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Abstract: The aim of this paper is to propose a new similarity measure of single-
valued neutrosophic sets (SVNSs). The idea of the construction of the new similarity
measure comes from Chi-square distance measure, which is an important measure in
the applications of image analysis and statistical inference. Numerical examples are
provided to show the superiority of the proposed similarity measure comparing with
the existing similarity measures of SVNSs. A weighted similarity is also put forward
based on the proposed similarity. Some examples are given to show the effectiveness
and practicality of the proposed similarity in pattern recognition, medical diagno-
sis and multi-attribute decision making problems under single-valued neutrosophic
environment.
Keywords: Chi-square distance measure, similarity measure, multi-attribute deci-
sion making, single-valued neutrosophic set.

1 Introduction

Since fuzzy set was first proposed by Zadeh and has achieved a great success in various fields
due to its capability of handling uncertainty [4, 6, 9, 14, 21, 29]. Over the last decades, some
extended fuzzy sets have been introduced by researchers, such as intuitionistic fuzzy set [1],
vague set [10], interval-valued intuitionistic fuzzy set [2] and hesitant fuzzy set [28]. As an
extension of Zadeh’s fuzzy set, intuitionistic fuzzy set can better describe the situation when
decision making process exists decision makers’ hesitation than Zadeh’s fuzzy set by adding a
non-membership degree parameter [32]. In recent years, intuitionistic fuzzy set has received a lot
attention and been applied to many fields, such as management decision, pattern recognition and
medical diagnosis [5, 7, 18, 20, 27]. In practice, indeterminate and inconsistent information may
occur, then intuitionstic fuzzy set cannot deal with these situations well because it only contains
the true membership degree and the false membership degree (non-membership degree). For
example, when an authority wants to choose the best candidate, ten experts are invited to take
part in the decision. For one candidate he gained 10 votes from the experts. There are 3
votes yes", 2 votes "no", 2 "gave up"" and 3 "undecided". In this case, intuitionistic fuzzy set
cannot describe it well. To overcome this shortcoming, Smarandache [26] introduced a concept
of neutrosophic set, which is an extension of intuitionistic fuzzy set from philosophical point of
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view. Neutrosophic set is defined as a set containing the degree of truth, indeterminacy, and
falsity. For afore-mentioned example, the vote result can be expressed by a neutrosophic set.
However, the original neutrosophic set is difficult to apply in practical problems. To applied it
easily in science and engineering fields, Wang et al. [30] introduced the concept of single-valued
neutrosophic set (SVNS), which is a subclass of Smarandache’s neutrosophic set. Because SVNS
is easy to express, it has been a useful mathematical tool for handling various practical problems
involving imprecise, indeterminacy, and inconsistent data [11,15,19,23,25].

In recent years, the study and applications of information measures of fuzzy sets have re-
ceived a lot attention. Similarity measure is one of the most important measurement tools for
comparing the degree of similarity between two objects. Since Li and Chen [17] introduced the
definition of the similarity measure between two intuitionistic fuzzy sets. Since then intuitionistic
fuzzy similarity measures have received great attention. From a different point of view, many
similarity measures are proposed and applied to solve various practical problems of MADM, pat-
tern recognition and medical diagnosis, etc. [12,13,16,22,31,34]. As an extension of intuitionistic
fuzzy set, some similarity measures of neutrosophic set is developed from those of intuitionistic
fuzzy sets, and some new similarity measures are also proposed, but the references are still rare
( [35]). Based on vector similarity functions, some similarity measures between simplified neu-
trosophic sets are put forwards, such as similarity measures based on Jaccard, Dice, and cosine
functions [33–35].

We find that the existing similarity measures have shortcomings, and the detail analysis can
be found in Example 1. Then the aim of this paper is to develop a new similarity measure of
SVNSs based on Chi-square distance measure, which is an important measure in statistical theory.
We will show the advantage of the proposed similarity measure with existing similarity measures
of SVNSs through comparison with some numerical examples. Three examples are provided to
demonstrate the effectiveness and practicality of the proposed similarity in the application of
pattern recognition, medical diagnosis and multi-attribute decision making.

