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Abstract: At present, there are many subways being constructed in many cities. In the construction of 

subways, an appropriate scheme is helpful to save cost and ensure the quality of the project. This paper 

attaches great importance to present a multi-criteria group decision-making (MCGDM) method to deal with 

selecting an appropriate construction scheme for subways. The process of selecting an appropriate 

construction scheme for subways is complex because it includes a great deal of fuzzy and uncertain 

information which can be presented by multi-valued neutrosophic numbers (MVNNs). In addition, in order 

to handle the interaction of inputs, an improved generalized multi-valued neutrosophic weighted Heronian 

mean (IGMVNWHM) operator is introduced. Subsequently, a new distance measure between two MVNNs is 

defined for deriving the objective criteria weights. Considering that decision-makers are not completely 

rational, we develop an improved multi-valued neutrosophic MULTIMOORA method based on prospect 

theory. Finally, an application example of selecting an appropriate construction scheme for a subway and the 

influence of parameter are described. In addition, the validity and advantages of the proposed method are 

proved by comparative analysis. 

Keywords: multi-criteria group decision-making, Heronian mean operator, MULTIMOORA, prospect theory, 

multi-valued neutrosophic sets 

1. Introduction 

Owing to quality of life improvements, a great deal of families have their own cars, and the problem of 

traffic jams grows more prominent. Subways have some advantages, such as convenience, speediness and 
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punctuality. Furthermore, selecting an appropriate construction scheme for subways is related to 

multi-criteria group decision-making (MCGDM). There are several criteria that should be considered, such 

as technology level, environmental condition, public intervention risk, and force of supervision. Existing 

studies for selecting suitable construction schemes often utilize real numbers to represent criteria values [1-3]. 

However, the uncertainty and intricacy of our real decision problems are a significant improvement, thus, the 

expression of evaluation information should be changed. We cannot present decision information only in 

crisp numbers any longer. 

To grapple with uncertainty and vagueness, Zadeh presented fuzzy sets [4]. Since then, there have been a 

great number of achievements in fuzzy sets [5-9]. However, fuzzy sets only consider membership functions, 

they cannot tackle more complex problems. Therefore, Atanassov presented intuitionistic fuzzy sets (AIFSs) 

[10-12], which include membership and non-membership degrees. AIFSs have been employed in neural 

networks [13, 14] and medical diagnoses [15]. Thereafter, AIFSs were employed in interval-valued 

intuitionistic fuzzy sets (AIVIFSs) [16]. Nevertheless, AIFSs and AIVIFS only solve the fuzzy information 

whose membership and non-membership degrees have only one specific number. For example, whether the 

decision-makers think a statement is true may be 0.5 or 0.6. To tackle this problem, hesitant fuzzy sets (HFS) 

were presented [17-19]. Afterward, the generalized hesitant fuzzy and dual hesitant fuzzy sets (DHFSs) were 

produced [20, 21]. 

Though AIFSs have been improved since their conception, they are not able to handle all kinds of 

uncertainties in real decision-making. Inconsistent and incomplete information cannot be approached by 

AIFSs. For example, decision-maker may hold that the statement is true (0.4) or that the statement is false 

(0.3), but the expert may also be unsure (0.3) [22]. To solve this problem, neutrosophic sets (NSs) were 

presented [23, 24]. At first, each section of NSs lies in 0 ,1     [25, 26]. However, it is difficult to utilize NSs 

in practice. Therefore, Sahin and Kucuk [27] presented single-valued neutrosophic sets (SVNSs). What’s 

more, a great deal of achievements have been accomplished in single-valued neutrosophic sets [28-30].  

However, decision-makers may be hesitant to provide every attribute value for each membership on SVNSs. 

For example, an expert may think statement is true (0.5 or 0.6), it is false (0.2 or 0.3) or they may be unsure (0.3 

or 0.4). Multi-valued neutrosophic sets (MVNSs) can be used to handle this problem. Liu et al. [31] firstly 

defined MVNSs and, at the same time, the weighted average (WA) and weighted geometric (WG) operator had 

been expressed. Then, Peng et al. [32] proposed a multi-valued neutrosophic qualitative flexible 

(QUALIFLEX) approach for MCDM. For the construction scheme selection of subways, the expert group 
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have different opinions due to their distinct professional backgrounds, and they may be hesitant to give each 

alternative evaluation information. Therefore, in this paper, we utilize MVNSs to depict the evaluation 

information.  

