) + zf ′′(z)
6= 0 for all z in E, satisfy

zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

≺ 2(1− α)z
(1− z)(1 + (1− 2α)z)

,

then
f ′(z)

f ′(z) + zf ′′(z)
≺ 1 + (1− 2α)z

1− z
, 0 ≤ α < 1, z ∈ E.

Note that Theorem 2.3 is more general than the result of Kyohei Ochiai [2] stated in
Theorem 1.1 and similarly Theorem 2.4 is the general form of Theorem 1.2.

Remark 2.2. Selecting the dominant q(z) =
(

1 + z

1− z

)δ

, 0 < δ ≤ 1, z ∈ E, we have

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
= <

(
1 + z2

1− z2

)
> 0, z ∈ E.
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Therefore,
zq′(z)
q(z)

is starlike in E and from Theorem 2.1 and Theorem 2.2, we obtain the

following results, respectively.

Theorem 2.5. Suppose that f ∈ A,
f(z)

zf ′(z)
6= 0 for all z in E, satisfies

zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ 2δz

1− z2
,

then
f(z)

zf ′(z)
≺

(
1 + z

1− z

)δ

, 0 < δ ≤ 1, z ∈ E.

Theorem 2.6. Let f ∈ A,
f ′(z)

f ′(z) + zf ′′(z)
6= 0 for all z in E, satisfy

zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

≺ 2δz

1− z2
,

then
f ′(z)

f ′(z) + zf ′′(z)
≺

(
1 + z

1− z

)δ

, 0 < δ ≤ 1, z ∈ E.

Remark 2.3. When we select the dominant q(z) =
α(1− z)
α− z

, α > 1, z ∈ E in Theorem

2.1 and Theorem 2.2. A little calculation yields

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
= <

(
1

1− z
+

z

α− z

)
> 0, z ∈ E.

Therefore,
zq′(z)
q(z)

is starlike in E and we get the following results.

Theorem 2.7. Suppose that α > 1 is a real number and if f ∈ A,
f(z)

zf ′(z)
6= 0 for all z in

E, satisfies
zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ (1− α)z

(1− z)(α− z)
,

then
f(z)

zf ′(z)
≺ α(1− z)

α− z
, z ∈ E.

Theorem 2.8. Let α > 1 be a real number and let f ∈ A,
f ′(z)

f ′(z) + zf ′′(z)
6= 0 for all z in

E, satisfy
zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

≺ (1− α)z
(1− z)(α− z)

,

then
f ′(z)

f ′(z) + zf ′′(z)
≺ α(1− z)

α− z
, z ∈ E.

Remark 2.4. Consider the dominant q(z) = 1 + λz, 0 < λ ≤ 1, z ∈ E in Theorem 2.1
and Theorem 2.2, we have

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
= <

(
1

1 + λz

)
> 0, z ∈ E
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for all 0 < λ ≤ 1. Therefore,
zq′(z)
q(z)

is starlike in E and we have the following results.

Theorem 2.9. Suppose f ∈ A,
f(z)

zf ′(z)
6= 0 for all z in E, satisfies

zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ λz

1 + λz
,

then ∣∣∣∣
f(z)

zf ′(z)
− 1

∣∣∣∣ < λ, 0 < λ ≤ 1, z ∈ E.

Theorem 2.10. Suppose f ∈ A,
f ′(z)

f ′(z) + zf ′′(z)
6= 0 for all z in E, satisfies

zf ′′(z)
f ′(z)

− z(2f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

≺ λz

1 + λz
,

then ∣∣∣∣
f ′(z)

f ′(z) + zf ′′(z)
− 1

∣∣∣∣ < λ, 0 < λ ≤ 1, z ∈ E.

Remark 2.5. We, now claim that Theorem 2.9 extends Theorem 1.1 in the sense that the

operator
zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
, now, takes values in an extended and Theorem 2.10 gives

the same extension for Theorem 1.2. We, now, compare the results by taking the following
particular cases. Setting λ = 1 in Theorem 2.9, we obtain:

Suppose f ∈ A,
f(z)

zf ′(z)
6= 0 for all z in E, satisfies

zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
≺ z

1 + z
, (2)

then ∣∣∣∣
f(z)

zf ′(z)
− 1

∣∣∣∣ < 1, z ∈ E.

