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Abstract:
The concept of special functions plays an important role in mathematical analysis
and physics as well. In this paper, we study some different types of the special
Gamma function defined on the two-fold fuzzy complex field, where we combine
the classical Gamma function with the two-fold fuzzy algebra defined on complex
numbers. On the other hand, many elementary properties of this new special
function will be determined in terms of theorems and proofs.
Keywords: Gamma function, two-fold fuzzy algebra, complex field, special
function.
Introduction
The theory of special functions is considered one of the most comprehensive and
important theories in mathematics due to its wide applications in various fields of
knowledge and physics [1-3]. The gamma function is one of the most famous
functions in mathematics that plays a central role in number theory, probability,
and the calculation of random processes [6-7].
Neutrosophic logic as a good generalization of fuzzy logic plays a central role in
modern studies that are related to algebra and analysis [4-5], with very wide

applications in decision-making and geometry [8-9].
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In [10], Smarandache proposed the concept of two-fold algebras, and then these
idea was used in the study of fuzzy number theoretical relations [11], and in
module theory [12].

In this work, we are motivated to use the two-fold fuzzy complex algebra with
Gamma functions to generate a new analytical structure and to study its properties.
This study may be very helpful in the future because it opens a wide door to use of
two-fold algebra in defining and presenting some new types of special functions
that can be applied in other fields of knowledge.

Main Discussion

Definition:

Let C be the complex field, u:R X R — [0.1], we define the complex twofold fuzzy

algebra as follows.

C ={(a+bi)yy ;abx €R . i2=-1}

Binary operation:

(*):C¢ x C; > C¢ such that:

(@ +bi)y(xy * (€ + di)yyy = [(@+ ) + (b + Dilmaxueo.uo)

Theoreml:

Let (C¢.x) be the two fold complex fuzzy algebra defined previously, then:

1] () is well defined.
2] (*) is commutative.

3] () is associative.

4] For each (a + bi) ) € Cf, there exists 0,y € Cf such that:

(a + bl)#(x) * Oﬂ(x) = (a + bl)u(x)

Example:
e* ;x <0

For :(RxR-[0.1] ; ux)=1 1 , we have:
ex ;x>0

A= (3 + Zl)#(3) .B = (2 - 51')“(_2), then:
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AxB= (5-23i) = (5—-3i)1.

o2
Definition:
Let A= (a+ bi),x € Cr, we define:

2] |Al = (Vaz + bz)u(x)
Theorem 2:
For A= (a+bi),ux €C . B=(c+di)y, € (s, wehave:

2] AxB=A=xB

Example:
. . e* ;x<0
Take A= (1+2i)ys B= (3= yuc-10 ; ulx) =4 1
ex x>0
/T = (1 - Zl)y,(S) = (1 - Zi)e—s E = (3 + i)u(—lO) = (3 + i)e—lo

AxB= (4+1)ys . AxB= (4—i)ps A*B= (4—i),s.

|A| = \/ge—s . |A| = \/E -10

e

Definition:

We define the following binary operation on C¢:

0:Cp X Cr = Cy (@a+bi)yxy© (c+di)yy
= [ac — bd + (ad + bC)i]minu).u())

Theorem 3:

1] (o) is well defined.

2] (©) is commutative.

3] (0) is associative.

4] (o) is distributive on (*).

5] For each (a + bi),x) € Cf, there exists 1, € Cr such that:

(a + bl)#(x) o 1#(96) = (a + bl)u(x)
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Theorem 4:
Let A= (a + bl)ﬂ(x) . B= (C + dl)#(y) € Cf/ then:

1] [Ao Bl = |A| o |B|

2] Al = |A]
3]JA0 A =|A?|
Definition:

Let A= (a+ bi), € Cr, we define the first special function Gamma on C; as

follows:
Fl(Au(x)) = (I'(A) ur 2 ;a.x > 0.