The aggregation operators play an important role in MCDM problem and a lot of researches have been 

produced in this field. The most commonly used aggregation operators are weight average (WA) operator 

and weight geometry (WG) operator [33, 34]. Furthermore, the interrelations of evaluation values should be 

taken into consideration. Several operators which can deal with this problem have been presented, such as 

power average (PA) operator [35] and Bonferroni mean (BM) operator [36]. Similar to these operators, 

Heronian mean (HM) operator has the same function. Numerous researchers explored HM operators [37, 38]. 

Liu et al. [39] brought HM operators into NSs to expand the scope of its use. Then, based on the lack of 

idempotency in existing HM operators, Peng et al. [40] introduced the improved generalized weighted HM 

(IGWHM) operator and improved generalized weighted geometric HM (IGWGHM) operator. Furthermore, 

HM operators were extended into neutrosophic hesitant fuzzy sets [41]. To deal with some unreasonable 

evaluation values, Liu et al. [42] combined power operators with HM operators. Considering the interactions 

between experts when selecting construction scheme for subways, it is necessary to introduce HM operator 

into this MCGDM problem.  

In the process of practical application, the theoretical methods related to MCGDM often encounter the 

same problem, and the evaluation results obtained by different evaluation methods are different. This kind of 

problem about the robustness of decision-making analysis has attracted the attention of many scholars [43]. 

In order to gather the advantages of different evaluation methods, MULTIMOORA method was proposed 

[44]. Because the MULTIMOORA method includes three different decision-making methods, 

MULTIMOORA method is more robust than MOORA method [45]. At present, the MULTIMOORA method 

has been extended into AIFSs [46], HFS [47] and NSs [48]. It also has been applied into personnel selection 

[49], supplier selection [50] and quality management [51], etc. But, existing studies about MULTIMOORA 

method seldom consider the bounded rationality of decision-makers and has not been extended into MVNSs. 

On the basis of the above analysis, the contributions of our research are listed below: 

(1) MVNSs are adopted to express the assessments of decision-makers, and improved generalized 

multi-valued neutrosophic weighted Heronian mean (IGMVNWHM) operator is presented for 

aggregating the evaluation matrix to deal with the interactions of inputs.  

(2) A new distance measure between two multi-valued neutrosophic numbers (MVNNs) is defined. Then, a 

distance-based method for deriving the objective criteria weights is developed.  
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(3) This paper extends the MULTIMOORA method into MVNSs. In addition, we present an improved 

multi-valued neutrosophic MULTIMOORA method based on prospect theory 

(IMVN-PT-MULTIMOORA). This method can solve practical decision-making problem effectively 

because it considers that the decision-makers are not completely rational.  

The rest of the paper is organized below. In Section 2, some basic theories are stated. In Section 3, 

IGMVNWHM operator, distance measure and IMVN-PT-MULTIMOORA method are presented. 

Subsequently, a solution framework for multi-valued neutrosophic MCGDM (MVN-MCGDM) problem is 

presented in Section 4. In Section 5, illustrative example, influence of the parameter analysis and comparative 

analysis are conducted. In Section 6, some conclusions are drawn. 

2. Preliminaries   

2.1 MVNSs 

Definition 1 [52, 53]. Let X  be a space of points (objects) , with a generic element in X  denoted by 

x . A MVNS A  in X  is  

{ ( ), ( ), ( ) )},A A AA x T x I x F x x X   

where AT  is the truth-membership function, AI  is the indeterminacy-membership function, and AF  is the 

falsity-membership function.  ，  and  , respectively to represent any real values in ,A AT I  and AF , 

satisfying 0 1   ，， . # , # #A A AT I and F  are the numbers of all elements in ,A A AT I and F . 

If there is just one element in X , then A  can be called a MVNN, and A  is represented by , ,A A AT I F ; if 

,A AT I  and AF  only have one value , then the MVNN will be reduced to a SVNN. 

Definition 2 [54, 55]. Let { ( ), ( ), ( ) )}A A AA x T x I x F x x X   and { ( ), ( ), ( ) )}B B BB x T x I x F x x X   

be two MVNNs. Also let x X  , all values in ( ), ( ) ( )A A AT x I x and F x  be ranked in ascending order. 

