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Abstract: The automatic modulation classification (AMC) of a detected signal has gained consider‑
able prominence in recent years owing to its numerous facilities. Numerous studies have focused
on feature‑based AMC. However, improving accuracy under low signal‑to‑noise ratio (SNR) rates
is a serious issue in AMC. Moreover, research on the enhancement of AMC performance under low
and high SNR rates is limited. Motivated by these issues, this study proposes AMC using a feature
clustering‑based two‑lane capsule network (AMC2N). In the AMC2N, accuracy of the MC process
is improved by designing a new two‑layer capsule network (TL‑CapsNet), and classification time is
reduced by introducing a new feature clustering approach in the TL‑CapsNet. Firstly, the AMC2N
executes blind equalization, sampling, and quantization in trilevel preprocessing. Blind equalization
is executed using a binary constant modulus algorithm to avoid intersymbol interference. To extract
features from the preprocessed signal and classify signals accurately, the AMC2N employs the TL‑
CapsNet, in which individual lanes are incorporated to process the real and imaginary parts of the
signal. In addition, it is robust to SNR variations, that is, low and high SNR rates. The TL‑CapsNet
extracts features from the real and imaginary parts of the given signal, which are then clustered based
on feature similarity. For feature extraction and clustering, the dynamic routing procedure of the
TL‑CapsNet is adopted. Finally, classification is performed in the SoftMax layer of the TL‑CapsNet.
This study proves that the AMC2N outperforms existing methods, particularly, convolutional neu‑
ral network(CNN), Robust‑CNN (R‑CNN), curriculum learning(CL), and Local Binary Pattern (LBP),
in terms of accuracy, precision, recall, F‑score, and computation time. All metrics are validated in
two scenarios, and the proposed method shows promising results in both.

Keywords: automatic modulation classification; trilevel preprocessing; TL‑CapsNet; feature cluster‑
ing

1. Introduction
In wireless communication, the contribution of automatic modulation classification

(AMC) has grown dramatically because of its convenience in a wide range of applica‑
tions [1]. TheAMC technique reduces the overhead caused by sharingmodulation scheme
between transmitter and receiver [2]. For example, manymilitary applications demand au‑
tomatic detection ofmodulation schemes utilized by the signal from adversaries [3,4]. This
type of application also incorporates signal jamming and interception. As a result, AMC
plays an essential role in civilian and military applications regarding the recognition of
received signals. For instance, digital modulation classification (MC) methods have had
a paradigm shift from manual operational systems to automatic systems because of their
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several advantages. Manual modulation clarification (MMC) requires manual measure‑
ment of parameters of intercepted signals to recognize modulation types. In MMC, four
types of information, namely, intermediate frequency time waveform, average and instan‑
taneous spectra of signal, sound and signal, and instantaneous amplitude, are available
for the search operator. Manual analysis becomes problematic and inaccurate when the
number of interceptedmodulation types increases. Thismethod also requires experienced
analyzers and does not guarantee reliable classification results. However, these shortcom‑
ings can be addressed via AMC. AMC is more powerful than MMC because it integrates
an automatic modulation recognizer into an electronic receiver.

In prior works, two traditional processes have been executed to identify the modula‑
tion type of the received signal [5–7]. They aremaximum likelihood‑ and feature extraction‑
basedmodulation identification. Themaximum likelihood‑based classificationmethod ex‑
ecutes the likelihood function on the received signal [8]. Examples of systems that use this
approach are (i) faster maximum likelihood function‑based MC [9], (ii) expectation con‑
ditional maximization algorithm [10], and (iii) sparse coefficient‑based expectation maxi‑
mization algorithm [11].

Although the maximum likelihood‑based classification method provides an optimal
solution in AMC, it suffers from substantial computational complexity issues. It also de‑
mands the prior information of the transmitter. On the contrary, the feature‑based AMC
(FB‑AMC)method has less computation time and does not require prior information about
the transmitter. It relies on two significant processes, namely, feature extraction and clas‑
sification [7]. The higher‑order statistics (HOS) features present in the time domain were
considered by authors in [12,13] for MC. The authors in [14] introduced compressive sens‑
ing aided FB‑AMC, in which the cyclic feature was extracted to classify the modulation
type of the signal.

Machine learning (ML)‑based feature classification methods such as support vector
machine (SVM), K‑nearest neighbor (KNN), neural networks, and so on have been studied
inmany preceding papers associatedwithAMC. The authors in [15] utilized the long short‑
term memory (LSTM) algorithm to classify the modulation type of the given signal. The
deep hierarchical network‑based algorithm was exploited in [16] to perform effective MC.
The extreme learning machine algorithm was utilized to classify the modulation type of
the given signal in [17]. Reference [18] used a linear discriminant analysis (LDA) classifier
to detect the accurate modulation type of the signal acquired from the transmitter.

From the detailed literature review (discussed in Section 2), it can be seen that FB‑
AMC still faces drawbacks in the detection of accurate modulation type of the given signal.
The reasons are as follows:
• Significant preprocessing steps, such as blind equalization and sampling, are not con‑

sidered before MC.
• The lack of consideration of significant features, such as time and frequency, during

the feature extraction process leads to a reduction in accuracy in feature extraction
and classification.

• Most FB‑AMC methods cannot achieve high accuracy at low signal‑to‑noise ratio
(SNR) rate due to the lack of concentration in enhancing the performance ofML‑based
classification algorithms.
AMC has gained much interest owing to its wide range of applications, such as elec‑

tronic surveillance and electromagnetic signal monitoring. Nevertheless, it faces many dif‑
ficulties during modulation detection [19] because it does not utilize any prior knowledge,
such as channel state information, signal‑to‑noise ratio (SNR), and noise characteristics.
In the literature, many works have concentrated on feature‑based MC. However, they did
not consider effective preprocessing mechanisms to enhance the quality of the received
signal [20]. Likewise, ML‑based feature extraction and classification have been exploited
in many AMC‑related works. Still, they are insufficient in enhancing accuracy in high and
low SNR rates. Furthermore, ML‑based algorithms introduce complexity into MC [21].
Here, the machine learning algorithm uses high‑order cumulant features with standard
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decision criteria. This issue has been resolved by a few works in FB‑AMC. To address
these downsides in current AMC studies, a new AMC, called AMC by using two‑layer
capsule network (TL‑CapsNet) (AMC2N), is proposed. It has the following objectives:
• To increase the quality of the received signal, before the MC process;
• To increase the accuracy in feature extraction, even at a low SNR rate;
• To enhance the performance of ML‑based MC;
• To enhance the accuracy, during classification for low and high SNR rates.

To achieve improved performance in MC, our AMC2N method contributes the fol‑
lowing processes:
• This work presents a novel TL‑CapsNet model for the accurate classification of mod‑

ulation schemes. The proposed TL‑CapsNet differs from existing works by analyzing
the real and imaginary parts of received signals.

• Firstly, the AMC2N enhances received signal quality using a trilevel preprocessing
method. This work executes three processes, namely, blind equalization, sampling,
and quantization. The binary constant modulus algorithm (BCMA) is employed for
the blind equalization, which evades the intersymbol interference (ISI) of the signal.
Furthermore, sampling and quantization are performed to reduce aliasing effects and
the bits necessary to represent the given signal. This proposed preprocessing method
can enhance AMC accuracy.

• Secondly, a novel TL‑CapsNet is introduced to process the preprocessed signal. The
TL‑CapsNet has three major responsibilities, i.e., (i) feature extraction, in which the
TL‑CapsNet extracts all important features from the real and imaginary parts of the
signal in parallel; (ii) feature clustering, in which all extracted features are clustered
based on feature similarity factors in the TL‑CapsNet to boost the classification pro‑
cess; and (iii) modulation classification.
Finally, the performance of the AMC2N method is evaluated using five validation

metrics, including accuracy, precision, recall, F‑Score, and computation time. The simula‑
tion results are compared with those of existing methods.

The rest of this paper is organized as follows: In Section 2, we review prior works re‑
lated to FB‑AMC; in Section 3, we provide a signalmodel of the proposedAMC2Nmethod;
in Section 4, we explain the proposed AMC2N method with the proposed algorithms; in
Section 5, we elucidate the experimental evaluation of the proposed AMC2Nmethod; and
in Section 6, we conclude the contribution of this study and discusses future directions.

2. State‑of‑the‑Art Methods
This section reviews state‑of‑the‑art works associated with FB‑AMC. AMC systems

are generally divided into two groups. The first group is AMC without ML, in which
features are not extracted using ML techniques. The second group is AMC with ML, in
which features are extracted using ML techniques.