The second Gamma function on Cr is defined as follows:

FZ(Au(x)) = (I'(A) ey ;a>0 .xeR

The third Gamma function on Cr is defined as follows:

G(Au(x)) = (A)u(['(x)) ;x>0 JAe Cf

Theoremb5:
Consider I3.[,.I; the three types of special Gamma functions defined over C; ,
then:
1] Ay © B(Aue) = BIA + Dyco)
2] Auco © L(Auco) = RIA + Dycw)]
3]for A= (a),xy € Cf ;a€R", wehave:
Jim Ay © 13 (Aueo) = Tuco

lim Ao © I (Aue) = Lue

a—0

4] for A=ayn)y € Cf ; a.x € R*, we have:
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(. (o]
rl(Aﬂ(x)) = (Zf et - g2t dt)y(z f;°e—f2-t2x‘1 dt)
0
< (o]
[Xﬁmw)=(zje_ﬂ'ﬂwqdﬂmm
0
kF3 (A,u(x)) = (a)#(z f0°°e—t2_t2x—1 dt)

Definition:

The two fold neutrosophic complex algebra is defined as follows:
CN={ (a+bi)(t_j_f) ; abeR . tjfelo1] . i?=-1 }

We define the following binary operations:
*: CN X CN - CN ) (Cl + bi)(tl.jl.fl) * (C + di)(tz-jz-fz)
=[a+c+ (d+b)i]le)p
t = max(t;.t,)
Where: | f = min(f;. f>)
j = min(j;.j)
0:Cy X Cy = Cy (@a+ b, jim© (c+dD,jop)
= [ac — bd + (ad + bc)i](cjf)

t = min(t;.t,)
Where: { j = max(j;.J,)
f = max(fi. f2)

Example:
Let A= (2+5i)(111) .B = (1—i)(011), we have:
2’3’5 23
A*B= (3+4i)11: AOB= (7+30),11
(333) 033
Definition:

Let A= (a+ bi),s) € Cy, we define:
11 A= (a=bi)¢jp

2] Al = (Va? +b?)jp

Theorem 6:
Let (Cy.0 .x) be the two fold neutrosophic complex algebra, then:

1] () is well defined.
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2] (o) is well defined.

3] (%).(0) are commutative.

4] (%).(©) are associative.

5] (o) is distributive on (*).

6] for each A = (a+ bi)jf) € Cy, there exists: O ;sy. 1)

Ax0=A

Such that {A01 _ A

Theorem 7:

Let (Cy.0 .*) be the neutrosophic two fold algebra, then:

For A .B € Cy, we have:

1] AxB=Ax*B

2] AocB=AoB

3] Ao A = |A?|

4] |AoB| =1A| o |B|

Definition:

Let (Cy.0 .*) be the neutrosophic two fold algebra, we define the following types

of Gamma special function:

rl(A(t-j.f)) = (F(A))(['(t),['(j)_[‘(f)) ;a>0.
L(Awjp) = TA)ejp ca >0,

L(Awin) = Aeropre)
Theorem 8:

Consider I.1;.1; the three types of Gamma functions over (Cy.0 .x) , we have:

1 Acjpy B(Awin) = BA+Dejn

(L=2[ e -t2a 14t
a, =2 foooe‘t2 - t20-1q¢

| by = 2 [ ettt dt

Le, =2 foooe‘tz -t de

2] L(Awjp) = Wiapey where:

3]For A=a€R* ; L(Awjp) =)y -where L=2["e " -t2e714¢.
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4] For any AeCy . L(Awp) =

(a; =2 fooo e t? . t2O-1q¢
(A)(a1-b1-c1) ; Where { b1 =2 f0°° e_tZ 271 gt
k =2 foooe_tz -t

Proof of theorem (1):

(@+ b))y = (@ +b'D),un

1] assume that: . , .
: { (c+di)up) = (" +dT) e

a=a .b=>b
Then:{ c=c .d=d
n(@) =ul@y") ulx) =px")

Hence: (a+ bi),p* (c+di)ypy=la+c+(d+ b)i]max(u(x)#(y))
= [a’ + C, + (d, + b,)i]max(u(x’).u(y’)) = (a, + b,i)”(x’) * (C’ + dli)u(y’)'
2] (a + bl)#(x) * (C + dl')#(y) = [a +c+ (b + d)i]max(u(x).u(y)) = (C + di)u(y) *

