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PREFACE 
 
 
 
In this book the authors introduce a new notion called special 
quasi dual number, x = a + bg; where a and b are from R or Q or 

Z or Zn or Q  I or R  I or Z  I or Zn  I or C(Zn) and 

g2 = – g is the new element. 
Among the reals  – 1 behaves in this way, for (– 1)2 = 1 =  

– (– 1). Likewise –I behaves in such a way (– I)2 = – (– I). 
These special quasi dual numbers can be generated from 
matrices with entries from 1 or I using only the natural product 
×n. Another rich source of these special quasi dual numbers or 
quasi special dual numbers is Zn, n a composite number. For 
instance 8 in Z12 is such that 82 = 64 = – 8(mod 12) = 4(mod 
12). In chapter two we introduce the notion of special quasi dual 
numbers. The notion of higher dimensional special quasi dual 
numbers are introduced in chapter three of this book. We using 
the dual numbers and special dual like numbers with special 
quasi dual numbers construct three types of mixed special quasi 
numbers and discuss their properties. 
However the only source of getting higher dimensional special 
quasi dual numbers and mixed special dual numbers are from 
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the modulo integers Zn, n a suitable number. We for the first 
time build non associative algebraic structures using these 
special quasi dual numbers, dual numbers and special dual like 
numbers. This forms chapter four of this book. 

We give the possible applications of this new concept in 
chapter five and the final chapter suggests some problems. 

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 

 
W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

  



 
 
 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
The concept of dual numbers was introduced by W.K. Clifford 
in 1873.  An element x = a + bg is a dual number if a and b are 
reals and g is a new element such that g2 = 0. 
 
 Now if we replace this g by a new element g1 such that  

2
1g  = g1 we call x = a + bg1 to be a special dual like number.  

Several interesting properties akin to dual numbers are statisfied 
by special dual like numbers. 
 
 In x = a + bg1 a and b reals g1 the new element such that  

2
1g  = g1 for every x the pair (a, b) is uniquely determined.  Now 

this study was very recently made by the authors in their book  
[24] in the year 2012. 
 
 The authors have in this book introduced another new type 
of dual number called special quasi dual numbers.  We call  
x = a + bg2 + cg3 to be a special quasi dual number where a, b 
and c are reals and g2, a new element such that 2

2g  = –g2 (=g3).  
Thus x = a + bg2 + c(–g2) is a special quasi dual number.  These 
numbers also behave akin to dual numbers and special dual like 
numbers.  
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 We in this book study, describe analyse and define 
properties associated with special quasi dual numbers.  So if  
x = a + bg2 + c(–g2) is a special quasi dual number the triple (a, 
b, c) is uniquely determined for the given x. 
 
 Suppose a, b and c are positive reals greater than one. 
 
 x  = a + bg2 + c(–g2) 
 x2  = a2 + b2(–g2) + c2(–g2) + 2abg2 + 2ac(–g2) + 2bcg2 
  = a2 + (2ab + 2bc)g2 + (b2 + c2 + 2ac) (–g2). 
 
 Thus x, x2, x3, x4, … becomes diverging for the positive real 
values associated with g2 and –g2; grow larger and larger by 
raising the power of x = a + bg2 + c(–g2).  If a, b, c are positive 
but less than 1 then x, x2, x3, x4, … is such that the coefficient of 
g2 and (–g2) becomes smaller and smaller.  
 
 This is the way the powers of x =  a + bg2 + c(–g2) behave 
in case of special quasi dual numbers.  These can be used in 
appropriate models. 
 



 
 
 
 
 
 
Chapter Two 
 
 

 
 
QUASI SPECIAL DUAL NUMBERS 
 
 
 
The concept of special dual like numbers and mixed dual 
numbers was recently studied and introduced respectively [22, 
24]. 
 
 Here we introduce the new notion of quasi special dual 
numbers.  A number x = a1 + a2g with a1, a2  R (or Q or C or 
Zn or Z) and g a new special element such that g2 = –g is defined 
as the quasi special dual numbers.  Clearly (–1)2 = 1 (that is g = 
–1 then –g = 1 is also a new special element but since this g is in 
Z or Q or R or C we do not distinguish it separately, it can be 
taken as a trivial new special element).  With this assumption 
we seek to find quasi special dual numbers. 
 
 Let Z12 = {0, 1, 2, …, 11}; –1 = 11 (mod 12), –2 = 10  
(mod 12), 10  –2 (mod 12), 3 = –9 (mod 12) or 9  –3  
(mod 12), 8 = –4 (mod 12) or –8 = 4 (mod 12), 7 = –5 (mod 12), 
5 = –7 (mod 12), 6  6 (mod 12) as –6 = 6 (mod 12). 
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 Consider 8  Z12; 82  64 (mod 12) that is 82  4 (mod 12) 
but 4  –8 (mod 12).  Hence x = a1 + a2g with g = 8  Z12 and a, 
b  Q is a quasi special dual number. 
 
 Consider x = 5 + 3g and y = 2 – 9g two quasi special dual 
numbers.  x + y = 7 – 6g is again a quasi special dual number. 
 
 Consider x  y = (5 + 3g)  (2 – 9g) 
 = 10 + 6g – 45g + (–27)g2 
 = 10 + 16g – 45g – 27  –g 
 = 10 – 2g is again a quasi special dual number. 
 
 Hence we see just like dual numbers quasi special dual 
numbers also behave. 
 
 We can have a plane representation of quasi special dual 
numbers also. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

| | | | | | | |
– …–3 –2 –1 0 1 2 3 … 

 
– 
 
– 
 
 

– 
 

 
– 
 

– 
 

– 

 
  
 

3g 
 

 
2g 
 
 
g 
 

 
 
–g 
 
 

–2g
 
 

–3g

  

– 

(2,3g)  
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 x = 2 + 3g is represented.   
 

Further if g2 = –g be a new special element then  
g2.g = –g.g  that is g3 = –(g2) = –1 (–g) = g. 
 
   g3.g = g4 = g.g = g2 = –g. 
   g4.g = g5 = –g  g = – (g2) = g. 
 
   Thus g = g3 = g5 = g7 = … and 
   g2 = g4 = g6 = g8 = … = –g. 
 This is the way powers of g behave. 
 We see g = 8  Z12 is such that  

g2  64 (mod 12) 
      = 4 (mod 12) = –8 (mod 12) = –g (mod 12). 
 
 g2.g = g3 = –g.g = –(g2) = –(–g) = g  
and so on.  Thus in general if g is a quasi new element which 
contributes to a quasi special dual element x = a + bg, a, b  R 
(or Q or Z or Zn or C) then  
 
   g = g3 = g5 = g7 = … = … and 
   g2 = g4 = g6 = g8 = … = –g. 
 
   g = g3 = g5 = g2 = … =  and 
   g2 = g4 = g6 = g8 = … = –g. 
 
 Further we see Z6 is the first modulo integer which has the 
quasi special dual number.  We see 2  Z6 is such that  
22 = 4 = –4 (mod 6) and 42 = 4.   
 

We see S = {0, 8, 4}  Z12 is a group under addition 
modulo 12. 

 
 

0 4 8
0 0 4 8
4 4 8 0
8 8 0 4


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The table for (S, ) is as follows: 
 

0 4 8
0 0 0 0
4 0 4 8
8 0 8 4



 

 
 Thus (S, +, ) is a field isomorphic to Z3. : S  Z3 
     (4)  1 
     (8)  2 and  (0) = 0 is an isomorphism. 
 
THEOREM 2.1:  Let Zn be a ring of modulo integers.  g  Zn be 
such that 
  
   g2 = –g = g4 = g6 = … and 
 g = g3 = g5 = g7 = g9 = … where g is a new element of Zn.  
 Then Zn has zero divisors. 
 
Proof:  We see g2 = –g (given for g  Zn). 
 Thus g2 + g = 0, g (g+1) = 0 (mod n). 
 Now g  0 and g + 1  0 as g  –1.  Hence Zn has zero 
divisors. 
 
Corollary 2.1:  Zp, p a prime has no quasi special element. 
 
 Proof follows from the simple fact if g  Zp is such that  
g2 = –g then Zp has zero divisors, hence Zp has no quasi special 
element.  
 
Example 2.1:  Let Z14 = {0, 1, 2, …, 13} be the ring of modulo 
integer.  Z14 has 6 to be a quasi special element, for  
62 = 36 (mod 14) = 8 (mod 14) = –6 (mod 14). 
 
Example 2.2:  Let Z15 = {0, 1, 2, …, 14} be the ring of modulo 
integers modulo 15. 9  Z15 is a quasi special number, for  
92 = 81 (mod 15) = 6 (mod 15) = –9 (mod 15) = 6 (mod 15). 
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  Thus 62  6 (mod 15) is an idempotent and S = {0, 6, 9} is a 
field. 
 
Example 2.3:  Z16 = {0, 1, 2, …, 15} the ring of modulo 
integers has no quasi special number. 
 
Example 2.4:  Consider Z18 = {0, 1, 2, …, 17}, the ring of 
modulo integers. 
 
 8 is the quasi special new element of Z18. 
 For 82  10 (mod 18) 
 = –8 (mod 18) 
and 102 = 10 (mod 18) and 8  10  8 (mod 18). 
 
Example 2.5:  Let Z20 = {0, 1, 2, …, 19} be the ring of modulo 
integers 20.  15 is the only quasi special new element of Z20. 
 152  5 (mod 20)  
  = –15 (mod 20). 
 
 Thus in Z20, 15 is a quasi special element and –15 = 5 is an 
idempotent.   
 

It is observed in all these cases if t  Zn is a special quasi 
element then –t is an idemponent.  
 
 Further Z16 has no quasi special numbers. 
 Finally in view of this we have the following theorem. 
 
THEOREM 2.2:  Let Zpq, p and q powers of primes.  pq  6 (p  
q).  Zpq has special quasi elements.  

 
The proof is simple and exploits only number theoretic 

techniques. 
 
Example 2.6: Let Z30 = {0, 1, 2, …, 29} be the ring of modulo 
integers.  Z30 has 4 quasi special elements and 30 = 2.3.5 
product of three primes. 
 Consider 24  Z30, 242 = 6 (mod 30) = –24 (mod 30) and  
62  6 (mod 30).  
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 24 is a quasi special element of Z30. 
 Consider 9  Z30, 92  21 (mod 30) = –9 (mod 30). 
  

Further 212 = 21 (mod 30). 
 

 So 9 is a quasi special element of Z30. 
 Now 20  Z30 is such that 202 = 10 (mod 30)  

that is 202 = –20 (mod 30) and 102 = 10 (mod 30). 
 

 Finally 14  Z30 is again another quasi special element of 
Z30. 
 
 We see 142 = 16 (mod 30) = –14 (mod 30) and 
 162  16 (mod 30). 
 Thus {24, 9, 14 and 20} are quasi special elements. 
 
 Let S = {9, 14, 20, 24, 6, 21, 10, 0, 16} be the quasi special 
elements and the associated idempotents. 
 
 Clearly S is not closed under addition modulo 30.  We 
consider  on S. 
 
 The table of  on S is as follows. 
 

0 6 9 10 14 16 20 21 24
0 0 0 0 0 0 0 0 0 0
6 0 6 24 0 24 6 0 6 24
9 0 24 21 0 6 24 0 9 6

10 0 0 21 10 20 10 20 0 0
14 0 24 6 20 16 24 10 24 6
16 0 6 24 10 24 16 20 6 24
20 0 0 0 20 10 20 10 0 0
21 0 6 9 0 24 6 0 21 24
24 0 24 6 0 6 24 0 24 6


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  Clearly (S, ) is a semigroup and will be known as the 
associated quasi special semigroup of Z30.  However 5  Z30 is 
such that 52 = 25 = –5 and 252 = 25.  If we include 5 and 25 we 
see we have included 15 and the extended semigroup M = {0, 5, 
6, 9, 10, 15, 14, 16, 20, 21, 24, 25}  Z30. 
 
Example 2.7:  Let Z42 = {0, 1, 2, …, 41} be the ring of modulo 
integers.  Consider 35  Z42, 352 = 7 (mod 42) that 352 = –35 
(mod 42) so 35 is a quasi special element with 7 as its 
associated idempotent. 
 
 Consider 14  Z42; clearly 142 = 28 (mod 42) that is 142 = –
14 (mod 42) so 14 is a quasi special element in Z42 with 28 as its 
associated idempotent. 
 
 27  Z42 is a quasi special element as 272  15 (mod 42).  
15 is the associated idempotent element of 27 in Z42.  20  Z42 
is also a quasi special element as 202 = 22 (mod 42) and 202 = –
20 (mod 42) with 22  Z42 as its associated idempotent. 
 
 Now let P = {0, 35, 7, 14, 28, 27, 15, 20, 22} Z42, (P, ) is 
a semigroup given by the following table. 
 

0 7 14 15 20 22 27 28 35
0 0 0 0 0 0 0 0 0 0
7 0 7 14 21 14 28 21 28 35

14 0 14 28 0 28 14 0 14 28
15 0 21 0 15 6 36 27 0 21
20 0 14 28 6 22 20 36 14 28
22 0 28 14 36 20 22 6 28 14
27 0 21 0 27 36 6 14 0 21
28 0 28 14 0 14 28 0 28 14
35 0 35 28 21 28 14 21 14 7


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 Clearly P is not a semigroup.  Consider M = {0, 6, 7, 14, 15, 
20, 22, 27, 28, 35, 36, 21}  Z42 is semigroup. 
 
 However 21 is an idempotent and 6 and 36 are such that 62 
= 36 (mod 42) = –6 (mod 42) and  362 = 36 (mod 42)  is again a 
quasi special new element of Z42.  However M is not a 
associated semigroup. 
 
 We call M the extended semigroup of the associated special 
quasi semigroup.  From the context one can understand whether 
the semigroup is an extended one or not.  At times we ignore it 
also. 
 
Example 2.8:  Now consider Z6 = {0, 1, 2, 3, 4, 5}.  22  4  
(mod 6) we have 22 = –2 (mod 6) as –2  4 (mod 6) and 42 = 4 
(mod 6). 
 
 Thus 2 is a quasi special element in Z6.  {0, 2, 4} is a 
semigroup both under ‘+’ as well as  . That is P = {0, 2, 4}  
Z6 is a subring of Z6. 
 
Example 2.9:  Let S = Z10 = {0, 1, 2, 3, 4, …, 9} be the ring of 
modulo integers. 42 = 6 (mod 10) = –4 (mod 10) as –4 = 6 (mod 
10) and 62  6 (mod 10).  Take {4, 6, 0}  Z10 is only a 
semigroup under product. 
 

0 4 6
0 0 0 0
4 0 6 4
6 0 4 6



 

 
Example 2.10:  Let Z12 = {0, 1, 2, …, 12}.  To find all quasi 
special elements of Z12.  Consider 3  Z12, 32  9 (mod 12) = –3 
(mod 12); 82 = 9 (mod 12) = –8 (mod 12), 92 = 9 (mod 12) and 
42 = 4 (mod 12). S = {0, 3, 9}  Z12 is such that S is a quasi 
associated semigroup under product.  If we obtain S  {6} then 
T = {0, 3, 6, 9} has the following table.  
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 0 6 3 9

0 0 0 0 0
6 0 6 6 6
3 0 6 9 3
9 0 6 3 9



 

 
 Thus T is a subring and {0, 8, 4} is a field.  However W = 
{0, 3, 4, 6, 9} is not even closed under ‘+’. 
 

0 3 4 6 8 9
0 0 0 0 0 0 0
3 0 0 0 6 0 3
4 0 0 4 0 8 0
6 0 6 0 6 0 6
8 0 0 8 0 4 0
9 0 3 0 6 0 9



 

 
 W is only an extended semigroup.  Suppose we remove 6 
from W.  Let V = {0, 3, 4, 8, 9}.  Is V a quasi special 
semigroup? 
 

0 3 4 8 9
0 0 0 0 0 0
3 0 9 0 0 3
4 0 0 4 8 0
8 0 0 8 4 0
9 0 3 0 0 9

 

 
 V is infact a quasi special semigroup.  However V is not 
closed under ‘+’. 
 
Example 2.11:  Let Z14 = {0, 1, 2, 3, 4, …, 13} be the ring of 
modulo integers.  Clearly 62 = 8 (mod 14), 62 = –6 (mod 14) and 
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82 = 8 (mod 14).  So 6 is the only quasi special element of Z14.  
However T = {0, 6, 8} is not a semigroup under ‘+’ only a 
semigroup under product . 
 
Example 2.12:  Let Z40 be the ring of modulo integers. 
 Consider 152 = 225 25 (mod 40) = –15 (mod 40). 
 Further 252 = 625 = 25 (mod 40).  So 15 is a quasi special 
number.  
 
 Take 16  Z40, 162 = 16 (mod 40) and 242 = 576  16 (mod 
40) = –24 (mod 40) so 24 is also a quasi special number. 
 
 Does the set W = {15, 25, 16, 20, 0} form a semigroup 
under product? 
 

0 15 16 20 25
0 0 0 0 0 0

15 0 25 0 20 15
16 0 0 16 0 0
20 0 20 0 0 20
25 0 15 0 20 25



 

 
 W is the special quasi semigroup of Z40. 
 
 We can also obtain the algebraic structure enjoyed by these 
quasi special dual numbers. 
 
Example 2.13:  Let M = {a + bg |  a, b  Z, g = 2  Z6} be the 
collection of all quasi special dual numbers.  M is a ring infact a 
commutative ring. 
 
  Consider x = –3 + 8g and y = 10 – g in M;  

x + y = (–3 + 8g) + (10 – g) = 7 + 7g  M. 
  x  y = (–3 + 8g) (10 – g) 
     = –30 + 80g + 3g – 8g2 ( g2 = –g) 
       = –30 + 80g + 3g + 8g  
     = –30 + 91g  M. 
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 It is easily verified M is a general ring of quasi special dual 
numbers. 
 
 Clearly Z  M.  M has subrings which are not ideals. 
 
Example 2.14:  Let  

S = {a + bg | a, b  Q; g = 15  Z40, 152 = g2 = 25 = –g} 
be the general ring of quasi special dual numbers.  
 
 P = {a + bg | a, b  Z, g = 15  Z40, g2 = –g  Z40}  S is 
only a subring of S and is not an ideal.  Infact S has infinitely 
many subrings which are not ideals. 
 
 Take T = {ag | a  Q}  S; T is an ideal of S. 
 
Example 2.15:  Let  
 

S = {a + bg | g = 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

; a, b  Z; g2 = 

1
1
1
1
1
1

 
 
 
 
 
 
 
 
  

 = –g} 

 
be the general ring of quasi special dual numbers.   
 
Consider x = 5 + 2g and y = 7 + 10g in S.  x + y = 12 + 12g and  
 

x  y = 

1
1
1

5 2
1
1
1

  
    
  

  
  

        

 

1
1
1

7 10
1
1
1

  
    
  

  
  

        
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= 35 + 14 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 + 50 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 + 20 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 n 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 

 

  = 35 + 64 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 + 20 

1
1
1
1
1
1

 
 
 
 
 
 
 
 
  

 (g2 = –g) 

 

  = 35 + 64 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 – 20 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 = 35 + 44 

1
1
1
1
1
1

 
  
 
 
 
 
 
  

 

  
= 35 + 44g  S. 

 
 S has subrings which are not ideals.  S has ideals. 
 
 Can S have zero divisors? 
 
 Suppose x = a + bg and y = c + dg (a, b, c, d  Z \ {0}) then  
 

x  y = (a + bg) (c + dg) = ac + bcg + dag – dbg  
= ac + (bc + da – db)g   0 even if bc + da – db = 0. 

 



Quasi Special Dual Numbers  21 
 
 
  Thus S is an integral domain and infact S is a Smarandache 
ring. 
 
Example 2.16:  Let S = {a + bg | a, b  Z3, g = 24  Z40, g2 = –
g (mod 40)} = {0, 1, g, 2, 2g,  1 + g, 2+g, 1+2g, 2+2g} be the 
quasi special dual number general ring table for S \ {0} under  
is as follows: 
 

1 2 g 2g 1 g 2 g 1 2g 2 2g 0
1 1 2 g 2g 1 g 2 g 1 2g 2 2g 0
2 2 1 2g g 2 2g 1 2g 2 g 1 g 0
g g 2g 2g g 0 g 2g 0 0
2g 2g g 2g 2g 0 2g g 0 0

1 g 1 g 2 2g g 0 1 g 2 2g 1 g 2 2g 0
2 g 2 g 1 2g 0 2g 2 2g 1 2 1 g 0

1 2g 1 2g 2 g g g 1 g 2 1 2 2g 0
2 2g 2 2g 1 g 2g 0 2 2g 1 g 2 2g 1 g 0

0 0 0 0 0 0 0 0

   
   
   

      
    
    
      

0 0

 

 
 Clearly S is only a ring and S has zero divisors. 
 
Example 2.17:  Let  

M = {a + bg | a, b  Z6, g = (–1 –1 –1 –1 –1), g2 = –g} 
be the general ring of quasi special dual numbers.  M is a finite 
order M has zero divisors.  Order of M is 36. 
 
Example 2.18:  Let  

P = {a + bg | a, b  Z8, g = 2  Z6, g2 = 4 = –g (mod 6)} 
be a finite general quasi special dual ring.   
 
 We have both infinite and finite general quasi special dual 
rings. 
 
 We will illustrate this by examples. 
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Example 2.19:  Let  
W = {a + bg | g = 4  Z10, g2 = 6 = –4 (mod 10), a, b  Z} 

be an infinite quasi special dual ring which is commutative.  
 
Example 2.20:  Let M = {a + bg | a, b  Q; g = 5  Z15, g2 = 10 
(mod 15) that g2 = –5 = –g (mod 15)} be again an infinite quasi 
special dual ring. 
 
 T = {a + bg | a, b  Z, g = 5  Z15, g2 = –g (mod 15)}  M 
is only a subring of M and is not an ideal of M. 
 
Example 2.21:  Let S = {a + bg | a, b  Z4, g = 15  Z40} be the 
general quasi special dual ring.  Ideals of S are P1 = {0, g, 2g, 
3g}  S, P2 = {0, 2g}  S, P3 = {0, 1+g, 2+2g, 3+3g}  S and 
P4 = {0, g, 3g, 2g, 2+g, 2, 2+3g, 2+2g}  S are ideals of S. 
 
Example 2.22:  Let M = {a + bg | a, b  Z3, g = 24  Z40} be a 
quasi special dual general ring.   
 

M = {0, 1, 2, g, 2g, 1+g, 2+, 1+2g, 2+2g}. The ideals of M 
are P1 = {0, g, 2g}  M and P2 = {0, 1+g, 2+2g}  M. 
 
 
      
 
 

   The lattice of ideals of M is a distributive  
 
 
lattice with four elements including M and {0}. 
 
 We can thus build general quasi special dual number rings 
of dimension one and study them. 
 
 Since ‘– g’  M for g  M, M a quasi special dual number 
ring, we see we cannot in general build a semiring ring Z+{0} 
or  Q+{0} or R+{0}.  This is one of the main limitations 
while working with quasi special dual numbers.  Further if g is 
such that g2 = –g then invariably –g happens to be an 







 P2 

{0} 

P1 

M 
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 idempotent so we cannot contain the replacement of –g by h 
even though gh = hg = 0 and h2 = h, since for a in a semiring –a 
does not belong to the semiring.  Semirings mentioned above 
we  cannot build semiring structures using those standard 
semirings or even using distributive lattices.  
 
So we to overcome this problem define a new notion called 
complete quasi special dual number pair. 
 
 That is if g2 = –g then x = a + bg + c(–g) is defined as the 
complete quasi special dual pair number. 
 
 We will first illustrate this situation by some examples.  It is 
observed that we call the dimension as three or pair dimension 
as two. 
 
Example 2.23: Let M = {a + bg + c (–g) | a, b  Q, g = 15  
Z40, g2 = 225 (mod 40) = 25 = –g (mod 40)}.  So if x = 8 + 3g + 
8 (–g) = 8 + 3g + 8g where g2 = g (mod 40), g = –g. 
 (This notational compromise is made to avoid the confusion 
–8 (–g) = 8g but it is –8g so that we will make this notational 
change) and y = 3 + 4g + 5gare in M then  
 x + y = 11 + 7g + 13g 
 x  y = xy = (8 + 3g + 8g)  (3 + 4g + 5g) 
  = 24 + 9g + 24g + 32g + 12g2 + 32gg + 40g +  

   15gg + 40(g)2 
  =  24 + 88g + 116g 
 (using the fact g2 = 225 (mod 40)  
 25 = g = –g and (g)2 = 625 (mod 40) 
 = 25 = g (mod 40) and gg = g = gg (mod 40)). 
 Clearly xy = 24 + 88g + 116g  M. 
 
Example 2.24:  Let P = {a + bg + cg1 | a, b, c  Q; g = 2, g1 = 4 
 Z6, gg1 = 2 = g1g,  22 = g2 = 4 = –2 (mod 6) and 2

1g  = g1 (mod 
6)} be the complete quasi special dual number pair general ring. 
 
Example 2.25:  Let S = {a + bg + cg1 | a, b, c  Z, g = 4 and g1 
= 6  Z10, 2

1g = 6 (mod 10), g2 = 6 = –g (mod 10), g1g2 = g2g1 = 
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6  4 = 4 (mod 10)} be again the general ring of complete quasi 
special dual number pair.  
 
Example 2.26:  Let S = {x1 + x2g + x3g1 | x1, x2, x3  Q; g = 6 
and g1 = 8  Z14 are such that g2 = 36  8  –6 (mod 11), 82 = 8 
(mod 14), 82 = 8 (mod 14), g.g1 = g1g2 = 6} be the complete 
quasi special dual pair general ring. 
 
Example 2.27:  Let S = {x1 + x2g + x3g1 | x1, x2, x3  Z7,  
g = (–1, –1, –1, –1), g2 = (1, 1, 1, 1) = –g and g1 = (1, 1, 1, 1), 
g1g = gg1 = (–1, –1, –1, –1)} be the finite general ring of 
complete quasi special dual number pair.   
 
Example 2.28:  Let M = {x1 + x2g + x3g1 | xi  Q; 1  i  3,  
g=(–1, –1, –1, –1, –1, –1, –1) and g1=(1, 1, 1, 1, 1, 1, 1), 2

1g = g1, 
g2 = g1, g1g = gg1 = g} be the finite general ring of complete 
quasi special pair. 
 
 a = 5 + 3g + 4g1 and b = 8 + 7g – 8g1  M,   

a + b = 13 + 10g – 4g1 
 a  b = (5 + 3g + 4g1) (8 + 7g – 8g1) 
    = 40 + 24g + 32g1 + 35g + 21g2 + 28g1g – 40g1 –  

     24gg1 – 32 2
1g  

    =  40 + 24g + 32g1 + 35g + 21g1 + 28g + 40g1 – 24g –  
31g1 

    = 40 + 63g + 62g1  M. 
 
 M is a complete special quasi dual pair. 
 
Example 2.29:  Let  
 

P = {x1 + x2g + x3g1 | xi  Q; 1  i  3, 
 

g = 
I I I
I I I

   
    

 and g2 = 
I I I
I I I
 
 
 

 = g1 

 
so that g2 = –g = g1} 
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 be the complete special quasi dual number pair. (I is the 
indeterminate such that I2 = I). 
 
 Now having seen examples of complete quasi special dual 
number pair we now proceed onto develop algebraic structure 
enjoyed by them. 
 

(1) M = {x1 + x2g + x3g1 | xi  Q, 1  i  3, g2 = g1 = –g and 
2
1g  = g, g1g = gg1 = g} is a group under addition, +. 

(2) M is a semigroup under product, . 
(3) (M, +, ) is a commutative ring.  

 
In case of complete quasi special dual pair numbers we can 

define semirings / semifields. 
 
We will illustrate this situation by some examples. 

 
Example 2.30:  Let P = {x1 + x2g + x3g1 | xi  Z+, 1  i  3, g2 = 
g1, 2

1g = g1 and g1g = gg1 = g}  {0} be a semiring.  Infact P is a 
strict semiring P is infact a semifield of complete quasi special 
dual pair numbers. 
 
Example 2.31:  Let M = {x1 + x2g + x3g1 | xi  Q+, 1  i  3,  g 
= 2 and g1 = 4  Z6, g2 = g1 and 2

1g  = 4, g1g = gg1 = g}  {0} is 
again a semifield of complete quasi special dual pair numbers. 
 
 If x = 8 + 10g + 3g1 and y = 3 + 7g + 5g1  M 
 x + y = 11 + 17g + 8g1  M 
 and xy = (8 + 10g + 3g1) (3 + 7g + 5g1)  
  = 24 + 30g + 9g1 + 56g + 70g2 + 21gg1 + 40g1 +  

   50gg1 + 15 2
1g  

  = 24 + 30g + 9g1 + 56g + 70g1 + 21g + 40g1 +  
   50g + 15g1 

  = 24 + 157 + 134g1  M. 
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Example 2.32:  Let  
 

M = {x1 + x2g + x3g1 | xi  R+, 1  i  3, 
 

g = 
1 1 1 1 1
1 1 1 1 1
     
      

 and g1 = 
1 1 1 1 1
1 1 1 1 1
 
 
 

; 

 
2
1g   = g1, g1g = gg1 = g, g2 = g1}  {0} 

 
be the complete quasi special dual number pair semifield.  
 
Example 2.33:  Let S = {x1 + x2g + x3g1 | xi  Z+, 1  i  3,  
g = 8,  g1 =16  Z24, g2 = 64  16 (mod 24)  g1 and 2

1g   = 256, 
g1g = gg1 = g, g2 = g1}  {0} be the complete quasi special dual 
number pair semifield. 
 
 Note: If in the above examples we permit Z+  {0} in the 
place of Z+ we see  the semirings / semifields continue to be 
semirings / semifield with a small charge; if x  S the semiring 
S = {x1 | (x1  Z+{0} or Q+{0} or R+{0}) or x2g; x2  
Q+{0} (or Z+{0} or R+{0} or x3g1 where x3  Q+  {0} 
(or Z+  {0} or R+  {0})}.  But if we take only Z+ or Q+ or R+ 
every element in S is of the form x1 + x2g + x3g1 (x1, x2, x3  Q+ 
or Z+ or R+).  That is every element is a complete special quasi 
dual number pair.  
 
 Thus only introduction of complete quasi dual special pair 
number could lead to semiring / semifield structure in case of 
quasi special dual numbers we cannot have semiring / semifield 
structure. 
 
 Further at this juncture we can equivalently define a 
complete quasi special dual pair or quasi special dual number 
component as follows. 
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  We say a pair (g, g1) is a complete quasi special dual pair 
number or a quasi special dual number component if  

(i) g2 = g1 (= –g) (ii) 2
1g  = g1 and g1g = gg1 = g. 

 
 That is g is the quasi special dual number component which 
contributes to quasi special dual number. 
 
 We will illustrate this situation using neutrosophic rings 
ZI or QI or RI. 
 
 Let g = 

n times

( I, I,..., I)


    (I2 = I is the indeterminate) 

 
 g2 = 

n times

(I, I,..., I)


  = –g. 

 
 Let g1 = (I, I, …, I) then 2

1g  = g1 and gg1 = g1g = g with  
g2 = g1. 
 
 Thus {(–I, –I, …, –I), (I, I, …, I)} is the complete quasi 
special dual pair or quasi special dual component of x = x1 + x2g 
+ x3g1. 
 

 Take g = 

I
I

I

 
  
 
 
 


, g n g = g2 = –g  = 

I
I

I

 
 
 
 
 
 


.  Let g1 = 

I
I

I

 
 
 
 
 
 


,  

 
then g2 = g1 and 2

1g = g1 with gg1 = g1g = g. 
 
 

Let g = 

m n

I I ... I
I I ... I

I I ... I


   
    
 
 
   

  
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(m  n) then g2 = g n g = 

I I ... I
I I ... I

I I ... I

 
 
 
 
 
 

  
 = –g. 

 
 

Let  

g1 = 

m n

I I ... I
I I ... I

I I ... I


 
 
 
 
 
 

  
(m n), 

 
then g1 n g1 = 2

1g = g1 and g n g1 = g1  g = g. 
 
 Thus {g, g1} is a complete quasi special dual pair number 
component.  
 
 Finally  
 

let g = 

n n

I I ... I
I I ... I

I I ... I


   
    
 
 
   

  
 

 
be a n  n matrix only order the natural product n,  
 

g2 = g n g = 

n n

I I ... I
I I ... I

I I ... I


 
 
 
 
 
 

  
 = –g. 
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 If g1 = 

I I ... I
I I ... I

I I ... I

 
 
 
 
 
 

  
 = g1 n g1 = 2

1g  = g1 and  

 
g n g1 = g1 n g = g. 
 
 Certainly under usual product g1  g1  g1 and g  g  –g. 
 