2.1. Automatic Modulation Classification (AMC) without Machine Learning (ML)
Ali et al. [22] applied principal component analysis (PCA) to the modulation scheme

classification of phase shift keying (PSK), frequency shift keying (FSK), and quadrature
amplitude modulation (QAM). The PCA method was used to extract features from the
received signal. Then, the feature vector from the PCA method was directly provided to
k‑nearest neighbour (k‑NN) and SVM classifiers. Features were generated by utilizing the
distinct characteristics of modulated signals in the ambiguity domain to classify the mod‑
ulation scheme of the given signal. The data used were at values of SNR equal to −4 dB
and 16 dB. Classification mean accuracy of 80%was achieved at −4 dB to 16 dB SNR range.
Nonetheless, PCA has the issue of information loss, and thus degrades the AMC perfor‑
mance. Kosmowski et al. [23] introduced the average likelihood ratio test (ALRT)‑based
AMC approach. A cumulant‑based approach was exploited to extract features, in which
higher‑order cumulant features were utilized in MC. On the basis of these features, the
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modulation scheme of the received signal was obtained. During simulation, this method
achieved mean accuracy of 75% at −5 dB to 20 dB. However, the probability of correct
classification (PCC) still needed high SNR to obtain high PCC, and this method required
a complex computation process.

A feature weighting (FW) method‑based AMC was proposed by Daldal et al. [24].
Twelve time‑domain features and four frequency‑domain featureswere extracted from the
received signal. Then, the features were fed into neutrosophic c‑means (NCM) clustering
to provideweights to each feature. Theweighted features were considered for theMCpro‑
cess. Five classifiers, namely, LDA, SVM, k‑NN, AdaBoostM1, and random forest, were
analyzed to detect the optimalmodulation scheme of the given signal. This study achieved
a mean of 83% in precision and recall and a mean of 88% in accuracy at 0 to 25 dB SNR
rate. Random forest was determined to be the best classifier for AMC. Nevertheless, this
method needed a complex computational process for constructing a decision tree, which
was highly difficult when the number of features increased. Daldal et al. [25] contributed
to the determination of modulation scheme by using time and frequency‑based informa‑
tion. The short‑term Fourier transform (STFT) algorithm was utilized to extract features
from the given signal, whilst the CNN algorithm was utilized to classify the extracted fea‑
tures. The proposed method successfully achieved mean accuracy of 92% at 0 to 25 dB.
However, this method lacked an effective preprocessing mechanism, such as blind equal‑
ization and quantization, which led to slow processing. This problem was due to the dif‑
ficulties introduced (such as intersymbol interference (ISI) and infinite values) during the
feature extraction process. Zhang et al. [26] introduced the modulation detection scheme
M‑QAM with the aid of the adaptive fuzzy clustering (AFC) model. Preprocessing was
performed before feature extraction. Then, features extracted were clustered using the
AFCmodel. From the clustered result, the modulation type of the given signal was finally
classified. The proposedmethod showed high accuracy of 93% at high SNR rate, i.e., 20 dB,
but produced ineffective results under low SNR rate, i.e., −10 dB.

Li et al. [27] introduced the FB‑AMC approach. Two types of feature sets, namely,
statistical and spectral features, were considered for modulation detection. Then, these
feature sets were processed into the SVM classifier to detect the modulation type of the
received signal. The result showed good recognition at low SNR with accuracy up to 90%.
Nonetheless, this method required a complex computation process due to the lack of ca‑
pability in handling large datasets in the SVM classifier. In another research, the cyclic
correntopy spectrum‑basedMC approach was introduced byMa et al. [28]. Cycle frequen‑
cies (CF) were utilized to classify the modulation type of the signal. These features were
processed via PCA before the modulation detection process. In the proposed research, a
radial basis function (RBF)‑based neural network was utilized to classify the modulation
type of the given signal. It achieved high accuracy above 90% at −5 dB to 10 dB SNR rate.
However, CF required a complex computation process and resulted in slow processing for
classification. In addition, the proposed method was not robust at low SNR because of the
slow performance of the RBF‑based neural network, given that every node in the hidden
layer needed to compute RBF for each input.

2.2. AMC with ML
Guan et al. [29] concentrated on utilizing an extensible neural network (ENN) to clas‑

sify the modulation scheme. The utilized ENN algorithm extracted features, such as am‑
plitude, frequency, and phase, by using its nonlinear function. It also considered the am‑
plitude, frequency, and phase information of the received signal during the demodulation
process. The PCC was 90% at 5 dB. Nevertheless, this method required complex computa‑
tion and showed low classification accuracy under low SNRvalues. These limitationswere
due to the large parameter computation in ENN‑based classification process, and thus in‑
creased complexity. Nihat et al. [30] introduced AMC under varying noise conditions. A
new deep LSTM network (DLSTM) was used to recognize the modulation type of the sig‑
nal. The modulated signals were directly given as input to the DLSTM network features
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that were firstly learnt, and then further classification processes were executed. The soft‑
max activation function was used to detect the modulation type of the signal. It achieved
97.22% success rate in the classification of noiseless modulated signals and 94.72% success
rate in the classification of noise‑modulated signals from 0 to 25 dB. However, the DLSTM
required high training time whilst classifying the modulation scheme of the signal. Long‑
term information was sequentially travelled through all cells to reach its processing cell.

Ali et al. [31] offered autoencoders (AEs) to classify themodulation scheme. Firstly, an
AEwas used to learn features from the given signal. The features learnt from the AE layers
were given as input to the softmax classifier. The features were extracted from in‑phase
and quadrature components of the signal. Then, the softmax classifier was used to classify
the modulation scheme. The recognition rates of BPSK, 4‑QAM, 16‑QAM, and 64‑QAM
were more than 90% when the SNR was greater than 5 dB. Nonetheless, the performance
of the AEs decreased for a large‑scale dataset due to high computation processes. Chieh‑
Fang et al. [32] exploited a channel compensation network (CCN) to detect themodulation
type of the signal. Polar features were learnt through polar transform. Then, the learnt
features were provided to the CCN to classify the modulation scheme of the given signal.
With the aid of the learnt features, CCN detected the modulation type of the signal. This
approach reduced the training overhead and improved the recognition process of signals.
However, it had low classification accuracy under low SNR ratio.

Sharan et al. [33] applied a fast deep learning (FDL)method to classify themodulation
type. Three deep learning (DL) architectures, namely, convolutional long short‑term deep
neural network, LSTM, and deep residual network (deep ResNet), were investigated to
achieve improved results in classification. The authors also analyzed the performance
of PCA in MC. The training complexity was reduced from the perspective of reducing
the input signal dimensions. Nevertheless, high accuracy of classification was achieved
when no dimension reduction of input signals at low SNR was performed. The accuracy
was low if the dimension reduction was high at low SNR. Xu et al. [34] offered MC of
the given signal. CNN architectures were used to learn features from the given signal,
and then classified them. The real part of the signal was considered for feature extraction
and classification. The learnt features were given as input to the softmax classifier for
the modulation‑type detection process. CCN was simplified to reduce the complexity of
training and improve the accuracy at low SNR.

Ali et al. [35] emphasized unsupervised feature learning and classification using a DL
model. The AE algorithm was exploited to learn features from the signal. The learnt fea‑
tures were given as input to a deep neural network, which defined themodulation scheme
of the given signal. Good classification accuracy was achieved. However, this technique
required high SNR to achieve high accuracy. Wang et al. [36] introducedMC by using ML
techniques. The features in the given signal were extracted via discrete wavelet transform
(DWT) and given as input to SVM. The modulation type of the given signal was detected
by considering extracted features. Nonetheless, this approach produced low performance
in feature extraction under low SNR ratio. Zhou et al. [37] proposed a capsule network
(CapsNet) for blind modulation classification. This paper addressed the main issue of
overlapped co‑channel signals. However, the conventional capsule network was unable
to process the large number of signals and features and had higher time consumption.

2.3. Research Gaps
The works reviewed in Sections 2.1 and 2.2 are summarized in Table 1. The table

indicates the information about the method utilized, as well as strength and research gaps
of the state‑of‑the‑art works.
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Table 1. Research strength and gaps of state‑of‑the‑artwork.