(a + bl)[l,(x)
3] Let X = (a+ bi),u Y= (c+di)yy) -Z= (m+ni),y), then:

X+« *xZ)=Xx*[c+m+i(d+ n)]max(u(y)#(z))

= [a +c+m+ l(b +d+ n)]max(ﬂ(x)_ﬂ(y)_#(z))

=(@+c+i(b+ dAmaxumuoy) * MHAnDue =X *Y) «Z.
4] It is clear that:

(a+ bi)#(x) * Oy(x) = (a+0+ ib)max(u(x)_u(x)) = (a+ bi)u(x).
Proof of theorem (2):

1] AxA= (a+ bi)ux) * (@ — D)y = (2a) u(x)-

2] AxB=(a+c+1(d+ b))max(u(x)_u(y)) =(a+c—i(d+ b))max(u(x)#(y)) =
(a - lb)#(x) * (C - l'd)ﬂ(y) = /T* E

Proof of theorem (3):
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@+ by = (@ +b'D)yuen
(c+ di)ﬂ(y) = (c'+ d’i)#(yr)
a=a .b=>b
Then:{ c=c .d=d
plx) = ulx") .uly) =uly"

1] assume that: {

Sothat: (a+ bi),u © (c+di),y) = lac—bd +i(ad + bc)]min(u(x)lu(y))

=la'c’ —pd' +i@d + D) = @ +bDuan ©

(C’ + d’i)“(y’).

2] (a + bi) y(x) © (¢ + di) ) = lac — bd + i(ad + bc)]min(#(x)#(y)) = [ca—db+
l(da + Cb)]min(u(x).u(y)) = (C + dl)#(y) o (a + bl)[,l(x)
3]Let X =(a+bi)yy . Y=(+di),y -Z= (m+ni)yy, then:

Xo(YoZ)=Xo[(c+di)(m+ ni)]min(u(y)#(z)) = [(a+ bi)(c+ di)(m+

1) | imin (o) (1) 2(2))
= [(a + bl)(C + di)]min(u(x).u(y)) o (m + nl)#(z) = (X o Y) oZ.
4] Xo(Y*Z)=(a+bi),uollc+m)+ild+ n)]max(#(ym(z)) = [(a+ bi)(c+

dl) + (a + bl)(m + ni)]min(u(x).max(u(y).u(z)))

Also (XoY)x(XoZ)=[(a+bi)(c+ di)]min(#(x)#(y)) x [(a + bi)(m +

1) in (u0).02)
= [(a + bi)(c + di) + (a + bi)(m + ni)]max(min(u(x).u(y)).min(u(x).u(z))) =Xo(Y=*Z)
5] it holds directly from the definition.

Proof of theorem (4):

11 140 Bl = [I(a + bi)(c + dD)Iminqueouey = Va2 + % Ve + i uuey) =

[\/Cl2 + bz]#(x) O [\/C2 + dz]ﬂ(y) = |A| o |B|
2] |/T| = (Vaz + bz)u(x) = |A|
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3140 A = [(a +b1)(@ — bi)lpin(ucouco) = (@ + DD ucey = 1421,

Proof of theorem (5):
Before the proof get started, it will be useful to write the formulas of Gamma

function:

Hr@=2f"et-t>tdt ; R(2)>0 .z€C

2] TZ+1) =2 I'(2)

3] xlirgl+ xI(x) =1 ; x €ERY

4] I"(x)=2f0°°e‘t2-t2x‘1dx 0<x <oo

Now we prove the first part:

Auc) © B(Auey) = (AT (A iy = (FA + D)y = LIA+ Do)
Auy © T (Auy) = (AF(A) y(reeyy = A+ D) yrey) = RIA+ Do)
Jim Ay © B(Aucn) = Jim [l (@)] e = Luco

lim, Ay ey © I3 (Aucw) = Jim, [AT (D] y0) = Jim, [al' (@] u(10) = Luco

F(A) = Zf “t.g2a-l4
since < 20
F(x) = Zf —t? . p2x-1 gy
0
0 .2 _
I{ I-:'l(A/L(x)) = (2 fo e e tza 1 dt)u(z f(;’°e—t2.t2x—1 dt)