 Also g  g1  g1  g  g. 
 
 Thus using these neutrosophic matrices we get complete 
quasi special dual pair component. 
 
 Also if (–1, –1, …, –1) = g then g n g = g2 = –g = (1, 1, …, 
1) and if g1 = (1, 1, …, 1) then g2 = g1, 2

1g = g1, gg1 = g1g = g.  
Thus {g, g1} acts as a complete quasi special dual number pair 
component. 
 
 We can use all –1 entries as column matrices so that  
 

1 1
1 1

,1 1

1 1

    
        
    
    
    
        

 
 is a complete quasi special dual number pair  

 
component. 
 

 Likewise 

m n m n

1 1 ... 1 1 1 ... 1
1 1 ... 1 1 1 ... 1

1 1 ... 1 1 1 ... 1
 

      
          
    
           

     
 (m  n) 

is a complete quasi special dual number pair component. 
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 Also 

n n n n

1 1 ... 1 1 1 ... 1
1 1 ... 1 1 1 ... 1

1 1 ... 1 1 1 ... 1
 

      
          
    
           

     
  

 
is again a complete quasi special dual pair number component. 
 
 All this can be used to build rings, semirings which have 
elements of the form x1 + x2g + x3g1 with g2 = g1 (g1 = –g) and 

2
1g  = g, g1g = gg1 = g. 

 
 xi  Q, (Q+  {0}) (or Z, Z+  {0} or R or R+  {0}). 
 
 However all these (1) or (–1) matrices will not and cannot 
contribute to higher dimensional complete special quasi dual 
number pair rings (or semifield). 
 
 Further the rings of complete special quasi dual number 
pairs are never fields but they are Smarandache rings. 
 
 Certainly using g and g1 such that g2 = g1 = –g and 2

1g  = g1, 
g1g = gg1 = g we can only get complete quasi special dual pair 
number semiring of dimension three as it is impossible to have 
the concept of –g in semirings for the structure to be a semiring. 
 
 Next we proceed onto describe with examples the concept 
of vector space and semivector space of quasi special dual 
numbers and complete quasi special dual number pairs. 
 
Example 2.34:  Let M = {a + bg | g = 2  Z6, g2 = 4 = –g  Z6, 
a, b  Q} be the vector space of quasi special dual numbers 
over the field Q. 
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 Example 2.35:  Let  
 

S = 

1

2

9

a
a

a

 
 
    


 ai = xi + yig where g = 4  Z10  

 
is such that 42 = 6 (mod 10) that is g2 = –g, xi, yi  R, 1  i  9}. 

(i) S is a group under +. 
(ii) (S, n) is a semigroup with zero divisors. 
(iii) (S, +, n) is a ring, commutative and has zero 

divisors. 
(iv) (S, +, n) is a Smarandache ring. 
(v) S is a quasi special dual number vector space over 

R. 
(vi) S is a quasi special dual number Smarandache 

vector space over the S-ring. 
 

P = {a + bg | a, b  R; g = 4  Z10, g2 = –g  Z10}. 
 
Example 2.36:  Let S = {(a1, a2, …, a15) | ai = xi + yig where xi, 
yi  Q; 1  i  15 and g = 6  Z14 62 = –6 = 9 (mod 14)} be the 
general quasi special dual numbers vector space over the field 
Q. S has subspaces. 
 
Example 2.37:  Let  
 

S = 
1 2 7

8 9 14

15 16 21

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = xi + yig; 1  i  21, xi, yi  Z; 

 
g = 8  Z12, g2 = –g  Z12} 

 
be the group under ‘+’ of quasi special dual numbers.  S is not a 
vector space as S is defined only on Z.   
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If Z is replaced by Q then certainly S is a general vector 
space of quasi special dual number matrices over the field Q.  
Infact using the natural product n; S will also be a general 
linear algebra of quasi special dual number matrices over Q. 
 
Example 2.38:  Let  
 

S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

  ai = xi + yig; 1  i  16, 

 
xi, yi  R; g = 10  Z22, g2 = 100 = 12 = –g (mod 22)} 

 
be a general vector space of quasi special dual numbers over the 
field Q. 
 
 T is only a general non commutative linear algebra of quasi 
special dual numbers under the usual matrix product, but is a 
commutative linear algebra of quasi special dual numbers under 
the natural product n. We can construct polynomials with quasi 
special dual number coefficients.  

 
 Let V = { ai xi | ai = xi + yig with xi, yi  R, g is such that 
g2 = –g is the special new element} be the polynomial collection 
with special quasi dual number coefficients.  Using this 
structure we can build vector space / linear algebras of special 
dual like numbers which will be illustrated by examples. 
 
Example 2.39:  Let  
 

W = i
i

i 0
a x








 ai = xi + yig where xi, yi  R;  

 
g = 2  Z6 so that g2 = –g = 4}; 
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 W be a ring called the ring of polynomials in the variable x with 
coefficients from the quasi special dual numbers.  W is also a 
general vector space of quasi special dual numbers over the 
field R (or Q).  Infact W is a linear algebra of quasi special dual 
numbers. 
 
 Take p(x) = (5 + 8g) + (3 +g)x2 and  

q(x) = (8 + 4g)x + (2+g)x2 + 4g  W. 
 
 p(x) + q(x) = (5 + 12g) + (8+4g)x + (5+2g)x2  W. 
 
 p(x)  q(x) = (5 + 8g)4g + (3+g)x2  4g + (5 + 8g)  

  (8 + 4g)x + (3+g) (8 + 4g) x3 + (5 + 8g)  
  (2+g)x2 + (3+g) (2+g)x4 

 
       = (20g – 32g) + (12g – 4g)x2 + (40 + 64g + 20g –  

 40g)x + (24 + 8g + 12g – 4g)x3 + (10 + 16g +  
 5g – 8g)x2 + (6 + 2g + 3g – g)x4 

 
       = –12g + 8gx2 + (44g + 40) x + (24 + 16g) x3 +  

        (10 + 13g)x2 + (6 + 4g)x4 

 
       = –12g + (40 + 44g)x + (10 + 21g)x2 + (24 +  

       16g)x3 + (6 + 4g)x4 
is in W. 
 
 Properties like ideals, subrings which are not ideals 
irreducible polynomials, solving for roots of polynomials etc 
can be carried out as a matter of routine.  Infact roots will be 
from R or Rg or a + bg a, b  R and g is such that g2 = –g.  It is 
interesting to study these polynomials and finding roots of them. 
 
 Next just indicate we can get finite vector spaces of special 
quasi numbers.  We will illustrate these situations by examples. 
 
Example 2.40:  Let  

S = {a + bg | a, b  Z31, g = 2  Z6, g2 = –g} 
be a general vector space of special quasi dual numbers over the 
field Z31.  S is of finite order and finite dimensional over Z31. 
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Example 2.41:  Let  
 

T =

1

2

10

a
a

a

 
 
    


 ai = xi + yig, xi, yi  Z113, 

 
1  i  10, g = 4  Z10, g2 = –g} 

 
be the general vector space of special quasi dual numbers over 
the field Z113. 
 
Example 2.42:  Let M = {(a1, a2, …, a15) where ai = xi + yig; xi, 
yi  Z47, 1  i  15, g = 15  Z40, g2 = –g} be a general vector 
space of special quasi dual numbers over the field Z47. 
 
Example 2.43:  Let  
 

S = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
 ai = xi + yig, 1  i  30, 

 
xi, yi  Z59, g = 24  Z40, g2 = –g = 16} 

 
be the general vector space of special quasi dual numbers over 
the field Z59. 
 
Example 2.44:  Let  
 

W = 1 2 18

19 20 36

a a ... a
a a ... a

 
 
 

 ai = xi + yig, 

 
xi, yi  Z7, 1  i  36; g = 5  Z15, g2 = 10 = –g} 
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 be the general vector space of special quasi dual numbers over 
the field Z7.   
 All these vector spaces can also be made into linear algebras 
of special quasi dual numbers over the respective fields. 
 Finally we give one example of a non commutative linear 
algebra of special quasi dual numbers. 
 
Example 2.45:  Let  
 

P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

where ai = xi + yig with xi, yi  Z3, 

 
g = 2  Z6, g2 = – g} 
 

be the non commutative general linear algebra of special quasi 
dual numbers under the usual product  of matrices. 
 
Example 2.46:  Let  
 

M = i
i

i 0
a x








 ai = xi + yig; xi, yi  Z5, 0  i  ; 

 
g = 5  Z15, g2 = –g = 10} 

 
be a general linear algebra of special quasi dual numbers. 
 
 If p(x) = 3 + 2g + (1+3g) x  
 and q(x) = 4 + 3g + (1+g)x2 are in M.   

p(x) + q(x) = 2 + (1+3g)x + (1+g)x2  M. 
 p(x)  q(x) = [(3 +2g) + (1+3g)x]  [(4 + 3g) + (1+g)x2] 
        = (3+2g) (4+3g) + (1+3g) (4 + 3g)x + (3+2g)  

  (1+g)x2 + (1+3g) (1+g)x3 
 
        = (2+2g+4g + 4g) + (4 + 2g + 3g + g)x +  

  (3 + 2g + 3g + 3g)x2 + (1+3g + g + 2g)x3 
        = 2 + (4+g)x + (3+3g)x2 + (1+g)x3  M. 



36 Special Quasi Dual Numbers and Groupoids 
 

 
Example 2.47:  Let  
 

S = i
i

i 0
a x








 ai = xi + yig; xi, yi  Z5, 0  i  ; 

 
g = 14  Z21, g2 = 7 = –14} 

 
be the general linear algebra of special quasi dual numbers over 
the field Z5. 
 
 Now having see examples of vector spaces / linear algebras 
we proceed onto give examples of semivector spaces. 
 
Example 2.48:  Let  
M = {x + yg | x, y  Z+{0}, g = 14  Z21, g2 = –g = 7  Z21} 
be a general semivector space of special quasi dual elements 
over the semifield Z+  {0}. 
 Clearly M is not a semilinear algebra over Z+  {0}. 
 
Example 2.49:  Let  
 

W = 

1

2

15

a
a

a

 
 
    


 ai = xi + yig with 

 
xi, yi  Q+  {0}, 1  i  15, g = 2  Z6} 

 
be a general semivector space of special quasi dual numbers 
over the semifield Q+  {0} (or Z+  {0}). 
 
 Clearly W is not a general semilinear algebra of special 
quasi dual numbers over Q+  {0} (or Z+  {0}). 
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 Example 2.50:  Let  
 

S = 1 5

6 10

a ... a
a ... a

 
 
 

 ai = xi + yig with xi, yi  R+  {0}, 

 
1  i  10, g = 6  Z14, g2 = 36 = 8 (mod 14)} 

 
be the general semivector space of special quasi dual numbers 
over the semifield Z+  {0}. 
 
 Clearly S is not a general semilinear algebra. 
 
Example 2.51:  Let  
 

P = 

1 6

7 12

31 36

a ... a
a ... a

a ... a

 
 
    

 
 ai = xi + yig with 

 
xi, yi  Z+  {0}, 1  i  36 with g = 2  Z6} 

 
be the general semivector space of special quasi dual numbers 
over the semifield Z+  {0}.  Clearly P is not a semilinear 
algebra. 
 
 It is pertinent to mention here that we can use instead of 
semigroups under ‘+’ groups under ‘+’ of special dual numbers 
and build semilinear algebras.  
 
Example 2.52:  Let M = {a + bg | a, b  Q, g = 14  Z21,  
g2 = 196 (mod 21) = 7 = –g} be the semivector space of special 
quasi dual numbers over the semifield Z+  {0}.  Infact M is 
also a semilinear algebra of special quasi dual numbers over the 
semifield Z+  {0}. 
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Example 2.53:  Let S = {(a1, a2, a3) | ai = xi + yig; xi, yi  Z; 1  
i  3, g = 2  Z6,  g2 = 4 = –g  Z6} be the semivector space of 
special quasi dual numbers over the semifield Z+  {0}.  Infact 
S is also a semilinear algebra of special quasi dual numbers over 
the semifield Z+  {0}. 
 
Example 2.54: Let  
 

P =  

1

2

19

a
a

a

 
 
    


ai = xi + yig; xi, yi  Z, 1  i  19 with 

 
g = 24  Z40, g2 = 16 = –g  Z40} 

 
be the semilinear algebra of special quasi dual numbers over the 
semifield Z+  {0} under the natural product n of matrices. 
 
Example 2.55:  Let  
 

S = 1 10

6 20

a ... a
a ... a

 
 
 

 ai = xi + yig, xi, yi  Z, 1  i  20, 

 
g = 15  Z40, g2 = 25 = –g  Z40} 

 
be a semilinear algebra of special quasi dual numbers over the 
semifield Z+  {0} under the natural product n of matrices. 
 
Example 2.56:  Let  
 

T = 1 2

3 4

a a
a a

 
 
 

 ai = xi + yig, xi, yi  Z, 1  i  4, 

 
g = 5  Z15, g2 = 10 (mod 15) = –g} 



Quasi Special Dual Numbers  39 
 
 
 be the semilinear algebra of special quasi dual numbers over the 
semifield Z+  {0}. 
 
Example 2.57:  Let  
 

S = i
i

i 0
a x








 ai = xi + yig with xi, yi  Z, g = 2  Z6} 

 
be the semilinear algebra of polynomials of special quasi dual 
number coefficients over the semifield Z+  {0}. 
 
 Now we can build both vector spaces and semivector spaces 
using the notion of complete special quasi dual pair numbers.  
This we will illustrate by an example or two. 
 
Example 2.58:  Let W = {a + bg + cg1 | a, b, c  Q; g = 2 and  
g1 = 4  Z6, g2 = g1 = –g and 2

1g  = 4, gg1 = g1g = g} be the 
vector space of complete special quasi dual number pair over 
the field Q.  Infact W is also a linear algebra.   
 
 We see V = {a + bg | a, b  Q, g = 2  Z6} and W are 
identical as vector spaces as g1 =  –g. 
 
 However we see the difference occurs only when we use 
semivector space with elements from Q+  {0} or R+  {0} or 
Z+  {0} as –1  R+ or Q+ or Z+. 
 
Example 2.59:  Let M = {a + bg + cg1 | a, b, c  Q+  {0}; g = 
5  Z15, g1 = 10 so that g2 = 10 (mod 15) = –5 (mod 15) and 2

1g  
= g1 with gg1 = g1g = g} be the semivector space of complete 
special quasi dual numbers over the field Q+  {0}.  
 
Example 2.60:  Let T = {(a1, a2, …, a7) with aj = x1 + x2g1 + x3g 
where 1  j  7, g = 15, g1 = 25  Z40, 2

1g = g1 = 25 (mod 40), 
g1g = gg1 = g and g2 = –g = g1; xi  R+  {0}; 1  i  3} be the 
semilinear algebra of complete special quasi dual pair numbers 
over the semifield Q+  {0}.  
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Example 2.61:  Let  
 

M =  

1

2

15

a
a

a

 
 
    


ai = x1 + x2g + x3g1 with 1  i  15, 

 
xk  Z+  {0}, 1  i  3 and g = 4 and g1 = 6  Z10,  

 
g2 = 6 = g1 = –g and 2

1g  = g1; gg1 =g1g = g} 
 

be the semilinear algebra of complete quasi special dual pair 
numbers over the semifield Z+  {0}. 
 
Example 2.62:  Let  
 

S =  
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

ai = x1 + x2g + x3g1 

 
with 1  i  30, xk  Z+  {0}, 1  k  3 and g = 2 

 
and g1 = 4  Z6} 

 
be a semilinear algebra of complete quasi special dual pair 
numbers over the semifield Z+  {0} under the natural product 
n of matrices. 
  
Example 2.63:  Let  
 

S =  
1 2 3

13 14 15

g g g

g g g

 
 
 
  

   gi = x1 + x2g + x3h 
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 with 1  i  15, xk  Z+  {0}, 1  k  3 and  

 
g = 15 and h = 25  Z40; g2 = 25 = h and h2 = h  gh = hg = g} 

 
be the semilinear algebra of complete special quasi dual pair 
numbers over the semifield Z+  {0} under the natural product 
n. 

  Likewise consider P = i
i

i 0
a x








 ai = x1 + x2g + x3g1 where 

xj  Z+  {0}, 1  j  3; g = 2  Z6, 4 = g1, 2
1g  = 4, g2 = 4 = –g; 

g1g = gg1 = g}; P is a semifield of polynomials with coefficients 
as complete special quasi dual pair number. 
 
 If Z+  {0} is replaced by R+  {0} or Q+  {0} still we 
continue to get semifield of polynomials with coefficients as 
complete special quasi dual pair numbers. 
 
Example 2.64:  Let  
 

S = i
i

i 0
a x








  ai = x1 + x2g + x3g1 with 

 
x1, x2, x3  Q+  {0}, g = 15 and g1 = 25  Z40} 

 
be the semilinear algebra of polynomials with complete quasi 
special dual pair numbers over the semifield Z+  {0}. 
 
Example 2.65:  Let  
 

P = i
i

i 0
a x








  ai = x1 + x2g + x3g1 where xk  R+  {0}, 

 
1  k  3, g = 24, g1 = 16  Z40 with gg1 = g1g = g,  

 
2
1g  = g1 = 16, g2 = 242 = g1 = –g} 
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be the semilinear algebra of polynomials with complete quasi 
special dual pair numbers over the semifield Q+  {0} (or R+  
{0} or Z+  {0}). 
 
Example 2.66:  Let  
 

P = 
5

i
i

i 0
a x






  ai = x1 + x2g + x3g1 where xj  R+  {0}, 

 
1  j  3, g = 14, g1 = 7  Z21 with g2 = 14 = –g, 2

1g  = g1, 
 

g1g = gg1 = g = 14} 
 

be only a semivector space of complete quasi special dual 
number pairs.  P is clearly not a semilinear algebras as  
 

p(x) = (8 + 3g + 6g1)x4 + (2 + 2g + g1) and  
q(x) = (3 + g1 + g)x3 + (2 + g + 2g1)x  P.   
 
But p(x)  q(x) =  (8 + 3g + 6g1)  (3 + g1 + g) x7 +  

   (2 + 2g + g1) (3 + g1 + g)x3 +  
   (8 + 3g + 6g1) (2 + g + 2g1)x5 +  
   (2 + 2g + g1) (2 + g + 2g1)x  P. 

 
 Hence P is only a semivector space of complete special 
quasi dual pair of numbers. 
 
 All properties associated with semivector spaces, semilinear 
algebras, linear algebras and vector space can be easily derived 
in case of complete special quasi dual pair without any 
difficulty. Interested reader can work with them, however 
several problems in this direction are suggested in the last 
chapter of this book. 
 
 
 



 
 
 
 
 
Chapter Three 
 
 

 
 
HIGHER DIMENSIONAL QUASI SPECIAL 
DUAL NUMBERS 
 
 
 

In this chapter we for the first time introduce the notion of t-
dimensional quasi special dual numbers t  3.  However it is 
pertinent to keep on record that apart from these modulo 
integers the other source are from the neutrosophic numbers. 

 
 We will first illustrate by examples or –1 and 1 in matrix 
form. 
 
 Let x = (–I, –I, –I, –I), x2 = (I2, I2, I2, I2) = (I, I, I, I) = –x. 
 
 Thus a + bx, a, b  R or C or Q or Z or Zn is a quasi special 
dual number. 
 

 Likewise x =  
1 1 1 1 1
1 1 1 1 1
     
      

;  

 
x under natural product n is given by  
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x n x = 
1 1 1 1 1
1 1 1 1 1
 
 
 

 so x n x = x2 = –x. 

 
This is yet another way of building quasi special dual 

numbers by a + bx with a, b  R or C or Z or Zn. 
 

Let y = 

1 1 1
1 1 1
1 1 1
1 1 1

   
    
   
 
   

 be such that 

 

y n y = y2 = 

1 1 1
1 1 1
1 1 1
1 1 1

 
 
 
 
 
 

 = –y and 

 
a + by, a, b  R (or Q or Zn or Z or C) is a quasi special dual 
number. 
 

Let x = 
I I I I 1
I I I I 1

     
      

 be such that 

 

x2 = 
I I I I 1
I I I I 1
 
 
 

 = –x under the natural product n. 

 
 Thus using these matrices we cannot get any desired 
number of quasi special elements. 
 
Example 3.1:  Let x = a + bg1 + cg2 with g1 = 3 and g2 = 8, g1, 
g2  Z12.  We see x is a quasi special dual number. 
 
   x  = (a + bg1 + cg2) and y = c + dg1 + eg2 
   xy  = (a + bg1 + cg2) (c + dg1 + eg2) 
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  = ac + bcg1 + c2g2 + dag1 + db 2

1g  + dcg1g2 +  
   eag2 + beg1g2 + ce 2

2g  
 
  = ac + bcg1 + dag1 – dbg1 + eag2 – ceg2 + c2g2 
  = ac + (bc + da – db) g1 + (ea – ce + c2)g2  
 
is again a three dimensional quasi special dual number. 
 
Example 3.2:  Let M = {a + bg1 + cg2 where a, b, c  Z, g1 =  
(–I, 0, 0, 0); g2 = (0, 0, 0, –I); 2

1g  = (I, 0, 0, 0) = –g1 and 2
2g  =  

(0, 0, 0, I) = –g2 and g1g2 = g2g1 = (0, 0, 0, 0)} be a three 
dimensional quasi special dual number. 
 
Example 3.3:  Let  
 

P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | aj  Z, 
 

1  j  5; 
 
 

g1 = 

I
0
0
0
0
0

 
 
 
 
 
 
 
 
  

, g2 = 

0
I

0
0
0
0

 
  
 
 
 
 
 
  

, g3 = 

0
0
I

0
0
0

 
 
 
 
 
 
 
 
  

, g4 = 

0
0
0
I

0
0

 
 
 
 
 
 
 
 
  

, 

 

g5 = 

0
0
0
0
I

0

 
 
 
 
 
 
 
 
  

 and g6 = 

0
0
0
0
0
I

 
 
 
 
 
 
 
 
  
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with 2
jg  = –gj;  1  j  6 and gi n gj = gj n gi = 

0
0
0
0
0
0

 
 
 
 
 
 
 
 
  

 if i  j;  

 
1  i, j  6} be the collection of all seven dimensional quasi 
special dual numbers. 
 
Example 3.4:  Let  
 
W = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6  + a8g7 + a9g8 |  

 
ai  Q, 1  i  9; 

 
 

g1 = 

I 0
0 0
0 0
0 0

 
 
 
 
 
 

, g2 =

0 I
0 0
0 0
0 0

 
 
 
 
 
 

, g3 =

0 0
I 0

0 0
0 0

 
  
 
 
 

, 

 

g4 = 

0 0
0 I
0 0
0 0

 
  
 
 
 

 , g5 = 

0 0
0 0
I 0

0 0

 
 
 
 
 
 

, g6 =

0 0
0 0
0 I
0 0

 
 
 
 
 
 

, 

 

g7 =

0 0
0 0
0 0
I 0

 
 
 
 
 
 

   and g8 = 

0 0
0 0
0 0
0 I

 
 
 
 
 

 

with 2
kg  = –gk; 
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1  k  8 and gi  n gj = gj  n gi = 

0 0
0 0
0 0
0 0

 
 
 
 
 
 

 if i  j; 1  i, j  8} 

 
be the nine dimensional quasi special dual numbers.  
 
 Only this method allows one to construct any desired 
dimensional quasi special dual numbers. 
 
 Now we can have several such numbers. 
 
 Justlike neutrosophic numbers helped in constructing 
special dual like numbers neutrosophic numbers help in 
constructing quasi special dual numbers of higher dimension.   
 
 We will illustrate this situation by some examples. 
 
Example 3.5:  Let  

W = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + 
 

a6g5 + a7g6 | g1 = 
I 0 0
0 0 0
 
 
 

, 

 

g2 = 
I 0 0

0 0 0
 
 
 

, g3 = 
0 0 I
0 0 0
 
 
 

, g4 = 
0 0 I
0 0 0

 
 
 

, 

 

g5 = 
0 0 0
0 I 0
 
 
 

 and g6 = 
0 0 0
0 I 0
 
  

. 

 

gi n gj = 
0 0 0
0 0 0
 
 
 

 if i  j, 2
ig  = gi–1 , i = 2, 3, 4, 5, 6, 

 
that is  
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    2

4g  =
0 0 I
0 0 0

 
 
 

 n 
0 0 I
0 0 0

 
 
 

 = 
0 0 I
0 0 0
 
 
 

 = g3; with 

 
gi+1 = –gi, i = 1, 2, 3, 4, 5.  gj  Z+  {0}; 1  j  7} 

be the complete quasi special neutrosophic dual number pair. 
 
Example 3.6:  Let  
 

M = 1 2 3

4 5 6

a a a
a a a

 
 
 

 where ai = x1 + x2g + x3g1 + x4h +  

 
x5h1 where xj  Q+  {0}, g = 15, g1 = 25, h = 24 and  

 
h1 = 16  Z40,  1  j  5, 1  i  6} 

 
be the complete quasi special dual number pair. 
 
 Clearly M is a semigroup under + also M is a semigroup 
under n.  Infact (M, +, n) is a commutative strict semiring. 
 
Example 3.7:  Let M = {a1 + a2g + a3g1 + a4h + a5h1 + a6k + a7k1 
| ai  Q+  {0}, 1  i  7, g = (–I, –I, 0, 0, 0, 0), g1 = (I, I, 0, 0, 
0, 0), h = (0, 0, –I, –I, 0, 0) h1 = (0, 0, I, I, 0, 0), k = (0, 0, 0, 0,  
–I, –I) and k1 = (0, 0, 0, 0, I, I)} be the semigroup of complete 
quasi special dual number pair under product. 
 
Example 3.8:  Let S = {a1 + a2g1 + a3g + a4h + a5h1 + a6k + a7k1 | 
ai  Z+  {0}, 1  i  7, g = (–I, 0, 0), g1 = (I, 0, 0), h = (0, –I, 
0), h1 = (0, I, 0), k = (0, 0, –I) and k1 = (0, 0, I)} be the 
semigroup under product. 
 
 We see g + g1 = g + g1 = 0. 
 
 However we do not add g + h or g1 + h1 or g + h1 and so on 
g2 = g1 = –g, h2 =  +h1 = –h and k2 =  k1 = – k.  
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 However we cannot add h1 + g = (–I, I, 0) where (h1 + g)2 = 
(I, I, 0)  h1 + g or = –(h1 + g)  or = (0, 0, 0). 
 
 Thus we do not perform addition of g with h or h1 or k or k1, 
however g2 = –g1. 
 
Example 3.9:  Let S = {a1 + a2g + a3g1 + a4h + a5h1 | ai  Z,  
1  i  5, g = 15, g1 = 25 = –g (mod 40), h = 24 and h1 = 6 = –h 
(mod 40)}.  We see P = {g, g1, h, h1, 0} is a semigroup under 
product. However P is not closed under ‘+’.  However P  {1} 
is a monoid under . 
 
 We call P  {1} as the semigroup associated with quasi 
special dual numbers.  Using P  {1} we can construct 
semigroup ring and semigroup semiring which will form the 
collection of complete quasi special dual number pairs rings or 
semirings respectively.   
 
 We will illustrate this situation by some examples.  
 
Example 3.10:  Let S = {1, 0, 3, 4, 8, 9}  Z12 is the associated 
semigroup of special quasi dual number component. 
 
 Let Q be the field of rationals QS be the semigroup ring of 
S over Q. 
 
 Suppose  

S = {1 = g1  g2 = 3, g3 = 4,   g4 = 8 and g5 = 9, 0}  Z12. 
 
 Then QS = {x1 + x2g2 + x3g3 + x4g4 + x5g5 | xi  Q; gj  S 
and g1 = 1 so x1g1 = x1, 1  i  1; 2  j  5}. QS is the general 
ring of complete quasi special dual number pairs. 
 
 QS has zero divisors, units and idempotents. 
 
 Thus as we get using complex number C = {a + bi | i2 = –1}  
quasi special dual numbers a + bg, g2 = –g and a, b  C. 
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 S = {a + bg | g2 = –g with a, b are complex numbers} and 
quasi special dual complex modulo integers. 
 
 P = {a + bg | g2 = –g with a, b  Zn, Zn the modulo 
integers}. 
 
 We see in case of complex numbers or neutrosophic 
numbers we cannot extend it higher dimension. 
 
 But in case of quasi special dual numbers we can extend the 
notion to any desired dimension.  That is if {g1, g2, …, gt} are  
t-distinct quasi special dual numbers such that 2

ig  = –gi and  
gigj = gi or gj or 0 if i  j, 1  i  t. 
 
 So Q(g1, g2, …, gt) = {x1 + x2g1 + … + xt+1 gt} is the t+1 
dimensional quasi special dual numbers. 
 
 Q(g1, g2, …, gt) is a ring and not a field. 
 
 Let us consider (Q+  {0}) (g1, …, gt) we see we cannot 
give any structure except (Q+  {0}) (g1, …, gt) is just a 
semigroup under ‘+’. 
 
 However if we denote the collection (–g1, …, –gt) as say 
(h1, h2, …, ht) then with such modification we can build. 
 
 V = (Q+  {0}) (g1, …, gt, h1, h2, …, ht) 
 
 = {x1 + x2g1 + … + xt+1gt + y1h1 + … +ytht | xi yj  Q+ {0} 
with 2

ig = hi; 1  i  t; gigj = hj or hi or gi or gj or 0, 1  i, j  t}.  
Clearly V is a semigroup under  infact V is a semiring. 
 
 In case of rings R, the addition of h1, …, ht is not essential 
as for every a  R, –a  R so we can say even if we write  
Q(g1, g2, …, gt; h1, h2, …, ht) yet both Q(g1, …, gt, h1, …, ht) is 
isomorphic with Q(g1, …, gt) as rings. 
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 Now we can have Zn(g1, …, gt) is isomorphic with Zn(g1, 
…, gt, h1, …, ht) as rings. 
 
 Thus the study of rings and semirings in case of special 
quasi dual numbers can be taken as a matter of routine. 
 
 We only indicate by some simple examples how vector 
spaces, semivector spaces and Smarandache semivector spaces 
can be constructed using the notion of complete special quasi 
dual pairs of numbers. 
 
Example 3.11:  Let M = {(a1, a2, …, a6) | ai = xi + yig + zig1 + 
mih + nih1 where xi, yi, zi, mi, ni  Q; 1  i  6; g = 15, g1 = 25, 
h = 24 and h1 = 16 in Z40} be the complete vector space of quasi 
special dual numbers pairs over the field Q. 
 
 Take M1 = Q(g, g1, h, h1) = {x1 + x2g + x3g1 + x4h + x5h1 | xi 
 Q; 1  i  5}. 
 
 Clearly suppose we take S = {0, 1, 15, 25, 16, 24}  Z40 we 
see (S, ) is a semigroup given by the following table. 
 

0 1 15 16 24 25
0 0 0 0 0 0 0
1 0 1 15 16 24 25

15 0 15 25 0 0 15
16 0 16 0 16 24 0
24 0 24 0 24 16 0
25 0 25 15 0 0 25



 

 
 Consider the semigroup ring QS of the semigroup S over 
the ring Q. 
 
 Clearly QS  M1, so infact we can say QS the semigroup 
ring is a vector space of complete special quasi dual pairs over 
the field Q. 
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 It is clear QS is a linear algebra. 
 
 Also we can say M1 is isomorphic with QS as well as  
Q(g, h) as rings or linear algebras where g = –g = g1 and h2 = –h 
= h1.  Thus without loss of generality we can work with  
 

N = {(a1, a2, …, a6) | ai = x1 + x2g + x3h, 1  i  6} as M is 
isomorphic with N as linear algebras however they are not 
isomorphic as vector spaces. 
 
Example 3.12:   Let  
 

P = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 where ai = x1 + x2g + x3g1 

 
where x1, x2, x3  R, g = 8, g1 = 4  Z12, 1  i  16} 

 
be a vector space over R of complete special quasi dual number 
pair over the field R. 
 
 We see P is a commutative linear algebra over the field R 
under natural product n and a non commutative linear algebra 
over the field . 
 

We see if S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

ai = x1 + x2g 

 
where x1, x2  R, g = 8 with g2 = 4  Z12, 1  i  16} 

 
is again a commutative linear algebra over R under n. 
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 We see S and P are isomorphic as linear algebras but are not 
isomorphic as vector spaces. 
 
Example 3.13:  Let  
 

S = 1 2 6

7 8 12

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g + x3g1 + x4h + x5h1; 

 
1  i  12, xj  Q; 1  j  5, g = 6, g1 = 15, h = 14, h1 = 7  Z21} 
 
be a vector space of special quasi dual pairs over the field Q.  
 
 

P = 1 2 6

7 8 12

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g + x3h  where  

 
g = 6 and h = 14  Z21, x1, x2, x3  Q, 1  i  12} 

 
is a linear algebra of quasi dual pairs over the field Q.  
 