Types of AMC Methods Used Strengths Research Gaps

AMC without
ML Techniques

PCA [22] Rapid performance during classification Ineffective feature extraction process
because of information loss

ALRT [23] Enhanced accuracy under high and low
SNR rates (−5 dB to 20 dB) Long computation time

FW [24]

Efficiency in abnormal conditions, such
as ISI, because of effective preprocessing
steps, including noise removal and blind

equalization

Long computation time

STFT [25] Improved performance at high SNR rate
(5 dB to 20 dB)

Lack of effective preprocessing
mechanisms, such as blind

equalization and quantization
AFC [26] Fast feature extraction process Low accuracy under low SNR rate

FB‑AMC [27] Enhanced performance under
unstructured data Low scalability to large datasets

CF [28] Reduced over fitting during feature
extraction Long computation time

AMC with ML
Techniques

ENN [29] Easy detection of features Poor classification performance under
low SNR rate

DLSTM [30] Flexibility High training time

AE [31] Enhanced feature extraction
performance

Increased complexity of the ML‑based
classification algorithm

CCN [32] Fast processing Time consuming during classification

FDL [33] Minimal computational complexity Low classification accuracy under low
SNR rate

CNN [34] Good classification performance Low feature extraction performance
under low SNR rate

DL [35] Fast processing during feature extraction
and classification Not robust to SNR variations

ML [36] Minimal tedious process in classification Low performance in feature extraction

As shown in Table 1, AMC without ML techniques require minimal capacity and
memory. However, this type of methods lacks effective preprocessing mechanisms, such
as blind equalization and quantization, which are important to ease the feature extraction
and classification processes. AMC without ML also has high processing time and a com‑
plex computation process, and it produces ineffective results under SNR variations. On
the contrary, AMC with ML techniques is more flexible to improve its capability, allows
easy detection of features and has faster processing. Nevertheless, this type of techniques
produces low accuracy in feature extraction under low SNR rate. It also increases the com‑
plexity of ML.

2.4. Research Problems
The overall problem statement of this work is formulated as “lack of accurate feature

extraction and classification leads to inaccurate recognition of modulation schemes.” This
problem statement is derived from numerous studies that have contributed to FB‑AMC.
However, enhancing accuracy under low and high SNR rates is highly difficult because
of the lack of significant processes before the MC. Signal quality enhancement, essential
feature extraction, and reduction of the complexity of ML algorithms are disregarded dur‑
ing the classification process. The main problems of previous works can be summarized
as follows:
• Most of the works that utilize CNN for AMC are ineffective to deviations in input

signals and cannot capture the spatial information of the given signal, thus, affecting
the feature extraction efficiency and reducing the classification accuracy [38,39].

• Curriculum learning (CL) is used in some of the works, but it has low classification
accuracy at low SNR rate, thereby showing its inefficiency towards generalization.
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Training time is excessively high whilst predicting the modulation scheme of the
given signal (i.e., it trains StudentNet andMentorNet, of which StudentNet is trained
twice) [40].

• Feature extraction algorithms, such as LBP and DWT [41,42], have high false positive
results that lead to a reduction in classification accuracy. They also extract limited
features from the given signal that tends to degrade the efficacy of feature extraction.
Figure 1, demonstrates the proposedwork plan to be executed in this work. Here, the

main research problems addressed are connected with concerned solution. Overall, this
work is going to achieve better accuracy even in low SNR scenarios.
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3. Automatic Modulation Classification Signal
Inwireless communication systems, a digitallymodulated signal is represented as [43]:

𝔜 (𝑡) = 𝐼𝑐 + {𝑗𝑄𝑐𝑒𝑗(2𝜋(𝑓𝑐+∆𝑓)𝑡+∆𝜃)} (1)

where 𝐼𝑐 represents the inphase component, 𝑄𝑐 represents the quadrature component, 𝑓𝑐
represents the carrier frequency, ∆𝑓 denotes the carrier frequency offset, and ∆𝜃 repre‑
sents the phase offset. 𝑄𝑐 = 0 for ASK and FSK. Carrier frequency varies in FSK. The am‑
plitude of the modulated signal is static, and the phase is variable for PSK modulation
scheme. Hence, 𝐼𝑐 and 𝑄𝑐 components are changeable when |𝐼𝑐 + 𝑗𝑄𝑐| is constant in PSK
modulation. QAM is the integration of ASK and PSK modulations, in which amplitude
and phase are changeable.

Figure 2 depicts the communication systemmodel of the AMC process at the receiver.
In general, the deficiencies of the transmitter and receiver of the system introduce noise
during signal transmission. Among numerous noises, Rayleigh fading and additive white
Gaussian noise (AWGN) are the most common ones. AWGN does not cause phase off‑
set and amplitude attenuation on the transmitted signal. Hence, the received signal is
expressed as:

ℜ(𝑡) = 𝐼𝑐 + {𝑗𝑄𝑐𝑒𝑗(2𝜋(𝑓𝑐+∆𝑓)𝑡+∆𝜃) + 𝑛(𝑡)} (2)

where 𝑛(𝑡) represents the additive white noise, which obeys the zero mean Gaussian dis‑
tribution. This model is effective to portray the propagation of wired and communication
frequency signals.
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Rayleigh fading elucidates the Doppler shift and amplitude attenuation caused by
refraction, reflection, and relative motion between the transmitter and receiver in the pro‑
mulgation of a wireless signal. The received signal under this type of noisy environment
is represented as:

ℜ(𝑡) =
𝑛

∑
𝑙=1

𝐺𝑙(𝑡)(𝐼𝑐 + 𝑗𝑄𝑐)𝑒𝑗(2𝜋(𝑓𝑐+∆𝑓)(𝑡−𝜏𝑙(𝑡))+∆𝜃) + 𝑛(𝑡) (3)

where𝐺𝑙(𝑡) denotes the path gain of the transmitted path ‘l’ and 𝜏𝑙 represents the path gain
of ‘l’ delay.

This study focuses on the classification of sixmodulation schemes, namely, ASK, FSK,
QPSK, BPSK, 16‑QAM, and 64‑QAM. These modulation schemes are considered because
they are widely utilized in civilian‑ and military‑related applications [43].

4. Proposed AMC Using a Feature Clustering‑Based Two‑Lane Capsule
Network (AMC2N)

The design of the proposed AMC2N method is discussed in this section. This sec‑
tion is further segregated into multiple subsections for enhanced understanding of the
proposed concept.

4.1. Conceptual Overview
The aim of this study is to design a robust AMCmethod to provide improved results

under low and high SNR rates. To achieve this goal, AMC2N formulates four sequential
stages, namely, trilevel preprocessing, capsule‑based feature extraction, feature clustering,
and classification, as depicted in Figure 3.

In the first stage, three successive preprocessing steps, namely, blind equalization,
sampling, and quantization, are applied. This stage is specifically designed to enhance the
quality of the received signal. It executes the binary constant modulus algorithm (BCMA)
to perform blind equalization, which evades the ISI of the signal. Sampling and quantiza‑
tion processes are performed to reduce the aliasing effects and bits required to represent
the given signal.
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In the second stage, the TL‑CapsNet is used to improve feature extraction. To the best
of our knowledge, no existing AMC utilizes a TL‑CapsNet in FB‑AMC. The TL‑CapsNet
algorithm is employed because it demonstrates satisfactory performance under low and
high SNR rates. The preprocessed signal and estimated SNR value of the given signal are
provided as input in the proposed TL‑CapsNet. Seven essential features, namely, instan‑
taneous amplitude, instantaneous phase, instantaneous frequency, time‑domain features,
frequency‑domain features, transformation‑domain features, andHOS features (cumulant
and moment) are extracted. The features are extracted from the real and imaginary parts
of the preprocessed signal to obtain enhanced results in the modulation recognition pro‑
cess. The TL‑CapsNet uses two lanes to extract the features in parallel. Next, the extracted
features are clustered based on feature similarity. The neutrosophic c‑means (NCM) al‑
gorithm clusters the features from the real and imaginary parts of the signal. In general,
the real part of a signal has a group of data, that is, the real‑valued function, whereas
the imaginary part contains zero. It can be determined by using complex Fourier trans‑
form [44] on the received signal. In terms of the real and imaginary parts, the signal can
be represented as:

S = R + IR + (i)𝐼I (4)
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where R represents the real part and I represents the imaginary part. In addition, i = −1.
Thus, implementing the MC process is easy, because NCM reduces the vast feature set
of the signal. If a vast number of features are processed in the classifier, then, the perfor‑
mance of the classifier will degrade owing to the considerable amount of data processing.
This work concentrates on six modulation schemes, specifically, QPSK, BPSK, ASK, FSK,
16‑QAM, and 64‑QAM. Subsequently, the performance of the proposed method is eval‑
uated using six performance metrics, namely, feature extraction accuracy, classification
accuracy, precision, recall, F‑score, and computation time.

4.2. Trilevel Preprocessing
In FB‑AMC scheme, preprocessing, plays a vital role because signal transmitted from

the transmitter contains interference and noise, and thus degrades the performance of the
FB‑AMC system. Accordingly, the proposed AMC2N starts the process by improving the
signal quality via trilevel preprocessing procedures, namely, blind equalization, sampling,
and quantisation.

