Smarandacheials
edited by J. Dezert
ONERA, France
Let n>k≥1 be
two integers. Then the Smarandacheial is defined as:
!n!k =
∏(n-k·i)
0<|n-k·i|≤n
icN
For examples:
1) In the case k=1:
conv
!n!1≡
!n! = ∏(n-i)
= n(n-1)(n-2)…(2)(1)(-1)(-2)…(-n+2)(-n+1)(-n) = (-1)n(n!)2.
0<|n-i|≤n
i=0, 1, 2, … .
Thus
!5! =
5(5-1)(5-2)(5-3)(5-4)(5-6)(5-7)(5-8)(5-9)(5-10)=5·4·3·2·1·(-1)·(-2)·(-3)·(-4)·(-5)
= -14400.
The sequence is: 4,
-36, 576, -14400, 518400, -25401600, 1625702400, -131681894400, 13168189440000,
-1593350922240000, 229442532802560000, -38775788043632640000,
7600054456551997440000,
-1710012252724199424000000,
… .
2) In the case k=2:
a) If n is odd, then
!n!2
= ∏(n-2i) =
n(n-2)(n-4)…(3)(1)(-1)(-3)…(-n+4)(-n+2)(-n) = (-1)(n+1)/2(n!!)2.
0<|n-2i|≤n
i=0, 1, 2, … .
a) If n is even, then
!n!2
= ∏(n-2i) =
n(n-2)(n-4)…(4)(2)(-2)(-4)…(-n+4)(-n+2)(-n) = (-1)n/2(n!!)2.
0<|n-2i|≤n
i=0, 1, 2, … .
Thus: !3!2
= 3(3-2)(3-4)(3-6) = 9 and !4!2
= 4(4-2)(4-6)(4-8) = 64.
The sequence is: 9,
64, -225, -2304, 11025, 147456, -893025, -14745600, 108056025, 2123366400, … .
3) In the case k=3:
!n!3
= ∏(n-3i) = n(n-3)(n-6)… .
0<|n-3i|≤n
i=0, 1, 2, … .
Thus
!7!3 =
7(7-3)(7-6)(7-9)(7-12) = 7(4)(1)(-2)(-5) = 280.
The sequence is: -8,
40, 324, 280, -2240, -26244, -22400, 246400, 3779136, 3203200, -44844800, … .
4) In the case k=4:
!n!4
= ∏(n-4i) = n(n-4)(n-8)… .
0<|n-4i|≤n
i=0, 1, 2, … .
Thus
!9!4 =
9(9-4)(9-8)(9-12)(9-16) = 9(5)(1)(-3)(-7) = 945.
The sequence is: -15,
144, 105, 1024, 945, -14400, -10395, -147456, -135135, 2822400, 2027025, … .
5) In the case k=5:
!n!5
= ∏(n-5i) = n(n-5)(n-10)… .
0<|n-5i|≤n
i=0, 1, 2, … .
Thus
!11!5 =
11(11-5)(11-10)(11-15)(11-20) = 11(6)(1)(-4)(-9) = 2376.
The sequence is: -24,
-42, 336, 216, 2500, 2376, 4032, -52416, -33264, -562500, -532224,
-891072, 16039296, … .
More general:
Let n>k≥1 be
two integers and m≥1 another integer.
Then the generalized Smarandacheial is defined
as:
!n!mk =
∏(n-k·i)
0<|n-k·i|[m
i cN
For examples:
!7!32
= 7(7-2)(7-4)(7-6)(7-8)(7-10) = 7(5)(3)(1)(-1)(-3) = 315.
!7!92 =
7(7-2)(7-4)(7-6)(7-8)(7-10)(7-12)(7-14)(7-16) = 7(5)(3)(1)(-1)(-3)(-5)(-7)(-9)
= -99225.
References:
J. Dezert, editor, “Smarandacheials”, Mathematics Magazine,
http://fs.unm.edu/Smarandacheials.htm.
F. Smarandache, “Back
and
and Arhivele Statului Valcea, Rm. Valcea,
Romania, 1972.