Example 3.14:  Let  
 

S = 

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g + x3g1 + x4h + x5h1 + x6k + x7k1 + 

 
 x8p + x9p1 where 1  i  4, xj  Q+  {0}; 1  j  9, g = (–I, 0, 
0, 0), g1 = (I, 0, 0, 0), h = (0, –I, 0, 0), h1 = (0, I, 0, 0), k = (0, 0, 
–I, 0), k1 = (0, 0, I, 0) and p = (0, 0, 0, –I) and p1 = (0, 0, 0, I)} 
be a vector space / linear algebra of complete quasi special dual 
number pairs over the semifield Q+  {0}. 
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Example 3.15:  Let  
 

S = 

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai = x0 + x1g + x2h where 

 

g = 
I I I

0 0 0
   
 
 

 and h = 
0 0 0
I I I

 
    

, 

 
x0, x1, x2  Z+  {0}, 1  i  15} 

 
be the semivector space of quasi special dual numbers over  
Z+  {0}. 
 
 S is not a linear algebra. 
 
Example 3.16:  Let  
 

P = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai = x0 + x1g + x2h where 

 
g1 = 15 and h = 24  Z40, x0, x1, x2  Q+  {0}; 1  i  30} 

 
be a semivector space of special quasi dual numbers over the 
semifield Z+  {0}. 
 
 Clearly P is not a semilinear algebra. 
 
 Thus we have semivector spaces which are not semilinear 
algebras, however if these semivector spaces of complete quasi 
special dual number pairs then certainly these semivector spaces 
will be semilinear algebras over Z+  {0} or R+  {0} or Q+  
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{0}.  Now we can also have the simple notion of polynomial 
rings of quasi special dual pair numbers and polynomial 
semirings of complete special dual pair numbers. 
 
 We will just illustrate this situation. 
 
Example 3.17:  Let  
 

S = i
i

i 0
a x








  ai = y1 + y2g + y3h where 

 

g = 
I I 0
I I 0

  
   

 and h = 
0 0 I
0 0 I

 
  

 and yi  Q; 

 
g2  = –g and h2 = –h, 1  i  3} 
 

be the polynomial ring of quasi special dual numbers. 
 
Example 3.18:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3k where  

 
x1, x2, x3  R; g = 15 and k = 24  Z40} 

 
be the quasi special dual number ring of polynomials. 
 
 All concepts of reducibility / irreducibility and roots; etc 
can be done as a matter of routine.  However roots of 
polynomials can also be special quasi dual number. 
 
 Further Q or R can also be replaced by C and still the 
conclusions hold good. 
 
 Suppose we now use Zn instead of C or Z or Q or R; we 
give a few examples of them. 
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Example 3.19:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3k where g = 14 

 
and k = 6  Z21, xj  Z240, 1  j  3} 

 
be the special quasi dual numbers polynomial ring. 
  
Example 3.20:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3k where g = 6, 

 
k = 14  Z21, xj  Q+  {0}, 1  j  3}. 

 
M is only a semigroup under ‘+’ and M is not closed under 
product for  
 p(x)  = 9gx3, q(x) = 2g + 3kx in M 
 
 p(x)  q(x)  = 9gx3 (2g + 3kx)  
    = 18g2x3 + 27gkx4 
    = –18gx3 + 0  M. 
 
Example 3.21:  Let  
 

P = i
i

i 0
a x








  ai = x1 + x2g + x3k + x4h where 

 

g = 
I 0 0 0
I 0 I 0

 
   

, k = 
0 I 0 0
0 I 0 0

 
  

 and 

 

h = 
0 0 I I
0 0 0 I

  
  

; xj  Z+  {0}; 1  j  4} 

be the semigroup under ‘+’.   
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Clearly P is not a semigroup under . 
 

   Take p(x) = 3 + 2gx + 4hx2 and  
q(x) = 4g + 5hx3 + 2gx5 in P. 

 
 Consider  

p(x)  q(x) = (3 + 2gx + 4hx2)  (4g + 5hx3 + 2gx5) 
  = 12g + 8g2x + 16ghx2 + 15hx3 + 10ghx4 +  

   20h2x5 + 6gx5 + 4g2x6 + 8ghx7 
 
  = 12g + 8(–g)x + 0 + 15hx3 + 20(–h)x5 + 6gx5 + 4(–g)x6 
 
 Clearly p(x)  q(x)  P.  Inview of this we have the 
following result.  Only if we take the collection of all complete 
special quasi dual number pairs then only we get a semigroup 
under  and hence a semiring. 
 
 We will just illustrate this situation by some examples.  
 
Example 3.22:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3g1 + x4h + x5h1  

 
where xj  Q+  {0}  

 
 

1  j  5, g = 
I 0 0 0
I 0 I 0

 
   

 g1 =
I 0 0 0
I 0 I 0
 
 
 

,  

 

h =
0 0 I I
0 0 0 I

  
  

, h1 =
0 0 I I
0 0 0 I

 
 
 

. 

 
M is a semigroup under product and infact a semiring.  
However M is not a semifield as M has zero divisors, p(x) = 
3gx3 and q(x) = 4hx7  M then  
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p(x).q(x) = 3gx3  4hx7 = 12ghx10   = 0 as 
 

gh = 
I 0 0 0
I 0 I 0

 
   

 
0 0 I I
0 0 0 I

  
  

 

 

=
0 0 0 0
0 0 0 0
 
 
 

. 

 Hence the claim. 
 
Example 3.23: Let  
 

P = i
i

i 0
a x








  ai = x1 + x2g + x3g1 + x4h + x5h1; xj  Z+  {0}, 

 
1  j  5 g = 6, g1 = 15, h = 14 and h1 = 7  Z21.  gg1 = g, 

 
hh1 = h, g  h = 0 (mod 21), g1  h = 0 (mod 21), 

 
g  h1 = 0 (mod 21) and g1  h1 = 0 (mod 21)}. 

 
P is a semiring of complete special quasi dual number pairs and 
P is not a semifield. 
 
 Thus unless we take complete quasi special dual number 
pairs as coefficients of the polynomials we would not be in a 
position to get semirings we only can get semigroup under ‘+’. 
 
 Next we proceed onto study the semigroup counter part of 
special quasi dual numbers in C(Zn).  First we study some 
examples.  At the outset the authors think a + biF  C(Zn) a  0 
b  0 cannot be such that  
 

(a + biF)2 = –(a + biF) = (n–1) (a+biF). 
 
 Thus at this juncture the authors suggest the following 
problem. 
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Problem:  Let C(Zn) = {a + biF | a, b  Zn, 2

Fi = n–1}. 
 
 Does C(Zn) contain x = a + biF; a  0, b  0 such that (a + 
biF)2 = –(a + biF) (mod n)  = (n–1) (a + biF). 
 
 We at this stage do not discuss about complex modulo 
integer dual numbers.  
 
 Consider C(Z5) = {a + biF | a, b  Z5, 2

Fi = 4} 
    Take (2 + iF)  C(Z5) 
    (2 + iF)2  = 4 + 2

Fi  + 4iF 
        = 4 + 4 + 4iF ( 2

Fi = 4) 
        = 3 + 4iF 
        = – (2 + iF) (mod 5). 
 

Consider (3 + 4iF)2  = 9 + 16 2
Fi  + 24iF 

      =  9 + 16  4 + 24iF 
      = (73 + 24iF) (mod 5) 
      = 3 + 4iF. 
 

Consider (3 + 4iF) (2 + iF) 
      = 6 + 8iF + 3iF + 4 2

Fi  
      = 6 + 11iF + 4  4 
      = (22 + 11iF) (mod 5) 
      = (2 + iF). 
 
 Thus 2 + iF contributes a quasi special dual number. 
 
 Consider C(Z10) = {a + biF | a, b  Z10, 2

Fi = 9}.  7 + 6iF is a 
component of a dual number  
 
 (7 + 6iF)2 = 3 + 4iF = –(7 + 6iF) and 
 

(2 + 4iF) is a component of the dual number; we have  
(2 + 4iF)2 = 8 + 6iF   = –(2 + 4iF). 
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 Let S = {7 + 6iF, 3 + 4iF, 2 + 4iF, 8 + 6iF, 0}.  Clearly (S, +) 
is not a semigroup.  We find out whether (S, ) is a semigroup.  
Consider the following table of S under . 
 

F F F F

F F F

F F F

F F F

F F F

0 2 4i 3 4i 7 6i 8 6i
0 0 0 0 0 0

2 4i 0 8 6i 0 0 2 4i
3 4i 0 0 3 4i 7 6i 0
7 6i 0 0 7 6i 3 4i 0
8 6i 0 2 4i 0 0 8 6i

    

  
  
  
  

 

 
 (S, ) is a semigroup we can add 1 with S so that {S  {1}, 
} is a monoid. 
 
Example 3.24:  C(Z4) has no special quasi dual number 
component. 
 

Likewise C(Z6) has no complex special quasi dual number 
component. 

 
 Thus the study of existence of special quasi dual number 
component in case of C(Zn) happens to be an interesting 
problem. 
 
Example 3.25:  Consider C(Z17) = {a + biF | 2

Fi  = 16, a, b  Z17} 
be the ring of modulo integers. 
 
 Consider  

S = {0, 1, 8 + 2iF, 9 + 15iF, 9 + 2iF, 8 + 15iF}  C(Z17). 
 

We see clearly S is not closed under the operation ‘+’. 
 
 Now we find the table of S under ‘’ which is as follows: 
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F F F F

F F F F

F F F F

F F F F

F F F F

F F F F

0 1 8 2i 9 15i 9 2i 8 15i
0 0 0 0 0 0 0
1 0 1 8 2i 9 15i 9 2i 8 15i

8 2i 0 8 2i 9 15i 8 2i 0 0
9 15i 0 9 15i 8 2i 9 15i 0 0
9 2i 0 9 2i 0 0 9 2i 8 15i
8 15i 0 8 15i 0 0 8 15i 9 2i

    

   
   
   
   
   

 

 
 S is the special quasi dual number component semigroup of 
C(Z17).  However we have not found all such semigroups of 
C(Z17). 
 Now using components of quasi special dual complex 
modulo integer numbers we can construct quasi special dual 
complex modulo integer numbers as well as complete quasi 
special dual complex modulo integer numbers pairs.   
 We will only illustrate these situations by some examples. 
 
Example 3.26:  Let S = {a + bg | a, b  Q, g = 2 + iF  C(Z5)  g2 
= –g} be the collection of quasi special complex modulo integer 
dual numbers.  
 S is a commutative ring with units and zero divisors.  Infact 
S is a Smarandache ring. 
 
Example 3.27:  Let M = {(a1, a2, a3) | ai = x + yb where b = 7 + 
6iF  C(Z10); 1  i  3, x, y  Q with b2 = –b} be the ring of 
quasi special dual numbers of complex modulo integers. 
 M is a S-ring with units, idempotents and zero divisors. 
 
Example 3.28:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi + yig where 

g = 8 + 2iF  C(Z17) = {a + biF | a, b  Z17, 2
Fi = 16} 

with g2 = –g, xi, yi  Q; 1  i  9} 
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be the non commutative ring of quasi special dual numbers of 
complex modulo integers.  S is also a Smarandache ring with 
unit. 
 
Example 3.29:  Let  
 

S = 

1 2 3

4 5 6

13 14 15

a a a
a a a

a a a

 
 
    

  
ai = xi + yig with g = 8 + 15iF  C(Z17), 

 
g2 = –g, xi, yi  Z; 1  i  15} 
 

be a commutative special dual complex modulo integer ring; 
under the natural product n on S.  S is also a S-ring with zero 
divisors and idempotents.  
 
 It is pertinent to mention here that it is not easy to construct 
semiring of special dual complex modulo integers; only those 
structure are rings as every ring is a semiring and not vice versa.  
To over come this as before we have only complete quasi 
special dual pair number semirings only.  We do not define this 
as it is a matter of routine.  However we give examples of them. 
 
Example 3.30:  Let S = {a + bg + cg1 | a, b, c  Z+  {0}, g = 2 
+ iF and g1 = 3 + 4iF  C(Z5); g2 = g1, 2

1g = g1 with gg1 = g = 
g1g} be the complete quasi special dual pair number semiring.  
Clearly S is a strict semiring.  
 
Example 3.31:  Let M = {(a1, a2, a3, a4, a5, a6) | ai = xi + yig + 
zig1, xi, yi, zi  Q+  {0}, 1  i  6, g = 7 + 6iF, g1 = 3+4iF  
C(Z10) with g2 = g1, 2

1g = g1, gg1 = g1g = g1} be the semiring of 
complete special quasi dual number pairs M has zero divisors 
and units but M is not a semifield. 
 
 



Higher Dimensional Quasi Special Dual Numbers  63 
 
 
 
 
 
 
Example 3.32:  Let  
 

T = 

1 2 3 4

5 6 7 8

29 30 31 32

a a a a
a a a a

a a a a

 
 
    

   
 ai = xi + yig + zig1, 

 
xi, yi, zi  Q+  {0}, 1  i  32, 

 
g = 8+2iF, g1 = 9 + 15iF  C(Z17); g2 = g1, gg1 = g1g = g} 

 
be the semiring of complete dual special quasi number pairs 
under natural product n. T has zero divisors and units.  
However T is not a semifield.  
 
Example 3.33:  Let  
 

S = 1 2 7

8 9 14

a a ... a
a a ... a

 
 
 

 ai = xi + yig + zig1, 

 
xi, yi, zi  Z+  {0}, 1  i  14, g = 8 + 15iF, 

 
g1 = 9 + 2iF  C(Z17), g2 = g1, g1g = gg1 = g, 2

1g = g1} 
 

be the semiring of complete quasi special dual pair number.   
 

Now having seen examples of quasi special dual number 
rings and complete quasi special dual number pair semiring we 
proceed onto give examples of vector space of quasi special 
dual number pair and semivector space of quasi special dual 
number pair. 
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Example 3.34:  Let S = {(a1, a2, a3) | ai = x + yg where x, y  Q, 
1  i  3, g = 8 + 2iF  C(Z17)} be a vector space of quasi 
special dual number over the field Q. 
 
 S has subspaces and infact S can be realized as a linear 
algebra of quasi special dual numbers. 
 
Example 3.35:  Let  
 

M = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 ai = xi + yig; xi, yi  R, 1  i  12} 

 
be a vector space of special quasi dual numbers over R (M, n) 
becomes a general linear algebra of special quasi dual numbers. 
 
Example 3.36:  Let  
 

S = i
i

i 0
a x








  ai = xi + yig, xi, yi  Q; g = 2 + 4iF  C(Z10)} 

 
be the general semilinear algebra of special quasi dual numbers 
over Q. 
 
Example 3.37:  Let  
 

W = i
i

i 0
a x








  ai = xi + yig, xi, yi  Z11; g = 2 + iF  C(Z5)} 

 
be the general linear algebra of special quasi dual numbers over 
the field Z11. 
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Example 3.38:  Let  
 

P = 

1

2

10

a
a

a

 
 
    


ai = xi + yig where xi, yi  Z3; 1  i  10, 

 
g = 7 + 6iF  C(Z10)} 

 
be a general vector space of special quasi dual numbers over the 
field Z3.  Clearly under n; P is a linear algebra; P is a finite 
dimensional as well as finite order linear algebra / vector space 
over Z3. 
 
Example 3.39:  Let  
 

P = 1 2

3 4

a a
a a

 
 
 

ai = xi + yig, 1  i  4, i, j  Z3, 

 
g = 8 + 2iF  C(Z17)} 
 

be the non commutative linear algebra of special quasi dual 
numbers over the field Z2. 
 

Let x = 
1 g 2
2g g 2
 

  
 and y = 

2g 1 g
1 g 1

 
  

 be in P. 

 

x + y = 
1 g
1 g
 
 
 

  and x  y = 
2 2g g
g 2 2g 2
 

   
. 

 

Now y  x = 
0 2
1 2
 
 
 

.  Clearly x  y   y  x. 

 
 Suppose we take the natural product n on P we see 
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x n y = 
1 g 2
2g g 2
 

  
 

2g 1 g
1 g 1

 
  

 

 

= 
2g(1 g) 2(1 g)
2g(1 g) (g 2)

  
   

 

 

     = 
0 2(1 g)
0 (g 2)

 
  

. 

 
 We see x  y  x n y and (P, n) is a commutative linear 
algebra. 
 
 Now having seen examples of special quasi dual vector 
spaces / linear algebras we now proceed on to describe 
semivector spaces / semilinear algebras of quasi special dual 
number pairs. 
 
Example 3.40:  Let S = {(a1, a2, …, a10) | ai = xi + yig + zig1, zi, 
xi, yi  Q+  {0}, 1  i  10, g1 = 9 + 15iF and g = 8 + 2iF  
C(Z17) with g2 = g1, 2

1g = g1, g1g = gg1 = g} be a semivector 
space (as well as semilinear algebra) of special quasi dual 
number pair over the semifield Z+  {0}. 
 
Example 3.41:  Let  
 

P = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
ai = xi + yig + zig1 where 

 
xi, yi, zi  R+  {0}, 1  i  30 g = 2 + 4iF and  

 
g1 = 10 + 6iF  C(Z10)} 
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be the complete special quasi dual pair number general 
semivector space over the semifield Z+  {0}.   
 
 Infact P is also a general linear algebra of complete special 
quasi dual pair of numbers. 
 
Example 3.42:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = xi + yig + zig1 with 

 
xi, yi, zi  Z+  {0}, 1  i  9, g = 7 + 6iF, g1 = 3 + 4iF  C(Z10) 

 
where g2 = g1, 2

1g = g1, g1g = gg1 = g} 
 
be the complete non commutative linear algebra of special quasi 
dual pair of numbers over the semifield Z+  {0}.   
 
Example 3.43:  Let  
 

S = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai = xi + yig + zig1 with 

 
g = 2 + iF, g1 = 3 + 4iF, xi, yi, zi  Z+  {0}, 1  i  30, 

 
g, g1  C(Z5), g2 = g1,  2

1g = g1 and g1g = gg1 = g} 
 

be the complete general semilinear algebra of special quasi dual 
like pair of numbers over the semifield Z+  {0}. 
 
 Now interested reader can study the properties like 
subspaces, linear (semilinear operator) operator, transformation, 
direct sum, pseudo direct sum and linear functionals both in 
case of general vector spaces of special quasi dual numbers and 



68 Special Quasi Dual Numbers and Groupoids 
 
 
general complete semivector space of special dual like number 
pairs respectively. 
 
 Next we proceed onto give examples of t-dimensional 
semivector spaces / vector spaces of special quasi dual complex 
modulo numbers. 
 
Example 3.44:  Let S = {a1 + a2g + a3g1 + a4h + a5h1 | ai  Q+  
{0}, 1  i  5, g = 2 + 4iF, g1 = 8 + 6iF, h = 7 + 6iF and h1 = 3 + 
4iF  C(Z10) with gg1 = g1g = g, g2 = g1, 2

1g = g1, 2
1h = h1, h2 = h1, 

hh1 = h1h = h and gh1 = h, gh = 0  g, h1 = h1gk = 0 gk1 = 0  g1k = 
0, g1k1 = 0} be the general quasi dual numbers. 
 
Example 3.45:  Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai = xi + yig + zik, 

 
xi, yi, zi  Q, 1  i  12, g = 7 + 6iF, and 

 
h = 2 + 4iF  C(Z10); gh = 0, g2 = –g and h2 = –h} 

 
be the 3-dimensional general ring of quasi special dual numbers 
under the natural product n of matrices.  Clearly S is a 
commutative ring with zero divisors, units and idempotents. 
 
Example 3.46:  Let  
 

P = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai = xi + yig + zih with xi, yi, zi  Z, 
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1  i  6, g = 8 + 2iF, and h = 8 + 15iF  C(Z17) with gh = 0} 
 

be the general ring of special quasi dual numbers of complex 
modulo integers of dimension three under the natural product 
n. 
 
 Clearly P has ideals, subrings zero divisors and 
idempotents.  
 

Example 3.47:  Let M = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai = xi + yig + zih 

where xi, yi, zi  Z12, 1  i  6, g = 2 + 4iF, and h = 8 + 6iF  
C(Z10)} be the general quasi special dual number Smarandache 
ring of dimension three.   
 

Clearly M is of finite order and is a commutative ring with 
1 1 1
1 1 1
 
 
 

 as the unit element.  

 
Example 3.48:  Let  
 

W = 

1 2 10

11 12 20

91 92 100

a a ... a
a a ... a

a a ... a

 
 
    

  
 ai = xi + yig + zih where 

 
g = 8 + 2iF and h = 8 + 15iF  C(Z17); xi  Z5, 1  i  5} 

 
be the finite general special quasi dual number ring of modulo 
integers of dimension three. 
 
 Now having seen examples of complex modulo integer 
quasi special dual numbers.  We now proceed onto describe 
mixed quasi special dual numbers, mixed quasi special dual like 
numbers and finally strongly mixed dual number and illustrate 
them with examples.  
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 We have already defined mixed dual numbers x = a + bg + 
cg1 where a, b, c are reals and g and g1 are new elements such 
that g2 = 0, 2

1g = g1 with gg1 = g1g = 0 or g1 or g. 
 
DEFINITION 3.1:  Let x = a + bg + cg1 where a, b and c are 
reals and g and g1 are new elements such that g is a dual 
number component that is g2 = 0 and 2

1g  = –g1 is a special 
quasi dual number component.  We define x as a mixed special 
quasi dual number.   
 
 We will first illustrate this situation and see where from we 
can generate such numbers.  
 
Example 3.49:  Consider x = a + bg + cg1 where g = 6 and g1 = 
8 in Z12 we see g2 = 0 (mod 12) and 2

1g  = 4 = –8 (mod 12); with 
a, b, c  R (or Q or Z) is a mixed special quasi dual number.  
Clearly gg1 = 0. Let x = 7 + 3g + 2g1 and y = –3 – 4g + 8g1 to 
find x + y and x  y. 
 
 x + y = 4 – g + 10g1 is again mixed special quasi dual 
number. 
 
 x  y  = (7 + 3g + 2g1)  (–3 –4g + 8g1)  
     = –21 – 9g – 6g1 – 28g – 12g2 – 8gg1 + 56g1 +  

      24gg1 + 16 2
1g  

     = –21 – 9g – 6g1 – 28g – 0 – 0 + 56g1 + 0 + (–16g1) 
     = –21 – 34g + 34g1 is again a mixed special quasi dual 
number. 
 
 Consider x = 8 + 3g + 7g1 and y = –8 + g + g1 two mixed 
special quasi dual numbers. 
 
 x + y =  4g + 8g1 is a mixed special quasi dual number with 
a = 0. 
 
 Consider x = 3 – 5g + 2g1 and y = 15 + 5g + 8g1 two mixed 
quasi special dual numbers x + y = 18 + 10g1; x + y is not a 
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mixed special quasi dual number infact only a special quasi dual 
number. 
 
 Let p = 8 + 5g – 18g1 and q = 7 + 2g + 18g1 be two mixed 
special quasi dual numbers.  
 
 p + q = 15 + 7g, that is p + q is only a dual number.  Finally 
let m = 3 – 3g + 4g1 and n = 8 + 2g – 4g1 two mixed special 
quasi dual numbers. 
 
 m + n = 11; that is m + n is just a real number. 
 
 Now we have seen the definition and description of mixed 
special quasi dual numbers.  
 

We proceed on to give some examples of them. 
 
Example 3.50:  Let S = {a + bg + cg1 | a, b, c  Q, g = 6 and g1 
= 3 in Z12.  Clearly g2 = 0, 2

1g = 9 = –g1  Z12, gg1 = g1g = 6 
(mod 12) = g (mod 12)} be the mixed special quasi dual 
numbers collection.  Clearly S is a group under addition and 
semigroup under multiplication.  Infact S is a ring defined as the 
general ring of mixed special quasi dual numbers.  S is 
commutative ring with units has zero divisors and units. 
 
Example 3.51:  Let P = {a + bg + cg1 | a, b, c  Z, g = 20 and g1 
= 15  Z40, g2 = 0 (mod 40), 2

1g = –g1 (mod 40), gg1 = g1g = 0 
(mod 40)} be the general ring of mixed quasi special dual 
numbers.  P is a commutative ring with unit and with zero 
divisors.  However only –1 is the invertible for (–1)2 = 1; thus –
1 is a self inversed element of P. 
 
Example 3.52:  Let S = {a + bg + cg1 | a, b, c  Z17; g = 3 and 
g1 = 6 Z12; g2 = +9 = –g (mod 12), 2

1g = 62 = 0 (mod 12), 6  3 
= 6 (mod 12)} be the general ring of mixed special quasi dual 
numbers.  Clearly S is of finite cardinality and S is a 
characteristic 17. 
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Example 3.53:  Let M = {a + bg + cg1 | g = 6  Z12 and g1 = 8 
 Z12, g2 = 6 (mod 12), 2

1g = –g (mod 12), g1g = gg1 = 0 (mod 
12), a, b, c  Z10} be the general ring of mixed special quasi 
dual numbers of finite order.  M is of characteristic 10 and M 
has units zero divisors and idempotents. 
 
Example 3.54:  Let M = {a + bg + cg1 | a, b, c  R; g = 20, g2  
0 (mod 40) g1 = 24, 2

1g = –g1 (mod 40) gg1 = 0 (mod 40)} be the 
general ring of mixed special quasi dual numbers.  M is of 
infinite order.  M has zero divisors and units. 
 
 Now let x = a + bg + cg1 where a, b, c  R+  {0}, where  g 
and g1 are now elements such that g2 = 0 and 2

1g  = –g1 with gg1 
= g1g = (g or 0 or g1).  We make the following observations. 
 
 (i)  If we take the collection of all mixed special quasi dual 
numbers with the coefficient from R+  {0} or Q+  {0} or Z+ 
 {0} we see that collection is only a semigroup under ‘+’ 
however the collection is not closed under product.  
 
 For let x = 3 + 2g + 5g1 and y = 2 + 5g + 4g1 be two 
elements of S = {a + bg + cg1 | a, b, c  Z+  {0}, g2 = 0, 2

1g =  
–g1, g1g = gg1 = 0, g = 20, g1 = 24  Z40}.  x  y = (3 + 2g + 
5g1)  (2 + 5g + 4g1) 
 
 = 6 + 4g + 10g1 + 15g + 10g2 + 25gg1 + 12g1 +  

   20gg1 + 20 2
1g  

 
 = 6 + 4g + 10g1 + 15g + 0 + 0 + 12g1 + 0 + 20  –g1 
 = 6 + 19g + 22g1 – 20g1  S as if n  M, –n  M  

   (n  Z+  {0}). 
 

 Thus the set M is not closed under product.  How to 
overcome this difficulty?   
 

Before we over come this problem it is important to make 
the following observation. 
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 Suppose x = a + bg + cg1 is a mixed quasi special dual 
number then we see it is essential x is of dimension three, so a 
mixed special quasi dual number has its dimension to be three. 
 
 Now consider P = {a + bg + cg1 + dg2 | a, b, c, d  Q+  
{0} (or Z+  {0} or R+  {0}) with g2 = 0, 2

1g = g2; g1g2 = g2g1 
= g1 and gg1 = g1g = g (or g1 or g2) g2g = gg2 g (or g1 or g2)}.  
We call P be the collection of complete mixed quasi special dual 
number.  Clearly a complete quasi special dual number has least 
dimension four if entries (coefficients) are taken from Z+  {0} 
or Q+  {0} or R+  {0} otherwise the term complete is not 
essential and the dimension is only three. 
 
 We now can give algebraic structure to P.  (P, ) is a 
semigroup and (P, +) is also a semigroup.  Thus (P, +, ) is a 
semiring need not be a semifield.   
 
 We will first illustrate this situation by some simple 
examples. 
 
Example 3.55:  Let S = {a + bg + ch + dh1 | a, b, c, d   Z+  
{0}, g = 20, h = 15 and h1 = 25  Z40 with g2 = 0 (mod 40), h2 = 
25 = h1 (mod 40) and 2

1h  = h1 (mod 40), gh = hg = 0 (mod 40), 
gh = h1g = 0 (mod 40), hh1 = h = h1h (mod 40)} be the general 
semiring of mixed special quasi dual like numbers. 
 
 We see how operations on S are performed.  Let x = 3 + 2g 
+ 5h + 8h1 and y = 2 + 5g + 10h + h1 be in S.  To find x + y and 
x  y. 
 
 x + y = 5 + 7g + 15h + 9h1  S  
 x  y = (3 + 2g + 5h + 8h1)  (2 + 5g + 10h + h1)  
     = 6 + 4g + 10h + 16h1 + 15h + 10g2 + 25hg +  

     40gh1 + 30h + 20gh + 50h2 + 80hh1 + 3h1 +  
         2gh1 + 5hh1 + 8 2

1h  
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     = 6 + 4g + 10h + 16h1 + 15h + 0 + 0 + 0 + 30h +  

      0 + 50h1 + 80h + 3h1 + 0 + 5h + 8h1 
     = 6 + 4g + 140h + 77h1  S. 
 
 Thus (S, +, ) is a semigroup S is not a semifield for S has 
zero divisors. 
 
Example 3.56:  Let S = {a + bg + ch + dh1 | a, b, c, d  Z+  
{0}, g = 6, h = 8  Z12, g2 = 0 (mod 12), 82 = h2 = h1 (mod 12); 
gh = hg = 0(mod 12), gh1 = h1g  0 (mod 12) and hh1 = h = h1h1 
(mod 12)} be the complete general dual like numbers.  S is not a 
semifield.  Dimension of S is four. 
 
Example 3.57:  Let S = {a + bg + ch + dh1 | a, b, c, d  R+  
{0}, g = 56, h = 3, h1 = 9  Z12, g2 = 0 (mod 12), h2 = h1, 2

1h = 
h1; gh = hg = g, gh1 = h1g = g} be the general semiring of 
complete special quasi dual numbers of dimension four. 
 
 Consider x = a + bg + ch + dh1 + ek + fk1 where g = 6, h = 
3, h1 = 9, k = 8 and k1 = 4  Z12.  The table for P = {0, 3, 9, 8, 
4} = {0, g, h, h1, k, k1}  Z12 is as follows: 
 

0 3 9 8 4 6
0 0 0 0 0 0 0
3 0 9 3 0 0 6
9 0 3 9 0 0 6
8 0 0 0 4 8 0
4 0 0 0 8 4 0
6 0 6 6 0 0 0



 

 
 Now x = 3+ 2g + h + 5h1 + 3k + 2k1 and y = 2 + 7g + 2h + 
h1 + k + 5k1 be two mixed complete quasi special dual numbers 
of dimension six. 
 
 Clearly x + y = 5 + 12g + 3h + 6h1 + 4k + 7k1. 
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 x  y   = (3+2g+h+5h1+3k+2k1)  (2+7g+2h+h1+k+5k1) 
   = 6 + 4g + 2h + 10h1 + 6k + 4k1 + 21g + 14g2 +  

       7gh + 35h1g + 21kg + 14k1g + 6h + 4gh + 2h2 +  
   10hh1 + 6kh + 4k1h + 3k + 2kg + hk + 5h1k +  

       3k2 + 2k1k + 15k1 + 10gk1 + 5k1h + 25h1k1 +  
   15kk1 +  10 2

1k  + 3h1 + 2h1g + h1h + 5 2
1h  +  

   3kh1 + 2k1h1 
 
   = 6 + 4g + 2h + 10h1 + 6k + 4k1 + 21g + 0 +  

   2h + 10h1 + 6k + 4k1 + 21g + 0 + 7g + 35g +  
   0 + 0 + 6h + 4g + 2h1 + 10h + 6k + 0 + 3k + 0 +  
   0 + 0 + 3k1 + 2k + 15k1 + 2h1 + k1 + 5h1 + 0 + 0 

 
   = 6 + 71g + 18h + 12h1 + 26k + 29k1  
 
is again a five dimensional complete mixed quasi special dual 
number.  
 
 We will present one or two examples of mixed quasi special 
dual numbers of higher order. 
 
Example 3.58:  Let S = {a + bg + ch + dh1 + ek + fk1  | a, b, c, 
d, e, f  Q+  {0}, g = 20, h1 = 25, h = 15, k = 24 and k1 = 16  
Z40} be the 6-dimensional complete mixed dual quasi special 
number general semiring.   
 

The product table for P = {0, 20, 15, 16, 24, 25}  Z40 is as 
follows: 
 

0 15 16 24 25 20
0 0 0 0 0 0 0

15 0 25 0 0 15 20
16 0 0 16 24 0 0
24 0 0 24 16 0 0
25 0 15 0 0 25 20
20 0 20 0 0 0 0


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 Using this table interested reader can find the product of any 
two elements in S.  
 
 Now we proceed onto give one or two examples of higher 
dimensional rings. 
 