,i i iand    are the i-th value in ( ), ( ) ( )T x I x and F x . Then, we have: A B  if k k

A B  , #T #T

A B  , 

l l

A B  , #I # I

A B  , m m

A B   and #F #F

A B  , where 1, 2, , #k T , 1, 2, , #l I , 

1, 2, , #m F , and # min(# ( ), # ( ))A BT T x T x , # min(# ( ), # ( ))A BI I x I x , # min(# ( ), # ( ))A BF F x F x . 

Definition 3. Let , ,A A AA T I F  and , ,B B BB T I F  be two MVNNs, and 0  . The algebraic 

operations can be defined as follows: 
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(1) 

,

,

,

{ },

{ }, ;

{ }

A A B B

A A B B

A A B B

A B A BT T

A BI I

A BF F

A B

 

 

 

   

 

 

 

 

 

 

   

(2) 

,

,

,

{ },

{ },

{ }

A A B B

A A B B

A A B B

A BT T

A B A BI I

A B A BF F

A B

 

 

 

 

   

   

 

 

 

   

 

; 

(3) 

1 (1 ) ,

, ;

A A

A A

A A

AT

AI

AF

A















 









 

  

(4) 

{( ) },

{1 (1 ) },

{1 (1 ) }

A A

A A

A A

AT

AI

AF

A





 



















  

 

. 

2.2 HM operators  

HM operators can tackle interrelationships among the aggregated arguments. In this subsection, two 

definitions of extending HM operators are introduced below. 

Definition 4 [56, 57]. Let ,[0,1], , 0, :s t ns t P     , and then, the generalized Heronian mean 

operator is defined as follows:  

 

1

1 2

1

2
( , , , ) ,

( 1)

m m s t
s t

m h k

h k h

GHM z z z z z
m m



 

 
  

 
   (1) 

Definition 5. Let , 0s t  , and ( 1,2, , )hz h m  be a set of nonnegative numbers.  1 2, , ,
T

mQ q q q  

is the weight vector of ( 1,2, , )hz h m , and satisfies 0hq   and 
1

1
m

hh
q


 . Then, IGWHM operator is 

defined below:  

 

 

1

, 1
1 2 1

1

( )
( , , ) .

( )

m m s t s t
h k h ks t h k h

n
m m

s t
h kh k h

q q x x
IGWHM z z z

q q



 



 


 

 
  (2) 

2.3 The MULTIMOORA method 

Let  1 2, , , mA A A A  be a collection of schemes, 1 2{ , , , }nC C C C  be a set of criteria. ij m n
V v


     
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represents original evaluation matrix, where ijv  denotes attribute information for scheme 
iA  under attribute 

jC . In order to facilitate comparison, it is necessary to normalize V  and obtain normalized evaluation matrix 

* *

ij m n
V v


    .  

 
*

2

1

.
ij

ij
m

iji

v
v

v





  (3) 

(1) The ratio system method 

The comprehensive evaluation value of each scheme is derived from the following equation: 

 
* * *

1 1

,
g n

ij ij

j j g

y v v
  

     (4) 

where g  and n g  represents the number of benefit and cost criterion, respectively. 

  The best alternative can be obtained by the following formula:  

  * *max .i i
i

A A y   (5) 

(2) The reference point method 

Firstly, each optimal reference point of criterion is obtained below: 

 

*

*

*

max ,
.

min ,

ij
i

j

ij
i

v j g
r

v j g

 


 


  (6) 

  Then, comprehensive evaluation value of each scheme is derived from the following formula: 

 
* * *max ,i j ij

j
z r v    (7) 

where 
* *

j ijr v  represents deviation of each attribute value from reference point. 

  Finally, the best alternative can be obtained as follows: 

  * *min .i i
i

A A z   (8) 

(3) The full multiplicative form method 

 The comprehensive evaluation value of each scheme is derived from the following equation: 

 

*

1*

*

1

,

g

ijj

i n

ijj g

v
u

v



 





  (9) 

where 
*

1

g

ijj
v

  represents the product of benefit criterion and 
*

1

n

ijj g
v

   represents the product of cost 

criterion.  

  Then, the best alternative can be obtained as follows: 
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  * *maxi i
i

A A u   (10) 

2.4 Prospect theory 

  The prospect theory was developed by modifying the theory of maximum subjective expected utility [58]. 

The first phase of this theory is processing and reference point selection. The next phase is to judge and 

calculate information by value function and weight function. Such a decision-making process can reflect the 

limited rationality of the decision-maker.  