For α = 1/4, Theorem 1.1 reduces to the following result:
If f ∈ A satisfies ∣∣∣∣

zf ′(z)
f ′(z)

−
(

1 +
zf ′′(z)
f ′(z)

)∣∣∣∣ <
1
2
, (3)

then ∣∣∣∣
f(z)

zf ′(z)
− 1

∣∣∣∣ < 1, z ∈ E,

According to the result stated in (3), the operator
zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
takes values

within the disk of radius 1/2 and centered at origin (as shown by the dark shaded portion in

Figure 2.1) to give the conclusion that
∣∣∣∣

f(z)
zf ′(z)

− 1
∣∣∣∣ < 1, whereas in view of the result stated

above in (2), the same operator can take values in the entire shaded region (dark + light) in
Figure 2.1 to get the same conclusion. Thus the result stated in (2) extends the result stated

above in (3) in the sense that the region in which the operator
zf ′(z)
f(z)

−
(

1 +
zf ′′(z)
f ′(z)

)
takes

values is extended. The claimed extension is given by the light shaded portion of Figure 1. In
the same fashion, the above explained extension also holds in comparison of results in Theorem
2.10 and Theorem 1.2.
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§1. Introduction and preliminaries

Definition 1.1. Floor and ceiling functions. In mathematics and computer science, the
floor and ceiling functions map a real number to the largest previous or the smallest following
integer, respectively. More precisely, floor(x) = bxc is the largest integer not greater than x

and ceiling(x) = dxe is the smallest integer not less than x. The floor function is also called
the greatest integer or entier (French for “integer”) function, and its value at x is called the
integral part or integer part of x. In the following formulas, x and y are real numbers, k, m,

and n are integers, and Z is the set of integers (positive, negative, and zero). Floor and ceiling
may be defined by the set equations bxc = max{m ∈ Z| m ≤ x}, dxe = min{n ∈ Z| n ≥ x}.

Since there is exactly one integer in a half-open interval of length one, for any real x there
are unique integers m and n satisfying x− 1 < m ≤ x ≤ n < x + 1.

Then bxc = m and dxe = n may also be taken as the definition of floor and ceiling. These
formulas can be used to simplify expressions involving floors and ceilings.

bxc = m, if and only if, m ≤ x < m + 1.

dxe = n, if and only if, n− 1 < x ≤ n.

bxc = m, if and only if, x− 1 < m ≤ x.

dxe = n, if and only if, x ≤ n < x + 1.

In the language of order theory, the floor function is a residuated mapping, that is, part of
a Galois connection: it is the upper adjoint of the function that embeds the integers into the
reals.

x < n, if and only if, bxc < n.

n < x, if and only if, n < dxe.
x ≤ n, if and only if, dxe ≤ n.

n ≤ x, if and only if, n ≤ bxc.
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These formulas show how adding integers to the arguments affect the functions:
bx + nc = bxc+ n,
dx + ne = dxe+ n.

The above are not necessarily true if n is not an integer, however:
bxc+ byc ≤ bx + yc ≤ bxc+ byc+ 1,
dxe+ dye − 1 ≤ dx + ye ≤ dxe+ dye.
Definition 1.2. Elliptic integral. In integral calculus, elliptic integrals originally arose

in connection with the problem of giving the arc length of an ellipse. They were first studied
by Giulio Fagnano and Leonhard Euler. Modern mathematics defines an“elliptic integral”as
any function f which can be expressed in the form f(x) =

∫ x

c
R

(
t,

√
P (t)

)
dt, where R is a

rational function of its two arguments, P a polynomial of degree 3 or 4 with no repeated roots,
and c is a constant.

In general, elliptic integrals cannot be expressed in terms of elementary functions. Excep-
tions to this general rule are when P has repeated roots, or when R(x, y) contains no odd powers
of y. However, with the appropriate reduction formula, every elliptic integral can be brought
into a form that involves integrals over rational functions and the three Legendre canonical
forms (i.e. the elliptic integrals of the first, second and third kind).