4.2.1. Blind Equalization
The main objective of blind equalization is to remove the ISI of the received signal,

for example, in wireless communications systems, ISI occurs frequently because of lim‑
ited bandwidth and multipath propagation [45]. The BCMA method is used to perform
equalization in the AMC2N method. BCMA is chosen because it has been proven to per‑
form better than the existing CMA method [46].

The BCMAmethod develops a new cost function and its iterative formula to eradicate
the errors introduced by traditional CMA, such as excess and steady‑state errors.

A received signal is expressed as [46]:

𝔵(𝑘) = 𝔥(𝑘) ⊗ 𝓈(𝑘) + 𝑛(𝑘) (5)

where 𝔥(𝑘) represents the channel impulse response, 𝓈(𝑘) represents the transmitted data
sequence, and 𝓈(𝑘) represents the noise.

To remove ISI, an equalizer is imposed on the received signal. The output acquired
from the proposed blind equalizer is approximated as follows:

y(𝑘) =
𝑧𝑒 − 1

∑
𝑧=0

w∗(𝑧)𝔵(𝑘 − 𝑧) = wℎ𝔵(𝑘) (6)

where 𝔵(𝑘) = [𝔵(𝑘), 𝔵(𝑘 − 1), … , 𝔵(𝑘 − 𝑧𝑒 + 1)] signifies the input signal vector of the equal‑
izer. The vector w = [𝑤(0), 𝑤(1), ..𝑤(𝑧𝑒 − 1)]

𝑇 denotes the blind equalizer tap coefficient.
The blind equalizer order is denoted as 𝑧𝑒. For each modulus value 𝑀𝑣, the respective
attained samples are expressed as follows:

𝜑 = {𝔵(𝑘)||wℎ𝔵(𝑘)|− 𝑀𝑣| ≤ 𝜁} (7)

where 𝜁 signifies the discriminate threshold, and 𝜁 = min{𝜁𝑛} represents the partial dis‑
criminate value between 𝑀𝑣 and the residual modulus values.

The cost function generated using the BCMA method is represented as:

min
w

(|wℎ𝔵𝑛(𝑘)| − 𝑀𝑣)
2 (8)

where 𝔵𝑛(𝑘) ∈ 𝜑 and 𝑀𝑣 are the modulus values of the constellation points.
The proposed BCMAmethod updates the cost functions by using the following equa‑

tion:

w𝑖+1 = w𝑖 − 𝛿(|wℎ
𝑖 𝔵𝑛(𝑖)| − 𝑀𝑣)

(wℎ
𝑖 𝔵𝑛(𝑖))∗

|(wℎ
𝑖 𝔵𝑛(𝑖)|

𝔵𝑛(𝑖) (9)
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where 𝛿 denotes the step size and the sample 𝔵𝑛(𝑖) represented in Equation (8) belongs to
the upcoming set:

𝜑𝑖 = {𝔵(𝑘)||wℎ
𝑖 𝔵(𝑘)|−𝑀𝑣| ≤ 𝜁} (10)

where 𝜑𝑖 signifies the group of utilized samples at the 𝑖𝑡ℎ iteration process.
All of the above‑mentioned processes and equations are utilized in the blind equaliza‑

tion process. The received signal is firstly processed with the blind equalization process
by using a blind equalizer before the decision‑making process is performed to remove the
ISI from the received signal.

4.2.2. Sampling
Sampling is performed to reduce the aliasing effect of the given signal. The sampling

signal provides the discrete time signal from the continuous time signal [47]. The notation
T signifies the time interval amongst the samples, then, the moment at which the samples
obtained are provided as 𝔑T, where 𝔑 = −2, − 1, 0, 1, 2. Hence, the discrete time signal
𝑥(𝔑) related to the continuous time signal is denoted as [47]:

𝑥(𝔑) = 𝑥(𝔑T) (11)

If a single sample occurs in each T second, then, the sampling frequency ℱ𝑠 is de‑
fined as:

ℱ𝑠 = 1
T

(12)

The sampling frequency can also be defined in terms of the radians denoted by 𝜛𝑠 as:

𝜛𝑠 = 2𝜋ℱ𝑠 = 2𝜋/T (13)

From these processes, the sampling of the received signal is conducted, in which the
discrete time signal is converted into a continuous signal. The values of the continuous
function for every T second are also measured.

4.2.3. Quantization
Quantization is a significant process in modulation recognition [48]. It produces a

received signal that has a range of discrete finite values. This study focuses on performing
nonuniform quantization because it provides less quantization error as comparedwith the
uniform quantization process [49]. We consider fixed signal

→𝑥 and utilize fixed positive
integer 𝜚. The Lloyd‑Max quantizer [50] is adopted; it exploits two sets of parameters, as
shown as follows:

• Bin boundaries
→
𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑛+1) with min

→𝑥 = 𝑏1 < … 𝑏𝑛 < 𝑏𝑛+1 = 1 +max
→𝑥

• Replacement values
→
𝑅𝑣 = (𝑅1, 𝑅2, … , 𝑅𝑛)

The quantization function changes 𝑥 values present in the bin (i.e., represented as
(𝑏𝑗 , 𝑏𝑗+1)) with the value of 𝑅𝑗 , which is expressed as [49]:

𝑄(𝑥𝑖) = 𝑅𝑗 ; where 𝑥𝑖 ∈ [𝑏𝑗 , 𝑏𝑗+1] (14)

The main goal of the Lloyd‑Max quantizer is to reduce the quantization error, which
is achieved via the following equation:

𝜀(
→
𝑏 ,

→
𝑅) =

𝑚

∑
𝑖=1

|𝑥𝑖 − 𝑄(𝑥𝑖)|
2 (15)

with these processes, the proposed Lloyd‑Max quantizer algorithm quantizes the received
signal, approximates the original signal, and separates the original signal from the added
noise. It eases the further feature extraction and classification processes.
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Figure 4 depicts the trilevel preprocessing steps. Briefly, blind equalization removes
unwanted ISI from the signal. Next, sampling and quantization are performed to reduce
aliasing and approximate the original signal. With the aid of these preprocessing proce‑
dures, the proposed AMC2N can improve the quality of received signals and enhance
MC performance.
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4.3. Two‑Layer Capsule Network (TL‑CapsNet)‑Based AMC
Feature extraction and classification play a vital role in theMCof a given system. Most

previous studies have concentrated on exploiting the CNN algorithm to extract features
from a signal. Nonetheless, CNN loses the spatial information of a given signal during
feature extraction, which leads to an inaccurate result in MC [51]. To solve this issue in
conventional CNN, this study proposes a TL‑CapsNet.

The TL‑CapsNet is a recent deep learning algorithm that functions better than con‑
ventional CNN in feature extraction and classification [52]. We improve a TL‑CapsNet by
designing a novel TL‑CapsNet architecture, as our work requires processing the real and
imaginary parts of a signal. The proposed TL‑CapsNet architecture is shown in Figure 5.

As shown in the figure, the input signal (modulated signal) is fed into our TL‑CapsNet
model. In the proposed model, the real and imaginary parts of the signal are processed in
two separate lanes, that is, the real lane and imaginary lane. Consideration of the real and
imaginary parts of the signal improves the robustness of the work in low SNR scenarios.
Each lane consists of a convolutional (Conv) layer, a convolutional capsule layer (with
PrimaryCaps), and a hidden caps layer (DigitCaps). The proposed TL‑CapsNet performs
the following major processes:
1. Feature extraction;
2. Feature clustering;
3. Classification.
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4.3.1. Feature Extraction
Unlike conventional CNN, the TL‑CapsNet considers spatial information during fea‑

ture extraction, which can lead to an improvement in feature extraction accuracy during
AMC. The dynamic routing process of the TL‑CapsNet assists in feature extraction. In gen‑
eral, dynamic routing is performed in the DigitCaps layer. As shown in Figure 5, the real
and imaginary parts and SNR of the signal are fed into the convolution layer of the TL‑
CapsNet. Next, a conventional integer encoding method is used for encoding. Encoding
is the process of converting each input signal into codes. Each input signal is mapped into
integer values. Next, the features in the signal are extracted in the primary caps, which
match the ultimate caps in the DigitCaps layer. Ultimate high‑level features can be ex‑
tracted from the signal (real and imaginary parts) by processing the signal in the primary
caps and DigitCaps. From the DigitCaps, we extract the features used in the NCM clus‑
tering. Figure 3 illustrates the proposed TL‑CapsNet for feature extraction. To the best
of our knowledge, this study is the first to exploit a TL‑CapsNet in FB‑AMC. The pro‑
posed TL‑CapsNet performs better than existing CNNs by producing an effective feature
extraction process, which does not lose any spatial‑related information of the signal [53].
The convolutional layer comprises 256 × 9 convolutional kernels and a rectified linear unit
(ReLU) activation function with stride 1. It primarily performs a convolutional operation
to extract low‑level features from the real and imaginary parts of a signal. After the low‑
level features are extracted, the output of the convolutional network is fed into two layers,
namely, the primary cap and digit cap. The primary capsule refers to multidimensional
entities at the lowest level and comprises the convolutional capsule layer incorporating 32
8D capsule channels individually for each primary capsule. The digit cap layer comprises
16D capsules for every digit class with 10 vectors.