  The core of prospect theory is prospect value. It is expressed below: 

 
1

( ) ( ),
n

i i

i

V p v x


    (11) 

while ( )p  represents the probability weight function considering risk attitude and ( )iv x  indicates the 

value function formed by the decision-maker's subjective feelings.  

  The probability weight function ( )p  and value function ( )iv x  are expressed as follows: 

 

1

1

, 0

( (1 ))
( ) ,

, 0
( (1 ) )

p
x

p p
p

p
x

p p



  



  




 

 
 


 


 

  (12) 

 
( ) , 0

( )
( ) , 0

x x
v x

x x





   
 

   
，  (13) 

while x  represents the difference between the decision criterion value and the reference point, and   

represents risk attitude coefficients. 0 , 1   , the greater the value of both of them, the more risk-taking 

decision-makers are.   represents loss avoidance coefficient. 

3. Methodology  

In this section, firstly, we propose the IGMVNWHM based on the IGWHM operator. Then, some 

properties about aggregation operator are presented. Secondly, a new distance measure between two MVNNs 

is defined. Finally, according to the prospect theory, an IMVN-PT-MULTIIMOORA method is presented for 

dealing with MCGDM problem.  

3.1 IGMVNWHM operator 

Definition 6. Let , 0s t  , and , , ( 1,2, , )h h h hT I F h m    be a set of MVNNs with the weights 

 1 2, ,
T

mQ q q q , satisfying 0hq   and 1hq  , and then the IGMVNWHM operator is defined as 
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follows: 

 

1

, 1
1 2

1

( )
( , , ) ,

m m s t
s t

h k h k
s t h k h

m m m

h kh k h

q q
IGMVNWHM

q q



 

 

 
    

     
 
 
 

  (14) 

According to the algebraic operations in section 2.2, the following theorems can be obtained. 

Theorem 1. Let , 0s t  , and , , ( 1,2, , )h h h hT I F h m    be a set of m  elements. 

 1 2, ,
T

mQ q q q  are the weights of all elements, satisfying 0hq   and 1hq  , ,
h hA A   and 

hA , 

respectively representing all elements in ,
h hA AT I  and 

hAF ; and with ,
h hB B   and 

hB respectively 

representing all elements in ,
h hB BT I  and 

hBF . Then, the value aggregated by Eq. (14) is still an MVNN, and  

 

1

1

,

1 2

1
1

,
1

1
1

,
1

1

( , , )

{(1 ( (1 ) ) ) },

{1 (1 ( (1 (1 ) (1 ) ) ) ) },

{1 (1 ( (1 (1 ) (1 ) )

m m

h kh k h k h

h h k k

m m

h kh k h k h

h h k k

h k

s t

m

m m
q qq qs t s t

h kT T
h k h

m m
q qq qs t s t

h kI I
h k h

m m
q qs t

h k

h k h

IGMVNWHM

 

 

 

 

 

 

 



 
 



 
 

 

   

  

     

    





 1

1
1

,

,

) ) }
m m

h kh k h

h h k k

q q
s t

F F 

  

 

 

  (15) 

Proof.  

{ }, {1 (1 ) }, {1 (1 ) }
h h h h h h

s s s s

h h h hT I F  
  

  
      , 

{ }, {1 (1 ) }, {1 (1 ) } .
k k k k k k

t t t t

k k k kT I F  
  

  
       

Then 

 

,

,

,

{1 (1 ) },

{(1 (1 ) (1 ) ) }, .

{(1 (1 ) (1 ) ) }

h k

h h k k

h k

h h k k

h h

h h k k

q qs t

h kT T

q qs t s t

h k h k h kI I

q qs t

h kF F

q q

 

 

 

 

 

 

 

 

 

 

     

  

  (16) 

(1) If 2m  , based on Eq. (14) and Eq. (16), we can determine that 

1
2 2

, 1
1 2

1

1

1 1 1 1 1 2 1 2 2 2 2 2

2 2

1

( )
( , )

,

s t
s t

h k h k
s t h k h

m m

h kh k h

s ts t s t s t

h kh k h

q q
IGMVNWHM

q q

q q q q q q

q q



 

 



 

 
    

    
 
 

        
 
 
 

 

 
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and  

1 1 1 2 2 2

1 1 2 2

1 1 1 2 2 2

1 1 2 2

1 1

1 1 1 1 1 2 1 2 2 2 2 2

1 1 1 2 2 2,
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 
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      



 





1

1 1 2 2

1
12 2

,
1

.