Besides the Legendre form , the elliptic integrals may also be expressed in Carlson symmet-
ric form. Additional insight into the theory of the elliptic integral may be gained through the
study of the Schwarz-Christoffel mapping. Historically, elliptic functions were discovered as in-
verse functions of elliptic integrals. Incomplete elliptic integrals are functions of two arguments,
complete elliptic integrals are functions of a single argument.

Definition 1.3. The incomplete elliptic integral of the first kind F is defined as

F (ψ, k) = F (ψ | k2) = F (sinψ; k) =
∫ ψ

0

dθ√
1− k2 sin2 θ

.

This is the trigonometric form of the integral, substituting t = sin θ, x = sin ψ, one obtains
Jacobi’s form

F (x; k) =
∫ x

0

dt√
(1− t2)(1− k2t2)

.

Equivalently, in terms of the amplitude and modular angle one has:

F (ψ\α) = F (ψ, sinα) =
∫ ψ

0

dθ√
1− (sin θ sinα)2

.

In this notation, the use of a vertical bar as delimiter indicates that the argument following it is
the“parameter”(as defined above), while the backslash indicates that it is the modular angle.
The use of a semicolon implies that the argument preceding it is the sine of the amplitude:

F (ψ, sinα) = F (ψ | sin2 α) = F (ψ\α) = F (sinψ; sin α).

Definition 1.4. Incomplete elliptic integral of the second kind E is defined as

E(ψ, k) = E(ψ | k2) = E(sinψ; k) =
√

1− k2 sin2 θ dθ.
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Substituting t = sin θ and x = sin ψ , one obtains Jacobi’s form:

E(x; k) =
∫ x

0

√
1− k2t2√
1− t2

dt.

Equivalently, in terms of the amplitude and modular angle:

E(ψ\α) = E(ψ, sinα) =
∫ ψ

0

√
1− (sin θ sinα)2 dθ.

Definition 1.5. Incomplete elliptic integral of the third kind Π is defined as

Π(n;ψ\α) =
∫ ψ

0

1
1− n sin2 θ

dθ

1− (sin θ sinα)2

or

Π(n;ψ | m) =
∫ sin ψ

0

1
1− nt2

dt

(1−mt2)(1− t2)
.

The number n is called the characteristic and can take on any value, independently of the
other arguments.

Definition 1.6. Incomplete elliptic integral of the third kind Π is defined as

Π(n;ψ\α) =
∫ ψ

0

1
1− n sin2 θ

dθ

1− (sin θ sinα)2

or

Π(n;ψ | m) =
∫ sin ψ

0

1
1− nt2

dt

(1−mt2)(1− t2)
.

The number n is called the characteristic and can take on any value, independently of the
other arguments.

Definition 1.7. Complete elliptic integral of the first kind is defined as Elliptic Integrals
are said to be complete when the amplitude

ψ =
π

2

and therefore x=1. The complete elliptic integral of the first kind K may thus be defined as

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dt√
(1− t2)(1− k2t2)

or more compactly in terms of the incomplete integral of the first kind as

K(k) = F
(π

2
, k

)
= F (1; k).

It can be expressed as a power series

K(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

k2n =
π

2

∞∑
n=0

[
P2n(0)

]2

k2n,

where Pn is the Legendre polynomial, which is equivalent to

K(k) =
π

2

[
1 +

(
1
2

)2

k2 +
(

1 . 3
2 . 4

)2

k4 + ......... +
{

(2n− 1)!!
(2n)!!

}2

k2n + ......

]
,
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where n!! denotes the double factorial. In terms of the Gauss hypergeometric function, the
complete elliptic integral of the first kind can be expressed as

K(k) =
π

2 2F1

(1
2
,
1
2
; 1; k2

)
.

The complete elliptic integral of the first kind is sometimes called the quarter period. It
can most efficiently be computed in terms of the arithmetic-geometric mean

K(k) =
π
2

agm(1− k, 1 + k)
.