Example 3.59:  Let  
M = {a + bg + ch + dk | a, b, c, d, k  Z, g = 6, h = 8, k=3 Z12} 
be the general ring of special mixed quasi dual numbers of 
dimension / order four. 
 
 One of the natural question would be can we have higher 
than four dimensional special quasi mixed dual numbers.  
 
 The answer is ‘yes’. 
 
 We illustrate this situation by some examples. 
 
Example 3.60:  Let S = {a + bg + ch + dk + em + fn | a, b, c, d, 
e, f  Z, g = (6, 6, 0), n = (0, 0, 6), h = (8, 0, 8), k = (3, 3, 3),  
m = (0, 8, 0); 3, 8, 6  Z12 with g2 = (0, 0, 0), n2 = (0, 0, 0) 
 gn = ng = (0, 0, 0),   m2 = (0, 4, 0) = –m;  h2 = (4, 0, 4) = –h,  
hm = mh = 0, k2 = (9, 9, 9) = –k and so on} be the 6-
dimensional general ring of mixed special quasi dual numbers. 
 
Example 3.61:  Let S = {a + bg + ch + dm + en + fs + pr + qt + 
vw | a, b, c, d, e, f, p, q, v  Q; g = (20, 20, 20, 20, 20), h = (0, 
20, 0, 20, 20), m = (15, 15, 0, 0, 0), n = (0, 0, 15, 15, 15), s = (0, 
15, 0, 15, 0), r = (0, 16, 0, 16, 0), t = (16, 0, 16, 0, 16) and with 
20, 24, 15, 16, 25  Z40} be the  9 dimensional mixed dual quasi 
number general ring. 
 
 It is pertinent to mention here that in S if we replace Q by 
Q+  {0} clearly S is not closed under .   
 

It is left as an exercise to the reader to construct semiring 
using row vectors which contribute to mixed special dual quasi 
semirings. 
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Example 3.62:  Let  
 

P = {a + bg + cd + eh + fq + sr + mn + ut + vw + xy | a, b, c, 
 

e, f, s, m, u, v, x  R 
 

with g = 

3
3
3
0
0
0
3
0

 
 
 
 
 
 
 
 
 
 
 
  

, h = 

0
0
0
3
3
3
0
3

 
 
 
 
 
 
 
 
 
 
 
  

, d = 

3
3
3
3
3
3
3
3

 
 
 
 
 
 
 
 
 
 
 
  

, q = 

6
6
0
0
6
6
0
0

 
 
 
 
 
 
 
 
 
 
 
  

, r = 

0
0
6
6
0
0
6
6

 
 
 
 
 
 
 
 
 
 
 
  

, m = 

8
8
8
8
8
8
8
8

 
 
 
 
 
 
 
 
 
 
 
  

,  

 

t = 

8
8
8
8
0
0
0
0

 
 
 
 
 
 
 
 
 
 
 
  

, w = 

0
0
0
0
8
8
8
8

 
 
 
 
 
 
 
 
 
 
 
  

, y = 

6
6
6
6
6
6
6
6

 
 
 
 
 
 
 
 
 
 
 
  

  where 3, 6, 8  Z12} 

 
be the general 10 dimensional general commutative ring of 
mixed dual quasi special numbers.   
 

Clearly P is also a Smarandache ring.  We use the natural 
product n on P. 



78 Special Quasi Dual Numbers and Groupoids 
 
 

Further g n d = 

9
9
9
0
0
0
9
0

 
 
 
 
 
 
 
 
 
 
 
  

 = – 

3
3
3
0
0
0
3
0

 
 
 
 
 
 
 
 
 
 
 
  

= –g and so on. 

 
 
Example 3.63:  Let  
 

P = {a + bx + cy + dm + en + gq + hp + kr + fs | a, b, c,  
 

d, e, f, g, h, k  Q; 
 

x = 
3 3 0 0
0 0 3 3
3 3 0 0

 
 
 
  

, y = 
0 0 3 3
0 0 0 0
0 0 3 3

 
 
 
  

, m = 
6 6 6 6
6 6 6 6
6 6 6 6

 
 
 
  

, 

 

n = 
6 6 0 0
0 0 6 6
6 6 0 0

 
 
 
  

, q = 
0 0 6 6
0 0 0 0
0 0 6 6

 
 
 
  

, p = 
8 8 0 8
0 0 8 0
8 8 0 0

 
 
 
  

, 

 

r = 
0 0 8 0
8 8 0 8
0 0 8 8

 
 
 
  

, s = 
8 8 8 8
8 8 8 8
8 8 8 8

 
 
 
  

 where 3, 6, 8  Z12} 

 
be the nine dimensional general commutative ring of mixed 
special quasi dual numbers under the natural product n. 
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 p n s = 

4 4 0 4
0 0 4 0
4 4 0 0

 
 
 
  

 = – 
8 8 0 8
0 0 8 0
8 8 0 0

 
 
 
  

= –p. 

 

p n r = 
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
  

  and so on. 

 
Example 3.64:  Let  
 

S = {x1 + x2a + x3b + x4c + x5d + x6e + x7f + x8g | xi  R; 
 

1  i  8, a = 

20 20 20 20
20 20 20 20
20 20 20 20
20 20 20 20

 
 
 
 
 
 

, b = 

20 0 0 20
0 20 20 0
20 0 20 0
0 20 0 20

 
 
 
 
 
 

, 

 

c = 

0 20 20 0
20 0 0 20
0 20 0 20
20 0 20 0

 
 
 
 
 
 

, d = 

15 15 15 15
15 15 15 15
15 15 15 15
15 15 15 15

 
 
 
 
 
 

,  

 

e = 

16 16 16 16
16 16 16 16
16 16 16 16
16 16 16 16

 
 
 
 
 
 

, f = 

15 0 15 0
0 15 0 15
0 0 0 0

15 0 15 0

 
 
 
 
 
 

,  

 

g = 

0 15 0 15
15 0 15 0
15 15 15 15
0 15 0 15

 
 
 
 
 
 

, 20, 15, 16  Z40} 
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be a general ring of mixed quasi special dual numbers of 
dimension eight. 
 
 Now we can get any desired dimensional mixed special 
quasi dual number rings. 
 
 Under the assumption if g and h are two distinct 
components of a mixed special quasi dual number than we just 
write g + h as g + h and 

n times

g g ... g


    = ng and so on. 

 
 Let P = {a + bg + cd + ef + ph | a, b, c, e, p  Q, g2 = 0,  
d2 = –d, f2 = –f and h2 = 0, gh = 0 df = 0, gd = d, gf = f} be the 
collection of five dimensional mixed quasi dual numbers.  Then 
P is an abelian group under addition and (P, ) is a commutative 
semigroup.  
 
 Infact (P, +, ) is a ring which is commutative, P is a 
Smarandache ring. So using such P we can construct mixed 
quasi dual number vector spaces.   
 
 We will illustrate this situation by some examples. 
 
Example 3.65:  Let M = {(a1, a2, …, a9) | ai = x1 + x2g + x3k + 
x4k1 + x5h + x6h1 where xj  Q, 1  i  9; 1  j  6 g = 6, k = 3, 
k1 = 9, h = 8 and h1 = 4  Z12} be a general mixed special quasi 
dual vector space of M over the field Q.  Clearly M is also a 
general mixed special quasi dual linear algebra over the field Q. 
 
Example 3.66:  Let  
 

P = 

1

2

12

a
a

a

 
 
    


ai = x1 + x2g + x3p + x4p1 + x5h + x6h1 + 
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x7m1 + x8m + x9t + x10q, xj  Q; 1  i  12 and 1  j  10, where 
g = (6, 6, 6, 6), t = (6, 6, 0, 0), q = (0, 0, 6, 6), p = (3, 3, 0, 0), p1 
= (0, 0, 3, 3), h = (8, 8, 8, 8), h1 = (8, 8, 0, 0), m1 = (0, 0, 8, 8), 
m = (3, 3, 3, 3), 6, 3, 8  Z12} be the general group under ‘+’ of 
mixed special quasi dual numbers of dimension 11 over the  
field Q.   
 

Infact P is a general linear algebra of mixed special quasi 
dual numbers over the field under the natural product n. 
 
Example 3.67:  Let  
 

S = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
 ai = x1 + x2g1 + x3g2 + … + x10g9 

 
with 1  i  30, xj  Z19, 1  j  10 where g1 = (20, 20, 20, 20, 
20, 20), g2 = (0, 0, 0, 0, 20, 20), g3 = (20, 20, 20, 20, 0, 0), g4 = 
(15, 15, 15, 15, 15, 15), g5 = (15, 15, 15, 15, 0, 0), g6 = (0, 0, 0, 
0, 15, 15), g7 = (25, 25, 25, 25, 25, 25), g8 = (25, 25, 25, 25, 0, 
0), g9 = (0, 0, 0, 0, 25, 25) with 20, 15, 25  Z40} be the general 
vector space of special quasi dual number of dimension ten over 
the field Z19.  Clearly S is of finite order.  Under usual product 
n; S is a general linear algebra of mixed special quasi dual 
numbers over the field Z19. 
 
Example 3.68:  Let  
 

M =  
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 + x5g4 +x6g5; 

 
1  i  9, xj  Z5, 1  j  6, g1 = 3, g2 = 9, g3 = 8, g4 = 4 and g5 = 
6  Z12} be the general vector space of mixed special quasi dual 
numbers of dimension six over the field Z5. 
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 Now we proceed onto give examples of semivector space of 
mixed special quasi dual numbers over a semifield. 
 
Example 3.69:  Let P = {(a1, a2, …, a7) | ai = x1 + x2g1 + x3g2 + 
x4g3 + x5g3 + x6g5, 1  i  7, xj  R+  {0}; 1  j  5, g1 = 6, g2 
= 8, g4 = 12, g3 = 3 and g5 = 9  Z12} be a general semivector 
space of mixed semivector space of mixed special quasi dual 
number over the semifield R+  {0}. 
 
Example 3.70:  Let  
 

S =

1

2

12

a
a

a

 
 
    


 ai = x1 + x2g1 + … + x10g9, 1  i  12; 

 
xj   Z+  {0}; 1  j  10, g1 = (20, 20, 20), g2 = (20, 0, 0), g3 = 
(0, 20, 20), g4 = (15, 15, 15), g5 = (0, 15, 15), g6 = (15, 0, 0), g7 
= (25, 25, 25), g8 = (25, 0, 0) and g9 = (0, 25, 25) with 20, 15, 25 
 Z40} be a general semivector space of mixed special quasi 
number over the semifield Z+  {0}.   
 
Example 3.71:  Let  
 

T  = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 + 

 
x5g4 + x6g5; 1  i  16, g1 = 6, g2 = 4, g3 = 8, g4 = 3 and g5 = 9  
Z12; xj  Q+  {0}, 1  j  6} be a general semivector space of 
mixed special quasi dual numbers over the semifield Z+  {0}. 
(T, n) is a semilinear algebra over the semifield Z+  {0}.   
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Example 3.72:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2 + g4g3 + g5g4 + g6g5, g1 = 20, 

 
g2 = 15, g3 = 25, g4 = 16 and g5 = 24  Z40; xj  R+  {0}, 1  j 
 6} be a general semivector space of mixed special quasi dual 
numbers over the semifield R+  {0}.  
 
Example 3.73:  Let  
 

P = 
1 2 3

4 5 6

6 7 8

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 + x5g4 + x6g5; 

 
xj  Q+  {0}; 1  j  6; 1  i  9, g1 = 6, g2 = 4, g3 = 8, g4 = 3  
and g5 = 9  Z12} be general semivector space of mixed special 
quasi dual numbers over the semifield Q+  {0}. 
 
 Clearly under the usual product ‘’; P is a non commutative 
semilinear algebra and under the natural product n, P is a 
semilinear algebra over the semifield Z+  {0}. 
 
 All properties associated with vector spaces and semivector 
spaces can be without any difficulty derived in the case of 
general vector space / semivector space of mixed special quasi 
dual numbers.  This task is left as an exercise to the reader. 
 
 Now we proceed onto describe the new notion mixed 
special quasi dual like numbers. 
 
DEFINITION 3.2:  Let x = a + bg + cg1 where a, b, c  R or Q 
or Z or C and g and g1 are new elements such that g2 = g and 

2
1g  = –g1 with gg1 = g1g = g or g1.  We define x to be a mixed 

special quasi dual like number. 
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 We will illustrate this situation by some examples. 
 
Example 3.74:  Let x = a + bg + cg1 where a, b, c  R, g = 9 
and g1 = 8  Z12.  Clearly x is a mixed quasi special dual like 
number.  Further a mixed special quasi like number is of 
dimension three, that is the least dimension possible is three.  
 
 Let x = 5 + 3g + 8g1 and y = –8 – 5g + 2g1 be any two 
mixed special quasi dual like numbers. 
 
   x + y = –3 – 2g + 10g1 and  
   x  y = (5 + 3g + 8g1)  (–8 –5g + 2g1) 
       = –40 – 24g – 64g1 – 25g – 15g2 – 40gg1 +  

10g1 + 6gg1 + 16 2
1g . 

 
 Using g2 = 92 = 9 (mod 12), 2

1g = 64 = –g1 (mod 12) 
 gg1 = gg1 = 8  9 = 0 (mod 12) 
 x  y = –40 – 24g – 64g1 – 25g – 15g – 0 + 10g1 +  

0 + 16 (–g1) 
     = –40 – 64g – 70g1  
 
is again  a mixed special quasi dual like number. 
 
 Let p = 8 + 5g + 3g1 and q = 3 – 5g + g1 be any two mixed 
special quasi dual like numbers. 
 
 p + q = 11 + 4g1.  Clearly p + q is only a special quasi dual 
number and is not a mixed special quasi dual like number. 
 
 Consider a = 4 + 8g – 3g1 and b = –3 + g + 3g1 be any two 
mixed special quasi dual like numbers. 
 
 Clearly a + b = 1 + 9g and a + b is only a special dual like 
number and not a mixed special dual like number. 
 
 Finally let m = 3 – g + 5g1 and n = 8 + g – 5g1 be mixed 
special quasi dual like number. m + n = 11 is only a real number 
and is not a mixed special quasi dual like number.  Thus sum of 
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two mixed special quasi dual like numbers can be a real number 
or a special quasi dual number or a special dual like number.  
We accept a + bg + cg1 with a = 0 to be also a mixed special 
quasi dual like number. 
 
Example 3.75:  Let M = {a + bg + cg1 | a, b, c  Q, g = 15 and 
g1 = 16  Z40 where g2 = –g (mod 40), 2

1g = g1 (mod 40), g  g1 
= 0 (mod 40)} be the collection of all mixed special quasi dual 
like numbers.  (M, +) is a group.  (M, ) is a commutative 
semigroup. 
 
Example 3.76:  Let S = {a + bg + cg1 | a, b, c  Z20; g = 3 and 
g1 = 4, g2 = –g and 2

1g  = g1  Z12} be the semigroup under  
and group under addition +. 
 
 Clearly (S, +, ) is a ring of finite order, commutative; has 
units and zero divisors. 
 
Example 3.77:  Let M = {a + bg + cg1 | g = 9 and g1 = 8  Z12, 
a, b, c  Z, g2 = g and g1g = 0, 2

1g  = –g1} be the ring of mixed 
special quasi dual like numbers. 
 
Example 3.78:  Let P = {(a1, a2, …, a25) | ai = x1 + x2g + x3g1 
where 1  i  25, xj  Q, 1  j  3, g = 15 and g1 = 16  Z40, g2 
= –g, 2

1g = g1, gg1 = g1g = 0} be the mixed special quasi dual 
like number ring of infinite order.  This ring has zero divisors, 
ideals and subrings which are not ideals. 
 
Example 3.79:  Let  
 

M = 

1 2 3 4

5 6 7 8

61 62 63 64

a a a a
a a a a

a a a a

 
 
    

   
 ai = x1 + x2g + x3g1, 1  i  64, 
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x1, x2, x3  Z5 and g = 7 and g1 = 6  Z21 we see g2 = g (mod 
21); 2

1g  = 15 = –g1 (mod 21) and gg1 = g1g = 0 (mod 21)} be the 
finite ring of mixed special quasi dual like number under the 
natural product n. 
 
Example 3.80:  Let  
 

W = 1 2 7

8 9 14

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g + x3g1, 1  i  14, 

 
x1, x2, x3  Z and g = 6 and g = 5, g2 = g (mod 15), 2

1g  = 10 = –
5 (mod 15) and gg1 = g1g = 0 (mod 15)} be the finite ring of 
mixed special quasi dual like numbers under the natural product 
n of infinite order. 
 
 Now we just indicate which of the modulo integer rings that 
pave way to the construction of mixed special quasi dual like 
numbers. 
 
  Consider Z6 = {0, 1, 2, 3, 4, 5} the ring of integers modulo 6. 
 
 Take g = 3 and g1 = 2 we see g2 = g (mod 6) and 2

1g  = 4 = –
g1 (mod 6)  with gg1 = g1g = 0 (mod 6).   
 

Thus x = a + bg + cg1 is a mixed special quasi dual like 
number.  
 
 Consider g = 5 and g1 = 4 in Z10 we see g2 = g (mod 10) and 

2
1g  = 42 = 6 (mod 10) = –g1 (mod 10). 

 
 Further gg1 = g1g = 0 (mod 10). 
 
 So x = a + bg + cg1 is a mixed special quasi dual like 
number. 
 
 Consider Z12 = {0, 1, 2, …, 11} the ring of modulo integers 12. 
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 g1 = 3 such that 2

1g  = –g1 (mod 12), g = 4 in Z12 is such that 
g2 = g (mod 12) and g1g = gg1 = 0 (mod 12).   
So x = a + cg + bg1 is a mixed quasi special dual like number. 
 
 g = 8 and g1 = 9 in Z12 are such that g2 = –g (mod 12) and 

2
1g  = g (mod 12), gg1 = g1g = 0 (mod 12). 

 
 We have two sets of mixed quasi special dual like number 
components in Z12.  So S = {0, 3, 4, 8}  Z12 is the semigroup 
under multiplication modulo 12 called the associated component 
semigroup of mixed special dual like numbers. 
 
 Consider Z14 = {0, 1, 2, …, 13}, ring of modulo integers 14.  
We see g = 7 and g1 = 6 in Z14 are such that g2 = g (mod 14) and 

2
1g  = 72;  w = 8 = –g1; gg1 = g1g = 0 (mod 14).   

Thus x = a + bg + cg1 is mixed special quasi dual like number. 
 
 We now consider Z15 = {0, 1, 2, …, 14}, ring of modulo 
integers. 
 
 g1 = 5, 2

1g  = –g1, g2 = 6, 2
2g  = 6 = g2, g3 = 9, 2

3g  = –g3 = 6, g4 
= 10, 2

4g  = g4 are new elements which contribute to mixed 
special quasi dual like numbers. 
 
 Consider S = {0, 5, 6, 9, 10}  Z15, clearly S is not closed 
under addition modulo 15.   
 

The table for S is as follows: 
 

0 5 6 9 10
0 0 0 0 0 0
5 0 10 0 0 5
6 0 0 6 9 0
9 0 0 9 6 0

10 0 5 0 0 10


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 Thus x = x1 + x2g1 + x3g2 + x4g3 + x5g4 is a five dimensional 
mixed quasi special dual like number.  Here xi  Q or R or Z or 
Zn; 1  i  5. 
 
 Let Z18 = {0, 1, 2, …, 17} be the ring of integers modulo 18.  
Consider g1 = 8, 2

1g  = –g1 = 10, g2 = 10 and 2
2g  = 10.  Thus Z18 

does not contribute to mixed quasi special dual like number.  It 
gives only a quasi special dual number. 
 
 Consider Z20 = {0, 1, 2, …, 19}, the ring of integers modulo 
20.  g1 = 4, 2

1g  = g1, g2 = 52 = 5 (mod 20); g3 = 15, 
2
3g  = –5 (mod 20), g4 = 16, 2

4g  = 16. 
 
 We see Z20 has a mixed special quasi dual like number 
component. 
 
 Take x = x1 + x2g1 + x3g3 + x4g4; g1 = 4, g3 = 15 and g4 = 16, 
x is a mixed special dual like number of dimension four. 
 
 One can work with any suitable Zn and find the mixed 
special dual like numbers. 
 
 Also we see if we take g1 = 2 is such that 2

1g  = 4 = –g1 and 
g2 = 3; 2

2g  = 9 = g2 (mod 6), clearly 3.2 = g1g2 = 0 (mod 6). 
 
 Take h1 = (3, 3, 3, 3, 3), h2 = (2, 2, 2, 2, 2), h3 = (3, 0, 3, 0, 
3), h4 = (2, 0, 2, 0, 2), h5 = (0, 3, 0, 3, 0) and h6 = (0, 2, 0, 2, 0) 
are components of mixed special dual like numbers. 
 
x = x1 + x2h1 + x3h2 + x4h3 + x5h4 + x6h5 + x7h6; xi  Q; 1i7, is 
a mixed special dual quasi like number of dimension seven. 
Thus we can get any desired dimensional mixed special dual 
like numbers. 
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 Using these we can build all other algebraic structures as in 
case of usual dual numbers, special dual like numbers and 
special quasi dual numbers.  
 
 This task of studying algebraic structures such mixed 
special dual like numbers is left as an exercise to the reader. 
 
 Now we proceed onto define yet another mixed dual 
numbers as follows. 
 
 Suppose x = x1 + x2g1 + x3g2 + x4g3 where xj  R; 1  j  4.  
g1 is such that 2

1g  = 0, 2
2g  = g2 and 2

3g  = –g with gigj = gjgi = 0 
or g1 or g2 or g3,  1  i, j  3. 
 
 Let us consider Z12, g1 = 9 with 2

1g  = g1 (mod 12), g2 = 8, 
2
2g  = –g2 (mod 12), g3 = 6 and 2

3g  = 0 (mod 12). 
 
 Consider x = x1 + x2g1 + x3g2 + x4g3; xj  R; 1  j  4; we 
define x to be a strongly mixed special quasi dual like numbers. 
 
 We will illustrate them by examples. 
 
Example 3.81:  Let x = x1 + x2g1 + x3g2 + x4g3 where g1 = 6, g2 
= 3 and g3 = 4 in Z12, we see 2

1g  = 0 (mod 12), 2
2g  = 9 = –g2 and 

2
3g  = g3 (mod 12) be the strongly mixed special dual quasi like 

number.  The only generating algebraic structure of these 
strongly mixed special dual quasi like number components are 
Zn, (1 < n < ).  Z6 has no such component.   
 

Zp, p a prime has no such component. 
 

 Z12 is the first smallest n such that Z12 has mixed special 
quasi dual like component. 
 
 Consider Z20, g1 = 4, g2 = 5 and g3 = 10 in Z20 are such that 

2
1g  = 16 = –4 (mod 20), 2

2g  = g2 (mod 20) and 2
3g  = 0 (mod 20), 

g2g3 = g3 (mod 20), g1g3 = 0 (mod 20) and g2g1 = 0 (mod 20). 
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 Thus x = a + bg1 + cg2 + dg3 (a, b, c, d  Z or Q or R) is a 
strong mixed special quasi dual like number.  Z21 has no strong 
mixed special quasi dual like number component. Z22 has no 
strong mixed special quasi dual like number component. 
 
 Consider Z24 = {0, 1, 2, …, 23} be the ring of integers 
modulo 24.  g1 = 8, 2

1g  = –16 = –g1 (mod 24), g2 = 9, 2
2g  = 9 

(mod 24), g3 = 12, 2
3g  = 0 (mod 24), g4 = 15, 2

4g  = –g4 (mod 
24), g5 = 16 and 2

5g  = g5 (mod 24). 
 
 x = a + bg1 + cg2 + dg3 is a strong mixed special quasi dual 
like number. 
 
 x = a + bg2 + cg4 + dg3 is a strong mixed special quasi dual 
like number.  Thus Z24 has a component semigroup of strong 
mixed special quasi dual like numbers. 
 
 Consider Z40 = {0, 1, 2, …, 39} the ring of modulo integers. 
 g1 = 15, 2

1g  = –g1, g2 = 16, 2
2g  = g2, g3 = 20, 2

3g  = 0, g4 = 24, 
2
4g  = –g4, g5 = 25 and 2

5g  = g5. 
 
 Using S = {0, g1, g2, g3, g4, g5}  Z40 we can build strongly 
mixed special quasi dual like numbers. The table of S under  is 
as follows: 
 

0 15 16 20 24 25
0 0 0 0 0 0 0

15 0 25 0 20 0 15
16 0 0 16 0 24 0
20 0 20 0 0 0 20
24 0 0 24 0 16 0
25 0 15 0 20 0 25



 

 

 Thus using Zn (n a composite number) we can get a 
component semigroup of strongly mixed special quasi dual like 
numbers. 



Higher Dimensional Quasi Special Dual Numbers  91 
 
 
 
 
 
 It is observed if n = 2mp where m  2, p an odd prime we 
are sure to get a component semigroup.  Working with lattices 
or neutrosophic number I alone cannot yield such elements.  
Also (x1, …, xn) with xi in R or Q or C or Z do not contribute for 
the study of mixed special quasi dual like numbers. 
 
 But to get higher dimension of strong mixed special quasi 
dual like numbers we can use matrices with entries from the 
component semigroup of strong mixed special quasi dual like 
number associated with Zn.   
 
 We will illustrate this situation by an example or two. 
 
Example 3.82: Let Z12 be the ring of modulo integers.  Take g1 
= 4, 2

1g  = g1, g2 = 3, 2
2g  = 9 = –g2, g3 = 6, 2

3g  = 0, g4 = 9 and 2
4g  

= g4 in Z12.  x = a + bg1 + cg2 + dg3 is a strong mixed quasi 
special dual like number of dimension four. 
 
Take h1 = (4, 4, 4, 4, 4), h2 = (4, 4, 0, 4, 4), h3 = (0, 0, 4, 0, 0),  
h4 = (3, 3, 3, 3, 3), h5 = (3, 3, 0, 3, 3), h6 = (0, 0, 3, 0, 0),  
h7 = (6, 6, 6, 6, 6), h8 = (0, 0, 6, 0, 0) and h9 = (6, 6, 0, 6, 6). 
 
 Now x = x1 + x2h1 + … + x10h9 is a strong mixed special 
quasi dual like number of dimension ten. 
 
 Using these elements 4, 3 and 6 we can have column 
vectors say (like) 
 

p1  = 

4
4
4
4
4
4

 
 
 
 
 
 
 
 
  

, p2 = 

0
0
4
4
0
0

 
 
 
 
 
 
 
 
  

, p3 = 

4
4
0
0
0
0

 
 
 
 
 
 
 
 
  

, p4 = 

0
0
0
0
4
4

 
 
 
 
 
 
 
 
  

, p5 = 

3
3
3
3
3
3

 
 
 
 
 
 
 
 
  

, 
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p6 = 

3
3
0
0
0
0

 
 
 
 
 
 
 
 
  

,  p7 = 

0
0
3
3
0
0

 
 
 
 
 
 
 
 
  

, p8 = 

0
0
0
0
3
3

 
 
 
 
 
 
 
 
  

, p9 = 

6
6
6
6
6
6

 
 
 
 
 
 
 
 
  

, p10 = 

6
6
0
0
0
0

 
 
 
 
 
 
 
 
  

, 

 

p11 = 

0
0
6
6
0
0

 
 
 
 
 
 
 
 
  

 and p12 = 

0
0
0
0
6
6

 
 
 
 
 
 
 
 
  

, pi n pj = pi or pj or 0, 1  i, j  12. 

 
Thus x = x1 + x2g1 + … + x13g12 is a 13-dimensional strong 

special mixed quasi dual number where xk  R or Q or Z or Zt, 
0  t  . 

 
Now having  seen how column matrix is used to get strong 

mixed special quasi dual like number component we now 
proceed onto give some more ways of generating strong mixed 
special quasi dual like number component. 

 

Let v1 = 
3 3 3 3 3
3 3 3 3 3
3 3 3 3 3

 
 
 
  

, v2 = 
3 0 3 0 3
3 0 3 0 3
3 0 3 0 3

 
 
 
  

, 

 

v16 = 
0 3 0 3 0
0 3 0 3 0
0 3 0 3 0

 
 
 
  

, v3 = 
3 3 3 3 3
0 0 0 0 0
3 3 3 3 3

 
 
 
  

, 
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 v4 = 

0 0 0 0 0
3 3 3 3 3
0 0 0 0 0

 
 
 
  

, v5 = 
3 0 3 0 3
0 0 0 0 0
3 0 3 0 3

 
 
 
  

, 

 

v6 = 
0 3 0 3 0
0 0 0 0 0
0 3 0 3 0

 
 
 
  

, v7 = 
0 0 0 0 0
3 0 3 0 3
0 0 0 0 0

 
 
 
  

, 

 

v8 = 
0 0 0 0 0
0 3 0 3 0
0 0 0 0 0

 
 
 
  

, v9 = 
6 6 6 6 6
6 6 6 6 6
6 6 6 6 6

 
 
 
  

, 

 

v10 = 
6 6 6 6 6
0 0 0 0 0
6 6 6 6 6

 
 
 
  

, v11 = 
0 0 0 0 0
6 6 6 6 6
0 0 0 0 0

 
 
 
  

, 

 

v12 = 
6 0 6 0 6
0 0 0 0 0
6 0 6 0 6

 
 
 
  

, v13 = 
0 6 0 6 0
0 0 0 0 0
0 6 0 6 0

 
 
 
  

, 

 

v14 = 
0 0 0 0 0
6 0 6 0 6
0 0 0 0 0

 
 
 
  

, v15 = 
0 0 0 0 0
0 6 0 6 0
0 0 0 0 0

 
 
 
  

, 

 

v17 = 
6 0 6 0 6
6 0 6 0 6
6 0 6 0 6

 
 
 
  

, v18 = 
0 6 0 6 0
0 6 0 6 0
0 6 0 6 0

 
 
 
  

, 

 

v19 = 
4 4 4 4 4
4 4 4 4 4
4 4 4 4 4

 
 
 
  

, v20 = 
4 0 4 0 4
4 0 4 0 4
4 0 4 0 4

 
 
 
  

, 
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v21 = 
0 4 0 4 0
0 4 0 4 0
0 4 0 4 0

 
 
 
  

, v22 = 
0 0 0 0 0
0 4 0 4 0
0 0 0 0 0

 
 
 
  

, 

 

v23 = 
0 0 0 0 0
4 0 4 0 4
0 0 0 0 0

 
 
 
  

, v24 = 
0 4 0 4 0
0 0 0 0 0
0 4 0 4 0

 
 
 
  

, 

 

v25 = 
4 0 4 0 4
0 0 0 0 0
4 0 4 0 4

 
 
 
  

, v26 = 
0 0 0 0 0
4 4 4 4 4
0 0 0 0 0

 
 
 
  

 and 

 

v27 = 
4 4 4 4 4
0 0 0 0 0
4 4 4 4 4

 
 
 
  

 

 
be the components of a strong mixed special quasi dual like 
number with vi n vj = (0) or vk; (1  i, j, k  27).  
 

x = x1 + x2v1 + x3v2 + … + x28 v27 is a 28 dimensional strong 
mixed quasi special dual like number. 
 

Thus using any appropriate Zn we can build any desired 
dimemsion.  We can also use the notion of square matrices with 
entries from the mixed special strong semigroup component of 
numbers to construct special strong mixed quasi dual number of 
any desired dimension. 

 
Now we just indicate using these strong mixed special quasi 

dual number of any dimension build algebraic structures (both 
finite as well as infinite) like rings, vector spaces, linear 
algebras, S-rings, S-vector spaces and S-linear algebra.  
Interested reader can work on these structures and find nice 
applications and study their substructures.  Further this work is 
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considered as a matter of routine and hence is left as an exercise 
to the reader. 

 
If on the other hand Z or Q or R or C or Zn is replaced by Z+ 

 {0} or Q+  {0} or R+  {0} then we get other special 
algebraic structures like semiring, semivector spaces and 
semilinear algebras.  Also the Smarandache analogoue of  them 
can be worked out.  This task is left as exercise to the reader. 

 
Finally we describe modulo finite complex integer strong 

mixed special dual like numbers using  
 
C(Zn) = {a + biF | a, b  Zn, 2

Fi  = 11}, g1 = 6 + 6iF  C(Z12) 
is such that 2

1g  = 0, g2 = 8, 2
2g  = –g2 and g3 = 9, 2

3g  = g3 in 
C(Z12). 

 
Thus x = x1 + x2g1 + x3g2 + x4g3 is a strong mixed special 

dual like quasi number g1  g3 = g1 (mod 12), g1  g2 = 0 (mod 
12), g2  g3 = 0 (mod 12). 

 
Consider C(Z10) = {a + biF | a, b  Z10, 2

Fi  = 9}.   
 