It also requires less training time and data requirements to train the network. Further‑
more, the TL‑CapsNet can work under a new or unseen variation of a given input class
without being trained with the data. This capability is essential in the proposed MC, be‑
cause the received signal has large SNR rate variations (i.e., changes between low and high
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SNR rates). Thus, the proposed AMC2N can extract features under different SNR varia‑
tions. The SNR is computed by considering the signal power (𝑃𝑆 ) and noise power (𝑃𝑁 )
extracted from the received signal as (𝑆𝑁𝑅 = 𝑃𝑆 /𝑃𝑁 ). For the SNR calculation, this work
uses a conventional method, namely, split‑symbol moment estimation, which is discussed
in [54]. The SNR is estimated through the following formulation:

𝑆𝑁𝑅 = 𝑈 + − 𝑈 −

𝑈 − (16)

where 𝑈 + is the average total power and 𝑈 − is the average power of the signal, which can
be represented as:

𝑈 ± = 1
𝑁

𝑁

∑
𝑗=1

|𝑢
±
𝑗 |

2
(17)

The SNR is estimated for 𝑁 number of samples and 𝑗 ∈ 𝑁 . To extract features, the
proposed TL‑CapsNet considers input such as the preprocessed signal and estimated SNR
of the given signal. SNR information is given as input to the TL‑CapsNet to extract features
under different SNR variations and increase the robustness of the proposed AMC2N to
work within large SNR variations.

The TL‑CapsNet considers the real (𝔯𝑝) and imaginary (𝔗𝑝) parts of the preprocessed
signal. The real and imaginary parts of the signal are considered, because modulated sig‑
nals change in phase and amplitude information with respect to the shape of the constel‑
lation diagram. This variation affects the imaginary and real parts of a complex signal.
Thus, the proposed technique can work properly in such varied conditions by considering
both parts. In the TL‑CapNet, the dynamic routing procedure assists in the feature ex‑
traction. Feature extraction is performed by the PrimaryCaps. Furthermore, the features
are matched in the hidden caps layer through the dynamic routing process. The dynamic
routing process assists in providing the output of the primary capsules to the hidden cap‑
sules. The routing agreement works on the ability of the hidden capsules to predict the
parent’s output.

Dynamic routing is performed between the two successive capsule layers (i.e., the
primary cap and digit cap). It is exploited to resolve the issue in which a high‑rate capsule
transfers the output value of a low‑rate capsule. All routing logits denoted as 𝑘𝒰,𝒱 are ini‑
tialised as 0. The routing logits are updated by increasing the iteration level. The formula
for updating the routing logits is given in [51] as:

𝓀𝒰,𝒱 = 𝓀𝒰,𝒱 + �̂�𝒱 |𝒰 .𝔙𝒱 (18)

where:
�̂�𝒱 |𝒰 = 𝓊𝒱 |𝒰 × 𝒲𝒰𝒱 (19)

where �̂�𝒱 |𝒰 represents the predicted vectors from the capsule layer 𝒰 in the network, 𝓊𝒰
represents the output from the capsule layer, and 𝒲𝒰𝒱 represents the weighted matrix.

The total input in the first layer of the capsule is expressed as:

𝒮𝒰 = 𝒞𝒰𝒱 × �̂�𝒱 |𝒰 (20)

where 𝒞𝒰𝒱 signifies the coupling coefficient obtained during the iterative process using
the following equation:

𝒞𝒰𝒱 = 𝑒𝒞𝒰𝒱

∑𝑛
𝑖=1 𝑒𝒞𝒰𝑖

(21)

The pseudocode for the proposed TL‑CapsNet‑based feature extraction is given as
follows:

Pseudocode 1 depicts the processes involved in the capsule‑based feature extraction
and initializes the input and output nodes of the network. The aforementioned processes
are used to extract features from the real and imaginary parts of the signal. Seven fea‑
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tures, namely, instantaneous amplitude, instantaneous frequency, instantaneous phase,
time‑domain features, frequency‑domain features, transformation‑domain features, and
HOS features are extracted from the received signal using the TL‑CapsNet. HOS features
play a vital role inMC, because they are robust under different SNR rates, thereby, increas‑
ing the efficacy of the proposed capsule‑based feature extraction. Likewise, the extracted
instantaneous features are highly significant in MC, because they provide the accurate
condition of the received signal. On the basis of five primary features, this study further
introduces 15 subfeatures. These features are considered to attain enhanced results in the
classification process. Features are important to attain high accuracy during the classifica‑
tion process. The considered features are indicated in Table 2.

Pseudocode 1. Dynamic routing‑based feature extraction in TL‑CapsNet.

Require: 𝔯𝑝, 𝔗𝑝, SNR
Ensure: Extracted Features

Initialize→ nodes (input and output);
Add→ Edges of nodes using broadcasting;
Design two‑lanes
Divide 𝑆𝑖𝑔𝑛𝑎𝑙 into 𝔯𝑝 , 𝔗𝑝,
Compute SNR
For each lane
//Routing————
For all capsule 𝒰 in layer 𝑙 and capsule 𝒱 in layer (𝑙 + 1): 𝓀𝒰,𝒱 ← 0;
For (each iteration ℐ ) do

Compute→softmax function for all capsule 𝒰 in layer 𝑙;
Compute→softmax function for all capsule 𝒱 in layer
𝑙 + 1;

Update→weight 𝓀𝒰,𝒱 using Equation (15);
End for

Emit (𝔙𝒱 );

4.3.2. Feature Clustering
Once the features are extracted in the primary caps andmapped in the DigitCaps, the

features are clustered by computing similarity in the concatenate layer. In this stage, the
NCM clustering process is proposed to restructure and reorganize the extracted features
to improve the accuracy of the proposed AMC. If raw extracted features are directly given
to the classification, then, the SoftMax layer must process the raw features on its own. Its
performance could degrade if the features are affected by noises. Thus, clustering the fea‑
tures can help in grouping them into predetermined groups. In addition, this process can
group noises into one specific group. By providing substantial systematically processed
features, classification is believed to improve the classification of modulation schemes. As
previously mentioned, a limited number of works have focused on reducing the difficulty
faced by the classification module during modulation detection. In the present work, the
AMC2N concentrates on reducing AMC difficulties via the feature clustering process. The
clustering of feature vectors from real and imaginary parts is achieved by implementing
the NCM algorithm. The proposed NCM clustering method is chosen, because it has been
proven to demonstrate better performance than the fuzzy c‑means clustering algorithm in
terms of avoiding inaccurate results [24].

Pseudocode 2 describes the procedures involved in the feature clustering process us‑
ing the NCM algorithm. It requires three membership functions, namely, the truth set T𝑖,
indeterminate set I𝑖, and false set F𝑖. It initially estimates the cluster center by using the
following equation [24]:

𝐶𝑐 =
∑𝑛

𝑖=1 (𝜎1T𝑖)𝑚.𝑓𝑖
∑𝑛

𝑖=1 (𝜎1T𝑖)𝑚 (22)

where 𝜎1 represents the weight vector and 𝑚 denotes the constant value.
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Table 2. Feature description.