The remains of this article are organized as follows: Section 2 will recall some basic concepts
and properties of SVNSs and similarity measure. Section 3 introduces a new similarity measure
between SVNSs based on ordinary Chi-square distance measure, and put forward a weighted
similarity for further applications. Section 4 develops the applications of the proposed similarity
measure with some examples. Finally, conclusions are provided in Section 5.

2 Preliminary knowledge

In this section, some basic concepts and properties of SVNSs and similarity measure are pre-
sented. Smarandache [26] originally introduced a concept of neutrosophic set from philosophical
point of view.

Definition 1 Let X be a universal set. A set is called a neutrosophic set, if it is characterized
by three parameters: truth-membership function TA(x), indeterminacy-membership function
IA(x) and falsity-membership function FA(x) .That is A has the following form:

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X}.

HereTA(x), IA(x), FA(x) : X →]−0, 1+[, ]−0, 1+[ is non-standard interval, and they satisfy

−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+

A neutrosophic is defined as a set containing the degree of truth, indeterminacy, and falsity.
However, the original neutrosophic set is difficult to apply in practical problems. To apply it
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easily in science and engineering fields, Wang et al. [30] introduced single-valued neutrosophic 
set (SVNS), which is a subclass of Smarandache's neutrosophic set.

Definition 2 Let X be a universal set. A set A is called a SVNS, if it is characterized by
three parameters: truth-membership function TA(x), indeterminacy-membership function IA(x)
and falsity-membership function FA(x). That is, A has the following form:

A = {< x, TA(x), IA(x), FA(x) > |x ∈ X}.

HereTA(x), IA(x), FA(x) : X → [0, 1], and they satisfy 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. For
convenience, when X = {x}, we briefly denote the element < x, TA(x), IA(x), FA(x) > of A by
< TA, IA, FA >.Element < TA, IA, FA > is often named as a single-valued neutrosophic value
(SVNV).

Definition 3 [30] Let X be a universal set, and A = {< x, TA(x), IA(x), FA(x) > |x ∈
X}and B = {< x, TB(x), IB(x), FB(x) > |x ∈ X} are two SVNSs in X, then

(i) The complement of a SVNS A is

Ac = {< x,FA(x), 1− IA(x), TA(x) > |x ∈ X}

(ii)A ⊆ B if and only if

TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x),

for all x in X. (iii) A = B if and only if A ⊆ B and B ⊆ A.
In the following discussion, we always use SV NSs(X) to denote the set of all SVNSs in X.

Definition 4 will introduce the definition of a similarity measure between two SVNSs A and B.
Definition 4 [35] Let A and B be two SVNSs, and S is a mapping S : SV NSs(X) ×

SV NSs(X)→ [0, 1]. We call S (A,B) the similarity measure between A and B if it satisfies the
following properties:

(i) 0 ≤ S (A,B) ≤ 1;
(ii)S (A,B) = 1 if and only if A = B;
(iii)S (A,B) = S(B,A);
(iv) If A ⊆ B ⊆ C , then S(A,C) ≤ min{S(A,B), S(B,C)}.

3 A new Chi-square distance-based similarity

This section contains two subsections. The first subsection will propose a new similarity
measure between two SVNSs based on Chi-square distance measure. The second subsection will
compare the proposed similarity measure with existing similarity measures of SVNSs.

3.1 A new proposed similarity based on Chi-square distance

This section will propose a new similarity measure between two SVNSs based on Chi-square
distance measure. The name of the Chi-square distance measure is derived from Pearson’s Chi-

squared test statistic χ2(x,y) =
n∑
i=1

(xi−yi)2
xi

, which is used to compare two discrete probability

distributions. However, as a distance measure, the function d(x, y) should be symmetric for two
objects x and y .Then Chi-square distance measure of two real vectors x = (x1, x2, ..., xn) and
y = (y1, y2, ..., yn) is proposed as the following formula [24]:

d(x,y) =

n∑
i=1

(xi − yi)2

xi + yi
(1)
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Chi-square distance measure is one of most important distance measure used in face recog-
nition [24]. To avoid the fact that the denominator is zero, the numerical value is meaningless.
For later use, we proposed a revised version of Chi-square distance measure formula as follows:

d(x,y) =
n∑
i=1

(xi − yi)2

2 + xi + yi
(2)