Take g1 = (2 + 4iF), 2

1g  = 4 + 54 + 16iF = 8 + 6iF = –g1,  
g2 = 5 + 5iF , 2

2g  = (5 + 5iF)2 = 25 + 25  9 + 25  2iF = 0. g3 = 3 
+ 4iF, 2

3g  = (3 + 4iF)2 =  9 + 144 + 24iF = 3 + 4iF = g3. 
 
Thus x = x1 + x2g1 + x3g2 + x4g3 is a strong mixed special 

quasi dual number. 
g1g2 = 0, g3g2 = g2, g1  g3 = 0. 

 
Thus C(Z10) has complex modulo integers which leads to a 

strong mixed special quasi dual like number. 
 
It is pertinent to mention the only source of getting strong 

mixed special quasi dual like numbers are from C(Zn) for an 
appropriate n.  However using those new elements from C(Zn) 
we can construct row matrices or column matrices, or m  m 
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matrices  and m  n (m  n) matrices and use them as new 
elements to construct strong mixed special quasi dual like 
numbers of complex modulo integers. 

 
Likewise only Zn is the only source of getting strong mixed 

special quasi dual like numbers. 
 
Using these strong mixed special quasi dual like numbers 

we can construct algebraic structures like ring, semiring, S-ring, 
vector spaces, linear algebras, S-semirings, S-vector spaces, S-
linear algebras, semivector spaces, S-semivector spaces, 
semilinear algebras and S-semilinear algebras.  All these work 
is a matter of routine and hence is left as an exercise to the 
reader.  

 
We need to construct a strong mixed special quasi dual like 

number three types of new elements g, g1 and g2  such that g2 = 
0, 2

1g  = g1, 2
2g  = –g2 together with the multiplicative 

compatability like gg1 = g1g = 0 or g or g1 or g2, g1g2 = g2g1 = 0 
or g1 or g2 or g and gg2 = g2g = 0 or g1 or g or g2.  We need also 
compatability of product among them or in short {0, g, g1, g2} 
should form a semigroup under product.  Interested reader can 
study analyse and find example describe  / define / develop the 
related properties. 

 
It is left as an open problem, do we have any source other 

than Zn or C(Zn) or abstractly defined semigroups with three 
distinct elements g, g1, satisfying the conditions. 

 
g2 = 0, 2

1g  = g1, 2
2g  = –g2,  

gigj = gjgi = 0 or gi or gj, gi, gj  {g, g1, g2}. 
 

With these we proceed on to construct non associative structures 
using dual numbers, special dual like numbers and special quasi 
dual numbers. 



 
 
 
 
 
Chapter Four 
 
 

 
 
GROUPOID OF DUAL NUMBERS  
 
 
 
 
 It is important using dual numbers we are not in a position 
to build non associative algebraic structures like loops or rings.  
The main reason for this is for all the three types of dual 
numbers we cannot find inverse.  We build in this chapter 
groupoids of dual numbers.  Further we see special quasi dual 
number is one for which it square is the negative of its value.  
We see only the complex number i is  such that it square is 
negative how ever not the negative of its value.  We see i2 = –1.  
For a new element g to contribute to a quasi special dual 
number we need g2 = –g; this is not possible in reals. 
 
 However the only source of such elements are the modulo 
integers Zn.  3  Z12 is such that 32 = –3 (mod 12), 8  Z12 is 
such that 82 = –8 = 4 (mod 12) and so on 
 
 We first construct groupoids using dual numbers, then with 
special dual like numbers and then with special quasi dual 
numbers.  Finally with mixed dual numbers.   
 

Let R(g) = {a + bg | a, b  R and g = 3  Z9}. 
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 Define on R(g) an operation *. 
 If x, y  R(g) define  
 
 x * y = 5x + 2y; (5, 2) is a fixed pair used for every pair of 
elements in R(g) under the operation *. 
 
   Let x = 12 + g and y = 7 + 3g be in R(g). 
   x * y = 5 (12 + g) + 2(7 + 3g) 
      = 60 + 5g + 14 + 6g 
      = 74 + 11g  R(g). 
 
  Thus (R(g), *) is a groupoid of infinite order. 
  On R(g) define * as x * y 
  = –3y + 2x for x, y  R(g) then (R(g), *) is a groupoid. 
 
 Consider x = 1 + g,  y = 3 – 2g and z = 3g are in R(g). 
  (x * y) * z = [(1 + g) * (3 – 2g)] * 3g  
        = [–3 (3 – 2g) + 2(1+g)] * 3g 
        = (–9 + 6g + 2 + 2g) * 3g 
        = (–7 + 8g) * 3g 
        = –3(3g) + 2(–7+8g) 
        = –9g – 14 + 16g 
        = –14 + 7g.       I 
 

x * (y * z) = (1 + g) * [(3 – 2g) * 3g] 
       = (1 + g) * [–3  3g + 2 (3 – 2g)] 
       = (1 + g) * (–9g + 6 – 4g) 
       = (1 + g) * (6 – 13g) 
       = –3 (6 – 13g) + 2 (1+g) 
       = –18 + 39g + 2 + 2g 
       = –16 + 41g.        II 
 
 Clearly I and II are not equal that is (x * y) * z  x * (y * z) 
in general in R(g). 
 
 Consider x, y  R(g) define x * y = 3x + 0y. 
 Take x = –2 + g and y = 7 + 5g in R(g) 
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   x * y = 3(–2+g) + 0 (7 + 5g) 
      = –6 + 3g.        (I) 
 
   y * x = 3y + 0x  
      = 3 (7 +5g) + 0 (–2 + g) 
      = 21 + 15g       (II) 
 
 Clearly x * y  y * x in R(g) in general. 
 
 We can on R(g) define infinitely many groupoids called the 
groupoid of dual numbers. 
 
 Let x, y  R(g) define x * y = 3 x + 5y. 
 Take x = 3g and y = 7.  
 
   x * y = 3   3g + 5.7 
      = 3 3 g + 35 
 
   y * x = 3 y + 5x  
      = 3   7 + 5  3g 
      = 7 3  + 15g. 
 
 Thus (R(g), ( 3 , 5), *) is a groupoid of dual numbers of 
dual numbers of infinite order. 
 
 We can instead of R use Q,  
Q(g)={a + bg | a, b  Q, g is the new element such that g2 = 0}.   
Define for x, y  Q(g); x * y = 7x + 2y.   
 

Let x = 3 – g and y = 5g + 2 be in Q(g).   
x * y = 7 (3–g) + 2(5g + 2) = 21 – 7g + 10g + 4  = 3g + 25. 

 
 Thus (Q(g), *, (7, 2)) is again an infinite groupoid of dual 
numbers. 
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 Clearly we can using Q(g) build infinite number of 
groupoids of dual numbers given by (Q(g), *, (m, n)) where m, 
n  Q. 
 
 
 We can also replace Q by Z and  
Z (g) = {a + bg | a, b  Z, g a new element such that g2 = 0}.   
 

Consider  
 
S = {Z(g), *, (m, n) | m, n  Z; x, y  Z(g), x * y = mx + 

ny}.  S is a dual integer number groupoid of infinite order.  We 
can get infinite number of them as we vary the pair (m, n) in Z  
Z. 
 
 Apart from this we can also get infinite order groupoids by 
the following methods. 
 
 Let M = {(a1, a2, …, ap) | ai  Z(g), g a new element such 
that g2 = 0; 1  i  p} and for x, y  M define x * y = sx + ry for 
s, r  Z.  s  r.   
 

That is if x = (a1, a2, …, ap) and y = (b1, b2, …, bp) are in M 
then 
 
   x * y = (a1, a2, …, ap) * (b1, b2, …, bp) 
      = (a1 * b1, a2 * b2, …, ap * bp) 
      = (sa1 + rb1, sa2 + rb2, …, sap + rbp). 
 
 
 Clearly x * y  M, thus (M, (s, r), *) is a groupoid of row 
matrix of dual numbers.  M is a commutative groupoid of 
infinite order. 
 
 
 Now if we take  
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N = 

1

2

n

a
a

a

 
 
    


 ai  Q(g) g is a new element; g2 = 0;  1  i  n} 

 
to be collection of all n  1 column matrices whose entries are 
dual numbers.  Define * on N as follows, for x, y  N define x * 
y = tx + sy (t, s  Q, t  s, once the pair is chosen it is fixed). 
 

That is if x = 

1

2

n

a
a

a

 
 
 
 
 
 


 and y = 

1

2

n

b
b

b

 
 
 
 
 
 


 then 

 

x n y = 

1

2

n

a
a

a

 
 
 
 
 
 


 * 

1

2

n

b
b

b

 
 
 
 
 
 


 

 

= 

1 1

2 2

n n

a * b
a * b

a * b

 
 
 
 
 
 


 = 

1 1

2 2

n n

ta sb
ta sb

ta sb

 
  
 
 

 


  N. 

 
 So (N, (t, s), *) is a groupoid known as the dual number 
groupoid of column matrices. 
 
 If we take S = {A = (aij)mn | m  n, aij  R(g); 1  i  m and 
1  j  n with g a new element such that g2 = 0} then S is a 
collection of dual number of m  n matrices.  Define a binary 
non associative operation * on S as follows: 
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   For A, B  S define A * B 
    = tA + sB (t, s  R) 
    = (taij) + (sbij) = (cij)  S. 
 
 Thus (S, (t, s), *) is a dual number groupoid of rectangular 
(or m  n) matrices. 
 

Suppose A = 
2 g 0 7g 12

5 2g 4 9g 5 9 0
3 g 3g 11 1 g

 
    
    

 

 

and B = 
0 3 4g 8g 7

4 5g 6g 9 0
8 0 11 2g 3 4g

 
  
   

 

 
be two 3  4 matrices with dual number entries.   

Let s = 3 and t = –4  we define A * B = 3A * (–4B) 
 

= 
3(2 g) 0 0 ( 4(3 4g))

3(5 2g) ( 4(4 5g)) 3(4 9g) 4 6g
3(3 g) ( 4 8) 3 ( 3g)

    
       
      

 

 
3 7g ( 4 8g) 3 12 4 7
3(5 g) 4 9 0

3 11 4(11 2g) 3(1 g) 4(3 4g)

       
    
      

 
 

= 
6 3g 12 16g 11g 8
1 14g 12 9g 21 3g 0
23 3g 9g 11 8g 9 19g

    
      
        

 

 
is in the collection of dual number 3  4 matrices.  This is the 
way the operation * is performed on m  n matrices with dual 
number entries. 
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 Finally consider P = {A = (mij) | A is a n  n matrix with mij 
 Z(g); 1  i, j  n, g a new element such that g2 = 0}, P the 
collection of all n  n matrices with dual number entries.  We 
define a non associative binary operation on P as follows: 
 
 For A, B  P, A * B = pA + qB where p, q  Z. 
 
 We will just illustrate this by a simple example. 
 
 Let P = {all 3  3 matrices with entries from Q(g), where g 
is a new element such that g2 = 0}. S = (P, (3, 1), *) is a 
groupoid of square matrices of dual numbers. 
 

         Suppose A = 
3 g 2g 3g 8
9g 1 7g 1 9g
4g 2 2 g 0

  
    
   

 

 

and B = 
9 2g 5 g 0

0 8 4g 7g
2 g 8 3 6g

  
  
    

 are in P. 

 
 Now A * B = 3A + B 
 

= 
3 g 2g 3g 8
9g 1 7g 1 9g
4g 2 2 g 0

   
     
   

9 2g 5 g 0
0 8 4g 7g

2 g 8 3 6g

  
   
    

 

 

= 
15 5g 5 5g 9g 24
27g 3 25g 5 20g
13g 8 3g 2 3 6g

   
    
    

 is in P. 

 
Thus S = (P, (3, 1), *) is a groupoid of infinite order.  
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Now we can have like groupoid of matrices of dual numbers 
the notion of polynomial groupoid of dual numbers. 
 

 Let S = i
i

i 0
a x








  ai  Z(g); g a new element such that  

g2 = 0 and ai = ti + sig , ti, si  Z} be the set of polynomials with 
dual number coefficients from Z(g). 
 
 Let p(x) = (3+5g) + (2g+1)x + 5gx3 + 7x4  and  
 q(x) = 3 + (8+g)x2 + (7–4g)x3 + 10gx5 + (11g+1)x6 
 
be two polynomials in S.  Now we define a binary operation * 
on S as follows: for any p(x), q(x)  S. 
 
 p(x) * q(x) = 7 ((3+5g) + (2g+1)x + 5gx3 + 7x4) +  

        2(3+(8+g)x2 + (7–4g)x3 + 10gx5 + (1+11g)x6)  
 

       =  21 + 35g + (14 + 7)x + 35gx3 + 49x4 + 6 +  
 (16 + 2g)x2 + (14 – 8g)x3 + 20gx5 + (x+22g)x6 

 
       = (27 + 35g) + (14 + 7)x + (16 + 2g)x2 +  

 (14 + 27g)x3 + 49x4 + 20gx5 + (2 + 22g)x6  S. 
 
 Thus (S, *, (7, 2)) is defined as the polynomial groupoid of 
dual numbers. 
 
 We can get infinite number of groupoids by varying this (7, 
2) in Z  Z.  All these groupoids are also of infinite order.  
 
 One can solve polynomial equations p(x) = 0 and solutions 
if it exists should be in Z(g). 
 
 Further one can replace Z by R or Q i.e. the dual number 
can take its entries from R(g) or Q(g). 
 
 This task of solving equations of polynomials with dual 
number coefficients is left as an exercise to the reader. 
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 Now we proceed onto give construction of finite dual 
number groupoids.  
 
 Consider Zn, let Zn(g) = {a + bg | a, b  Zn g a new element, 
with g2 = 0}.  Define on Zn(g) a non associative binary 
operation * such that for x, y  Zn(g);  
 
x * y = tx + sy (t, s  Zn).  Clearly {Zn(g), *, (t, s)} is a groupoid 
will be known as the modulo integer finite groupoid of dual 
numbers. 
 
 We will illustrate this by some examples. 
 
Example 4.1:  Let G = {Z8(g) | g = 6  Z12, *, (3, 5)} be a finite 
groupoid of finite modulo integers of dual numbers. 
 
   If x = 3 + 2g and y = 1 + 5g. 
   x * y  =  3x + 5y  
       = 3 (3+2g) + 5 (1 + 5g) 
       = 9 + 6g + 5 + 25g 
       = 14 + 31g 
       = 6 + 7g  G. 
 

Take z  = g then (x * y) * z 
    = (6 + 7g) * g = 3 (6 + 7g) + 5g 
    = 18 + 21g + 5g 
    = 2 + 8g. 
 

Now x * (y * z) = x * (3y + 5z) 
     = x * (3 + 15g + 5h) 
     = x * (3 + 2g) 
     = 3x + 5 (3 + 2g) 
     = 9 + 6g + 15 + 10g 
     = 0    
 
Clearly x * (y * z)  (x * y) * z  in G.  Thus the binary operation 
* on G is non associative in general. 
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Example 4.2:  Let  
{M, (8, 2), *} = {Z12 (g) = a + bg where a, b  Z12, g = 4  Z16, 
*, (8, 2)} be the groupoid of dual numbers of finite order.  
 
Example 4.3:  Let S = {(a1, a2, a3, …, a12) | ai  Z7 (g) = {a + bg 
| a, b  Z7 g = 2  Z4}; 1  i  12, *, (3, 1)} be a groupoid of 
dual numbers. 
 
 If in these groupoids the pair (p, q) are not taken from Zn 
but for x, y  Zn(g) we define px + qy (mod n) we call these 
dual number groupoids as new special groupoids. 
 
 We will illustrate this concept by some examples. 
 
Example 4.4:  Let  
 

P = {Z10 (g) = a + bg where a, b  Z10, g = 6  Z36, *, (12, 5)} 
 
be the new special groupoid of dual numbers. 
 
   Let x = 3 + 2g and y = 5 + 7g be in P. 
 
   x * y = 12x + 5y (mod 10) 
      = 36 + 24g + 25 + 35g (mod 10) 
      = 1 + 9g (mod 10). 
 
Example 4.5:  Let  
 

M = 1 2 6

7 8 12

a a ... a
a a ... a

 
 
 

 ai  Z23 (g); 1  i  12,  

 
g = 5  Z25, *, (9, 16)} 

 
be the new special groupoid of dual numbers. 
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Example 4.6:  Let  
 

S = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
 ai = xi + yig  Z16 (g), xi, yi  Z16; 

 
1  i  30, g = 3  Z9, *, (17, 43)} 

 
be the new special groupoid of dual numbers.  
 
 We can also have infinite groupoid of dual numbers using 
Z+  {0} or Q+  {0} or R+  {0} or C(complex numbers) and 
C(Zn) complex modulo integers.  Thus groupoids of dual 
numbers finite or infinite is aboundant in literature that also 
generated in a natural way. 
 
Example 4.7:  Let S = {C(g) | g = 4  Z8, a + bg  C(g) with a, 
b  C (complex numbers) define *, (t, s) where t and s  C} be 
a complex groupoid of dual numbers of infinite order.   
 
    Take t = 3 + I and s = 2 + 4i. 
 
 For x = (2 + 3i) + (7–i)g and y = (1+i) + 3ig in C(g) 
 
 We have x * y = tx + sy 
 
 = (3 + i) [2 + 3i + (7–i)g] + (2 + 4i) ((1 + i) + 3ig) 
 
 = (3 + i) (2 + 3i) + (3–i) (7–i) g + (2 + 4i) (1 + i) +  

   (2 + 4i) 3ig 
 
 = 6 + 2i + 9i – 3 + (21 – 7i – 3i + 1)g + (2 + 4i + 2i – 4) +  

   (6i – 12)g 
 
 = 1 + 17i + (10 – 4i)g  C(g). 
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Suppose z = 7 then 
 
 (x * y) * z = ((1 + 17i) + (10–4i)g) * 7 
 = (3 + i) ((1 + 17i) + (10–4i)g) + 7 (2+4i) 
 = (3 + i) (1 + 17i) + (3+i) (10–4i)g + 14 + 28i 
 = 3 + 3i + 51i – 17 + (30 + 10i – 12i + 3)  g + 14 + 28i 
 = 82i + (34 – 2i)g      I 
 
 Consider x * (y * z) 
 = x * ((3 + i) (1+i + 3ig) + (2 + 4i)7) 
 = x * [(3 + 3i + I – I + 9ig – 3g + 14 + 28i] 
 = x * (16 + 22i + (9i – 3) g) 
 = (3 + i) (2 + 3i + ((7–i)g) + (2 + 4i) (16 + 22i + (9i – 3)g) 
 
 =  (3 + i) (2 + 3i) + (3 + i) (7 – i)g + (2 + 4i) (16 + 22i) +  

    (2 + 4i) (9i – 3)g) 
 
 = 6 + 2i + 9i – 3 + (21 + 1 + 7i – 3i) g + (32 + 64i +  

   44i – 88) + (18i – 36 – 6 – 12i)g 
 
 = –53 + 119i + (–20 + 10i)g    II 
 
 Clearly II and I are not equal so S is a complex groupoid of 
dual numbers of infinite order. 
 
Example 4.8:  Let M = {C(Z9) (g) = {a + biF + (c + diF)g | a + 
biF and c + diF  C(Z9) and g = 7  Z49, *, (2 + iF, 4 + 3iF)} is 
the complex modulo integer groupoid of finite order. 
 
If x = (3 + 2iF) + (7 + iF)g and y = 3iF + 2g  M;  
then x * y = (2 + iF) [3 + 2iF + (7 + iF)g] + (4 + 3iF) (3iF + 2g) 
 
= (2 + iF) (3 + 2iF) + (2+iF) (7 + iF)g + (4 + 3iF)3iF + (4 + 3iF) 2g 
 
= 6 + 3iF + 4iF + 2  8 + (14 + 7iF + 2iF + 8) g + 12iF +  
   9  8 + 8g + 6iFg 
 
= (4 + iF) + (3 + 6iF)g  M. 
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Example 4.9:  Let  
 

S = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  C(Z5)(g) 

 
= {a + biF + (c + diF) g | a, b, c, d   Z5, 2

Fi  = 4, g = 3  Z9}, *, 
(3iF, 2); 1  i  6} be the complex modulo integer groupoid of 
dual numbers.  
 
Example 4.10:  Let  
 

M = i
i

i 0
a x








  ai  C(Z12)(g) 

 
= {a + biF + (d + ciF)g | a, b, c, d  Z12, 2

Fi = 11, g = 5  Z25},  
(3 + 2iF, 4iF), *} be the complex modulo integer groupoid of 
dual number of infinite order. 
 
 We have seen only groupoid of dual numbers.  Now on 
similar lines we can build groupoid of special dual like 
numbers.  
 
 We will illustrate this situation by some examples. 
 
Example 4.11:  Let  
 
S = {R (g), *, (3, 76); R(g) = {a + bg | a, b  R, g = 3  Z6}}  
be the groupoid of special dual like numbers of infinite order. 
 
 It is pertinent to mention we need not say whether R(g) is a 
dual number collection or a special dual like number collection, 
from g one can easily understand; if g2 = 0 it is a dual number 
collection and if g2 = g it is a special dual like number 
collection.  
 
Example 4.12:  Let M = {Z (g), *, (–7, 2) where g = 5  Z10} be 
the groupoid of special dual like numbers of infinite order.   
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Example 4.13:  Let  
P = {Q (g), *, (3/2, –1) where g = (3, 3, 3) with 3  Z6} be the 
groupoid of special like numbers of infinite order. 
 
Example 4.13:  Let  
P = {Z9 (g) = {a + bg | a, b  Z9 and g = 4  Z12}, (3, 2), *} be 
the groupoid of special dual like numbers of finite order. 
 
Example 4.14:  Let  
M = {(a1, a2, a3, …, a15) | ai  Z25 (g); 1  i  15, g = 7  Z42, *, 
(20, 4)} be the groupoid of special dual like number of finite 
order. 
 
Example 4.15:  Let  
 

P = 1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai  Z45 (g) 

 
= {x + yg | x, y  45, g = 10  Z30}, 1  i  8, *, (10, 0)} 

 
be the groupoid of special dual like numbers of finite order.  
Clearly P is a non commutative groupoid. 
 
Example 4.16:  Let  
 

S = 

1 2 3 4

5 6 7 8

37 38 39 40

a a a a
a a a a

a a a a

 
 
    

   
 ai  Z17(g) 

 
= {a + bg | a, b  Z17, g = 6  Z30}, 1  i  40, *, (10, 2)} 

 
be the groupoid of special dual like numbers.  S is a non 
commutative finite groupoid.  
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Example 4.17:  Let  
 

T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  Z(g) 

 
= {a + bg | a, b  Z, g = (1, 1, 1, 1, 1, 1), g2 = (1, 1, 1, 1, 1, 1) = 
g}, *, (3, –2), 1  i  9} be the special dual like number 
groupoid of infinite order. 
 
Example 4.18:  Let  
 

V = 

1 2 3

4 5 6

34 35 36

a a a
a a a

a a a

 
 
    

  
 ai = R(g) = {a + bg | a, b  R, 

g = 5  Z20}, 1  i  36; *, ( 3 , –2)} 
 

be the special groupoid of infinite order. 
 
Example 4.19:  Let  
 

T = i
i

i 0
a x








  ai = Z19(g) 

 
= {x + yg | x, y  Z19; g = 16  Z40}; *, (3, 2)} 

 
be a special dual number groupoid of infinite order. 
   
   Take p(x) = 2 + 5x + 3x3 + 7x4  
   and q (x)  =  8 + 7x + 18x2 + 5x3  in T,  
   p(x) * q(x) = 3p(x) + 21q(x)  
   = 6 + 15x + 9x3 + 21x4 + 16 + 14x + 36x2 + 10x3  
   = 3 + 10x + 17x2 + 9x3 + 2x4  T. 
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Example 4.20:  Let  
 

S = i
i

i 0
a x








  ai  R(g)  

= {a + bg | a, b  R, g = 4  Z12}, ( 41 , – 13 ), *} 
 

be the special dual like number groupoid of polynomials. 
 
Example 4.21:  Let  
 

M = i
i

i 0
a x








  ai  Z11(g) 

 
= {a + bg | a, b  Z11, g = 3  Z6}, 0  i  4, (3, 7), *} 

 
be a polynomial groupoid of special dual like numbers of finite 
order. 
 
Example 4.22:  Let  
 

S = 
7

i
i

i 0
a x






  ai  Z13(g) 

 
= {a + bg | a, b  Z13, g2 = 5  Z20}, *, (3, 0), 0  i  7} 

 
be the polynomial groupoid of special dual like numbers of 
finite order. 
 
 It is pertinent to mention here that all neutrosophic number 
like Z  I, Q  I, R  I, Z+ {0}  I, Q+ {0}  I, 
R+ {0}  I and Zn  I can be made into neutrosophic 
groupoids of special dual like numbers.   
 

We will give one or two examples before we proceed onto 
define mixed dual numbers. 
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Example 4.23:  Let  
S = {a + bI | a, b  R, a + bI  R  I with I2 = I, *, ( 7 , –3)} 
be a special dual like number neutrosophic groupoid of infinite 
order. 
 
Example 4.24:  Let  
T = {a + bI | a + bI  Q  I, I2 = I, *, (–7/3, 8/11)} be a 
special dual like number neutrosophic groupoid of infinite 
order. 
 
Example 4.25:  Let  
M  = {d = a + bI | d  Z25  I, *, (20, 7)} be a special dual like 
number neutrosophic groupoid of finite order. 
 
Example 4.26:  Let  
S = {(a1, a2, …, a7) | ai  Z  I, 1  i  7, *, (–11, 0)} be a 
special dual like number neutrosophic groupoid of infinite 
order. 
 
 
Example 4.27:  Let  
 

M = 

1

2

12

a
a

a

 
 
    


 ai  Q+  I  {0}, 1  i  12, *, (12, 17)} 

 
be a special dual like number neutrosophic groupoid of infinite 
order.  Clearly M is non commutative. 
 

If x = 

1

2

12

a
a

a

 
 
 
 
 
 


 and y = 

1

2

12

b
b

b

 
 
 
 
 
 


 are in M then 
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x * y = 12x + 17y 
 

= 

1 1

2 2

12 12

12a 17b
12a 17b

12a 17b

 
  
 
 

 


  M. 

 
Example 4.28:  Let  
 

S = 

1 2 10

11 12 20

21 22 30

31 32 40

a a ... a
a a ... a
a a ... a
a a ... a

 
 
    

 ai  Z17  I, 1  i  40, (7, 10), *} 

 
be the special dual like number neutrosophic groupoid of finite 
order. 
 
Example 4.29:  Let  
 

T =  
1 2 3 4

13 14 15 16

a a a a

a a a a

 
 
 
  

     ai  (Z10  {0}); 

 
1  i  16, (35, 2), *} 

 
be the special dual like number neutrosophic groupoid of finite 
order. 
 
Example 4.30:  Let  
 

S = 
9

i
i

i 0
a x






  ai  Z8  I, 0  i  9, (7, 1), *} 

 
be the finite special dual like number groupoid of polynomials. 
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   If p(x) = 2 + 6x + 3x3 + 7x4 and 
   q(x) = 4 + x2 + 7x3 + 6x4 + x5 are in S. 
   p(x) * q(x) = 7p(x) + 1q(x) 
 
   = 14 + 42x + 21x3 + 49x4 + 4 + x2 + 7x3 + 6x4 + x5  
   = 2 + 2x + x2 + 4x3 + 7x4 + x5  S. 
 
 This is the way * operation is performed.  By performing * 
operation we see the degree of the polynomial does not increase.  
 
Example 4.31: Let  
 

T = 
20

i
i

i 0
a x






  ai  Q  I; 0  i  20, (8, –3), *} 

 
be the infinite polynomial neutrosophic groupoid of special dual 
like numbers. 
 
Example 4.32:  Let  
 

S = i
i

i 0
a x








 ai  Z31  I, (14, 0), *} 

 
be an infinite polynomial neutrosophic groupoid of special dual 
like numbers. 
 
Example 4.33:  Let  
 

T =
5

i
i

i 0
a x






  ai  Z15  I, 0  i  15, (2, 3), *} 

 
be a finite polynomial neutrosophic groupoid of special dual 
like numbers.   
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Now having seen examples of special dual like number 
groupoids we proceed onto give examples of mixed dual 
number groupoids. 
 
Example 4.34:  Let M = {a + bg + cg1, g = 6 and g1 = 4  Z12, 
g2 = 0 and 2

1g  = g1, gg1 = g1g = 0, a, b, c  Z, (3, –2), *} be a 
mixed dual number groupoid of infinite order. 
 
  If x = 5 + 3g – 4g1 and y = 3 – 2g + g1 are in M 
 
  x * y = 3x – 2y  
     = 3 (5 + 3g – 4g1) – 2 (3 – 2g + g1) 
     = 15 + 9g – 12g1 – 6 + 4g – 2g1 
     = 9 + 13g – 14g1 M. 
 
Example 4.35:  Let T = {a + bg + cg1 | a, b, c  Z12, g = 6 and 
g1 = 9  Z18, g2 = 36  0 (mod 18) 2

1g = 81 = 9 (mod 18) and gg1 
= 54 = 0 (mod 18), (4, 2), *} be a finite mixed dual number 
groupoid. 
 
 For if x = 3 + g + 6g1 and y = 5 + 3g + g1 are in T, then 
x * y = 4x + 2g 
 
   = 4 (3 + g+ 6g1) + 2(5 + 3g + g1) 
 
   = 12 + 4g + 24g1 + 10 + 6g + 2g1 
 
   = 10g + 2g1 + 10  T. 
 
Example 4.36:  Let  
S = {(a1, a2, a3) where ai = x1 + x2g + x3g2 with xj  Z40,  
g = (2, 2, 2, 2, 0, 0, 2, 0) and g1 = (1, 1, 1, 1, 0, 1, 0), 0, 1, 2  
Z4, g2 = (0, 0, 0, 0, 0, 0, 0, 0), 2

1g = (1, 1, 1, 1, 0, 1, 0) = g1, *, (8, 
19)} be the groupoid of mixed dual numbers of finite order. 
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Example 4.37:  Let  
 

M = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai = x1 + x2g + x3g1; 1  i  8, 

 
xj  Q, 1  j  3, g = 5 and g1 = 10, g2 = 5 (mod 20), 2

1g = 0 
(mod 20), 5, 10  Z20, (3/7, 10/7), *} be a mixed dual number 
groupoid of infinite order. 
 
Example 4.38:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = x1 + x2g + x3g1, 1  i  9, 

 

xj  Z+  {0}, 1  j  3, g = 

6
6
6
6
6

 
 
 
 
 
 
  

and g1 =

9
9
9
9
9

 
 
 
 
 
 
  

 with 

 

g n g = 

0
0
0
0
0

 
 
 
 
 
 
  

 (mod 12), 6, 9  Z12; g1 n g1 =

9
9
9
9
9

 
 
 
 
 
 
  

, 
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g1 n g =  

6
6
6
6
6

 
 
 
 
 
 
  

, (3, 9), *} 

 
be a mixed dual number groupoid of infinite order. 
  
Example 4.39:  Let  
 

M = 1 2 3 10

11 12 13 20

a a a ... a
a a a ... a

 
 
 

ai = x1 + x2g + x3g1, 

 
1  i  20, xj  Z14, 1  j  3, g = 3 and g1 = 3 + 3iF  C(Z6),  
g2 = 3 (mod 6) and 2

1g  = 9 + 9  5 + 18iF = 0 (mod 6).  
gg1 = 3 + 3iF = g1; *, (7, 7)} be a mixed dual number groupoid 
of finite order. 
 
Example 4.40:  Let  
 

P = 
1 2 3

10 11 12

a a a

a a a

 
 
 
  

   ai = x1 + x2g + x3g1, xj  Q; 

 
1  j  3, g = I, g1 = 3I  Z9  I, g2 = g, 2

1g = 0, gg1  = 3I = g1, 
*, (7, 13/2)} be a mixed dual number neutrosophic groupoid of 
infinite order. 
 
Example 4.41:  Let  
 

W = i
i

i 0
a x








  ai = x + x1g + x2g1, x, x1, x2  Q, g = 4 
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and g1 = 6  Z12, g2 = g (mod 12), 2

1g = 0 (mod 12),  
gg1 = 0 (mod 12), (–17, 3/11), *} be a polynomial groupoid of 
mixed dual numbers of infinite order. 
 
Example 4.42:  Let  
 

S = 
7

i
i

i 0
a x






  ai = x1 + x2g1 + x3g1; 0  i  7, 

 
g = 16, g1 = 20  Z40, g2 = 16 = g (mod 40), 2

1g = 0 (mod 40), 
g1g = 0 (mod 40), xj  R, 1  j  3, (– 7 , 17), *) be a 
polynomial groupoid of mixed dual numbers of infinite order. 
 