Definition 1.8. Complete elliptic integral of the second kind is defined as The complete
elliptic integral of the second kind E is proportional to the circumference of the ellipse C

C = 4aE(e),

where a is the semi-major axis, and e is the eccentricity. E may be defined as

E(k) =
∫ π

2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2√
1− t2

dt

or more compactly in terms of the incomplete integral of the second kind as

E(k) = E
(π

2
, k

)
= E(1; k).

It can be expressed as a power series

E(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
k2n

1− 2n
,

which is equivalent to

E(k) =
π

2

[
1−

(
1
2

)2
k2

1
−

(
1 . 3
2 . 4

)2
k4

3
− .........−

{
(2n− 1)!!

(2n)!!

}2
k2n

2n− 1
− ......

]
.

In terms of the Gauss hypergeometric function, the complete elliptic integral of the second kind
can be expressed as

E(k) =
π

2 2F1

(1
2
,−1

2
; 1; k2

)
.

Definition 1.9. Complete elliptic integral of the third kind is defined as The complete
elliptic integral of the third kind Π can be defined as

Π(n, k) =
∫ π

2

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
.

Argument. In mathematics, arg is a function operating on complex numbers (visualised
as a flat plane). It gives the angle between the line joining the point to the origin and the
positive real axis, shown as ψ in figure 1 , known as an argument of the point (that is, the
angle between the half-lines of the position vector representing the number and the positive
real axis).
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Figure 1.

In figure 1, The Argand diagram represents the complex numbers lying on a plane. For
each point on the plane, arg is the function which returns the angle ψ. A complex number may
be represented as z = x + ιy = |z|eιθ where |z| is a positive real number called the complex
modulus of z, and ψ is a real number called the argument. The argument is sometimes also
known as the phase or, more rarely and more confusingly, the amplitude [7]. The complex
argument can be computed as

arg(x + ιy) ≡ tan−1
(y

x

)
.

§2. Main integrals

∫
dy√

(1− x cosh 2y)

= −
ι
√

x cosh 2y−1
x−1 F

(
ιy

∣∣∣ 2x
x−1

)
√

1− x cosh 2y
+ C

= −
ι
√

x cosh 2y − 1F
(
ιy

∣∣∣ 2x
x−1

)
exp

(
ιπ

⌊
arg(x−1)

2π − arg(x cosh 2y−1)
2π + 1

2

⌋)
√

x− 1
√

1− x cosh 2y
+ C. (1)
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∫
dy√

(1− x sinh 2y)

=
ι
√

x sinh 2y−1
−1−ιx F

(
1
4 (π − 4ιy)

∣∣∣ 2x
x−ι

)
√

1− x sinh 2y
+ C

=
ι
√

x sinh 2y − 1F
(

1
4 (π − 4ιy)

∣∣∣ 2x
x−ι

)
exp

(
ιπ

⌊
arg(−ιx−1)

2π − arg(x sinh 2y−1)
2π + 1

2

⌋)
√−ιx− 1

√
1− x sinh 2y

+ C.(2)

∫
dy√

(1− x tanh 2y)

=

[
tanh−1

(√
x tanh 2y−1√

x−1

)
√

x−1
−

tanh−1

(√
x tanh 2y−1√−x−1

)
√−x−1

]√
x tanh 2y − 1

2
√

1− x tanh 2y
+ C. (3)

∫
dy√

(1− x coth 2y)

=

[
tanh−1

(√
ι(x coth 2y−1)√

ι(x−1)

)
√

ι(x−1)
−

tanh−1

(√
ι(x coth 2y−1)√
−ι(x+1)

)
√
−ι(x+1)

]√
ι(x coth 2y − 1)

2
√

1− x coth 2y
+ C

= −
ι
√

ι(x− 1)
√

ι(x coth 2y − 1) tanh−1
(√

ι(x coth 2y−1)√
ι(x−1)

)

2(x− 1)
√

1− x coth 2y

−
ι
√
−ι(x + 1)

√
ι(x coth 2y − 1) tanh−1

(√
ι(x coth 2y−1)√
−ι(x+1)

)

2(x + 1)
√

1− x coth 2y
+ C. (4)

∫ √
1− x sinh 2ydy

= −
(x− ι)

