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Abstract            

In this paper, we have studied the problem of estimating the finite population mean 

when  information on two auxiliary attributes are available. Some improved estimators in 

simple random sampling without replacement have been suggested and their properties are 

studied. The expressions of mean squared error’s (MSE’s) up to the first order of 

approximation are derived. An empirical study is carried out to judge the best estimator out of 

the suggested estimators. 

Key words: Simple random sampling, auxiliary attribute, point bi-serial correlation, phi 
correlation, efficiency. 

Introduction 

    The role of auxiliary information in survey sampling is to increase the precision of 

estimators when study variable is highly correlated with auxiliary variable. But when we talk 

about qualitative phenomena of any object then we use auxiliary attributes instead of 

auxiliary variable. For example, if we talk about height of a person then sex will be a good 

auxiliary attribute and similarly if we talk about particular breed of cow then in this case milk 

produced by them will be good auxiliary variable. 

     Most of the times, we see that instead of one auxiliary variable we have 

information on two auxiliary variables e.g.;  to estimate the hourly wages we can use the 

information on marital status and region of residence (see Gujrati and Sangeetha (2007), 

page-311). 
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               In this paper, we assume that both auxiliary attributes have significant point bi-serial 

correlation with the study variable and there is significant phi-correlation (see Yule (1912)) 

between the auxiliary attributes.  

               Consider a sample of size n drawn by simple random sampling without replacement 

(SRSWOR) from a population of size N. let yj, ijφ (i=1,2) denote the observations on variable 

y and iφ (i=1,2) respectively for the jth unit (i=1,2,3,……N) . We note that ijφ =1, if  jth unit 

possesses attribute ijφ =0 otherwise . Let ,A
N

1j
iji 

=

φ=  
=

φ=
n

1j
ijia ; i=1,2 denotes the total 

number of units in the population and sample  respectively, possessing attribute φ . Similarly, 

let 
N

A
P i

i =  and 
n

a
p i

i = ;(i=1,2 ) denotes the proportion of units in the population and 

sample respectively possessing attribute iφ (i=1,2). 

                  In order to have an estimate of the study variable y, assuming the knowledge of 

the population proportion P, Naik and Gupta (1996) and Singh et al. (2007) respectively 

proposed following estimators: 
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The bias and MSE expression’s of the estimator’s it  (i=1, 2, 3, 4) up to the first order of 

approximation are, respectively, given by 
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               In this paper we have proposed some improved estimators of population mean using 

information on two auxiliary attributes in simple random sampling without replacement. A 

comparative study is also carried out to compare the optimum estimators with respect to usual 

mean estimator with the help of numerical data. 
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2. Proposed Estimators 

Following Olkin (1958), we propose an estimator 1t as 
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Consider another estimator t6 as 
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Following Shaoo et al. (1993), we propose another estimator t7 as  
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Bias and MSE of estimators 765  tand  t,t : 

               To obtain the bias and MSE expressions of the estimators )7,6,5i(t i =  to the first 

degree of  approximation, we define
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Expressing (2.1) in terms of e’s we have,  
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Expanding the right hand side of (3.1) and retaining terms up to second degrees of e’s, we have, 
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From (3.2), we have, 
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Squaring both sides of (3.4) and then taking expectations, we get the MSE of t5 up to the first order of 
approximation as 
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Minimization of (3.5) with respect to  w1 and w2, we get the optimum values of w1 and w2 , as 
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Similarly, we get the bias and MSE expressions of estimator t6 and t7   respectively, as 
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And the optimum values of 61K  and 62K  are respectively, given as 
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And the optimum values of 7271 K and K are respectively, given as 
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4.   Empirical Study  

Data: (Source: Government of Pakistan (2004)) 

The population consists rice cultivation areas in 73 districts of Pakistan. The variables are defined as: 

Y= rice production (in 000’ tonnes, with one tonne = 0.984 ton) during 2003, 

1P = production of farms where rice production is more than 20 tonnes during the year 2002, and 

2P = proportion of farms with rice cultivation area more than 20 hectares during the year 2003. 

For this data, we have 

N=73, Y =61.3, 1P =0.4247, 2P =0.3425,  2
yS =12371.4,  2

1
Sφ =0.225490,  2

2
Sφ =0.228311, 

1pbρ =0.621, 
2pbρ =0.673, φρ =0.889. 
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The percent relative efficiency (PRE’s) of the estimators ti  (i=1,2,…7) with respect to unusual 

unbiasedestimator y have been computed and given in Table 4.1. 

  Table 4.1 :  PRE of the estimators with respect to y  

Estimator PRE 

y  100.00 

t1 162.7652 

t2 48.7874 

t3 131.5899 

t4 60.2812 

t5 165.8780 

t6 197.7008 

t7 183.2372 

 

Conclusion 

   In this paper we have proposed some improved estimators of population mean using 

information on two auxiliary attributes in simple random sampling without replacement. From the 

Table 4.1 we observe  that the  estimator  t6  is the best followed by the estimator t7 . 
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