(1 ( (1 (1 ) (1 ) ) ) ) }
m m

h kh k h k h
q qq qs t s t

h kF F
h k h

 
    

 
 

    

 

(2) Assuming Eq. (15) holds for m g , we can obtain  

1

1

1

,

1 2
1

1

1
1

,
1

1
1

,
1

1
( , , ) ( ( ))

{(1 ( (1 ) ) ) },

{1 (1 ( (1 (1 ) (1 ) ) ) ) },

g g

h kh k h k h

h h k k

g g

h kh k h k h

h h

g g
s t s t s t

g h k h kg g
h k h

h kh k h

g g
q qq qs t s t

h kT T
h k h

g g
q qq qs t s t

h kI
h k h

IGMVNWHM q q
q q

 

 

 

 

 

 



 

 



 
 




 

       

  

     

 





1

1
1

,
1

.

{1 (1 ( (1 (1 ) (1 ) ) ) ) }

k k

g g

h kh k h k h

h h k k

I

g g
q qq qs t s t

h kF F
h k h

 
   





 
 

     

 

When 1m g  , according to Definition 3. Let , ,A A AA T I F  and , ,B B BB T I F  be two MVNNs, 

and 0  . The algebraic operations can be defined as follows: 

11 1
,

1 2 1 1 1
1

1

11

1 11 1
1 1

1

1
( , , , ) ( ( ))

1
( ( ( ) )) .

g g
s t s t s t

g g h k h kg g
h k h

h kh k h

g g g
s t s t s t

h k h k h g h gg g
h k h h

h kh k h

IGMVNWHM q q
q q

q q q q
q q

 


  
 

 




  
  

 

        

        

 

 

 

Then  
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1

1

1

1 1
1 1

1

1,
1 1

1

1,
1 1

( ) )

(1 (1 ) (1 ) ,

(1 (1 ) (1 ) ) (1 (1 ) (1 ) ) ,

(1 (1 ) (

h gh k

h h k k

h gh k

h h k k

g g g
s t s t

h k h k h g h g
h k h h

g g g
q qq qs t s t

h k h gT T
h k h h

g g g
q qq qs t s t

h k h gI I
h k h

s

h

q q q q

 

 

   

   









 
  



 
  



 
 

       

  

      

 

 

 

1

1

1,
1 1

.

1 ) ) (1 (1 ) (1 ) ) h gh k

h h k k

g g g
q qq qt s t

k h gF F
h k h

 
   



 
 

    

 

Further 

1 1

1

1 1

1

,

1 2 1

1
11 1

,
1

1
11 1

,
1

( , , )

{(1 ( (1 ) ) ) },

{1 (1 ( (1 (1 ) (1 ) ) ) ) },

{1 (1 ( (1 (1 ) (1

g g

h kh k h k h

h h k k

g g

h kh k h k h

h h k k

s t

g

g g
q qq qs t s t

h kT T
h k i

g g
q qq qs t s t

h kI I
h k h

s

h

IGMVNWHM

 

 

 

 

 

 

 

 

 



 



 
 

 



 
 

  

  

      

    





1 1

1

1
11 1

,
1

.

) ) ) ) }
g g

h kh k h k h

h h k k

g g
q qq qt s t

kF F
h k h

 

 

 

 



 
 

 


 

i.e., Eq. (15) holds for 1m g  . Thus, Eq. (15) holds for all m . 

Therefore  

1

1

1

,

1 2
1

1

1
1

,
1

1
1

,
1

1
( , , ) ( ( ))

{(1 ( (1 ) ) ) },

{1 (1 ( (1 (1 ) (1 ) ) ) ) },

m m

h kh k h k h

h h k k

m m

h kh k h k h

h h

m m
s t s t s t

m h k h km m
h k h

h kh k h

m m
q qq qs t s t

h kT T
h k h

m m
q qq qs t s t

h kI
h k h

IGMVNWHM q q
q q

 

 

 

 

 

 



 

 



 
 




 

       

  

     

 





1

1
1

,
1

.

{1 (1 ( (1 (1 ) (1 ) ) ) ) }

k k

m m

h kh k h k h

h h k k

I

m m
q qq qs t s t

h kF F
h k h

 
   





 
 

     

 

 

In addition, there are some properties of IGMVNWHM operators. 