√
x sinh 2y−1
−1−ιx E

(
1
4 (π − 4ιy)

∣∣∣ 2x
x−ι

)
√

1− x sinh 2y
+ Constant

=
ι
√

x sinh 2y − 1E
(

1
4 (π − 4ιy)

∣∣∣ 2x
x−ι

)
exp

(
ιπ

⌊
arg(−ιx−1)

2π − arg(x sinh 2y−1)
2π + 1

2

⌋)
√−ιx− 1

√
1− x sinh 2y

−
x
√

x sinh 2y − 1E
(

1
4 (π − 4ιy)

∣∣∣ 2x
x−ι

)
exp

(
ιπ

⌊
arg(−ιx−1)

2π − arg(x sinh 2y−1)
2π + 1

2

⌋)
√−ιx− 1

√
1− x sinh 2y

+C. (5)
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∫ √
1− x cosh 2ydy

=
ι(x− ι)

√
x cosh 2y−1

x−1 E
(
ιy

∣∣∣ 2x
x−1

)
√

1− x cosh 2y
+ Constant

=
1√

1− x cosh 2y
ι
√

x− 1
√

x cosh 2y − 1

×E
(
ιy

∣∣∣ 2x

x− 1

)
exp

(
ιπ

⌊arg(x− 1)
2π

− arg(x cosh 2y − 1)
2π

+
1
2

⌋)
+ C. (6)

∫ √
1− x tanh 2ydy

=
1

2
√

x tanh 2y − 1

[{√
x− 1 tanh−1

(√
x tanh 2y − 1√

x− 1

)

−√−x− 1 tanh−1

(√
x tanh 2y − 1√−x− 1

)}√
1− x tanh 2y − 1

]
+ C. (7)

∫ √
1− xcosech 2ydy

=
1√

2− ι cosech ysech y
√

2− xcosech ysech y

×
[
2 sech 2y

√
ι(xcosech2y − 1)

x− ι

{
x
√

1 + ι cosech 2y(1 + 2ι sinh y cosh y)

×F

(
sin−1

(1
2

√
2− ιcosech ysech y

)∣∣∣ 2x

x− ι

)

+sinh 2y
√

coth2 2y
√

1− ιcosech 2y

×Π
(

2; sin−1
(1

2

√
2− ιcosech ysech y

)∣∣∣ 2x

x− ι

)}]
+ C. (8)

∫ √
1− x coth 2ydy

=
1

2
√

ι(x coth 2y − 1)

[{√
ι(x− 1) tanh−1

(√
ι(x coth 2y − 1)√

ι(x− 1)

)

−
√
−ι(x + 1) tanh−1

(√
ι(x coth 2y − 1)√
−ι(x + 1)

)}√
1− x coth 2y

]
+ C. (9)

where C denotes constant.
Derivations. By involving the method of [18] one can derived the integrals.
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Abstract In this paper, two types of self-inetgrability of functions and the underlying con-

ditions for each type was presented. Furthermore, the sum of self-integrable functions was

investigated.

Keywords self-integrability, absolutely self-integrating, conditionally self-integrating.

§1. Introduction and preliminaries

Graham [1] shown that the polynomials of the form pk(x) = xk + k
k+1 has the property

that
∫ 1

0
pk(x) dx = pk(1)− pk(0). The said polynomial is self-integrating in the closed interval

[0,1].
Definition 1.1. A function f is said to be self-integrating on an interval [a,b] if and only

if ∫ b

a

f(x) dx = f(b)− f(a).

The following are the types of self-integrability:
Definition 1.2. Absolute self-integrability is the self-integrability everywhere in R.
Definition 1.3. Conditional self-integrability is the self-integrability in some interval [a,b].
Definition 1.4. A function f is said to be absolutely self-integrating if and only if

∫ b

a

f(x) dx = f(b)− f(a)

for every [a,b].
Definition 1.5. A function f is said to be conditionally self-integrating if and only if

∫ b

a

f(x) dx = f(b)− f(a)

for some [a,b].
The natural exponential function and the zero function are absolutely self-integrating while

any polynomial of the form pk(x) = xk + k
k+1 is conditionally self-integrating.










































































































































































