Example 4.43:  Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3g1, xj  Z6, 

 

1  j  3, g =

6 6 6
6 6 6
6 6 6
6 6 6
6 6 6

 
 
 
 
 
 
  

, g1 =

9 9 9
9 9 9
9 9 9
9 9 9
9 9 9

 
 
 
 
 
 
  

; 6, 9  Z12; 

 

g n g =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 
 
 
 
 
 
  

, g1 n g1 = 

9 9 9
9 9 9
9 9 9
9 9 9
9 9 9

 
 
 
 
 
 
  
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g1 n g =

6 6 6
6 6 6
6 6 6
6 6 6
6 6 6

 
 
 
 
 
 
  

, *, (2, 4)} 

 
be the polynomial groupoid of mixed dual numbers of infinite 
order. 
 
Example 4.44:  Let  
 

M =  
7

i
i

i 0
a x






  ai = x1 + x2g + x3g1; 0  i  7, xj  Z40, 

 

1  j  3, g =

6 6I
6 6I
6 6I
6 6I
6 6I
6 6I

 
  
 
 
 

 
 
  

, g1 =

9I
9I
9I
9I
9I
9I

 
 
 
 
 
 
 
 
  

, 9I, 6+6I  C(Z12); 

 

g n g =

0
0
0
0
0
0

 
 
 
 
 
 
 
 
  

, g1 n g1 =

9I
9I
9I
9I
9I
9I

 
 
 
 
 
 
 
 
  

, g n g1 =

6 6I
6 6I
6 6I
6 6I
6 6I
6 6I

 
  
 
 
 

 
 
  

, (10, 16), *)} 

 
be the polynomial groupoid of mixed dual numbers of finite 
order. 
 
 Now we proceed onto give examples of groupoid of special 
quasi dual numbers. 
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Example 4.45:  Let  
M = {a + bg | a, b  Q, 3 = g  Z12, g2 = 9 = –3 = –g, *,  
(3, –7/11)} be the special quasi dual number groupoid. 
 
Example 4.46:  Let  
P = {a + bg + cg1 | a, b, c  Z+  {0}, g = 2, g2 = 4 = g1,  
(7, 20)} be the special quasi dual number groupoid of infinite 
order. 
 
Example 4.47:  Let  
M = {a + bg | a, b  Z10, g = 8, g2 = 64 = –g (mod 12), 8  Z12, 
*, (2, 7)} be the special quasi dual numbers groupoid of finite 
order.   
 

Consider x = 2 + 3g, y = 7 + g  M;  
x * y = 2x + 7y = 2 (2+3g) + 7 (7+g)  
= 4 + 6g + 49 + 7g = 3 + 3g  M.  For  

 
 
   z = 1 + 8g  M; (x * y) * z = (3 + 3g) * z 
    = 2 (3 + 3g) + 7 (1+8g) 
    = 6 + 6g + 7 + 56g 
    = 3 + 2g    I 
 

x * (y * z) = x * [2y + 7 (1+ 8g)] 
     = x * [14 + 2g + 7 + 56g] 
     = x * (1 + 8g) 
     = 2x + 7 (1 + 8g) 
     = 2(2+3g) + 7 (1 + 8g) 
     = 4 + 6g + 7 + 56g 
     = 1 + 2g    II 
 
 The equations I and II are not equal;  
 
x * (y * z)   (x * y) * z. 
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Example 4.48:  Let P = {a + bg + cg1 | a, b, c  R+  {0},  
g = 24  Z40, g2 = 16 = g1 = –g (mod 40), g  g1 = g; ( 7 +1, 5 
+ 3 ), *} be the special quasi dual number groupoid. 
 
 Take x = 3 + g + 5g1 and y = 2 + 5g + g1  P,  
x * y = ( 7 +1)x + (5 + 3 )y   
 
 = ( 7 +1) (3 + g + 5g1) + (5 + 3 ) (2 + 5g + g1)  
 
 = 3 7  + 7 g + 5 7 g1 + 3 + g + 5g1 + 10 + 25g +  

   5g1 + 2 3  + 5 3 g + 3 g1 

 
 = (3 7  + 2 3  + 3 + 10) + ( 7 + 1 + 25 + 5 3 )g +  

   (5 7  + 10 + 3 )g1  
 
 = (3 7  + 2 3  + 13) + (26 + 7  + 5 3 )g +  

   (10 + 3  + 5 7 )g1  P. 
 
 This is the way ‘*’ operation is performed on P. 
 
Example 4.49:  Let T = {(a1, a2, a3, a4) | ai = x + x1g; 1  i  4, 
x, x1  Z11, g = 14  Z21, g2 = 7 = –g (mod 21), (5, 6), *} be the 
special quasi dual number groupoid of finite order. 
 
 
Example 4.50:  Let  
 

P =   

1

2

10

a
a

a

 
 
    


 ai = x1 + x2g + x3g1; 1  i  10, xj  Z+  {0}, 
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1  j  3, g = 20  Z30, g2 = 202 = –g = 10 = g1 (mod 30),  
(7, 8), *} be the special quasi dual number groupoid of infinite 
order. 
 
Example 4.51:  Let  
 

P = 1 2 3 10

11 12 13 20

a a a ... a
a a a ... a

 
 
 

 ai = x1 + x2g + x3g1; 1  i  20, 

 
x1, x2, x3  Z15, g = 3  Z12, g2 = 9 = –g1 (mod 12), (7, 2), *} 

 
be a special quasi dual number groupoid of finite order. 
 
Example 4.52:  Let  
 

S = 
11

i
i

i 0
a x






  ai = x1 + x2g + x3g1; 0  i  11, xj  Z7, 

 
1  j  3, g = 2  Z6, g2 = 4 = –g = g1  Z6, *, (3, 1)} 

 
be the polynomial groupoid of special quasi dual numbers of 
finite order. 
 
 Let p(x) = 3 + 2x + 5x2 + 2x7  and   

 
q(x) = 2 + 5x + 3x2 + 4x5 + 2x6 be in S. 

 
 p(x) * q(x) = 3p(x) + q(x) 
 
  = 9 + 6x = 15x2 + 6x7 + 2 + 5x + 3x2 + 4x5 + 2x6  
 
  = 4 + 4x + 4x2 + 4x5 + 2x6 + 6x7  S. 
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Example 4.53: Let  
 

M = i
i

i 0
a x








  ai = x1 + x2g + x3g1; xj  Q; g =

24
24
24
0
24
0

 
 
 
 
 
 
 
 
  

, 

 

24  Z40, g2 = 

16
16
16
0

16
0

 
 
 
 
 
 
 
 
  

 =  –g = 

24
24
24
0
24
0

 
  
 
 
 
 
 
  

 = g1 (mod 40), 

 
gg1 = g (mod 40); 1  j  3, (1/7, 8/13), *} 

 
be a polynomial special quasi dual number groupoid of infinite 
order. 
 
Example 4.54:  Let  
 

S = i
i

i 0
a x








  ai = x1 + x2g + x3g1, xj  Z12, 

 

1  j  3, g = 
8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

 
 
 
  

; 8  Z12, 

 

g2 = 
4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4

 
 
 
  

 (mod 12)  
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=  –g = 
8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

      
       
       

 (mod 12)  

   
= g1, 4  Z12, (3, 7), *}  

 
be the polynomial groupoid of special quasi dual number.  
 
 Now we proceed into give examples of groupoids of mixed 
special quasi like dual numbers, strong mixed dual numbers and 
mixed quasi dual numbers. 
 
Example 4.55:  Let P = {a + bg + cg1 | a, b, c  R, g = 24 and  
g1 = 20  Z40, ( 3 , 7 – 5 ), *, (Here 2

1g  = 0 (mod 40) and  
g2 = –g (mod 40))} be the groupoid of mixed special quasi dual 
number.  P is an infinite groupoid. 
 
Example 4.56:  Let  
 

P =

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g + x3g1; 1  i  4, xj  Z15, 

 
1  j  3, g = 6 g1 = 3  Z30, g2 = 0 (mod 12), 

 
g1 = 9 = –3 (mod 12), (10, 5), *} 

 
be the mixed special quasi dual groupoid. 
 

Let x = 

1

1

1

3 g
2 g 2g

g
5

 
   
 
 
 

 and y = 

1

1

2g
5g

1 2g
3 4g g

 
 
 
 
 
  

 be in M. 
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 x* y = 10x + 5y 
 

= 

1

1

1

30 10g
20 10g 10g

10g
50

 
   
 
 
 

 + 

1

1

10g
25g

5 10g
15 20g 5g

 
 
 
 
 

  

 

 

= 

1

1

1

1

5g
5 5g 10g
5 10g 10g
5 5g 5g

 
   
  
 

  

  M. 

 
 
Example 4.57:  Let  
 

P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = x1 + x2g + x3g1, 1  i  9, xj  Q, 

 
1  j  3,g = 20, g1 = 15  Z40, g2 = 0 (mod 40), 2

1g = –g1 (mod 
40), gg1 = 20 = g (mod 40), *, (7/3, 1/2)} be the mixed special 
quasi dual groupoid of infinite order. 
 

If x = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 and y = 
1 2 3

4 5 6

7 8 9

b b b
b b b
b b b

 
 
 
  

 are in P. 

 
 

x*y = 
1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 4 4

7 / 3a 1/ 2b 7 / 3a 1/ 2b 7 / 3a 1/ 2b
7 / 3a 1/ 2b 7 / 3a 1/ 2b 7 / 3a 1/ 2b
7 / 3a 1/ 2b 7 / 3a 1/ 2b 7 / 3a 1/ 2b

   
    
    

  P. 
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Example 4.58:  Let  
 

T = 
5

i
i

i 0
a x






  ai = x1 + x2g + x3g1, xj  Z16, 0  i  5, 

 
1  j  3, g = (6, 6, 6), g1 = (8, 8, 8), 6, 8  Z12, g2 = (0, 0, 0),  
g1 = (4, 4, 4) = –g1, (0, 8),*)} be a polynomial groupoid with 
mixed special quasi dual coefficients.  
 
 Next we proceed onto give examples of mixed special quasi 
dual like numbers groupoid. 
 
Example 4.59:  Let P = {a + bg + cg1 | a, b, c  R, g = 4 and  
g1 = 3  Z12, g2 = g (mod 12) and 2

1g  = –g1 (mod 12)  
( 7 –1, 5 + 13 ), *)} be a mixed special quasi dual like 
number groupoid of infinite order. 
 
Example 4.60:  Let  
W = {(a1, a2, a3, …, a10) | ai = x1 + x2g + x3g1, 1  i  10, xj  
Z46, 1  j  3, g = 16 and g1 = 15  Z40, g2 = g and  

2
1g  = –g1 (mod 40), (8, 23), *} be a mixed special quasi dual 

like number groupoid of finite order. 
 
Example 4.61:  Let  
 

S = 
1 2 3

13 14 15

a a a

a a a

 
 
 
  

   ai = x1 + x2g + x3g1, xj  Z20; 1  j  3, 

 
g = (6, 6, 6), g1 =  (7, 7, 7);  6, 7  Z42, g2 = (36, 36, 36) = (–6,  
–6, –6) = –g and 2

1g  = (49, 49, 49) (mod 42) = (7, 7, 7) (mod 
42) = g1 (mod 42); gg1 = (0, 0, 0), (7, 8), *} be the mixed special 
quasi dual like number groupoid.  
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Example 4.62:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = x1 + x2g + x3g1, 1  i  9, 

 

xj  Z+  {0}, 1  j  3, g =
14 14 14 14
14 14 14 14
14 14 14 14

 
 
 
  

,  

 

g1 =  
15 15 15 15
15 15 15 15
15 15 15 15

 
 
 
  

; 14, 15  Z21,  g2 = 
7 7 7 7
7 7 7 7
7 7 7 7

 
 
 
  

  

 

= –g, 2
1g = 

15 15 15 15
15 15 15 15
15 15 15 15

 
 
 
  

 = g1, (8, 7), *}  

 
be the mixed special quasi dual like number groupoid.  
 
 We can also build mixed special quasi like dual number 
coefficient polynomial groupoid of finite as well as infinite 
order.  It is left as an exercise to the reader. 
 
 Now we proceed onto give examples of strong special 
mixed dual number groupoid. 
 
Example 4.63:  Let S = {a1 + a2g1 + a3g2 + a4g3 | aj  Q, 1  j  
4, g1 = 6, g2 = 3 and g3 = 4  Z12, 2

1g = 0 (mod 12),  
2
2g = –g2 (mod 12), 2

3g = g3 (mod 12), (3/7, –8/11), *} be the 
strong special mixed dual number groupoid of infinite order. 
 
Example 4.64:  Let S = {(a1, a2, a3, a4, a5, a6) | ai = x1 + x2g1 + 
x3g2 + x4g3; 1  i  6, xj  Z25, 1  j  4, (5, 20), * where g1 = 8, 
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g2 = 9 and g3 = 6  Z12, 2

1g = –g1, 2
2g = 9 and 2

3g  = 0, g1g2 = 0, 
g1g3 = 0 and g2g3 = 6 = g3 (mod 12)} be the strong special mixed 
dual number groupoid of finite order. 
 
Example 4.65:  Let  
 

P = 
1 2 6

7 8 12

13 14 18

a a ... a
a a ... a
a a ... a

 
 
 
  

ai = x1 + x2g1 + x3g2 + x4g3; 

 
1  i  18, xj  Z+  {0}, 1  j  4; g1 = 20, g2 = 16 and g3 = 15 
 Z40, 2

1g = 0 (mod 40), 2
2g = 16 (mod 40) and  

g3 = –g3 (mod 40), (7, 8), *} be the strong special mixed dual 
number groupoid of infinite order. 
 
Example 4.66:  Let  
 

S = 
8

i
i

i 0
a x






  ai = x1 + x2g1 + x3g2 + x4g3; xj  Z7, 0  i  8, 

 
1  j  4, g1 = 6, g2 = 9 and g3 = 8  Z36, 2

1g = 0 (mod 36),  
2
2g = 81 = g2 (mod 36), 2

3g = 28 (mod 36) = 8 (mod 36),  
g1g2 = g3, g1g3 = 0 (mod 36), g3g2 = 0 (mod 36), (3, 2), *} be a 
polynomial strong special mixed dual number groupoid of finite 
order. 
 
 The task of studying, analyzing and describing higher 
dimensional dual number groupoids, higher dimensional special 
dual like number groupoids and higher dimensional special 
quasi dual number groupoid is left to the reader. 
 
 Further the reader is expected to study and describe the four 
types of mixed groupoids of higher dimension. 
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 Now we proceed onto define three types of non associative 
rings using dual number groupoids of all types and rings and 
dual number rings. 
 
DEFINITION 4.1:  Let S = {Z(g) | g is a new element and a + bg 
is a dual number with a, b  Z, g2 = 0} be the general ring of 
dual numbers. L be a loop.  SL be the loop ring of the loop L 
over the ring S.  SL is a non associative dual number ring. 
 
 If Z(g) is replaced by R(g) or Q(g) or Zn(g) still the result 
hold good. 
 
 We will give some examples of this concept. 
 
Example 4.67:  Let S = Q(g) = {a + bg | a, b  Q, g = 5  Z25, 
g2 = 0 (mod 25) be the new element} be the general ring of dual 
numbers.   
 

L = L7(3) = {e, 1, 2, 3, 4, 5, 6, 7} be a loop given by the 
following table. 
 

o e 1 2 3 4 5 6 7
e e 1 2 3 4 5 6 7
1 1 e 4 7 3 6 2 5
2 2 6 e 5 1 4 7 3
3 3 4 7 e 6 2 5 1
4 4 2 5 1 e 7 3 6
5 5 7 3 6 2 e 1 4
6 6 5 1 4 7 3 e 2
7 7 3 6 2 5 1 4 e

 

 
 SL is a non associative loop ring of general dual numbers. 
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Example 4.68:  Let  
 
M = {R(g) | a + bg,  a, b  R, g is a new element such that  
g2 = 0} be the dual number general ring.  L = L5 (2) = {e, 1, 2, 
3, 4, 5} given by the composition table. 
 

o e 1 2 3 4 5
e e 1 2 3 4 5
1 1 e 3 5 2 4
2 2 5 e 4 1 3
3 3 4 1 e 5 2
4 4 3 5 2 e 1
5 5 2 4 1 3 e

 

 
 ML is the loop ring (non associative) of dual numbers of 
infinite order. 
 
Example 4.69:   Let  
S = {Z5 (g) = a + bg; a, b  Z5, g a new element such that  
g2 = 0} be the dual number ring, L be the loop given by the 
following table. 
 

o e a b c d g
e e a b c d g
a a e d b g c
b b d e g c a
c c b g e a d
d d g c a e b
e g c a d b e

 

 
 SL is the loop ring of dual number of finite order and is also 
commutative.  
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 All properties of non associative rings can be derived in 
case of loop rings of dual numbers.  This task is left as an 
exercise to the reader. 
 
 At this stage it is important to note that we cannot construct 
loops of dual numbers for loops too like groups should have 
identity and inverse under product.  So loops of dual numbers or 
loops of special dual like numbers or loop of special quasi dual 
number or loop of mixed dual numbers is an impossibility under 
product.  So we cannot use loop and ring (not dual number 
rings) to get non associative ring of dual numbers.  However to 
get non associative dual numbers we make use of loops and 
general ring of dual numbers. 
 
 Further if the ring of dual numbers is replaced by special 
dual like number ring R we use loops L can construct loop rings 
RL which will be the non associative ring of special dual like 
numbers.  We can have R to be Z(g) or R(g) or C(g) or Zn(g) or 
Q(g) where g is a new element such that g2 = g and  
Q(g) = {a + bg | a, b  Q and g2 = g}.  This task of constructing 
and studying special dual like numbers non associative loop 
ring using any loop L is also left as an exercise to the reader. 
 
 Further to construct non associative ring of special quasi 
dual numbers also one can use a loop L and a special quasi dual 
number ring Q(g) (or R(g) or C(g) or Z(g) or  
Zn(g)) = {a + bg | a, b  Q with g a new element; g2 = –g}.  
Q(g)L (or R(g)L or Zn(g)L or C(g)L or Z(g)L) will be a non 
associative loop ring of special quasi dual numbers. 
 
 This work is also a matter of routine and hence this task is 
left as an exercise to the reader. 
 
 It is pertinent to note the following. 
 
 Suppose R(g, g1, g2) = {a + bg + cg1 + dg2 | a, g1 and g2 are 
new elements that that g2 = 0, 2

1g = g1 and  2
2g  = –g2 with  

gg1 = g2 (or g or 0 or g1), g1g2 = g1 (or g2 or g or 0) and gg2 = g 
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(or g1 or g2 or 0); a, b, c, d  R} be the strong mixed special 
dual number ring. 
 
 (R reals can be replaced by Q or Z or Zn or C and all results 
hold good). 
 
   Clearly R(g, g1)  R(g, g1, g2),  
   R(g, g2)  R(g, g1, g2) and 
   R(g1, g2)  R(g1, g2, g). 
   R(g)  R (g, g1) (R (g, g2))  R(g, g1, g2). 
 
   R(g1)  R(g, g1) (or R(g1, g2))   R(g, g1, g2), 
   R(g2)  R(g, g2) (or R(g1, g2)) 
   = R (g, g1, g2).  
 
 So if we study R(g, g1, g2) all other six subrings are 
contained properly in R(g, g1, g2). 
 
 We give examples of a non associative mixed ring using a 
loop and the reader is expected to develop all other related 
properties. 
 
Example 4.70:  Let S = {a1 + a2g1 + a3g2 + a4g3 | ai  R, 1  i  
4, 2

1g = 0, 2
2g = g2, 2

3g = –g3 where g1 = 6, g2 = 4 and g3 = 3 are in 
Z12; g1g2 = 0, g1g3 = g1 and g2g3 = 0} be the ring of strong mixed 
special dual numbers.  L be a loop given by the following table: 
 

o e 1 2 3 4 5
e e 1 2 3 4 5
1 1 e 5 4 3 2
2 2 3 e 1 5 4
3 3 5 4 e 2 1
4 4 2 1 5 e 3
5 5 4 3 2 1 e
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 SL is the loop ring called the non associative strong mixed 
special dual number ring. 
 
 Clearly S contain all the six types of subrings of dual 
numbers. 
 
Example 4.71:  Let P = {a1 + a2g1 + a3g2 + a4g3 | ai  Z7; 1  i  
4; g1 = 20, g2 = 16 and g3 = 15  Z40, 2

1g = 0 (mod 40), 2
2g =  g2 

(mod 40) and 2
3g  = –g3 (mod 40), g1g2 = 0 (mod 40), g3g1 = g1 

(mod 40); g2g3 = 0 (mod 40)} be the strong mixed dual number 
ring of finite order.  Let L be a loop given by the following 
table. 
 

L = {e, 1, 2, …, 9} 
 

o e 1 2 3 4 5 6 7 8 9
e e 1 2 3 4 5 6 7 8 9
1 1 e 9 8 7 6 5 4 3 2
2 2 3 e 1 9 8 7 6 5 4
3 3 5 4 e 2 1 9 8 7 6
4 4 7 6 5 e 3 2 1 9 8
5 5 9 8 7 6 e 4 3 2 1
6 6 2 1 9 8 7 e 5 4 3
7 7 4 3 2 1 9 8 e 6 5
8 8 6 5 4 3 2 1 9 e 7
9 9 8 7 6 5 4 3 2 1 e

 

 
be the loop of order 10.  PL be the loop ring, PL is a non 
associative general ring of strong mixed dual numbers of finite 
order. 
 
 Now we can construct groupoids G and using these dual 
number rings or mixed dual number ring or special dual like 
number ring or special quasi dual number ring and their mixed 
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combinations of dual ring we can build non associative dual 
number rings. 
 
 We will illustrate by some examples. 
 
Example 4.72:  Let  
S = R(g) = {a + bg | a, b  R, g2 = 0, g a new element} be the 
dual number ring.  Let G = (Z26, *, (3, 2)) be the groupoid of 
order 26.  SG be the groupoid ring of the groupoid G over S.  
SG is a non associative dual number ring. 
 
Example 4.73:  Let M = Z20 (g, g1) = {a + bg + cg1 | a, b, c  
Z20, g = 6, g1 = 4  Z12; g2 = 0, 2

1g = 4, g1g = 0 (mod 12)} be the 
dual number ring.  G = {(C(Z19), *, (3, 4iF)} be the groupoid.  
MG the groupoid ring of G over M.  MG is a non associative 
mixed dual number ring. 
 
Example 4.74:  Let T = {a1 + a2g + a3g1 | ai  Z, 1  i  3, g = 7, 
g1 = 14 Z42, g2 = g, 2

1g = –g1, gg1 = g1} be the mixed special 
quasi dual number ring G = {Z72, *, (13, 0)} be the groupoid.  
TG be the groupoid ring of G over T.  TG is a non associative 
mixed special quasi dual number. 
 
Example 4.75:  Let S = {a1 + a2g + a3g1 + a4g2 | ai  Z14, 1  i  
4, g = 6, g1 = 3, g2 = 4  Z12, g2 = 0, 2

1g = –g1, 2
2g = g2, gg1 = 6 = 

g, gg2 = 0, g1g2 = 0} be the strong mixed dual number ring  
G = {Z15, *, (1, 5)} be the groupoid.  SG be the groupoid ring of 
the groupoid G over the ring S.  SG is a non associative strong 
mixed dual number ring.  
 
Example 4.76:  Let W = {a1 + a2g2 + a3g1 + a4g3  + a5g4 + a6g5 + 
a7g6 | ai  Z7, 1  i  7, g1 = 7, g2 = 14, g3 = 21, g4 = 28, g5 = 35 
 Z49} be the higher dimensional dual number ring.   
 

G = {Z+  {0}, *, (7, 8)} be the groupoid.  WG be the 
groupoid ring of G over W.  WG is a non associative higher 
dimensional ring of infinite order. 
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 We can also build non associative dual number rings using 
just rings R, that is commutative rings with unit G be the dual 
number groupoid then RG the groupoid ring is the non 
associative dual number ring. 
 
Example 4.77:  Let R be the field of reals.   
G = {a + bg | a, b  Z8, g the new element; g2 = 0, (3, 5), *} be 
the dual number groupoid.  RG be the groupoid ring.  RG is a 
non associative dual number ring. 
 
Example 4.78:  Let T = Q be the ring of rationals.   
G = {a + bg | g is a new elements a, b  Z, g2 = 0, (5, –3), *} be 
the groupoid of dual numbers.  QG be the groupoid ring.  QG is 
the non associative dual number ring. 
 
 Let x = 3 + 2(5 + 7g) + 12 (1+g) + 7/2 (2–g) 
 and y = –7 + (3–4g) + 5/2 (8 + 2g) be in QG.   
 

x + y  = –4 + 2 (5+7g) + 12(1+g) + 7/2(2–g) + (3–4g) +  
5/2 (8+2g)  QG.   

 
 x  y  =  [3 + 2(5 + 7g) + 12 (1+g) + 7/2 (2–g)]   

       [–7 + (3–4g) + 5/2 (8+2g)] 
 

      = –21 – 14 (5 + 7g) – 84 (1+g) – 49/2 (2–g) +  
 3 (3–4g) + 12 (1+g) * (3–4g) + (5  3)/2 (8+2g) +  
 5(5+7g) * (8+2g) + (12  5)/2 (1+g) * (8+2g) +  
 35/4 (2–g) * (8+2g)  
 

      = –21 – 14 (5 + 7g) – 84 (1 + g) + –49/2 (2–g) +  
  3 (3–4g) + 2 [5 (5+7g) – 3 (3–4g)] + 12 (5 (1+g) –  
  3 (3–4g)] + 15/2 (8+2g) + 5 (5 (5+7g)–3 (8+2g)] +  
  30 (5 (1+g) – 3 (8+2g)) + 30 (5 (1+g) – 3 (8+2g))  
  + 35/4 (5 (2–g) – 3 (8+2g))  

 
       =  –21 – 14 (5 + 7g) – 84 (1+g) –49/2 (2–g) +  

    3(3–4g) + 2 (16+47g) + 15/2 (8+2g) +  
    12 (–4 + 17g) 5 (1+2g) + 30 (–19–g) +  
     35/4 (–14 – 11g)  QG.   
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Thus QG is a non associative dual number ring of infinite order. 
 
Example 4.79:  Let S = Z9 be the ring of modulo integers.   
 

G = {a + bg | g2 = 0, a, b  Z7, g a new element, (2, 5), *} 
be the dual number groupoid SG be the groupoid ring of the 
groupoid G over the ring Z9.  SG is a non associative dual 
number ring of finite order. 
 
Example 4.80:  Let S = Z be the ring of integers.  G = {a + bg1 
+ cg2 + dg3 | a, b, c, d  Z14, g1 = 4, g2 = 8, g3 = 12  Z16,  

2
1g = 0 (mod 16), 1  i  3} be the groupoid.  ZG be the 

groupoid ring of the groupoid G over the ring Z.  SG is the non 
associative ring of four dimensional dual numbers. 
 
Example 4.81:  Let S = Z20 be the ring of modulo integers  
G = {a + bg1 + cg2 | a, b, c  Z7,  g2 = 3, g1 = 4  Z6,  

2
1g = g1 (mod 6), 2

2g = g2 (mod 6), g1g2  0 (mod 6), (2, 0), *} be 
the groupoid of special dual like numbers.  SG be the groupoid 
ring.  SG is a non associative special dual like number ring of 
finite order. 
 
Example 4.82:  Let S = Q be the field of rationals.  G = {a + bg 
| a, b  Z40, g = 7  Z42, g2 = g (mod 42), *, (10, 20)} be the 
groupoid of special dual like numbers.  SG be the groupoid ring.  
SG is a non associative special dual like number ring. 
 
Example 4.83:  Let G = {a1 + a2g1 + a3g2 | g1 = 4 and g2 = 3  
Z6, 2

1g = 4 (mod 6), 2
2g = 3 (mod 6), g1g2 = 0, aj  Z19, 1  j  3; 

(7, 0), *} be the three dimensional special quasi dual groupoid.  
S = Z11 be the field of modulo integers.  SG the groupoid ring.  
SG is the non associative special dual like number ring of finite 
order. 
 
Example 4.84:  Let M = Q be the ring of rationals.   
G = {a1 + a2g1 + a3g2 | ai  Z7; 1  i  3; g1 = 5 and g2 = 6  Z10; 

2
1g = g1, 2

2g = g2, g1g2 = 0 (mod 10); (3, 1), *} be the groupoid of 
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special dual like numbers.  Z3 be the field of integers.  Z3G be 
the groupoid ring of non associative special dual like numbers.  
 
Example 4.85:  Let G = {a1 + a2g + a3g1 | ai  Q, 1  i  3, g = 6 
and g1 = 4  Z12, g2 = 0 and 2

1g  = 4 g1g = 0 (mod 12),  
(7, –3/13), * } be the groupoid of mixed dual numbers.  Z be the 
ring of integers.  ZG be the groupoid ring of the groupoid G 
over the ring Z.  ZG is a non associative mixed dual number 
ring of infinite order. 
 
Example 4.86:  Let G = {a1 + a2g1 + a3g2 + a4g3 | ai  Z19; 1  i 
 4, g1 = 20, g2 = 16 and g3 = 25  Z40, (17, 0), *} be the higher 
dimensional mixed dual number groupoid of finite order.   
Z4 = S be the ring of modulo integers.  SG be the groupoid ring 
of the groupoid G over the ring S. SG is a non associative 
higher dimensional mixed dual number ring of finite order. 
 
Example 4.87:  Let G = {a + bg | a, b  Z11, g = 3  Z12,  
g2 = –g (mod 12), (7, 4), *} be the groupoid of special quasi 
dual numbers.  P = Q be the field of rationals.  PG be the 
groupoid ring of G over P.  PG is the non associative special 
quasi dual number rings. 
 
Example 4.88:  Let  
G = {a + bg | a, b  Z; g = 15  Z40, g2 = –g (mod 40), (–7, –2), 
*} be the groupoid of special quasi dual numbers.  Z3 be the 
field of modulo integers Z3G be the groupoid ring of the 
groupoid G over the ring Z3.  Z3G is the non associative special 
quasi dual number ring of infinite order.  
 
Example 4.89:  Let G = {(a1, a2, …, a10) | ai = a+ bg; a, b  Z13; 
g = 24  Z40, g2 = –g (mod 40), 1  i  10, (7, 4), *} be the 
groupoid of special quasi dual numbers.  S = Z15 be the ring of 
modulo integers.  SG be the groupoid ring is the non associative 
special quasi dual number ring of finite order. 
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Example 4.90: Let  
 

S = 
1 2 3

28 29 30

a a a

a a a

 
 
 
  

    ai = a + bg, a, b  Z6, g = 8  Z12, 

 
g2 = –g (mod 12); 1  i  30, (3, 2), *} be the groupoid of 
special quasi dual numbers.  F = Z2 be the field of integers 
modulo two.  FS be the groupoid of ring of S over F.  FS is a 
non associative special quasi dual number ring of finite order. 
 
Example 4.91:  Let  
 

G = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai = d1 + d2g1 + d3g2 with dj  Z27, 1  j  3, 

 
1  i  5, g1 = 24 and g2 = 15  Z40, 2

1g = –g1 (mod 40), 2
2g = –g2 

(mod 40); (20, 0), *} be the groupoid of special quasi dual 
numbers.  S = Q be the ring of rationals.  SG be the groupoid 
ring of the groupoid G over the ring S.  SG is a non associative 
special quasi dual number ring of infinite order of dimension 
three. 
 
Example 4.92:  Let G = {a + bg | a, b  Z21  I, g = 20  Z30, 
g2 = –g (mod 30), (3I, 2I+7), *} be the neutrosophic groupoid.  
R be the ring of reals.  RG be the groupoid ring.  RG is a non 
associative special quasi dual like numbers of infinite order. 
 
Example 4.93:  Let G = {a + bg | a, b  Z5, g = 14  Z21,  
g2 = –g (mod 21), (3, 2), *} be the groupoid.  S = R  I be the 
neutrosophic ring of reals.  RG be the groupoid ring.  RG is a 
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non associative neutrosophic ring of special quasi dual ring 
number of infinite order.  
 
Example 4.94:  Let G = {a + bg | a, b  Z24  I, g = 20  Z30, 
g2 = –g (mod 30), *, (7I+3, 2+I)} be the groupoid of special 
quasi dual numbers.  S = Z11  I be the neutrosophic ring of 
modulo integers.  SP be the groupoid ring of the groupoid P 
over the ring S.  SP is a strong neutrosophic special quasi dual 
number non associative ring of finite order. 
 
Example 4.95:  Let G = {a1 + a2g1 + a3g2 + a4g3 | g1 = 20,  
g3 = 15 and g2 = 16  Z40, aj  Z15, 1  j  4, (7, 8), *} be the 
strong mixed special dual number groupoid.  S = Z3 be the ring 
of modulo integers SG be the groupoid ring of G over S.   SG is 
the non associative strong mixed special dual like ring of finite 
order. 
 