Theorem 2 (Monotonicity). Let , ,
h h hh A A AA T I F  and , , ( 1,2, , )

h h hh B B BB T I F h m   be two sets 

of MVNNs. If h hA B  for all h , ,
h h h hA B A B      and 

h hA B  , then  

 
, ,

1 2 1 2( , , ) ( , , ),s t s t

m mIGMVNWHM A A A IGMVNWHM B B B   (17) 

where ,
h hA A   and 

hA  respectively represent all elements in ,
h hA AT I  and 

hAF ; ,
h hB B   and 

hB
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respectively represent all elements in ,
h hB BT I  and 

hBF . 

Proof  

Since 
h hA B   for all h , and , 0s t  , we have 

1 1

, 1 1 ;

(1 ) (1 ) .

h k h k h k h k

h k h k

h k h k

s t s t s t s t

A A B B A A B B

m m m m
q q q qs t s t

A A B B

h k h h k h

       

   
   

       

     
 

Therefore  

11

11
1 1

1 1

(1 ( (1 ) ) ) (1 ( (1 ) ) ) .
m mm m

h kh kh k h k h k hh k h

h k h k

m m m m
q qq qq q q qs t s ts t s t

A A B B

h k h h k h

        

   

           

(1) Since 
h hA B   for all h , and , 0s t   , we can derive  

(1 ) (1 ) , (1 ) (1 ) .
h k k

s s t t

h B A B          

And  

1 1

1 (1 ) (1 ) 1 (1 ) (1 ) ;

(1 (1 ) (1 ) ) (1 (1 ) (1 ) ) .

h k h k

h k h k

h k h k

s t s t

A A B B

m m m m
q q q qs t s t

A A B B

h k h h k h

   

   
   

      

       
 

Therefore 

1 1

1 1
1 1

1 1

1 (1 ( (1 (1 ) (1 ) ) ) ) 1 (1 ( (1 (1 ) (1 ) ) ) ) .
m m m m

h k h kh k h kh k h h k h

h k h k

m m m m
q q q qq q q qs t s ts t s t

A A B B

h k h h k h

       

   

                

(2) According to (1), it is not difficult to prove  

1 1

1 1
1 1

1 1

1 (1 ( (1 (1 ) (1 ) ) ) ) 1 (1 ( (1 (1 ) (1 ) ) ) ) .
m m m m

h k h kh k h kh k h h k h

h k h k

m m m m
q q q qq q q qs t s ts t s t

A A B B

h k h h k h

       

   

                

Based on (1)-(2), we can obtain  
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1

1

1

1
1

,
1

1
1

,
1

1

1

(1 ( (1 ) ) )

1 (1 ( (1 (1 ) (1 ) ) ) )

1 (1 ( (1 (1 ) (1 ) ) )

m m

h kh k h k h

h kA A A Ah h k k

m m

h kh k h k h

h kA A A Ah h k k

m m

h kh k h k h

h k

m m
q qq qs t s t

A AT T
h k h

m m
q qq qs t s t

A AI I
h k h

m m
q qq qs t

A A

h k h

 

 

 

 

 

 

 

 



 
 



 
 

 

   

     

    







1

1

1

,

1
1

,
1

1
1

,
1

)

(1 ( (1 ) ) )

1 (1 ( (1 (1 ) (1 ) ) ) )

1 (1 ( (1 (1 ) (1 ) ) )

A A A Ah h k k

m m

h kh k h k h

h kB B B Bh h k k

m m

h kh k h k h

h kB B B Bh h k k

h k

h k

s t

F F

m m
q qq qs t s t

B BT T
h k h

m m
q qq qs t s t

B BI I
h k h

q qs t

B B

k

 

 

 

 

 

 

 

 



 



 
 



 
 





   

     

    





1

1
1

,
1

.

)
m m

h kh k h

B B B Bh h k k

m m
q q s t

F F
h h

 
  

 
 

 

 

i.e., 
, ,

1 2 1 2( , , ) ( , , ).s t s t

m mIGMVNWHM A A A IGMVNWHM B B B  

Theorem 3 (Idempotency). Let , , ( 1,2, , )h h h hT I F h m    be a set of MVNNs, and , ,T I F  . If  

,h h      and h   for all h , then  

 
,

1 2( , , , ) ,s t

mIGMVNWHM        (18) 

where , ,h h h    and , ,    respectively represent all the elements in , ,h h hT I F  and , ,T I F . 