Note that the constant 2 can be changed as any other positive number. LetX = {x1, x2, ..., xn}
be a universe set. Then for two given SVNSs A = {< xi, TA(xi), IA(xi), FA(xi) > |xi ∈ X} and
B = {< xi, TB(xi), IB(xi), FB(xi) > |xi ∈ X}, the new neutrosophic fuzzy information measure
based on Chi-square distance S ∆

= S (A,B) is constructed as follows:

S = 1− 1
2n

n∑
i=1

[
(TA(xi)−TB(xi))

2

2+TA(xi)+TB(xi)
+ (IA(xi)−IB(xi))

2

2+IA(xi)+IB(xi)

+ (FA(xi)−FB(xi))
2

2+FA(xi)+FB(xi)
+ |mA(xi)−mB(xi)|

] (3)

Where mj(xi) =
1+Tj(xi)−Fj(xi)

2 , j = 1, n.
To prove the information measure (3) is a valid similarity measure, we need the following

lemma which can be easily proved by straightforward calculation.
Lemma 1 Let a, b, c be three non-negative real numbers, and 0 ≤ a ≤ b ≤ c. Then
(i) (a−c)2

2+a+c
≥ (a−b)2

2+a+b

(ii) (a−c)2
2+a+c

≥ (b−c)2
2+b+c

Theorem 1 Let X = {x1, x2, ..., xn} be a universe set. A = {< xi, TA(xi), IA(xi), FA(xi) >
|xi ∈ X} and B = {< xi, TB(xi), IB(xi), FB(xi) > |xi ∈ X} are two SVNSs. Then information
measure S (A,B) given by (2) is a valid similarity measure between SVNSs A and B.That is,
S (A,B) satisfies the properties (i)-(iv) of Definition 4.

Proof (i) It is obvious that 0 ≤ S (A,B) ≤ 1.
(ii) When A = B, i.e. TA(xi) = TB(x), IA(xi) = IB(xi), FA(xi) = FB(xi), for all xi in X.

Then
mA(xi) =

1 + TA(xi)− FA(xi)

2
=

1 + TB(xi)− FB(xi)

2
= mB(xi)

Hence we have S (A,B) = 1.
(iii) The result is obvious.
(iv)If A ⊆ B ⊆ C , i.e.

TA(xi) ≤ TB(x) ≤ TC(x), IA(xi) ≥ IB(xi) ≥ IC(xi), FA(xi) ≥ FB(xi) ≥ FC(xi),

Then 0 ≤ mA(xi) ≤ mB(xi) ≤ mC(xi),for all xi in X.
Consequently, we can get

|mA(xi)−mC(xi)| ≥ |mA(xi)−mB(xi)|, |mA(xi)−mC(xi)| ≥ |mB(xi)−mB(xi)|

Thus by (i) of Lemma 1, we have

(TA(xi)− TC(xi))
2

2 + TA(xi) + TC(xi)
≥ (TA(xi)− TB(xi))

2

2 + TA(xi) + TB(xi)
,

(IA(xi)− IC(xi))
2

2 + IA(xi) + IC(xi)
≥ (IA(xi)− IB(xi))

2

2 + IA(xi) + IB(xi)
,
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(FA(xi)− FC(xi))
2

2 + FA(xi) + FC(xi)
≥ (FA(xi)− FB(xi))

2

2 + FA(xi) + FB(xi)
.

Then we can easily conclude that S(A,C) ≤ S (A,B). By (ii) of Lemma 2, we have

(IA(xi)− IC(xi))
2

2 + IA(xi) + IC(xi)
≥ (IB(xi)− IC(xi))

2

2 + IB(xi) + IC(xi)
,

(FA(xi)− FC(xi))
2

2 + FA(xi) + FC(xi)
≥ (FB(xi)− FC(xi))

2

2 + FB(xi) + FC(xi)
.