Example 4.96:  Let G = {(a1, a2, a3) | ai = x + yg1 + zg2, 1  i  
3, x, y  Z14, g = 20 and g2 = 15  Z40, g2 = 0 (mod 40),  

2
2g = –g2 (mod 40), *, (7, 2)} be the groupoid of mixed special 

dual numbers.  S = Z7 be the field of modulo integers SG be the 
groupoid ring.  SG is the non associative mixed special dual 
number ring of finite order. 
 
Example 4.97:  Let  
 

G = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = a + bg1 + cg2 + dg3; 1  i  9; 

 
a, b, c, d  Z17, g1 = 10, g2 = 15 and g3 = 16  Z20, 2

1g = 0 (mod 
20), 2

2g = –g2 (mod 20) and 2
3g  = g3 (mod 20), g1g2 = g1, g1g3 = 

0, g2g3 = 0 (mod 20), *, (8, 0)} be the strong mixed special dual 
number groupoid.  S = Z  I be the ring of neutrosophic 
integers, SG be the groupoid ring.  SG is the non associative 
strong mixed special dual number neutrosophic ring. 
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 Now having seen all types of non associative rings we leave 
it as an exercise for the reader to work with special elements 
like idempotents, S-idempotents, units, S-units, zero divisors, S-
zero divisors, subrings, S-subrings ideals and S-ideals of these 
rings. 
 
 Now we just illustrate a few examples of non associative 
semivector spaces and non associative semilinear algebras and 
non associative linear algebras. 
 
Example 4.98:  Let  
M = {a + bg | a, b  Z23, g = 3  Z9, g a new element, (8, 3), *} 
be a groupoid.  M is an abelian group under addition modulo 23.  
M is a vector space over the field Z23.   
 

Now if on M we define * M is a non associative linear 
algebra of dual numbers over Z23.  
 
Example 4.99:  Let M = {(a1, a2, a3, …, a10) | ai = x1 + x2g1 + 
x3g2, xj  Z19; 1  i  10, 1  j  3, g1 = 6, g2 = 4  Z12, 2

1g = 0 
(mod 12), 2

2g = g2 (mod 12), g1g2 = 0 (mod 12), (10, 0), *} be 
the groupoid of mixed dual numbers.  M is a mixed dual 
number non associative linear algebra over the field Z19. 
 
Example 4.100:  Let  
 

P = 
1 2 3

13 14 15

a a a

a a a

 
 
 
  

    ai = x1 + x2g1 + x3g2 + x4g3; 

 
1  i  15, xj  Z41, 1  j  4; g1 = 20, g2 = 16 and g3 = 15 in Z40, 

2
1g = 0 (mod 40), 2

2g = 16 = g2 (mod 40), 2
3g = 25 =  

–g3 (mod 40); g1g2 = 0 (mod 40), g1g3 = g1 (mod 40), g2g3 = 0 
(mod 40), (0, 25), *} be the strong mixed special quasi dual 
number groupoid.  P is a strong mixed special quasi dual 
number non associative linear algebra over the field Z41. 
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Example 4.101 :  Let  
 

S = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2; xj  Z17, 1  j  3, 

 
g1 = 20, g3 = 15 in Z40.  2

1g = 0 (mod 40), 2
3g = –g3 (mod 40) and 

g1g3 = g1 (mod 40), (10, 2), *} be the groupoid of mixed special 
quasi dual numbers.  S is a non associative linear algebra of 
mixed special quasi dual number over the field Z17. 
 
Example 4.102:  Let S = {a1 + b1g1 | a1, b1  Z+  {0}, g1 = 4  
Z16 be the new element, (3, 8), *} be a groupoid of dual 
numbers.  S is a non associative semilinear algebra of dual 
numbers over the semifield F = Z+  {0}. 
 
Example 4.103:  Let  
S = {a + bg | a, b  Z+  {0}, g = 4  Z12, (3, 0), *} be the 
groupoid of special dual like numbers.  T is a non associative 
semilinear algebra of special dual like numbers over the 
semifield  Z+  {0}. 
 
Example 4.104:  Let S = {(a1, a2, a3, …, a16) | ai = x + yg, 1  i  
16, x, y  Q+  {0}; g = 3  Z12, g2 = –g  Z12, (8/3, 7/11), *} 
be a non associative semilinear algebra of special quasi like dual 
numbers over the semifield Q+  {0}. 
 
Example 4.105:  Let  
 

X = 
1 2

11 12

a a

a a

 
 
 
  

   ai = d1 + d2g1 + d3g2; 1  i  12, 

 
dj  Q+  {0}, 1  j  3; g1 = 6 and g2 = 4  Z12, (3/7, –1), *} 
be the non associative semilinear algebra of mixed dual 
numbers over the semifield Z+  {0}. 
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Example 4.106:  Let  
 

S = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 + x5g4, 

 
1  i  20, xj  Z+  {0}, 1  j  5; g1 = 5, g2 = 6;  

2
1g = 10 (mod 15) = –g1, 2

2g = g2 (mod 15), g3 = 9,  
2
3g = g2 = –g3 (mod 15), g4 = 10, 2

4g = 10 (mod 15); 10, 5, 6, 9  
Z15, (8, 0), *} be the groupoid of special quasi dual numbers of 
dimension five.  S is  a non associative semilinear algebra of 
special quasi dual numbers over the semifield Z+  {0}. 
 
Example 4.107:  Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3; 1  i  12, 

 
xj  Q+  {0}; 1  j  4, g1 = 20, g2 = 16 and g3 = 15  Z40, 

2
1g = 0 (mod 40), 2

2g = g2 (mod 40) and 2
3g  = –g3 (mod 40).   

g1g2 = 0 (mod 40), g1g3 = g1 (mod 40), g2g3 = 0 (mod 40), (7/3, 
5/7), *} be the non associative semilinear algebra of strong 
mixed special dual numbers over the semifield Z+  {0}. 
 
 Now having seen examples of non associative structures 
like linear algebras and semilinear algebras using dual numbers, 
special dual like numbers, special quasi dual numbers, mixed 
dual numbers, special mixed dual number and strong special 
mixed dual numbers.  We can derive all properties of linear 
algebra and semilinear algebra as a matter of routine.  This task 
is left as an exercise to the reader.  Using dual number square 
matrices we can get the eigen vectors to be dual number and if 
we define Smarandache non associative linear algebra over Q(g) 
or R(g) or Zp(g) or Zn(g),  Zn a S-ring (or special dual like 
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numbers, special quasi dual numbers), then the eigen values and 
eigen vector associated with them can also be dual numbers (of 
special dual like numbers or special quasi dual numbers) 
according as the S-ring which we use. 
 
 Finally if we use mixed dual number S-rings as Q(g, g1) or 
Q(g, g2) or Q(g1, g2) or Q(g, g1, g2), then also the S-linear 
algebra will have for its associated operator the eigen values and 
eigen vectors can be dual numbers, special dual like numbers, 
special quasi dual numbers and their mixed components.  
 
 This task is also left as exercise to the reader.  However we 
give few examples of S-linear algebras and S-semilinear 
algebras. 
 
Example 4.108:  Let R(g) = {a + bg | g = 4  Z16, a, b  R} be 
the ring of dual numbers.   
 

V = 1 2 3 4 5 6

7 8 9 10 11 12

a a a a a a
a a a a a a

 
 
 

 ai = a + bg; 1  i  12;  

 
a, b  R, g = 4  Z16, ( 3 , 5 +8), *} be  a non associative 
Smarandache linear algebra of dual numbers over the S-ring 
R(g). 
 
Example 4.109:  Let  
 

P = 

1 2 5

6 7 10

46 47 50

a a ... a
a a ... a

a a ... a

 
 
    

  
 ai = x + yg; 1  i  50, 

 
g = 6  Z36, x, y  Q(g), (3/2, –2), *} be a non associative 
Smarandache linear algebra of dual numbers over the S-ring 
Q(g) = {a + bg | a, b  Q; g = 6  Z36, g2 = 0 (mod 36)}. 
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Example 4.110: Let  
 

M = 
1 2 5

6 7 10

11 12 15

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai = x + yg with x, y  Q; 

 
1  i  15, 4 = g  Z12, g2 = g, (17, 5/4), *} be a non associative 
linear algebra special dual like numbers over the S-ring  
Q(g) = {a + bg | a, b  Q, g = 4  Z12}. 
 
Example 4.111:  Let  
 

T = 
9

i
i

i 0
a x






  ai = x + yg + zg1  Q(g, g1); g = 6, g1 = 4  Z12, 

 
x, y, z  Q, *, (8, –1)} be a S-linear algebra of mixed special 
dual numbers over the S-mixed special dual number ring  
Q(g, g1) = {x + yg + zg1 | x, y, z  Q, g = 6 and g1 = 4  Z12}. 
 
Example 4.112:  Let  
 

T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3, 1  i  9; 

 
xj  R; 1  j  4, g1 = 20, g2 = 15, g3 = 16  Z40, ( 7 , –5), *} 
be the non associative Smarandache linear algebra of strong 
mixed special dual numbers over the S-ring;  
 

Q(g1, g3g2) = {a + bg1 + cg3 + dg2 | a, b, c, d  Q, g1 = 20,  
g2 = 15 and g3 = 16  Z40}. 
 
Example 4.113:  Let S = {(a1, a2, a3, a4) | ai = x1 + x2g1 + x3g2;  
1  i  4; xj  Q+  {0}, 1  j  3; g1 = 20, g2 = 16  Z40, (7/2, 
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3), *} be a non associative Smarandache semilinear algebra of 
mixed special dual numbers over the S-semiring   
(Q+  {0}) (g1, g2) = {x1 + x2g + x3g2 | xi  Q+  {0}; 1  i  3, 
g1 = 20, g2 = 16  Z40, 2

1g = 0 (mod 40), 2
2g  = 16 (mod 40),  

g1g2 = 20  16 = 0 (mod 40)}. 
 
Example 4.114:  Let  

 

W = 
1 2 3

28 29 30

a a a

a a a

 
 
 
  

    ai  (Z+  {0}) (g1, g2, g3, g4) 

 
= {x1 + x2g1 + x3g2 + x4g3 + x5g4 | xj  Z+  {0}; 1  j  5;  
g1 = 20, g2 = 16 and g3 = 15, g4 = 25  Z40, 2

1g  = 0 (mod 4),  
2
2g  = g2 (mod 40), 2

3g  = g3 (mod 40), 2
4g  = g4 (mod 40)} be the 

non associative S-semilinear algebra of strong mixed special 
dual number over the S-semiring  (Z+  {0}) (g1, g2, g3, g4). 
 
 Now all properties can be derived and some them are given 
as problems in the last chapter of this book. 



 
 
 
 
 
Chapter Five 
 
 

 
 
APPLICATIONS OF SPECIAL  
QUASI DUAL NUMBERS  
AND THEIR MIXED STRUCTURES  
 
 
 
 
 Dual numbers find a host of applications.  Authors are sure 
that special dual like numbers will also find lot of applications 
in due course of time when nilpotents elements are replaced by 
idempotents. 
 
 Natural sources of idempotents are lattices, matrices with 
entries 1 or 0. 
 
 Neutrosophic element I is an idempotent. 
 
 Further while applying one can also used mixed dual 
numbers x = a + bg + cg1 where a, b, c are reals and g2 = 0,  

2
1g  = g1, gg1 = 0 (or g1 or g). So using both simultaneous by one 

can find uses of this notion also. 
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 Further the special quasi dual numbers x = a + bg1 + c(–g1) 
are such that g1 is a new element with 2

1g  = –g1 so that 2
1g  = –

g1, 3
1g  = – 2

1g  = g1, 4
1g  = –g1, 5

1g  = g1 so all even powers are 
negative that is 2

1g  = 4
1g  = 6

1g  = 8
1g  = … = 2n

1g  = –g1 and all odd 
powers are positive that is 3

1g  = 5
1g  = 7

1g  = … = 2n 1
1g   = g1.  So 

this property may also find some new applications. 
 
 However the only sources of getting such new elements are 
–I, for (–I)2 = I2 = I = –(–I) and –1, for (–1)2 = 1 = –(–1). 
 
 Further the set of modulo integers Zn (n a composite 
number) happens to be a rich source of such special quasi dual 
number components g with g2 = –g (mod n). 
 
 Clearly if n = 4m we are guaranteed of such elements in Zn.  
The main use of Zn is we can construct the strong mixed special 
dual numbers.  For take Z12, g = 3  Z12 is such that  
g2 = 9 = –3 (mod 12), g1 = 4  Z12 is such that 2

1g  = g1 (mod 12) 
and g2 = 6  Z12 is  such that 2

2g  = 0 (mod 12).   
 

So x = a + bg + cg1 + dg2 is a strong mixed special dual 
number (a, b, c and d are all reals).   
 
 Further gg1 = 0 (mod 12),  g.g2 = g2 (mod 12),  
g1 g2 = 0 (mod 12). 
 
 So these strong mixed special dual numbers has all the three 
types of duals numbers and properties associated with them.  So 
by suppressing one or two of them the property of the other can 
be studied in case of necessity. 
 
 We can also take only two dual numbers and also form the 
higher dimensional structures.  These also will find applications 
in different fields.  



 
 
 
 
Chapter Six 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 
 
 In this chapter the authors introduce over 100 problems.  
Some of the problems are at research level and are challenging.  
Further as the topic dealt with this book is new these problems 
will enable the reader to have a better grip of this topic. 
 
1. Obtain some special properties associated with quasi 

special dual numbers. 
 
2. If x = a + bg, a, b  Q, g2 = –g is a special quasi dual 

number then if h = –g, (–g)2 = h2 = h; prove. 
 
3. Does Z9 contain a g so that x + yg is a quasi special dual 

number?  (x, y  R). 
 
4. Does Z16 contain a g so that x + yg is a quasi special dual 

number? 
 
5. Suppose g  Z15 is a quasi special dual number 

component.  Find g.  Can Z15 have more than one g? 
 
6. Prove Zp cannot contain any quasi special dual number 

component (p a prime). 
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7. Prove np

Z  (n>1) p, a prime cannot contain any quasi 

special dual number component. 
 
8. Let S = Z12, find the number of special dual number 

components of Z12. 
 
9. Obtain some interesting applications of quasi special dual 

numbers. 
 
10. Let S = {a + bg | a, b  Z10, g = 8  Z12, g2 = 64 = 4 (mod 

12) that is g2 = –g} be the group under ‘+’. 
(i) Find order of S. 
(ii) Find subgroups of S. 
(iii) What is the order of a  S for every a in S? 
(iv) Is (S, ) a semigroup? 
(v) Can (S, ) have ideals? 
 

11. Prove in problem (10) when S is a ring. 
(i) Can S be a field? 
(ii) Find ideals of S. 
(iii) Can S have subrings which are not ideals? 
 

12. Let P = {a + bg | a, b  Z, g = 15  Z40, g2 = 225 = 25 
(mod 40) i.e., g2 = –g} be a ring of quasi special dual 
numbers. 
(i) Is P a domain? 
(ii) Can P have zero divisors? 
(iii) Can P have subrings which are not ideals? 
(iv) Can P have S-idempotents? 
(v) Is P a S-ring? 
 

13. Let M = {a + bg | a, b  Z3, g = 2  Z6, 22 = 4 = –g} be 
the ring of special quasi dual numbers. 
(i) Find the number of elements in M. 
(ii) Is M a S-ring? 
(iii) Can M have S-idempotents? 
(iv) Can M have S-zero divisors? 



Suggested Problems  151 
 
 
 
 

 
14. Let  

S = {a + bg | a, b  Z12, 14 = g  Z21, g2 = 142 = –g = 7} 
be the ring of special quasi dual numbers. 
(i) Find o(S). 
(ii) Find subrings of S which are not ideals. 
(iii) Can S have S-ideals? 
(iv) Can S be a S-ring? 
(v) Can S have S-idempotents? 

 
15. Let A = {(a1, a2, …, a12) | ai = xi + yig with xi, yi  Z23, 1  

i  12, g = 15  Z40} be the ring of special quasi dual 
numbers. 
(i) Find order of A. 
(ii) Can A have S-ideals? 
(iii) Is A a S-ring? 
(iv) Find the zero divisor graph of A. 
(v) Can A have S-zero divisors? 

 

16. Let P = 

1

2

3

10

a
a
a

a

 
 
  
 
 
  


 ai = xi + yig where xi, yi  Q, 1  i  10, 

g = 4  Z10} be the special quasi dual number ring under 
the natural product n. 
(i) Find S-zero divisors if any in P. 
(ii) Prove P is a S-ring. 
(iii) Can P have S-subrings which are not S-ideals? 
 

17. Let S = Z252.  Find all quasi special dual numbers 
component of S. 

 
18. Let Zn be the ring of modulo integers, n a composite 

number.  If S = {set of all g  Zn, g2 = –g}  Zn. What is 
the algebraic structure enjoyed by S? 
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19. Let M = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = xi + yig, 1  i  20, xi, 

yi  Q, g = 8  Z12} be the ring of quasi special dual like 
numbers. 

 
(i) Find ideals of M. 
(ii) Prove M has zero divisors. 
(iii) Does M contain a zero divisor which is not a S-zero  
 divisor? 
(iv) Can M have S-idempotents? 
 

20. Let P = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

ai = xi + yig where xi, yi   

 
Z25, 1  i  16, g = 2  Z6} be the non commutative ring 
of quasi special dual numbers. 

 
(i) Can P have right zero divisors, which are not left  
 zero divisors? 
(ii) Can P have S-units? 
(iii) Can P have units which are not S-units? 
(iv) Find right ideals of P which are not left ideals and  
 vice versa. 
 

21. Let S = {a + bg | a, b  Q, g = 15  Z40} be a vector space 
of special quasi dual numbers over Q. 

 
(i) Find a basis of S over Q. 
(ii) Write S as direct sum of subspaces over Q. 
(iii) Find Hom (S, S). 
(iv) For some T  Hom (S, S); find eigen values and  
 eigen vector associated with that T. 
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22. Let  

P = 

1

2

3

8

a
a
a

a

 
 
  
 
 
  


 ai = xi + yig, xi, yi  Z7, 1  i  8; g = 8  

Z12} be a vector space of special quasi dual numbers over 
the field Z7. 
 
(i) Find a basis of P over Z7. 
(ii) What is the basis of P over Z7? 
(iii) Find the number of elements in P. 
(iv) Find the algebraic structure enjoyed by Hom(P, P). 
(v) Define f : P  Z7. 
 

23. Obtain some special properties enjoyed by vector space of 
special quasi dual numbers. 

 

24. Let M = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

ai = xi + yig, xi, yi  Z12,  

 
1  i  12, g = 14  Z21} be the Smarandache vector 
space of special quasi dual numbers over the S-ring Z12. 

 
(i) Find the number of elements in M. 
(ii) Find dimension of M over Z12. 
(iii) Find a basis of M over Z12. 
(iv) Write M as a direct sum of S-subspaces over Z12. 
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25. Let P  = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai = xi + yig with xi, yi  Z40, 1  i  5,  

g = 8  Z12, g2 = –g = 4  Z12} be the S-vector space of 
special quasi dual numbers over the S-ring Z40. 

 
(i) Find a basis of P over Z40. 
(ii) Can P be made into a S-linear algebra? 
(iii) Find a basis of P as a S-linear algebra over Z40. 
(iv) Compare the basis (i) and (iii) 
(v) Write P as a direct sum of S-subspaces. 
 

26. Let P = {a + bg | a, b  Q, g = (–1, –1, –1, –1, –1, –1); so 
that g2 = (1, 1, 1, 1, 1, 1) = –g} be the vector space of 
special quasi dual numbers over the field Q. 

 
(i) Find dimension of P over Q. 
(ii) Find a basis of P over Q 
(iii) Write P as a direct sum of subspaces. 
(iv) Find Hom(P, P). 
(v) Find the structure of L(P, Q). 
 

27. Let M = 

1

2

10

a
a

a

 
 
    


 ai = xi + yig, xi, yi  Z17, 1  i  10;  

 

g =
I I I I I
I I I I I

     
      

; g2 = 
I I I I I
I I I I I
 
 
 

= –g} 

be the vector space of special quasi dual numbers over the 
field Z17. 

 
(i) Find the number of elements in M over Z17. 
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(ii) Find a basis and dimension of M over Z17. 
(iii) Find the cardinality of Hom (M, M). 
(iv) Find the number of elements in L (M, Z17). 
 

28. Let S = {(a1, a2, a3, a4) | ai = xi + yig where  
 

   g = 

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

   
    
   
 
   
   
 
    

 such that g2 = –g =

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

 
 
 
 
 
 
 
 
  

,  

   
     xi, yi  R, 1  i  4} be a vector space of special quasi  
     dual numbers over the field R. 
 

(i) Find dimension of S over R. 
(ii) Find dimension of Hom (S, S) over R. 
(iii) Find L (S, R). 
 

29. Let W = 
1 4 5 10

2 6 7 11

3 8 9 12

a a a a
a a a a
a a a a

 
 
 
  

 ai = xi + yig where  

 

g =
I I I
I I I
I I I

   
    
    

, g n g = 
I I I
I I I
I I I

 
 
 
  

 = –g, xi, yi  Z11,  

 
1  i  12} be the quasi special dual linear algebra over 
the field Z11.  
 
(i) Find a basis of W over Z11. 
(ii) What is the dimension W over Z11? 
(iii) Write W as a pseudo direct sum of subspaces of W  
 over Z11. 
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30. Let W =  1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 ai = xi + yig where xi,  

 

yi  Z19, 1  i  10, g =

I I I I I I
I I I I I I
I I I I I I
I I I I I I

      
       
      
 
      

,  

 
g2 = –g} be the vector space of quasi special dual 
numbers. 
 
(i) Can M be made into a linear algebra? 
(ii) Does there exist a difference in dimension of M as a  
 vector space over Z19 and as a linear algebra over  
 M? 
 

31. Let S = {a + bg + cg1 | a, b, c  Z+  {0}, g = (–1, –1, –1, 
–1, –1, –1, –1) and g1 = (1, 1, 1, 1, 1, 1, 1) with g2 = g1, 
g1g = gg1 = g, be the semivector space of complete quasi 
special dual pair over the semifield Z+  {0}. 

 
(i) Find dimension off S over Z+  {0}. 
(ii) Can S have more than one basis? 
 

32. Let V = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai = xi + yig + zig1 where xi, yi, zi   

 
R+ {0}, 1  i  5, g = 15, g1 = 25  Z40} be a complete 
quasi special dual pair semivector space over R+  {0}. 
 
(i) What is the dimension of V over R+  {0}? 
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(ii) If R+  {0} is replaced by Q+  {0} what will be  
 the dimension of V over Q+  {0}. 

(iii) Find basis of V over R+  {0} and over Q+  {0}.   
 Study the difference in them. 
(iv) Find Hom(V, V). 
 

33. Let M = 1 2 12

13 14 24

a a ... a
a a ... a

 
 
 

 ai = di + cig + big1 where 

g = 2  Z6, g1 = 4  Z6, di, ci, bi  Z+  {0}, 1  i  24} 
be the complete quasi special dual pair semilinear algebra 
under the natural product n over the semifield Z+  {0}. 

 
(i) Find a basis of M over Z+  {0}. 
(ii) Can M be written as W + W? (W the orthogonal  

 complement of W) 
(iii) Find for a T  Hom (M, M) the associated eigen  
 values and eigen vector. 

 

34. Let P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 aj = xi + yig + zig1 with xi, yi, zi  

 
 R+  {0}, 1  i  3, 1  j  9, g = 8 and g1 = 4  Z12} 
be the non commutative semilinear algebra of complete 
quasi special dual pair over the semifield Z+  {0}. 
 
(i) Is P an infinite dimensional semilinear algebra? 
(ii) Find S = Hom (P, P). 
 Is S finite dimensional or infinite dimensional over  
 Z+  {0}? 

 
35. Let S = {(a1, a2) | aj = xi + yig + zig1 with xi, yi, zi  Q;  

1  j  2; g = (–1, –1, –1, –1, –1, –1) and  
g1 = (1, 1, 1, 1, 1, 1)} be a vector space of complete quasi 
special dual pair numbers over the field Q. 
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 Is S isomorphic with P = {(a1, a2) where aj = xi + yig, xi, yi 

 Q, 1  j  2, g = (–1, –1, –1, –1, –1, –1) and  
 g1 = (1, 1, 1, 1, 1, 1)}, P is also a vector space of quasi 

special dual numbers over the field Q? 
 

36. Let M = 
1 4 7 10 13 16

2 5 8 11 14 17

3 6 9 12 15 18

a a a a a a
a a a a a a
a a a a a a

 
 
 
  

 aj = xi + yig +  

zig1, 1  j  18 where g = 

I I
I I
I I
I I
I I

  
   
  
 
  
   

 and g1 =

I I
I I
I I
I I
I I

 
 
 
 
 
 
  

, xi,  

 
yi, zi  Z} be the complete quasi special dual number  
 

ring.  N = 
1 2 6

7 8 12

13 14 18

a a ... a
a a ... a
a a ... a

 
 
 
  

 aj = xi + yig with  

 

1  j  18, g = 

I I
I I
I I
I I
I I

  
   
  
 
  
   

} be the quasi special dual  

 
number ring.  Is M isomorphic to N as rings? 
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 37. Let P = 

1 2

15 16

a a

a a

 
 
 
  

  ai = xi + yig + zig1, 1  i  16, xi, yi, 

zi  Z16, g = 2 and g1 = 4  Z6} be the complete special 
quasi dual number ring. 

 

 M =  
1 2

15 16

a a

a a

 
 
 
  

  ai = xi + yig , 1  i  16, xi, yi  Z16,  

g2 = 2  Z6, g2 = –g = 4} be the special quasi dual number 
ring.   

 
 Prove M and P are isomorphic as rings. 
 

38. Let S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 aj = xi + yig + zig1 where xi, yi, zi  

 
 R, 1  i  9, g = 2 and g1 = 4  Z6} be the non 
commutative ring under usual product of matrices of 
complete quasi special dual number pair. 

 

 P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 aj = xi + yig + zig1 where xi, yi, zi   

 
 R, 1  i  9, g = 2 and g1 = 4  Z6} be the special quasi 

dual number ring under the natural product n. 
 Can S and P be isomorphic?  Justify your claim. 
 
39. Find all special quasi elements in Z96.  Does this 

collection form a semigroup under ? 
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40. Let Z720 be a ring of modulo integers.  Find the extended 

semigroup of associated dual numbers. 
 
41. Find the algebraic structure enjoyed by Hom(P, P) where  
 

P = 
1 2 8

9 10 16

17 18 24

a a ... a
a a ... a
a a ... a

 
 
 
  

 aj = xi + yig + zig1 where xi, yi,  

 
zi  Q+  {0}, 1  i  24, g = 15 and g1 = 25  Z40} is the 
semivector space of complete quasi special dual pairs. 

 

42. Let S = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 aj = xi + yig + zig1 with  

 
1  i  16,  xi, yi, zi  Z+  {0}, g = 14  Z21 and g1 = 7} 
be the semilinear algebra of complete quasi special dual 
pairs over the semifield Z+  {0}}.  Find the algebraic 
structure enjoyed by L(S, Z+  {0}). 

 

43. Let M = 

1

2

3

10

a
a
a

a

 
 
  
 
 
  


 aj = xi + yig + zig1,  xi, yi, zi  Z24, g = 2,  

 
g1 = 4  Z6 , 1  i  10} be a S-vector space of complete 
quasi special dual number pair over the S-ring Z24. 
 
(i) Find S-dimension of M over Z24. 
(ii) Find S-basis of M over Z24. 
(iii) Find the algebraic structure enjoyed by L(M, Z24). 
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44. Let T = 
1 2 8

9 10 16

17 18 24

a a ... a
a a ... a
a a ... a

 
 
 
  

 aj = xi + yig + zig1, xi, yi, zi  

 
 Q, 1  i  24, g = 8, g1 = 4  Z12} be a S-vector space 
of complete quasi special dual pair over the S-ring  
Q(g, g1) = {a + bg + cg1 | a, b, c  Q, g = 8 and g1 = 4  
Z12}. 

 
(i) Find S-dimension of T over Q(g1, g2). 
(ii) Find L(T, Q (g1, g2)). 
 

45. Obtain some interesting properties about quasi special 
dual number of t-dimension (t > 2). 

 
46. Does there exist neutrosophic quasi special dual numbers? 
 
47. Let p = {a + bg1 + cg2 + dg3 where a, b, c  R; g1 = (–I,  

–I, –I, –I), g2 = (–I, –I, 0, 0) and g3 = (0, 0, –I, –I), I2 = I} 
be the four dimensional special quasi dual like number. 

 
(i) Is P a semigroup under ? 
(ii) Is P a group under +? 
(iii) Will (P, +, ) be a ring? 
(iv) Is P a S-ring? 
(v) Does P contain S-ideals? 
 

48. Give an example of a 10 dimensional neutrosophic special 
quasi dual number ring of finite order. 

 
49. Let M = {a1 + a2g1 + a3g2 + a4g3, ai  Z9, 1  i  4 where  
 

g1 = 
I I I I
I I I I

    
     

, g2 = 
I I 0 0
I I 0 0

  
   

,  
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g3 = 
0 0 I I
0 0 I I

  
   

} be a ring of four dimensional  

neutrosophic special quasi dual number ring. 
 
(i) Find the number of elements in M. 
(ii) Is o(M) = 94? 
(iii) Does M contain S-subrings which are not ideals? 
(iv) Can M have S-zero divisors? 
(v) Does M contains units which are not S-units? 
 

50. Does there exists a ring of special quasi dual numbers 
which is not a S-ring? 

 
51. Enumerate the special properties associated with special 

quasi dual number rings. 
 
52. Can special quasi dual number semiring be constructed of 

any desired dimension? 
 
53. What will be the minimum dimension of any special quasi 

dual number in a semiring? 
 
54. Is it possible to construct a two dimensional special quasi 

dual number semiring?  Justify! 
 
55. Let M = {a1 + a2g1 + a3g2 | ai  Z+  {0}, 1  i  3,  

g1 = (–I, –I, –I, –I, –I), 2
1g  = (I, I, I, I, I) = –g1, I2 = I is the 

indeterminate} be a semiring of special quasi dual 
numbers. 

 
(i) What is the dimension of M? 
(ii) Is M a S-semiring? 
(iii) Is M a strict semiring? 
(iv) Can M have zero divisors? 
(v) Can M have S-ideals? 
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 56. Let P = 1 5

6 10

a ... a
a ... a

 
 
 

 aj = x1 + x2g + x3g1 + x4h + x5h1  

 
with 1  i  10, xj  Q, 1  j  5, g = 6, g1 = 15, h = 14 
and h1 = 7  Z21} be a vector space of quasi special dual 
pairs over the field Q.  Is P a linear algebra? 

 

 M = 1 5

6 10

a ... a
a ... a

 
 
 

 aj = x1 + x2g + x3h, g = 6 and h = 14  

 
  Z21, with 1  i  10,  x1, x2, x3  Q} be a linear algebra 

of complete quasi special dual pairs over the field Q. 
 
(i) Find a basis of P and M. 
(ii) Is P   M?  (P a linear algebra) 
(iii) Find Hom(P, P) and Hom(M, M). 
(iv) If P is a vector space find dimension of P over Q. 
(v) Find Hom (P, P), P as a vector space. 
(vi) Write P as a direct sum of sublinear algebras  
  over Q. 
(vii) Find L (P, Q) and L(M, Q). 
 

57. Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + … + a11g10, g1 = 
(–I, –I, –I, –I), g2 = (–I, 0, 0, 0) g3 = (0, –I, 0, 0), g4 = (0, 
0, –I, 0), g5 = (0, 0, 0, –I), g6 = (I, I, I, I), g7 = (I, 0, 0, 0), 
g8 = (0, I, 0, 0), g9 = (0, 0, I, 0) and g10 = (0, 0, 0, I), ai  
Q+  {0}, 1  i  11} be the semiring of special quasi 
dual numbers. 

 
(i) Is P = {(0, 0, 0, 0), g1, g2, g3, …, g10} a semigroup  
 under ? 
(ii) Can S be a S-semiring? 
(iii) Prove (S, +) is not a semigroup. 
(iv) Can S be a strict semiring? 
(v) Prove (Q+  {0}) (P) the semigroup semiring of the  
 semigroup (P, ) over the semiring Q+  {0} is  
 isomorphic to S. 
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58. Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 where ai  Q+  

{0}, 1  i  5, g1 = (–1, –1), g2 = (1, 1), g3 = (–1, 0) and  
g4 = (1, 0), 2

1g = (1, 1) = –g1 = g2; 2
3g = (1, 0) = –g3 = g4.  

g1g2 = g1, g1g3 = g4, g3g4 = g3, g2g4 = g4, g3g2 = g3} be the 
semiring of special quasi dual numbers. 