Features Subfeatures Formula [24]

Instantaneous Features
Amplitude 𝑋(𝑡) = 𝑎(𝑡)𝑐𝑜𝑠(𝜔0𝑡)
Phase 𝑋(𝑡) = 𝑎(𝑡) cos(∅𝑡)

Frequency 𝐹 (𝑡) = 𝑑
𝑑𝑡 ∅𝑡

Time‑domain Features

Variance 𝐹𝑣𝑎𝑟 = [𝑋(𝑡) − 𝐹𝑚]

Standard deviation 𝐹𝑠𝑡𝑑 = √
∑𝑛

𝑖=1(𝑋(𝑡)−𝐹𝑚)
2

𝑛−1

Skewness 𝐹𝑠𝑘𝑒𝑤 = ∑𝑛
𝑖=1(𝑋(𝑡)−𝐹𝑚)

3

(𝑛−1)𝐹 3
𝑅

Kurtosis 𝐹𝑘𝑢𝑟 = ∑𝑛
𝑖=1(𝑋(𝑡)−𝐹𝑚)

4

(𝑛−1)𝐹 4
𝑅

Frequency‑domain Features

Mean frequency 𝐹𝑚 = ∑ 𝑛
𝑖=1(𝑋(𝑡)

𝑛
Median frequency 𝐹𝑚𝑒 = ∑ 𝑛

𝑖=1 𝑋(𝑡)
2

Power bandwidth 𝐹𝑝 = ∑ 𝑛
𝑖=1(𝑝𝑋(𝑡)

𝑛
Zero cross rate 𝐹𝑧 =

𝑛
∑
𝑖=1

𝑠𝑔𝑛 𝑋(𝑡).𝑥(𝑡 + 1)

Transformation Features
Mean absolute value 𝐹𝑚𝑎 = 1

𝑛

𝑛
∑
𝑖=1

|𝑋(𝑡)|

Root mean square 𝐹𝑅 = ∑ 𝑛
𝑖=1(𝑋(𝑡)2

𝑛

HOS Features
Cumulant 𝐹𝑐𝑢 = 𝑙𝑜𝑔𝐸[𝑒𝑋(𝑡)]
Moment 𝐹𝑚𝑜 =

𝑛
∑
𝑖=1

𝑋(𝑡)
𝑡

Note: 𝑋(𝑡) is represented as signal series, where t = 1, 2, … , n.

Pseudocode 2. Feature clustering in TL‑CapsNet.

Require: T, I,F, 𝜎1, 𝜎2, 𝜎3
Ensure: Clustered features

Initialize→ T, I,F, 𝜎1, 𝜎2, 𝜎3 ;
For (each feature 𝑓𝑖 ∈ 𝑓𝑛) do

Estimate→Cluster center (𝐶𝑐) vector using Equation (22);
Estimate→ 𝐶𝑐𝑖 using Equation (23);
Update→ T𝑖 , I𝑖, F𝑖 using Equations (25)–(27) respectively;
𝑇 𝑀𝑖 = [T𝑖, I𝑖, F𝑖];
If (𝑇 𝑀𝑖 > 𝑇 𝑀)

Assign→ 𝑓𝑖 → 𝐶 𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ;
End If

If (|T𝑖+1 − T𝑖| < 𝜕)
Stop→Clustering Process;

Else
Continue→ 𝐶𝑐 estimation;

End If
End for

The proposedNCM algorithm formulates the objective function to form clusters. The
function is given as:

(T, I,F, 𝐶) =
𝑛

∑
𝑖=1

𝐶

∑
𝑗=1

(𝜎1T𝑖𝑗)𝑚.‖𝑓𝑖 − 𝐶𝑗‖2 + (𝜎2I𝑖𝑗)𝑚.‖𝑓𝑖 − ̂𝐶𝑐𝑖‖2 + 𝛼2(𝜎3F𝑖)𝑚.‖𝑓𝑖 − ̂𝐶𝑐𝑖‖2 (23)
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where ̂𝐶𝑐𝑖 is estimated with respect to the indices of the first and second largest values of
T𝑖𝑗 obtained via comparison using the following equation:

̂𝐶𝑐𝑖 =
𝐶𝑔𝑖 + 𝐶ℎ𝑖

2 (24)

where 𝐶𝑔𝑖 and 𝐶ℎ𝑖 are cluster members.
The first part of Equation (23) signifies the degree with respect to the main clusters,

whilst the second part of the equation represents the degree with respect to the cluster
boundary. The third part of the equation denotes the outlier or noise of the clusters.

The three membership functions are then updated using the following expressions:

T𝑖𝑗 = 𝓀
𝜎1

(𝑓𝑖 − 𝐶𝑐)
2

𝑚−1 (25)

I𝑖 = 𝓀
𝜎2

(𝑓𝑖 − ̂𝐶𝑐𝑖)
2

𝑚−1 (26)

F𝑖 = 𝓀
𝜎3

(𝛼)
2

𝑚−1 (27)

𝓀 = (
𝜌
𝑚)

1
𝑚−1 (28)

where 𝜌 signifies the constant parameter in the NCM clustering process.
With the aid of these processes, the proposed NCM algorithm clusters the features

from the real and imaginary parts. It initially estimates the cluster center, and then formu‑
lates the objective function to cluster the features extracted from the real and imaginary
parts of the signal. This study reduces the considerable feature set processing during clas‑
sification through clustering.

In Figure 6, NCM cluster‑based feature clustering is depicted. The features extracted
from each signal are clearly clustered into seven clusters. In the testing phase, comparing
the features with the cluster centers instead of comparing each feature is possible.
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4.3.3. Modulation Classification at Softmax Layer
After the feature clustering process in the concatenate layer, the signal is classified

in the SoftMax layer. The output vector of the capsule is constructed using the squash
function, which is expressed as:

𝔙𝒱 = ‖𝒮𝒰 ‖2‖𝒮𝒰 ‖
1 + ‖𝒮𝒰 ‖2‖𝒮𝒰 ‖

(29)

where 𝔙𝒱 represents the vector output of the capsule layer 𝒰 . It is expressed in a proba‑
bility manner; thus, it is adjustable between the values [0, 1]. Based on the squash function,
the SoftMax layer determines the output‑proposed modulation. The output is delivered
by the fully connected dense layer with 128 units. For each class, margin loss is computed.
For class 𝑘, the margin loss is given as:

𝑀𝐿𝑘 = 𝑇𝑘𝑚𝑎𝑥(0, 𝑚+ − 𝑣𝑘)
2 + 𝜆(1 − 𝑇𝑘)𝑚𝑎𝑥(0, 𝑣𝑘 − 𝑚−)

2 (30)

where 𝑇𝑘 is 1 if a sample is presented for class 𝑘 and 0 otherwise. All other variables are
the upper and lower bounds set in the range of [0, 1]. In this work, we consider 𝑚+ as 0.9
and 𝑚− as 0.1. In the decoder unit, the features are reconstructed, and reconstruction loss
is computed as follows:

𝑅𝐿 = 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑋, 𝑋′) (31)

Reconstruction loss is computed in terms of the mean squared error between the orig‑
inal signal 𝑋 and reconstructed signal 𝑋′. In our proposed TL‑CapsNet, the current ex‑
tracted features are compared with the cluster centroid, which is computed in the concate‑
nate layer to produce the final classification output. Involvement of the feature clustering
process in the TL‑CapsNet minimizes classification time by reducing comparisons made
among features. In Figure 7, we provide the detailed pipeline architecture of the proposed
work. When two nodes communicate with each other, the proposed AMC block is exe‑
cuted at the destination to identify the modulation scheme accurately.
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In summary, the proposed AMC2N technique firstly performs trilevel preprocessing,
namely, blind equalization, sampling, and quantization. ISI, aliasing, and noise in the re‑
ceived signal are removed to ease the proceeding processes. The proposed AMC2N tech‑
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nique extracts features from the real and imaginary parts of the signal using a TL‑CapsNet,
thereby, making the proposed AMC2N the first AMC technique to utilize a TL‑CapsNet in
three aspects. Firstly, features are extracted in parallel through two lanes for the real and
imaginary parts. Secondly, the extracted features are clustered in the concatenate layer
to boost the classification process. Lastly, the SoftMax layer classifies the benefits of the
algorithms included in the proposed AMC2N, which are summarized in Table 3.

Table 3. Benefits of the proposed algorithm in automatic modulation classification using a feature
clustering‑based two‑lane capsule network (AMC2N).

Algorithms Benefits

BCMA

This algorithm is used to reduce the ISI of the received signal. It enhances the
quality of the signal and exhibits improvement under heavy‑noise conditions.

These benefits can improve the performance of the feature extractor and
classifier.

TL‑CapsNet

This algorithm is used to improve feature extraction accuracy. It provides
enhanced performance under low and high SNR rate variations. It also
requires minimal data during training and consumes minimal processing

time. It considers the real and imaginary parts of a signal to enhance feature
extraction performance. Moreover, it considers the SNR of a given signal as

input to provide robust performance under SNR variations.
Accuracy of the modulation classification is improved through feature

clustering and modified loss function. Feature clustering also minimizes the
time for classification.

5. Result and Discussion
This section is dedicated to a description of the investigation of the performance of the

proposed AMC2N method by using the simulation results. To characterize the efficacy of
the proposed AMC2Nmethod, this section is further divided into three subtopics, namely,
experimental setup, result analysis, and research summary.

5.1. Experimental Setup
In this subsection, the simulation scenario of the proposed AMC2N method is dis‑

cussed. For evaluation purposes, this study generates simulated training and test signals
with 1024 samples for MC by using the parameters presented in Table 4. Signals with six
modulation schemes, namely, QPSK, BPSK, ASK, FSK, 16‑QAM, and 64‑QAM are gener‑
ated. In Table 5, the value of all parameters proposed method are included.

Table 4. Modulation.