(TA(xi)− TC(xi))
2

2 + TA(xi) + TC(xi)
≥ (TB(xi)− TC(xi))

2

2 + TB(xi) + TC(xi)
,

Then we can easily conclude that S (A,C) ≤ S (B,C). Hence S(A,C) ≤ min{S(A,B), S(B,C)}.
This completes the proof of Theorem 1. If we consider the important degree of xi ∈ X =

{x1, x2, ..., xn}, then we can establish a weighted similarity measure SW
∆
= S W (A,B) between

SNNSs A and B as follows:

SW = 1− 1
2

n∑
i=1

wi

[
(TA(xi)−TB(xi))

2

2+TA(xi)+TB(xi)
+ (IA(xi)−IB(xi))

2

2+IA(xi)+IB(xi)

+ (FA(xi)−FB(xi))
2

2+FA(xi)+FB(xi)
+ |mA(xi)−mB(xi)|

] (4)

where wi (i = 1, 2, ..., n) is the important degree of the element xi, they satisfy wi ∈ [0, 1] and
n∑
i=1

wi = 1. If we set wi = 1
n (i = 1, 2, ..., n), then SW (A,B) = S(A,B). Similar to the proof

process of SR(A,B)in Theorem 1, we can easily prove that the weighted similarity measure
SW (A,B) is also a valid similarity between two SNVSs A and B . That is SW (A,B) satisfies
the properties (i)-(iv) of Definition 4.

3.2 Comparison of various similarity measures

To demonstrate the validness and performance of the new proposed similarity measure, some
numerical examples are used to compare it with existing similarity measures: Jaccard similarity
SJ(A,B), Dice similarity SD(A,B), Cosine Similarity SC(A,B) , Improved cosine similarity
C1(A,B)and C2(A,B), Tangent function-based similarity T1(A,B), T2(A,B) , and Cotangent
function-based similarity CoT1(A,B), CoT2(A,B) . These similarity measures are given as
follows( [33], [34], [35]):

SJ(A,B) =
1

n

n∑
i=1

SJ1

SJ2
, (5)

where SJ1 = TA(xi)TB(xi)+IA(xi)IB(xi)+FA(xi)FB(xi) and SJ2 = (T 2
A(xi)+I2

A(xi)+F 2
A(xi))+

(T 2
B(xi) + I2

B(xi) + F 2
B(xi))− SJ1

SD(A,B) =
1

n

n∑
i=1

2(TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi))

(T 2
A(xi) + I2

A(xi) + F 2
A(xi)) + (T 2

B(xi) + I2
B(xi) + F 2

B(xi))
, (6)

SC(A,B) =
1

n

n∑
i=1

TA(xi)TB(xi) + IA(xi)IB(xi) + FA(xi)FB(xi)√
T 2
A(xi) + I2

A(xi) + F 2
A(xi)

√
T 2
B(xi) + I2

B(xi) + F 2
B(xi)

, (7)
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C1(A,B) =
1

n

n∑
i=1

cos
[π

2
max (|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|)

]
, (8)

C2(A,B) =
1

n

n∑
i=1

cos
[π

6
(|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|)

]
, (9)

T1(A,B) = 1− 1

n

n∑
i=1

tan
[π

4
max (|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|)

]
,

(10)

T2(A,B) = 1− 1

n

n∑
i=1

tan
[ π

12
(|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|)

]
,

(11)

CoT1(A,B) =
1

n

n∑
i=1

cot
[π

4
max (|TA(xi)− TB(xi)|, |IA(xi)− IB(xi)|, |FA(xi)− FB(xi)|)

]
,

(12)

CoT2(A,B) =
1

n

n∑
i=1

cot
[π

4
+

π

12
(|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|)

]
,

(13)
Example 1 Suppose that X = {x} , we consider pattern recognition problems with six

pairs of SVNSs shown in Table 1. The calculated numerical values of these 9 existing similarity
measures and proposed similarity measure are shown in Table 1.