 
(i) Can S have zero divisors? 
(ii)  Is S a semifield? 
(iii) Can S be a S-semiring? 
 

59. Does Z240 contain x such that x2 = –x = (239) x?  
 

(i) How many such x does Z240 contain? 
(ii) If S = {x  Z240 | x2 = –x}  Z240, is (S  {0}, }  
 form a semigroup? 
 

60. Find all special quasi dual number components of Z48. 
 
61. For what values of n (n not a prime) does Zn contain 

special quasi dual number component? (That is elements 
x  Zn with x2 = –x). 

 
62. Let P = {a1 + a2g1 + a3g2 + a4g3 | ai  Z16, 1  i  4,  

 

g1 = 
1 1
1 1
  
   

, g2 = 
1 1

0 0
  
 
 

, g3 = 
0 0
1 1

 
   

,  

 
g1 n g1 = –g1, g1 n g2 = –g2, g1 n g3 = –g3, g2 n g2 = –g2,  
 

g3 n g3 = –g3 and g2 n g3 = 
0 0
0 0
 
 
 

} be the ring of 

special quasi dual numbers. 
 
(i) Find the number of elements in P. 
(ii) If S = {(0), g1, g2, g3, n} be the semigroup and  
 Z16S = {a1 + a2g1 + a3g2 + a4g4 + … +  atgt–1 =  
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 i i
i

a g  ai  Z16, 1  i  t = o(S)} be the semigroup  

 ring.  Prove Z16S   P as rings. 
(iii) Is P a S-ring? 
(iv) Can P have S-ideals? 
(v) Does P contain S-units? 
(vi) Can P have zero divisors which are not S-zero  
 divisors? 
 

63. Let T = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  Z19, 1  i  5, 
g1 = 3, g2 = 4, g4 = 8 and g3 = 9  Z12} be the general ring 
of complete quasi special dual number pairs. 

 
(i) Find order of T. 
(ii) Prove P is a S-ring. 
(iii) Find ideals which are S-ideals in T. 
(iv) Does T contain any special quasi dual element y  
 such that y2 = –y in T? 
 

64. Let W = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai = 3, g2 = 4,  
g3 = 8 and g4 = 9  Z12, ai  Z+  {0}, 1  i  5} be the 
general quasi dual semiring. 
(i) Is W a S-semiring? 
(ii) Can W have S-semi ideals? 
(iii) Is W a strict semiring? 
 

65. Let S = Q(g1, g2, …, gt) be a t-dimensional general ring of 
special quasi dual numbers. 

 Study the special features enjoyed by S. 
 
66. What is the special feature associated with vector space of 

special quasi dual numbers over a field F? 
 

67. Let P = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 ai = x1 + x2g  + x3k 

where g = 14 and k = 6  Z21, x1, x2, x3  Q} be the 
vector space of special quasi dual numbers over the field 
Q. 
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(i) Find a basis of S over Q. 
(ii) What is the dimension of S over Q? 
(iii) Can S be made into a linear algebra and the natural  

 product n? 
(iv) If Q is replaced by  
         Q(g, k) = {x1 + x2g + x3k | 14 = g, k = 6  Z21;   
         x1, x2, x3  Q}.  Will P be a S-vector space? 
(v) What is the dimension of P as a S-vector space over  
 Q (g, k)? 
 

68. Let S = i
i

i 0
a x








  ai  Z5 (g1, g2) where g1 = 15 and  

g2 = 24, 15, 24  Z40} be the linear algebra of special 
quasi dual numbers over the field Z5. 

 
(i) Find dimension of S over Z5. 
(ii) Find a basis of S over Z5. 
(iii) Can S be expressed as a direct sum of linear  
 subalgebras over Z5? 

If Z5 is replaced by Z5 (g1, g2) study the questions 
(i), (ii) and (iii) with appropriate changes. 
 

69. Let M = {(a1, a2, a3, a4) | aj = x1 + x2g1 + x3g2 where  
 

g1 = 
I
I
I

 
  
  

 and g2 = 
I
I
I

 
 
 
  

, xi  Z+  {0}, 1  i  3,  

 
1  j  4} be a semivector space of special quasi dual 
numbers over the semifield Z+  {0}.  
 
(i) What is the dimension of M over Z+  {0}? 
(ii) Write M as a direct sum of subsemivector spaces. 
(iii) If Z+  {0} is replaced by T = Z+  {0} (g1, g2);  
 will M be a S-semivector space over  
 T = Z+  {0} (g1, g2) = {x1 + x2g1 + x3g2 |  
 xi  Z+  {0}, 1  i  3}. 
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(iv) What is dimension of M over T? 
 

70. Let P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 where  

1  i  9, x1, x2, x3  Q, g1 = 8 and g2 = 3,  
2
1g = –g1 (mod 12), 2

2g  = –g2 (mod 12), 3, 8  Z12}  
be a vector space of special quasi dual numbers. 
 
(i) Let T : P  P be any linear operator on P so that T-1  
 does not exist. 
(ii) Find eigen values and eigen vectors associated with  
 S;  S : P  P given by  
 

 S
1 2 3 1

4 5 6 5

7 8 9 9

a a a a 0 0
a a a 0 a 0
a a a 0 0 a

    
        
        

. 

 
(iii) Is S an invertible operator on P? 
(iv) Find ker S. 

(v) Let K1 = 
1 2 3a a a

0 0 0
0 0 0

 
 
 
  

 ai = x1 + x2g1 + x3g2;  

 xj  Q, 1  i, j  3, g1 = 8 and g2 = 3  Z12}  P,  
 

 K2 = 1 2 3

0 0 0
a a a
0 0 0

 
 
 
  

 ai = x1 + x2g1 + x3g2;  xj  Q,  

 
 1  i, j  3, g1 = 8 and g2 = 3  Z12}  P and  
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 K3 = 

1 2 3

0 0 0
0 0 0
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2;  xj  Q,  

 1  i, j  3, g1 = 8 and g2 = 3  Z12}  P  
 be subspaces of P. 
 Find projection Ej : P  Kj, 1  j  3 such that  

I = E1 + E2 + E3.  Find the eigen values associated 
with each Ej; 1  j  3. 
 

71. Let V = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai = x1 + x2g1 + x3g2 where  

1  i  6, g1 = 6 and g2 = 14  Z21, xj  Q, 1  j  3} be a 
vector space of special quasi dual numbers over the field 
Q. 
(i) Find Hom (V, V). 
(ii) Find L(V, Q). 
(iii) Find a basis for V over Q. 
(iv) What is the dimension of V over Q? 
 

72. Let W = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai = x1 + x2g1 + x3g2 where 1  i  8, 

g1 = 24 and g2 = 15  Z40, x1, x2, x3  R} be the vector 
space of special quasi dual numbers over the field R. 

 
(i) Study the algebraic structures enjoyed by  
 Hom(W, W). 
(ii) Give the algebraic structure of L(W, R). 
(iii) Write W as a pseudo direct sum. 
(iv) What is the dimension of W over R? 
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 73. Let P = 

1 2

3 4

5 6

a a
a a
a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 where 1  i  6 

and 1  j  3,  g1 = 3 and g2 = 8  Z12, xj  Z7} be the 
vector space of special quasi dual numbers over the field 
Z7. 

 
(i) Find Hom (P, P). 
(ii) Find L(P, Z7). 
(iii) Write P as a direct sum, W1 + W2 + W3 + W4 = P. 
(iv) Now using each Wj define a projection Ej : P  Wj,  
 1  j  4. 
 

74. Let S = {(a1, a2, …, a10) | ai = x1 + x2g1 + x3g2 + x4g3 + 
x5g4; 1  i  10, xj  R+  {0}, 1  j  5; g1 = 25, g2 = 15, 
g3 = 24 and g4 = 16  Z40} be semivector space of special 
quasi dual numbers over the semifield R+  {0}. 

 
(i) Find dimension of S over R+  {0}. 
(ii) Find P = Hom(S, S).  Is P a semivector space over  
 R+  {0}? 
(iii) Find dimension of L (S, R+  {0}) over R+  {0}. 
 

75. Let M = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2, xj  R+  {0},  

1  j  3, g1 = 8 and g2 = 4 in Z12} be a semivector space 
of special quasi dual like numbers over the semifield  
S = Z+  {0}. 

 
(i) Find a basis of M over S. 
(ii) Can M have more than one basis? 
(iii) Find dimension of M over S. 
(iv) Write M as pseudo direct sum! (Is it possible). 
(v) Find L(M, Z+  {0}). 
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76. Obtain some special properties enjoyed by mixed special 

dual quasi numbers. 
 
77. Give an example of a finite ring of mixed special dual 

quasi numbers. 
 
78. Let  

P = {x1 + x2g1 + x3g2 | xi  Z43, 1  i  3, g1 = 8; g2 =  
6  Z12} be the ring of mixed special quasi dual numbers. 
 
(i) Find order of P. 
(ii) Is P a S-ring? 
(iii) Can P have S-ideals? 
(iv) Can P have subrings which are not S-subrings? 
(v) Does P contain S-zero divisors? 
(vi) Can P contain units which are not S-units? 
 

79. Let S = 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a
a a a a a
a a a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 

+ x4g3 + x5g4 + x6g5; 1  i  15, xj  Z+  {0}, g1 = 15,  
g2 = 25, g3 = 16, g4 = 24 and g5 = 20, 1  j  6} be a 
semiring of special mixed quasi dual numbers. 

 
(i) Is S a strict semiring? 
(ii) Can S have S-semi ideals? 
(iii) Can S have S-units? 
(iv) Can S have subsemirings which are not ideals? 
 

80. Let S in problem (79) be a semivector space of special 
mixed quasi dual numbers over the semifield Z+  {0}. 

 
(i) Find P = Hom(S, S). Is P a semivector space? 
(ii) Find a basis of S over Z+  {0}. 
(iii) Can S have more than one basis? 
(iv) Write W as a direct sum of semivector subspaces. 
(v) Find L(S, Z+  {0}) = M,  What is the algebraic  
 structure enjoyed by M? 
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81. Let P = 1 2

3 4

a a
a a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 with g1 = 

6, g2 = 9, g3 = 8  Z12,  1  i  4, xj  Z11, 1  j  4} be a 
strong mixed special quasi dual number general non 
commutative ring. 

 
(i) Find the number of elements in P. 
(ii) Is P a S-ring? 
(iii) Can P have S-ideals? 
(iv) Can P have S-units? 
(v) Can P have zero divisors which are not S-zero  
 divisors? 
(vi) Is a = 4g1 a S-zero divisor? 
(vii) Is b = g2 an S-idempotent? 
 

82. Obtain some interesting properties enjoyed by strong 
special mixed quasi dual numbers. 

 
83. Is it possible to get the component of strongly mixed 

special quasi dual numbers from any other source other 
than Zn (n an appropriate positive integer). 

 
84. Find the component set of strong mixed special quasi dual 

number associated with Z320. 
 
85. Find the component set of strong mixed special quasi dual 

numbers of Z210. 
 
86. Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + … + a10g9 

with ai  Z13, 1  i  10 where g1 = (6, 6, 6, 6, 6),  
g2 = (0, 0, 0, 6, 6, 6), g3 = (6, 6, 6, 0, 0, 0), g4 = (9, 9, 9, 9, 
9, 9), g5 = (9, 9, 9, 0, 0, 0), g6 = (0, 0, 0, 9, 9, 9), g7 = (8, 8, 
8, 8, 8, 8), g8 = (0, 0, 0, 8, 8, 8), g9 = (8, 8, 8, 0, 0, 0); 6, 9, 
8  Z12} be the ring of mixed strong special quasi dual 
numbers. 
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(i) Find the order of S. 
(ii) Is S a Smarandache ring? 
(iii) Can S have ideals which are not S-ideals? 
(iv) Can S have units which are not S-units? 
(v) Find subrings which are not ideals. 
 

87. Let M = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 ai = x1 + x2g1 + x3g2 + 

x4g3 + x5g4 + … + x11g10; where 1  I  10, g1 = 

15
15
15
15

 
 
 
 
 
 

,  

 

g2 = 

15
0

15
0

 
 
 
 
 
 

, g3 = 

16
16
16
16

 
 
 
 
 
 

, g4 = 

16
0

16
0

 
 
 
 
 
 

, g5 = 

24
24
24
24

 
 
 
 
 
 

 g6 = 

24
0
24
0

 
 
 
 
 
 

,  

 

g7 = 

25
25
25
25

 
 
 
 
 
 

, g8 = 

25
0
25
0

 
 
 
 
 
 

, g9 = 

20
20
20
20

 
 
 
 
 
 

 and g10 = 

20
0
20
0

 
 
 
 
 
 

; 15, 25,  

20, 16, 24  Z40, xj  Z30, 1  j  11} be the strong mixed 
special quasi dual like number ring under natural product 
n. 
 
(i) Is M a S-ring? 
(ii) Find order of M. 
(iii) Can M have ideals which are not S-ideals? 
(iv) Can M have idempotents which are not S- 
 idempotents? 
(v) Does M have zero divisors which are not S-zero  
 divisors? 
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88. Suppose M in problem (87) is a S-vector space of mixed 

special strong quasi dual numbers over the S-ring of M. 
 

(i) Find dimension of M over the S-ring Z30. 
(ii) Find a basis of in over Z30. 
(iii) Find Hom(M, M) = S.  Is S a S-vector space over  
 Z30? 
(iv) Find L (M, Z30). 
(v) Write M as a direct sum of S-vector subspaces of M  
 over Z30. 
 

89. Find the component semigroup of special quasi dual 
elements of C(Z10). 

 
90. Does C(Z42) contain the component of a special quasi dual 

element? 
 
91. For C(Zn) what is the condition on n so that C(Zn) has 

special quasi dual component-elements? 
 
92. Let C(Z40) = {a + biF | a, b  Z40, 2

Fi = n – 1 = 39}.  Find 
all x  C(Z40), (where x = a + biF,  a, b  Z40 \ {0}) such 
that x2 = (n–1) x = 39x. 

 
93. Let A = {(a1, a2, …, a6) | ai = x1 + x2g1 where g1 = 8 + 2iF 

 C(Z17), x1, x2  Q} be the ring of complex modulo 
special quasi dual like number. 

 
(i) Prove A is a S-ring. 
(ii) Does A contains S-subrings which are not S-ideals? 
(iii) Does A contain S-units? 
(iv) Can A have zero divisors which are not S-zero  
 divisors? 
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94. Let M = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

ai = x1 + x2g where x1, x2  Z11 and 

g = 7 + 6iF  C(Z10) = {a + biF | a, b  Z10, 2
Fi = 9}; g2 = –

g, 1  i  8} be the special quasi dual number complex 
modulo integer general ring under n. 

 
(i) Find the number of elements in M. 
(ii) Is M a S-ring? 
(iii) Give subrings of M which  are not S-ideals. 
 

95. Prove C (Zp) = {a + biF | a, b  Zp, 2
Fi = p–1}, p a prime of 

the form p = m2 + n2, 1  m, n  p–1 has always atleast 
one g = a + biF | a, b  Zp \ {0} such that g2 = –g. 

 

96. Let T = 
1 2 3 10

11 12 13 20

21 22 23 30

a a a ... a
a a a ... a
a a a ... a

 
 
 
  

 ai = x1 + x2g + x3g1  

 
with xj  Q+  {0}, 1  i  30, 1  j  3, g = 2 + 4iF and 
g1 = 8 + 6iF  C(Z10) = {a + biF | a, b  Z10, 2

Fi = 9}, } be 
the general semiring of complex modulo integer special 
quasi dual number under natural product n.   
 
(i) Can T be a strict semiring? 
(ii) Is T a S-semiring? 
(iii) Can T have semiideals? 
(iv) Can T have S-idempotents? 
 

97. If T in problem (96) is taken as a semivector space of 
special quasi dual numbers over the semifield Q+  {0}. 

 
(i) Can T be finite dimensional over Q+  {0}? 
(ii) Find a basis of T over Q+  {0}. 
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(iii) Can T have more than one basis? 
(iv) Find Hom(T, T) = P, is P a semivector space over  
 Q+  {0}? 
 

98. Let M = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2, xj  Z+  {0},  

 

1  j  3 and g1 = 

F

F

F

2 4i
2 4i

0
2 4i

 
  
 
 

 

 and g2 = 

F

F

F

8 6i
8 6i

0
8 6i

 
  
 
 
 

, 2 + 4iF 

and 8 + 6iF  C(Z10) and g1 n g1 = g2 and g1 n g2 = g1,  
g2 n g2 = g2} be a semivector space of special quasi dual 
numbers over the semifield Z+  {0}. 
 
(i) Find a basis of M over the field Z+  {0}. 
(ii) Write M as a pseudo direct sum.  (Is it possible?). 
(iii) What is the dimension of M over Z+  {0}? 
(iv) Find Hom(M, M). 
(v) Find L(M, Z+  {0}). 
 

99. Characterize the properties enjoyed by strong mixed 
special quasi dual like numbers build using Zn. 

 
100. Does C(Z148) contain a component semigroup which can 

contribute to strong mixed special quasi dual like 
numbers? 

 
101. Let C(Z98) be the complex finite modulo integer. 
 Does C(Z98) = {a + biF | a, b  Z98, 2

Fi = 97} contain a 
component semigroup which can give special quasi dual 
numbers? 

 
102. Describe the properties enjoyed by groupoid of special 

dual like number. 
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103. Obtain some interesting properties enjoyed by groupoids 

of strong mixed dual numbers. 
 
104. Let G = {a1 + a2g1 + a3g2 + … + a7g6 | ai  Z45, 1  i  4, 

g1 = 7, g2 = 14, g3 = 21, g4 = 28, g5 = 35 and g6 = 42  
Z49, (3, 5), *} be the seven dimensional groupoid of dual 
like numbers. 

 
(i) Is G a S-groupoid? 
(ii) Find the number of elements in G. 
(iii) Can G have zero divisors? 
(iv) Can G have S-subgroupoids? 
(v) Is G a normal groupoid? 
(vi) Show G has atleast seven distinct subgroupoids. 
 

105. Let T = 
1 2 3 10

11 12 13 20

21 22 23 30

a a a ... a
a a a ... a
a a a ... a

 
 
 
  

 ai = x1 + x2g1 + x3g2  

 
+ x4g3; 1  i  30, xj  Z7, 1  j  4, g1 = 20, g2 = 16 and  
g3 = 15  Z40, (3, 2), *} be the strong mixed dual number 
groupoid. 
 
(i) Is T finite? 
(ii) Can T have S-zero divisors? 
(iii) Can T have normal subgroupoids? 
(iv) Can T have subgroupoids which are not  
 S-subgroupoids? 
 

106. Let S = {a + bg1 + cg2 | a, b, c  Z+  {0}, g1 = 10 and  
g2 = 5  Z20, (8, 7), *} be a groupoid. 

 
(i) Can S be a S-groupoid? 
(ii) Can S have S-idempotents? 
(iii) Is P = {a + bg1 | a, b  5Z+  {0}, g1 = 10  Z20,  
 (8, 7), *}  S a S-subgroupoid? 
(iv) How many subgroupoids can S have? 
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 107. Let T = 

1 2 3 10

11 12 13 20

21 22 23 30

a a a ... a
a a a ... a
a a a ... a

 
 
 
  

 ai = x1 + x2g1 + x3g2  

 
+ … + x6g5, g1 = 7, g2 = 14, g3 = 21, g4 = 28, g5 = 35  
Z42, 2

1g = g1 (mod 42), 2
2g = g4 (mod 42), 2

3g = g3 (mod 42), 
2
4g = g4, 2

5g = g1 (mod 42), g1g2 = g2 (mod 42), g1g4 = g4 
(mod 42), g1g3 = g3 (mod 42), g1g5 = g5 (mod 42), g2g3 = 0 
(mod 42), g2g4 = g2, and so on.  xj  Z23, 1  j  6, (7, 0), 
*} be the groupoid. 
 
(i) Is T finite? 
(ii) Can T have zero divisors which are not S-zero  
 divisors? 
(iii) Is T a strong mixed special dual number groupoid? 
 

108. Let G = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2 where xj  Z5,  

 
1  j  3, g1 = 6 and g2 = 9  Z36, 2

1g = 0 (mod 36),  
2
2g = g2 (mod 36), (2, 0), *} be the mixed dual number 

groupoid. 
 
(i) Is G infinite? 
(ii) Prove G is a S-groupoid. 
(iii) Can G have a subgroupoid which is not a  
 S-groupoid? 
(iv) Can G be normal? 
 

109. Let S = 
6

i
i

i 0
a x






  ai  Z12(g) = {a + bg | a, b  Z12, g = 3 

 Z6}, 0  i  6, *, (3, 4)} be the polynomial groupoid of 
special dual like numbers of finite order. 

 
(i) Find the number of elements in S. 
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(ii) Is S a S-groupoid? 
(iii) Can S have S-subgroupoids? 
(iv) Can S have zero divisors? 
(v) Can S have idempotents? 
 

110. Let M = 
3

i
i

i 0
a x






  ai  Z7(g) = {a + bg | a, b  Z7, g = 10 

 Z30}, 0  i  3, (2, 0), *} be a groupoid of special dual 
like numbers. 

 
(i) Find the number of elements in M. 
(ii) Is M a S-groupoid? 
(iii) Is M a normal groupoid? 
(iv) Can M have normal subgroupoids? 
(v) Can M have subgroupoids which are not S- 
 subgroupoids? 
 

111. Let S = {(a1, a2, …, a8) | ai = x1 + x2g, g = 3  Z9, x1, x2  
Z89, 1  i  8, (10, 8), *} be a non associative linear 
algebra of dual numbers over the field Z89.   

 
(i) Find a basis of S over Z89. 
(ii) Is S finite dimensional? 
(iii) Find Hom (S, S).  Is Hom(S, S) a non associative  
 linear algebra? 
(iv) Write S as a direct sum of subspaces. 
(v) Find T  Hom (S, S) so that T-1 exists. 
 

112. Let M = {a1 + a2g1 + a3g2 + a4g3 | ai  Q, 1  i  4, g1 = 3, 
g2 = 6 and g3 = 4  Z12, 2

1g = –g1 (mod 12), 2
2g = 0 (mod 

12) and 2
3g  = g3 (mod 12); (7/3, 4/7). *} be a non 

associative linear algebra of strong mixed dual numbers 
over the field Q. 

 
(i) What is dimension of M over Q? 
(ii) For any T : M  M find the related eigen values  
 and eigen vectors.  
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(iii) Are the eigen vectors associated with T strong  
 mixed dual numbers? 
 

113. Let N = 

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g1 + x3g2, xi  R; 1  i  3,  

g1 = 20 and g2 = 16  Z40, ( 7 , 13 +4), *} be a non 
associative linear algebra of mixed dual numbers over the 
field R. 

 
(i) Find dimension of N over R. 
(ii) Find L(N, R).  What is the algebraic structure  
 enjoyed by L(N, R)? 
(iii) Find Hom (N, N). 
(iv) Is N finite dimensional? 
(v) Write N as a pseudo direct sum of sublinear  
 algebras. 
 

114. Let S = 1 2 3 8

9 10 11 16

a a a ... a
a a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 ;  

 
1  i  24, xj  Z7; 1  j  3, g1 = (4, 4, 4), g2 = (6, 6, 6),  
6  Z12; (3, 0), *} be a non associative linear algebra of 
mixed dual numbers over the field Z7. 

 
(i) Find the number of elements in S. 
(ii) Find a basis of S over Z7. 
(iii) Find dimension of Hom(S,S). 
(iv) Find a basis of L(S, Z7). 
 

(v) If T:S  S; T = 
1 2 3 8

9 10 11 16

17 18 19 24

a a a ... a
a a a ... a
a a a ... a

  
  
  
    
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 =
1 2 3 8

9 10 11 16

a a a ... a
0 0 0 ... 0
a a a ... a

 
 
 
 
 

.   

Find the eigen values and eigen vectors associated with T. 
 

115. Let P = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3;  

 
1  i  12, xj  Z+  {0} g1 = (20, 20), g2 = (16, 16),  and     
g3 = (15, 15), 20, 16, 15  Z40, 1  j  4, (3, 4), *} be a   
non associative semilinear algebra of strong mixed dual 
numbers over the semifield S = Z+  {0}. 
 
(i) Find a basis of P over S. 
(ii) Can P have more than one basis? 
(iii) Can we say the number of linearly independent  
 elements in S will always be less than or equal to  
 the number of elements in a basis of P over S?   
 (substantiate your claim!) 
(iv) Find Hom(P, P).  Is Hom(P, P) a non  
 associative semilinear algebra over S? 
(v) Find L (P, S).  Is it a semilinear algebra over S? 

 
116. Let T = {(a1, a2, …, a15) | ai = x1 + x2g1 + x3g2; 1  i  15,  
 

xj  Q+  {0}; 1  j  3, g1 = 

7
7
7
7
7
7

 
 
 
 
 
 
 
 
  

 and g2 = 

35
35
35
35
35
35

 
 
 
 
 
 
 
 
  

, 7, 35  
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 Z42 with g1 n g2 = 

35
35
35
35
35
35

 
 
 
 
 
 
 
 
  

 (mod 42), g1 n g1 = 

7
7
7
7
7
7

 
 
 
 
 
 
 
 
  

  

 

(mod 42) and g2 n g2 = 

7
7
7
7
7
7

 
 
 
 
 
 
 
 
  

 (mod 35), (2, 0), *} be a non 

associative semilinear algebra of mixed special dual 
numbers over the semifield S = Q+  {0}. 
 
(i) Find a basis of T over S. 
(ii) Is T finite dimensional over S? 
(iii) Find Hom (T, T). 
(iv) Can T have more than one basis? 
(v) Find L(T, S). 
(vi) If S = Q+  {0} is replaced by F = Z+  {0} study  
 problem (i) to (iv). 
 
 

117. Let W = 

1

2

12

a
a

a

 
 
    


 ai = x1 + x2g1 + x3g2 + x4g3; 1  i  12,  

 
xj  Z+  {0}, 1  j  4, g1 = 28, g2 = 8 and g3 = 7  Z56,  

2
1g  = 0 (mod 56), 2

2g  = g2 (mod 56) and 2
3g  = 49 = –g3 

(mod 56), g2g3 = 0 (mod 56), g1g3 = g1 (mod 56), g1g2 = 0 
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(mod 56), (0, 2), *} be a non associative semilinear 
algebra of strong mixed dual number over the semifield 
Z+  {0} = S. 
 
(i) Find a basis of W over S. 
(ii) Is W finite dimensional over S? 
(iii) Can W have more than one basis over S? 
(iv) Find the algebraic structure enjoyed by Hom(W,W). 
(v) If T : W  W is an invertible semilinear operator  
 find the associated eigen values and eigen vectors  
 associated with T. 
 

118. Let V = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2;  

 
1  i  20, xjQ; 1  j  3. g1=6 and g2 = 4Z12, (3, –2), 
*} be the non associative Smarandache linear algebra of 
mixed dual numbers over the Smarandache ring  
Q(g1, g2) = {x1 + x2g1 + x3g2 | xi  Q, 1  i  3, g1 = 6 and 
g2 = 4  Z12}. 
 
(i) Find a S-basis of V over Q (g1, g2). 
(ii) What is the dimension of V over Q(g1, g2)? 
(iii) Find Hom(V,V).  Is Hom(V, V) a non associative  
 linear algebra over Q(g1, g2)? 
(iv) If T : V  V, T is non invertible find the eigen  
 values and eigen vector associated with T.  Do these  
 values belong to Q(g1, g2) \ Q? 
(v) Suppose V is defined over Q(g1) (or Q(g2)) study  
 problems (i) to (iv). 
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119. Let S = 

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3 with  1  i  4,  

xj  R, 1  j  4, g1 = 20, g2 = 16 and g3 = 15  Z40 
( 13 –3, – 3 +13), *) be a non associative S-linear 
algebra over the S-ring  
R(g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 | xj  R; 1  j  4, 
g1 = 20, g2 = 16 and g3 = 14  Z40} of strong mixed 
special dual numbers. 
 
(i) Find a S-basis of S over R(g1, g2, g3). 
(ii) If S is defined over R(g1, g2) what is the basis of S  
 over R(g1, g2)? 
(iii) Let S be defined over R(g1) (or R(g2)) study the  
 properties of S as a non associative S-linear algebra  
 of strong mixed dual number over the S-ring R(g1)  
 (or R(g2)). 
(iv) Find Hom(S, S). 
(v) Find (a) L (S, R(g1, g2, g3)), 
 (b) L (S, R(g1, g2)), 
 (c) L (S, R(g2, g3)), 
 (d) L (S, R(g3, g1)), 
 (e) L (S, R(g1)), 
 (f) L (S, R(g2)) and 
 (g) L (S, R(g3)). 
 Compare their algebraic structures and basis for the  
 linear algebras (a) to (g). 
(vi) Find a direct sum of S as sublinear algebras. 
(vii) Find for atleast one T:S  S and its associated  
 eigen values and eigen vectors. 
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120. Let S = 
25

i
i

i 0
a x






  aj = xj + yjg, 0  j  25, xj, yj  Q; g = 4 

 Z16, (8, –8), *} be a non associative S-linear algebra of 
dual numbers over the S-ring  
Q(g) = {a + bg | a, b  Q, g = 4  Z16, g2 = 0}. 
 
(i) Find a basis of S over Q(g). 
(ii) Find a linearly dependent subset of S. 
(iii) Is S finite dimensional? 
(iv) Can S be written as a direct sum of sublinear  
          algebras? 

 

121. Let S = 
1 2 3 8

9 10 11 16

17 18 19 24

a a a ... a
a a a ... a
a a a ... a

 
 
 
  

 ai = x1 + x2g1 + x3g2  

 
+ x4g3; 1  i  24, xj  Q+  {0}, 1  j  4, g1 = 20, g2 = 
16 and g3 = 25  Z40, (3, 30), *} be the non associative 
Smarandache semilinear algebra of mixed dual numbers 
of four dimension over the Smarandache semiring  
F = (Q+  {0}) (g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 | xi  
Q+  {0}, 1  i  4, g1 = 20, g2 = 16 and g3 = 25  Z40} of 
mixed dual numbers. 
 
(i) What is the dimension of S over F? 
(ii) Is S finite dimensional? 
(iii) Find S-subsemilinear algebras of S over F. 
(iv) Find Hom(S, S). Is S a finite dimensional S- 
 semilinear algebra over F? 
(v) Find L(S, F).  Study the striking properties  
 associated with L(S, F). 
 Is L (S, F) a S-semilinear algebra over F? 



Suggested Problems  185 
 
 
 
 
 

122. Let P = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai  Z+  {0} (g1, g2, g3) =  

 
{x1 + x2g1 + x3g2 + x4g3 | xj  Z+  {0}, 1  j  4, g1 = 20, 
g2 = 16, g3 = 15, g4 = 25  Z40}, 1  i  6, (8, 0), *} be a 
non associative S-semilinear algebra of strong mixed 
special dual numbers over the S-semiring  
F = Z+  {0} (g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 | xj  
Z+  {0}, 1  j  4; gt’s  mentioned above 1  t  3} of 
strong mixed special dual numbers. 
 
(i) Find dimension of P over F. 
(ii) Find a basis of P over F. Can P have more than one  
 basis? 
(iii) Study Hom(P, P) and L(P, F). 
(iv) If T  Hom (P, P) study the eigen values and eigen  
 vectors associated with T. 
 

123. Let M = i
i

i 0
a x








  ai = x1 + x2g1 + x3g2 + x4g3 + x5g4  

where xj  Z+  {0}, 1  j  5, 0  i  8, g1 = 4, g2 = 6,  
g4 = 9 and g3 = 3  Z12, (0, 2), *} be a Smarandache 
semilinear algebra of strong mixed special dual numbers 
over the S-semiring  
S = Z+  {0} (g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 + x5g4 | 
xj  Z+  {0}, 1  j  5, g1 = 4, g2 = 6, g4 = 9 and g3 = 3  
Z12} where S is the semiring of strong special mixed dual 
numbers. 
 
(i) Show eigen values and eigen vectors of any linear  

 operator T on M can have those values to be strong  
 mixed special dual numbers. 

(ii) Will every semilinear operator T on M have those  
 values to be some type of dual numbers? 
(iii) Study the semilinear functions L(M, S). 
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(iv) Does any special property is enjoyed by semilinear  
 operators which are invertible? 

 
124. Give some nice applications of linear operators on S-

linear algebras of mixed special dual numbers.  
 
125. Suppose S is a S-linear algebra of strong mixed special 

dual numbers over a S-ring of special strong mixed dual 
numbers, is it necessary that every S-linear operator on S 
should have its eigen values and eigen vectors to be 
strong mixed special dual like numbers.  Justify your 
claim. 

 
126. Study the problem 125 in case of S-semilinear algebra of 

strong mixed dual numbers defined over a S-semiring of 
mixed dual numbers. 
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