Parameter Value

Carrier frequency 30 MHz
Sampling rate 1.25 MHz
Symbol rate 300 kHz

Number of symbol 1024

Table 5. Two‑layer CapsNet (TL‑CapsNet) algorithm parameters setting.

Parameter Value

Number of capsules 32
Activation function ReLU

Number of fully connected layers 3

The generated signals are incorporated with AWGN for SNR rates between −10 and
10 dB. The objective of incorporating AWGN is to evaluate the capability of the proposed
AMC2N to work under a noisy environment.
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To validate the performance of the proposed AMC2N approach, five performance
metrics, namely, accuracy, precision, recall, F‑score, and computation time, are consid‑
ered.

Accuracy (𝒜 ) is the most instinctual metric to measure the system performance. It
is measured by computing the ratio of the correctly estimated modulation scheme to the
original modulation scheme of the received signal. It can be approximated as follows:

𝒜 = 𝒯1 + 𝒯2
𝒯1 + 𝒯2 + ℱ1 + ℱ2

(32)

where 𝒯1 represents the true positive, 𝒯2 represents the true negative, ℱ1 represents the
false positive, and ℱ2 represents the false negative. As the work is about multi‑class classi‑
fication, we construct confusion matrix by considering actual class and predicted class for
all classes. Then, we compute the metrics from the confusion matrix.

Precision (𝒫 ) is one of the crucial metrics to measure the exactness of the AMC2N
approach. It is measured by estimating the ratio of the relevant MC result to the total
obtained modulation result. It is expressed as follows:

𝒫 = 𝒯2
𝒯1 + ℱ1

(33)

Recall (ℛ) is a significantmetric tomeasure the completeness of the proposedAMC2N
approach. It is estimated by calculating the total amount of the relevant MC results that
are actually retrieved. It is expressed in mathematical form as follows:

ℛ = 𝒯1
𝒯1 + ℱ2

(34)

F‑score (𝐹𝑆 ) validation is used to measure the accuracy of the test results. It is defined
as the joint evaluation of the precision and recall parameters. It is expressed as follows:

𝐹𝑆 = 2 ∗ 𝒫 ∗ ℛ
𝒫 + ℛ (35)

Computation time is essential to validate the efficacy of the proposed AMC2N ap‑
proach in terms of providing computational processing time that is as low as possible. It
is measured by considering time elapsed to complete the MC process.

5.2. Result Analysis
The simulation results of the proposed AMC2N are compared with those of exist‑

ing methods, in particular, CNN [38], R‑CNN [39], CL [40], and LBP [41]. The reason
behind selecting these methods for comparison is that the contributions of these methods
are similar to the contributions, i.e., preprocessing, feature extraction, and classification
of the proposed method. Table 6 describes the comparison of the existing methods with
their core intention, modulation scheme considered, performance under SNR variations,
and downsides. The notations of × and √ signify the poor and moderate performance,
respectively, of the existing methods under SNR variations.

All parameters are tested under two scenarios, as follows:
Scenario 1 (with varying SNR rates): In this scenario, the SNR range is varied, and

the number of samples is fixed. This scenario is considered to prove the efficacy of our
proposed work in varying SNR ranges, that is, low and high SNR scenarios from −10 dB
to 10 dB with an increasing step of 2 dB.

Scenario 2 (with varying sample numbers): In this scenario, the SNR value is fixed,
and the number of samples is varied. In this scenario, the efficacy of the proposed TL‑
CapsNet is tested using lowandhigh numbers of samples from25 to 200with an increasing
step of 25.
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Table 6. Comparison of extraction methods.

Core Intention Modulation Schemes
Considered for Evaluation

Performance under
SNR Variations Downsides

Low SNR High SNR

CNN [38]

To provide an
end‑to‑end
process in
FB‑AMC

2‑PSK, 4‑PSK, 16‑QAM,
16‑APSK, 32‑APSK, 64‑QAM × √

• Unrobust to SNR
variations

• Loss of spatial
information of the signal

R‑CNN
[39]

To create MC
robust to SNR
variations

ASK, FSK, PSK, QAM × √

• High difficulty during MC
• Lack of significant

features, including
instantaneous and time
features

CL [40] To introduce CL
into FB‑AMC ASK, FSK, PSK, QAM × √

• Considerable training
time

• Lack of essential
preprocessing steps

LBP [41]

To implement
LBP‑based
feature

extraction and
ML‑based

classification in
AMC

BPSK, QPSK,
8‑PSK, QAM × √

• Unoptimal features
extracted due to high false
positive result

• Slow classification process

5.2.1. Effect of Accuracy
Accuracy is examined in both scenarios to evaluate the efficacy of our proposedwork.

Feature extraction and classification accuracy is determined in both scenarios. The accu‑
racy of the proposed method is compared with that of existing methods, such as CNN,
R‑CNN, CL, and LBP. Figures 8 and 9 present the results of the percentage accuracy of the
feature extraction process for Scenarios 1 and 2.
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As presented in Figure 8, the proposed AMC2N approach demonstrates better per‑
formance than the existing methods in Scenario 1. The results show that the proposed
TL‑CapsNet demonstrates a high performance of more than 95% under low and high SNR
rates. The introduction of the real and imaginary parts of a given signal assists the pro‑
posed AMC2N to extract accurate features, which enhances the feature extraction perfor‑
mance. In general, in prior works, feature extraction is performed by neglecting the imag‑
inary parts of a signal, which is the reason behind low accuracy. In addition, we compute
the SNR as a feature and include it in the feature extraction process to improve accuracy.
As a result, performance is enhanced from 80% to 90% for −10 dB to −2 dB values and up
to more than 90% subsequently. The analysis shows that accuracy increases as the SNR
range increases. Similarly, when the SNR is reduced to lower than −10 dB, accuracy will
degrade. However, variation in the accuracy range is 16% for SNR variations. Thus, the
proposed AMC2N can maintain accuracy better than the existing methods even in low
SNR ranges. Moreover, the feature extraction performance of the other methods is poor.
This result can be attributed to their inefficiency in extracting features under low SNR rates
(i.e., feature extraction accuracy is less than 50% for an SNR from −10 dB to −2 dB). On
the basis of the results, the proposed method can successfully increase accuracy to a max‑
imum of 58% under low SNR rates and to 20% in high SNR rates as compared with the
other methods.

In Figure 9, the accuracy of the proposed and existing methods is compared in Sce‑
nario 2, that is, based on varying sample sizes. The sample size denotes the number of sam‑
ples considered for classification. The proposed method achieves better accuracy than the
existing methods. This result also supports the advantage of the proposed work processes
for the real and imaginary parts of the signal. Moreover, the proposed model can learn
more features than the existing methods. Thus, the proposed method achieves improved
accuracy up to 70% even with small sample sizes. Furthermore, the proposed work can
achieve feature extraction accuracy of over 45%, which is greater than that of the existing
CNN, R‑CNN, CL, and LBP models at 25 samples.

In Figure 10, classification accuracy is compared in Scenario 1, and as expected, the
proposed AMC2N is the best AMC method. It can successfully demonstrate accuracy of
more than 95% for all SNR rates. This result is observed, because feature extraction is a
significant classification process. Moreover, the proposed work attains superior accuracy
in feature extraction in both scenarios, which indicates that classification accuracy is like‑
wise improved. Feature clustering reduces classification complexity and helps improve
the performance of the proposed AMC2N. CNN, R‑CNN, and CL demonstrate a classifi‑
cation accuracy of only more than 75% for 8 dB and 10 dB SNR rates. The LBP method
produces the worst classification rate, in which classification accuracy for 8 dB and 10 dB
tested SNR rates is less than 72%. The existing methods demonstrate poor classification
accuracy as compared with the proposed AMC2N approach, especially under low SNR
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rates (i.e., accuracy of less than 50% from −10 dB to −2 dB SNR rates). These methods use
raw extracted features, which are large in number. This condition leads to an increment
in the model complexity of the existing methods, which affects their classification accu‑
racy. The main issue to note is that the proposed AMC2N method achieves accuracy of
up to 95%. The analysis shows that the proposed work achieves the objective of accurate
classification in low SNR scenarios. This result is obtained, because the proposed AMC2N
initially augments the received signal through optimum preprocessing steps. Next, the
noiseless signal is obtained and further processed for classification. In the classification,
the proposed TL‑CapsNet classifier considers the SNR range of the current signal as input.
In addition, the separation of the real and imaginary parts of the signal for feature extrac‑
tion improves accuracy. In general, the proposed AMC2N method successfully increases
the accuracy percentage by up to 59% under low SNR rates and up to 18% under high SNR
rates as compared with the existing methods.
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In Figure 11, classification accuracy is verified based on varying sample sizes. When
the sample size is small, the existing methods (i.e., CNN, R‑CNN, and so on) demonstrate
accuracy, as they require enormous amounts of samples for effective classification. In real
time, a signal is affected by noises, which are not processed in prior works. However, the
proposed work demonstrates accuracy higher than 65%, even with 25 samples, owing to
the involvement of optimum feature learning and feature clustering processes.
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In Figure 12, the accuracy confusion matrix for the proposed AMC2N is presented.
Most of the different types of modulation signals are classified correctly, which is above
90%. This result shows that the proposed AMC2N demonstrates high capability in classi‑
fying different types of modulation signals.
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5.2.2. Effect of Precision
Precision is measured in both scenarios to evaluate the efficacy of our proposed work.