Table 1: Values of the different similarity measures under different pairs of (A,B)

Case 1 Case 2 Case
3 Case 4 Case 5 Case 6

A <0.3,0.3,0.4> <0.3,0.3,0.4> <1,0,0> <0.4,0.2,0.6> <0.4,0.4,0.2> <0.4,0.4,0.2>
B <0.4,0.3,0.4> <0.4,0.3,0.3> <0,1,1> <0.2,0.2,0.3> <0.5,0.2,0.3> <0.5,0.3,0.2>
SJ(A,B) 0.9737 0.9429 0 0 0.8500 0.9474
SD(A,B) 0.9867 0.9706 0 0 0.9189 0.9730
SC(A,B) 0.9910 0.9706 0 Null 0.9193 0.9733
C1(A,B) 0.9877 0.9877 0 0 0.9511 0.9877
C2(A,B) 0.9986 0.9945 0 0.8660 0.9781 0.9945
T1(A,B) 0.9213 0.9213 0 0 0.8416 0.9213
T2(A,B) 0.9738 0.9476 0 0.7321 0.8949 0.9476
CoT1(A,B) 0.8541 0.8541 0 0 0.7265 0.8541
CoT2(A,B) 0.9490 0.9004 0 0.5774 0.8098 0.9004
S(A,B) 0.9713 0.9463 0 0.5833 0.9886 0.9714

From Table 1, we can see that the similarity measures C1(A,B) and T1(A,B) cannot carry out
the recognition between Case 1 and Case 2. For Case 4, there are only four reasonable similarity
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measures C2(A,B) , T2(A,B), CoT2(A,B) and S(A,B) intuitively consistent. An interesting
counter-intuitive case occurs when three SNVSs A =< 0.4, 0.4, 0.2 >, B =< 0.5, 0.2, 0.3 > and
C =< 0.5, 0.3, 0.2 >. They can be written in forms of intuitionistic fuzzy values as: A =<
0.4, 0.2 >, B =< 0.5, 0.3 > and C =< 0.5, 0.2 >, respectively. In this case, Boran and Akay [3]
pointed out that it is expected that the similarity degree between A and B should not be less
than the similarity degree between A and C since they are ordered as A ≤ B ≤ C according to
score function and accuracy function. However, the similarity degree between A and C is greater
than the similarity degree between A and B when the existing similarity measures are used (The
results can be found in Table 1), which does not seem to be reasonable. Table 1 shows that our
proposed similarity measure is in agreement with this analysis. According to the above analysis,
the proposed similarity measure is the most reasonable similarity measure.

4 Applications

In the following discussion, we will give two examples in pattern recognition and medical
diagnosis to demonstrate the effectiveness and practicability of the proposed similarity measure.

Example 2 Assume that there are two patterns in X = {x1, x2} . The two patterns are
expressed by SVNSs, which are shown as follows:

A1 = {< x1, 0.2, 0.0, 0.2 >,< x2, 0.2, 0.0, 0.2 >,< x3, 0.2, 0.0, 0.2 >},

A2 = {< x1, 0.4, 0.0, 0.4 >,< x2, 0.4, 0.0, 0.4 >,< x3, 0.4, 0.0, 0.4 >}.

Assume that there is an object

B = {< x1, 0.3, 0.0, 0.3 >,< x2, 0.3, 0.0, 0.3 >,< x3, 0.2, 0.0, 0.3 >}

Our task is to classify the object B in A1 or A2 . According to the recognition principle of
maximum similarity measure between SVNSs, the process of assigning the object B to A1 or A2

is described by
k = argmax

1≤i≤2
{SR(Ai, B)} (14)

By Eq. (3), we can get the similarity measures betweenA1, A2 withB : S(A1, B) = 0.9700, S(A2, B) =
0.9415. Then the pattern B is classified in A1 according to the recognition rule given by Eq. (14).
This result is consistent with our intuition.

Example 3 We consider the following pattern recognition problem: There are three patterns
A1, A2 and A3 , which are represented by SVNSs in universe set X = {x1, x2, x3}, as follows:

A1 = {< x1, 1.0, 0.2, 0.0 >,< x2, 0.8, 0.3, 0.0 >,< x3, 0.7, 0.1, 0.1 >}
A2 = {< x1, 0.8, 0.1, 0.1 >,< x2, 1.0, 0.1, 0.2 >,< x3, 0.9, 0.2, 0.1 >}
A3 = {< x1, 0.6, 0.3, 0.2 >,< x2, 0.8, 0.2, 0.3 >,< x3, 0.6, 0.3, 0.2 >}

Given an unknown pattern B, which is represented by the SVNS:

B = {< x1, 0.5, 0.3, 0.2 >,< x2, 0.6, 0.3, 0.2 >,< x3, 0.8, 0.2, 0.1 >}

Our task is to classify the pattern B in one of the classes A1, A2 and A3 . According to the
recognition principle of maximum similarity measure between SVNSs, the process of assigning
the pattern B to Ak (k = 1, 2, 3) is described by

k = argmax
1≤i≤3

{SR(Ai, B)} (15)
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By Eq.(3), we can get the similarity measures between B with Ai (i = 1, 2, 3) :
S(A1, B) = 0.9115, S(A2, B) = 0.8813, S(A3, B) = 0.9345.
Then the pattern B is classified in A3 according to the recognition rule given by Eq. (15).

Some medical diagnosis problems are very complex. Physicians need to use modern medical
technologies to obtain a lot of information available to physicians for the help of decision, but
the information is often incomplete, indeterminate and inconsistent. The SVNSs proposed by
Wang et al. [30] can be better choice to express this kind of information than ZadehĄŻs fuzzy sets
and intuitionistic fuzzy sets. Now in Example 4 we will utilize the proposed similarity measure
to solve a class of medical diagnosis problems.

Example 4 The medical diagnosis problem is adapted from De et al. [8]. Let Q = Q1

(Viral fever), Q2 (Malaria), Q3 (Typhoid), Q4 (Stomach problem), Q5 (Chest problem) be a set
of diagnoses (diseases) and S= s1(Temperature), s2(Headache), s3 (Stomach pain), s4 (Cough),
s5(Chest pain) be a set of symptoms. Each diagnosis Qi (i = 1, 2, 3, 4, 5) can be represented by
SVNSs as follows:

Q1 = {< s1, 0.4, 0.6, 0.0 >,< s2, 0.3, 0.2, 0.5 >,< s3, 0.1,
0.2, 0.7 >,< s4, 0.4, 0.3, 0.3 >,< s5, 0.1, 0.2, 0.7 >}

Q2 = {< s1, 0.7, 0.3, 0.0 >,< s2, 0.2, 0.2, 0.6 >,< s3, 0.0,
0.1, 0.9 >,< s4, 0.7, 0.3, 0.0 >,< s5, 0.1, 0.1, 0.8 >}
Q3 = {< s1, 0.3, 0.4, 0.3 >,< s2, 0.6, 0.3, 0.1 >,< s3, 0.2,
0.1, 0.7 >,< s4, 0.2, 0.2, 0.6 >,< s5, 0.1, 0.0, 0.9 >}
Q4 = {< s1, 0.1, 0.2, 0.7 >,< s2, 0.2, 0.4, 0.4 >,< s3, 0.8,
0.2, 0.0 >,< s4, 0.2, 0.1, 0.7 >,< s5, 0.2, 0.1, 0.7 >}
Q5 = {< s1, 0.1, 0.1, 0.8 >,< s2, 0.0, 0.2, 0.8 >,< s3, 0.2,
0.0, 0.8 >,< s4, 0.2, 0.0, 0.8 >,< s5, 0.8, 0.1, 0.1 >}

Suppose there are two patients P1 and P2 , with respect to all the symptoms, can be repre-
sented by the following SVNSs:

P1 = {< s1, 0.8, 0.1, 0.1 >,< s2, 0.6, 0.3, 0.1 >,< s3, 0.2,
0.0, 0.8 >,< s4, 0.6, 0.3, 0.1 >,< s5, 0.1, 0.3, 0.6 >}

P2 = {< s1, 0.0, 0.2, 0.8 >,< s2, 0.4, 0.4, 0.2 >,< s3, 0.6,
0.3, 0.1 >,< s4, 0.1, 0.7, 0.2 >,< s5, 0.1, 0.8, 0.1 >}

Our aim is to determine the patients P1 and P2 belong to which diagnosis of Qj (j =
1, 2, 3, 4, 5) , respectively. Because the medical diagnosis problem is actually a pattern recognition
problem, then we can use the diagnosis rule as follows: If k = argmax

1≤j≤5
{SR(Qj , Pi)}, then we

assign the patient P1 and P2 to the diagnosis Qk.