We get: 4 I"Z(A#(x)) =(2 fooo e~t? . t2a-1 dt) u(x)
kfs (A/t(x)) = (a)#(z f;°e—t2.t2x—1dt)

Proof of theorem (6):

1] Assume that: (@+ b)), j.ry =@ + DDt jrpry - (c+dD) ity jppo) =

(" +d'Des .11y
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a=a .b=b" .c=c" .d=d
ti =t .t =t;
J1=J1 Jz2=1J2
h=f . f=Ff
(a+ bi)(t1-j1-f1) * (c+ di)(tz.jz.fz) =la+tc+(®+ d)i](ts-fs-fs)

Then:

= [a’ +c' + (b, + d,)i](t4.j4.f4)
t; = max(t;.t,) = t, = max(t; .t3)
Where 1 f; = min(f.f;) = f, = min(f{ . f3)
jz = min(j;.j,) = j, = min(jj .j;)
(@+ D), j,.py = (@ + DD 1 pry

2] Assume that: { . , .
(¢ +di)(e,.jp ) = (" + A" D)1 j1 51y

a=a .b=b .c=c .d=d
t, =t .t, =ty
j1=j{ .j2=j£
f1=f1’- f2=f2’

Hence: (a+bi),j,.f)° (c+di)e,j,r) =lac—bd +i(ad + bc)](tS.j3.f3)

We get:

= [a’C, - b,d, + i(a,d, + b,C,)](t3.j3.f3) = (a, + b,l)(till]{fll) O (CI + dll)(té]éle)

t; = min(t,.t,) = min(t; .t3)
Where 4 jz = max(j;.jz) = max(ji .j3)
f3 = max(fi. f,) = max(fy .f;)

3l(a+ b, jyrn @ (c+di, ),z = lac —bd +i(ad + bc)le, j, 1)

= [Ca —db + i(da + Cb)](t3-j3-f3) = (C + di)(tz-jz-fz) © (a + bi)(t1-f1-f1)

t; = min(t;.t,) = min(t,.t;)
, Where < j; = max(j;.j,) = max(j,.j;)
fs = max(f. f,) = max(f>. f1)

(a+ bi)(t1-j1-f1) * (c+ di)(tz-jz-fz) = (c+ di)(tz-fz-fz) * (a+ bi)(t1-f1-f1) by a
similar argument.
4] (a+ bi)(t1-j1-f1) © [ (c+ di)(tz-jz-fz) o (m+ ni)(ts-fs-fs)] = [(a+ b)) (c+di)(m +

ni)lejp =L
t = min(t,.t,.t3)
Where < j = max(j;.j,.jz)
f =max(f;.f>.f3)
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So that: L=1[(a+bi)¢, . r)° (c+di)i,j )]0 (Mm+ni)e, . r), hence (o) is

associative.

The associativity of (*) can be proved by the same.

51 @+ bDayjip O (e dDipppy * M+ 1y jppy] = @+ bD[(c +di) +

(m +ni)]lejp = L.

t = min(t,. max(t,.t;))
Where < j = max(j;. min(j,.j3))
f = max(fi. min(f,. f3))

Thus: L= [(a + bi)(t1-j1-f1) © (C + di)(tz-fz-fz)] * [(Cl + bi)(t1-j1-f1) © (m +

ni)(t3-j3-f3)] )

{A *0=(A+0)¢jp =Awjp
Aol = (A Vjp =Awip

Proof of theorem (7):

11 AxB=(A+B)¢jr=A+B)jr) =Awjp *Bejp:

2] A0B=(A"B)wjp = A B)wjn =Awip ©Beip-

.[4] hold directly from the definition.

Proof of theorem (8):

It can be proved by a similar argument to that of theorem 5.

Conclusion

In this paper, we defined some different types of the special Gamma function on the
two-fold fuzzy complex field, where we combined the classical Gamma function
with the two-fold fuzzy algebra defined on complex numbers. On the other hand,
many elementary properties of this new special function are determined and
presented.
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