Smarandache Summands
Edited by M. Bencze
Sacele, Romania
Let n>k≥1 be
two integers. Then a Smarandache Summand
is defined as:
S(n, k) = ∑ (n-k·i) [for signed numbers]
0<|n-k·i|≤n
i=0, 1, 2, … .
S|n, k| = ∑ |n-k·i| [for absolute
value numbers]
0<|n-k·i|≤n
i=0, 1, 2, … .
which are duals and semi-duals respectively of Smarandacheials.
S(n, 1) and S(n, 2)
with corresponding S|n, 1| and S|n, 2| are trivial.
a)
In the case
k=3:
S(n, 3) = ∑ (n-3i) = n+(n-3)+(n-6)+… ; [for signed
numbers].
0<|n-3i|≤n
i=0, 1, 2, … .
S|n, 3| = ∑
|n-3i| = n+|n-3|+|n-6|+… ; [for absolute value numbers].
0<|n-3i|≤n
i=0, 1, 2, … .
Thus S(7, 3)
= 7+(7-3)+(7-6)+(7-9)+(7-12) = 7+(4)+(1)+(-2)+(-5) = 5; [for signed numbers].
Thus S|7, 3|
= 7+|7-3|+|7-6|+|7-9|+|7-12| = 7+4+1+2+5 = 19; [for absolute value numbers].
The sequence is S(n, 3): 3, 2, 0, 5, 3, 0, 7, 4, 0, 9, 5, 0, … ;
[for signed numbers].
The sequence is S|n, 3|:
7, 12, 18, 19, 27, 36, 37, 48, … ; [for absolute value
numbers].
4) In the case k=4:
S(n, 4) = ∑ (n-4i) = n+(n-4)+(n-8)… ; [for signed
numbers].
0<|n-4i|≤n
i=0, 1, 2, … .
S|n, 4| = ∑
|n-4i| = n+|n-4|+|n-8|… ; [for absolute value numbers].
0<|n-4i|≤n
i=0, 1, 2, … .
Thus S(9, 4)
= 9+(9-4)+(9-8)+(9-12)+(9-16) = 9+(5)+(1)+(-3)+(-7) = 5; for signed numbers.
Thus S|9, 4|
= 9+|9-4|+|9-8|+|9-12|+|9-16| = 9+5+1+3+7 = 25; [for absolute value numbers].
The sequence is S(n, 4) =
3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, … .
The sequence is S|n, 4| = 9, 16, 16, 24, 25, 36, 36, 48, 49, 64,
64, 80, 81, 100, 100, … .
5) In the case k=5:
S(n, 5) = ∑ (n-5i) = n+(n-5)+(n-10)… .
0<|n-5i|≤n
i=0, 1, 2, … .
S|n, 5| = ∑
|n-5i| = n+|n-5|+|n-10|… .
0<|n-5i|≤n
i=0, 1, 2, … .
Thus S(11, 5)
= 11+(11-5)+(11-10)+(11-15)+(11-20) = 11+6+1+(-4)+(-9) = 5.
Thus S|11, 5|
= 11+|11-5|+|11-10|+|11-15|+|11-20| = 11+6+1+4+9 = 31.
The sequence is S(n, 5): 3, 6, 2, 6, 0, 5, 10, 3, 9, 0, 7, 14, 4,
12, 0, … .
The sequence is S|n, 5|: 11, 12, 20, 20, 30, 31, 32, 33, 45, 60,
61, 62, 80, 80, 100, … .
More general:
Let n>k≥1 be
two integers and m≥0 another integer.
Then the Generalized Smarandache
Summand is defined as:
S(n, m, k) = ∑ (n-k·i) [for signed numbers].
i=0, 1, 2, …, floor[(n+m)/k].
S|n, m, k| = ∑
|n-k·i| [for
absolute value numbers].
i=0, 1, 2, …, floor[(n+m)/k].
For examples:
S(7, 9, 2)
= 7+(7-2)+(7-4)+(7-6)+(7-8)+(7-10)+(7-12)+(7-14)+(7-16)
=
7+(5)+(3)+(1)+(-1)+(-3)+(-5)+(-7)+(-9) = -2.
S|7, 3, 2|
= 7+|7-2|+|7-4|+|7-6|+|7-8|+|7-10| = 7+5+3+1+1+3 = 20.
References:
J. Dezert, editor, “Smarandacheials”,
Mathematics Magazine,
http://fs.unm.edu/Smarandacheials.htm.
F. Smarandache, “Back
and
and
Arizona State Univ., Special Collections, 1990.