S(Q1, P1) = 0.9160, S(Q2, P1) = 0.9360,
S(Q3, P1) = 0.9000, S(Q4, P1) = 0.7220

and S(Q5, P1) = 0.6640,

S(Q1, P2) = 0.8103, S(Q2, P2) = 0.7259,
S(Q3, P2) = 0.8043, S(Q4, P2) = 0.8435

and S(Q4, P2) = 0.7553 Then, By the above diagnosis rule, we can assign the patient P1 to
the diagnosis Q2 (Malaria), and P2 to the diagnosis Q4 (Stomach problem). This result is in
agreement with the one obtained in De et al. [8].
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Example 5 (Multi-attribute decision making) We consider a MADM problem adopted from
Ye [33]. A manufacturing company wants to select the best global supplier form a set of four
suppliers A = {A1, A2, A3, A4} whose core competencies are evaluated according to the four
attributes O = {O1, O2, O3, O4}: o1 (the level of technology innovation) , o2 (the control ability
of flow), o3 (the ability of management) , o4 (the level of service). The attributes are all benefit
attributes. The weight vector for the four attributes determined by decision maker is

W = (w1, w2, w3, w4)T = (0.30, 0.25, 0.25, 0.20)T

Suppose that the evaluation value of the alternative Ai(i = 1, 2, 3, 4) with respect to oj(j =
1, 2, 3, 4) is a SNVN aij =< Tij , Iij , Fij > , which is obtained from a questionnaire of a domain
expert. For example, when we ask the opinion of an expert about an alternative A1 with respect
to an attribute o1 , he/she may say that the possibility in which the good statement is 0.5 and
the poor statement is 0.3 and the degree in which he/she is not sure is 0.1. For the neutrosophic
notation, it can be expressed as a11 =< T11, I11, F11 > . The evaluation values are listed in Table
2.

Table 2: Evaluation values of each alternative with respect to each attribute1

Alternatives o1 o2 o3 o4

A1 <0.75,0.2,0.3> <0.7,0.2,0.3> <0.65,0.2,0.25> <0.75,0.2,0.1>
A2 <0.8,0.1,0.2> <0.75,0.2,0.1> <0.75,0.2,0.1> <0.85,0.1,0.2>
A3 <0.7,0.2,0.2> <0.78,0.2,0.1> <0.85,0.15,0.1> <0.76,0.2,0.2>
A4 <0.8,0.2,0.1> <0.85,0.2,0.2> <0.7,0.2,0.2> <0.86,0.1,0.2>

Now, we will propose a decision making method based on the proposed similarity measure
to solve this problem and the detail steps is given as follows:

Step 1 Determine the ideal solution A∗ as follows:

A∗ = (< T ∗j , I
∗
j , F

∗
j >)1×4 = (< max

1≤i≤4
(Tij), min

1≤i≤4
(Iij), max

1≤i≤4
(Fij) >)1×4

Step 2 According to Eq. (4), calculate similarity measures between each alternative Ai(i =
1, 2, 3, 4) and the ideal solution A∗ as follows:

S(A1, A
∗) = 0.9859, S(A2, A

∗) = 0.9955, S(A3, A
∗) = 0.9919

and S(A4, A
∗) = 0.9942.

Step 3 According to the similarity measure values, the ranking order of the four suppliers
is A2 � A4 � A3 � A1. Hence, the best supplier is A2 , which is in agreement with the result
obtained by using weighted projection similarity and weighted Dice similarity methods( Ye [33]).

5 Conclusion

Neutrosophic sets are suitable to model the indeterminate and inconsistent information oc-
curred in many practical problems. In this paper, we have proposed a new Chi-square distance-
based similarity measure of SVNSs. The new proposed similarity measure is a valid similarity
measure and it can also overcome the counter-intuitive cases of the existing similarity measures
by using some numerical examples. We have given the applications of the proposed similarity
measure in pattern recognition and medical diagnosis. Furthermore, a multi-attribute decision
making method is proposed through an example in which attribute values are expressed with
SVNVs.
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As a prospect, the MADM method proposed in this paper could be applied to other MADM
problems, such as the risk evaluation, credit evaluation. In the future work, we shall extend the
proposed similarity to clustering analysis and image processing.
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