The precision performance of the proposed AMC2N method is compared with that of the
existing methods. Figures 13 and 14 present the results of the precision percentage.
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Figures 13 and 14 show that the performance of the proposed AMC2N method is
better than that of the existing methods in both scenarios. This superiority is achieved via
our proposedmechanisms before theMC process. Our work initially improves the quality
of the received signal through trilevel preprocessing. Three preprocessing steps, namely,
blind equalization, sampling, and quantization, are performed to enhance the quality of
the received signal. The three processes remove ISI, aliasing, and noise from the signal. If
these deficiencies are removed from the received signal, then, signal quality is improved.
This process of enhancing received signal quality provides improved feature extraction
and classification results. Thus, performance is enhanced under the proposed work even
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for signals with low SNR rates. Moreover, we achieve improved results with small sample
amounts.
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The existing methods perform poorly as compared with our proposed work. In ad‑
dition, they lack effective preprocessing steps, such as blind equalization, sampling, and
quantization. Thus, the precisionmeasure is affected during the evaluation process. CNN,
R‑CNN, and CL achieve high precision of more than 80%, and LBP has a precision rate of
less than 80% at an SNR of 10 dB. These state‑of‑the‑art methods achieve less than 30% at
−10 dB and less than 85% at 10 dB. By contrast, our proposed method increases accuracy
by up to a maximum of 58% at −10 dB and a minimum of 20% at 10 dB as compared with
the existingmethods. Furthermore, our proposedwork achieves accuracy higher than 65%
with 25 samples.

5.2.3. Effect of Recall
The recall validation metric is measured by varying the sample size and SNR range

to prove the efficacy of the proposed work. The recall metric of the proposed method is
compared with that of the existing methods.

Figures 15 and 16 show that the recall performance of the proposed method is better
than that of the other methods, with varying SNR ranges and sample sizes. Substantial
features are required to achieve an improved recall result in AMC. Hence, our proposed
AMC2Nmethod extracts features from real and imaginary parts of the signal. Six different
features, namely, instantaneous features (amplitude, frequency and phase), time‑domain
features, frequency‑domain features, transformation‑domain features, and HOS features
are extracted. These features play a vital role in the classification of modulation schemes.
Among them, HOS features are robust to SNR variations, and thus can enhance classifica‑
tion performance.

The existing methods provide poor results in recall performance as compared with
the proposed work owing to their inefficiency in extracting effective features in the feature
extraction process. CNN, R‑CNN, CL, and LBP achieve recall lower than 30% when the
sample size is small and 50% under low SNR rates. In the worst scenario, the proposed
work demonstrates better performance than the existing works.
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5.2.4. Effect of F‑Score
The F‑score measure is evaluated in the two scenarios. The F‑score metric of the pro‑

posed method is compared with that of the existing methods.
Figures 17 and 18 show that the performance of the proposed work, in terms of the

F‑score measure, is better than that of the existing methods. This superiority is attributed
to our proposed similar feature clustering‑basedmodulation scheme classification process.
Clustering extracted features reduces the difficulty of the ML‑based classifier. We provide
input as the center value of each cluster feature, and thus avoid substantial feature process‑
ing in theML‑based classifier. Hence, our work enhances F‑score performance duringMC.
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The existing methods demonstrate poor F‑score performance as compared with the
proposed work owing to their poor performance in handling the substantial number of
features extracted from the given signal. They achieve less than 83% at an SNR of −10 dB
and more than 95% at an SNR of 10 dB. Moreover, they achieve more than 60% with low
sample amounts and 96% with high sample amounts. The proposed method increases F‑
score performance by up to a maximum of 26% at 10 dB and a minimum of 58% at −10 dB
as compared with the existing methods.

5.2.5. Effect of Computation Time
Computation time is measured by increasing the sample size considered in the clas‑

sification. The computation time of the proposed method is compared with that of the
existing methods.

As shown in Figure 19, the proposed method requires less computation time than
the existing methods. Our proposed TL‑CapsNet performs fast and reduces training time.
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Furthermore, involvement of the feature clustering process reduces the time needed to
classify the modulation scheme of the given signal. Our proposed model processes only
cluster center feature values, and thus requires less time as compared with vast feature
processing. Hence, our method reduces computation time as compared with the existing
methods.
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The existing methods require considerable computation time to implement the FB‑
AMC. They require 112ms for 25 samples and 312ms for 200 samples. Specifically, CL and
LBP need more than 500 ms for 200 samples. By contrast, our proposed method reduces
computation time to a maximum of 255 ms for 200 samples and a minimum of 72 ms for
25 samples as compared with the existing methods.

5.2.6. Impact of TL‑CapsNet in Results
This research introduces a new capsule‑based feature extraction procedure to boost

AMC accuracy. The results show that the proposed method achieves improved accuracy
and performs well even in low SNR scenarios. In this section, we compare the results of
our proposed work with those of the existing methods.

In the absence of a TL‑CapsNet, that is, with CapsNet, accuracy is low, specifically,
lower than 75%. By incorporating a TL‑CapsNet, accuracy can be improved by up to 96%.
In Table 7, we compare the proposed work with the base algorithms. At the same time, the
absence of NCM clustering directly affects feature extraction accuracy by up to 88%. This
accuracy level is achieved with the help of a TL‑CapsNet with reconstruction mechanisms.
Classification accuracy is also affected, as it relies on extracted features. In addition, the
feature clustering process directly affects computation time, that is, the proposed method
with a feature clustering process reduces computation time by up to 50 ms, which is 12 ms
less than that of the base algorithms. Overall, the proposed work achieves improved per‑
formance in terms of accuracy and time consumption.

5.2.7. Complexity Analysis
In this subsection, we analyse the complexity of the proposed AMC approach and

compare the complexitywith the existingworks. The comparison is summarized inTable 8.
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Table 7. Numerical result of proposed.

Method
Accuracy (%)

Precision (%) Recall (%) F‑Score (%) Computation
Time (ms)FE C

ACM2N with CapsNet 73 75 70 72 70 63
AMC2N without feature clustering 88 87.5 75 77 74 62

Proposed AMC2N 97 96.5 85 89 85 50

Table 8. Complexity analysis.

Method Complexity

Proposed AMC2N 𝑂(N+ 3)𝑁
ML 𝑂(𝑁𝑛) + 1

RCNN 𝑂(𝑁2) + 𝑂(𝑁)
CNN 𝑂(3𝑁 + 𝑁2)
LBP 𝑂(2𝑁 + 𝑁2)

The analysis summarizes the complexity of proposed and existing works. It can be
seen that the complexity of proposed approach is lower than the existing works. The com‑
plexity of the proposed work includes computations needed by preprocessing (𝑁 + 3) and
classification (𝑁). Thus, the proposed approach achieves promising outcomes with lower
complexity.

6. Conclusions
The contributions of AMC to digital wireless communication systems have increased

dramatically. This study aims to achieve improved MC accuracy under low and high
SNR rates. In this regard, a robust AMC method, namely, the AMC2N, is proposed. The
AMC2N executes four significant processes to achieve enhanced performance. Moreover,
preprocessing is executed to enhance the quality of the received signal by applying three
sequential processes, namely, blind equalization, sampling, and quantization. We design
a novel TL‑CapsNet that performs feature extraction, feature clustering, and classification.
Seven sets of significant features are extracted from the imaginary and real parts of the
signal, which are clustered to boost the classification. Finally, classification is performed
in the SoftMax layer with a modified loss function. It considers six modulation schemes
for classification, specifically, QPSK, BPSK, ASK, FSK, 16‑QAM, and 64‑QAM. The exper‑
iment results show that the proposed AMC method demonstrates superior performance.
The fusion of four important phases in the proposed work supports the improved effi‑
ciency. The acquired results are compared with those of existing methods (i.e., CNN, R‑
CNN, CL, and LBP) in terms of accuracy, precision, recall, F‑score, and computation time.
The results prove that the proposed AMC2Nmethod outperforms the existing methods in
all the metrics.
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