Proof  

Since ( , , ) ( 1,2, )h T I F h m   , and based on Eq. (15), we can derive  

1

1

1

1
1

1

1
1

,

1 2

1

1
1

1

{(1 ( (1 ) ) ) },

( , , ) {1 (1 ( (1 (1 ) (1 ) ) ) ) },

{1 (1 ( (1 (1 ) (1 ) ) ) ) }

m m

h kh k h k h

m m

h kh k h k h

m m

h kh k h k h

m m
q qq qs t s t

T
h k h

m m
q qq qs t s t s t

m I
h k h

m m
q qq qs t s t

h k h

IGMVNWHM





 

 

 

 

 

 




 




 



 

  

         

     







.

F

 

Then  
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1

1

1

(1 (1 )) ,

1 (1 (1 (1 ) )) , , , .

1 (1 (1 (1 ) ))

s t s t

T

T

s t s t

I I

s t Fs t

F

T I F





 








 




 





 

 

 



 

      

   

 

 

3.2 Distance measure between two MVNNs 

  Definition 7. Let , ,C C CC T I F  and  , ,E E EE T I F  be two MVNNs, then the distance between C  

and E  can be obtained by the following equation: 

 

1

1 1 1
min min min

# # #1
( , )

1 1 16
min min min

# # #

E E C C E E
C C E E C C

C C E E C C
E E C C E E

C E E C C E
T T I

T T IC E C

gd

E C C E E C
I F F

I F FE C E

T T I
d C E

I F F

  

  
  

  

  
  

     

     

  
  

  
  

  
      

  
  

        
  

  

  
  (19) 

  Theorem 4. Let , ,C C CC T I F ,  , ,D D DD T I F  and  , ,E E EE T I F be three MVNNs. The distance 

measure in Definition 7 satisfies the following properties: 

(1) ( , ) 0gdd C C  ; 

(2) ( , ) ( , )gd gdd C D d D C ; 

(3) If C D E  , then ( , ) ( , )gd gdd C D d C E  and ( , ) ( , )gd gdd D E d C E . 

  Proof. 

  Clearly, the distance measure satisfies properties (1) and (2). The proof of property (3) is shown below. 

Since C D E  , then by Definition 2, we can obtain that k k k

C D E    , #T # #T T

C D E    , 

l l l

C D E    , #I # #I I

C D E    , m m m

C D E     and #F # #F F

C D E    , where 1, 2, , #k T , 

1, 2, , #l I , 1, 2, , #m F , and # min(# ( ), # ( ), # ( ))C D ET T x T x T x , 

# min(# ( ), # ( ), # ( ))C D EI I x I x I x , # min(# ( ), # ( ), # ( ))C D EF F x F x F x . Subsequently, the following 

inequalities can be obtained. 

  
k k k k

C D C F      , 
l l l l

C D C F      , 
m m m m

C D C F        

and  

  
k k k k

D C E C      , 
l l l l

D C E C      , 
m m m m

D C E C      . 
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  Then, 

  
1 1

min min
# #D D E E

C C C C

C D C E
T T

T TC CT T

 

 
 

   
 

 

    , 

  
1 1

min min
# #D D E E

C C C C

C D C E
I I

I IC CI I

 

 
 

   
 

 

    , 

  
1 1

min min
# #D D E E

C C C C

C D C E
F F

F FC CF F

 

 
 

   
 

 

    , 

  
1 1

min min
# #C C C C

D D E E

D C E C
T T

T TD ET T

 

 
 

   
 

 

    , 

  
1 1

min min
# #C C C C

D D E E

D C E C
I I

I ID EI I

 

 
 

   
 

 

    , 

  
1 1

min min
# #C C C C

D D E E

D C E C
F F

F FD EF F

 

 
 

   
 

 

    . 

  Thus, ( , ) ( , )gd gdd C D d C E . Similarly, we can also get ( , ) ( , )gd gdd D E d C E . 

3.3 IMVN-PT-MULTIMOORA method 

  The traditional MULTIMOORA method assumes that decision-makers are entirely rational, which is 

inconsistent with the actual condition. Therefore, it is necessary to use relevant theories to solve this problem. 

In this section, we connect the prospect theory with MULTIMOORA method. In addition, a new weights  

determination method is applied into the multi-valued neutrosophic MULTIMOORA method.  

  Let  1 2, , , mA A A A  be a collection of alternatives, 1 2{ , , , }nC C C C  be a set of criteria. Assume 

that  1 2, , , nQ q q q  (
1

[0,1] 1
n

k kk
q and q


  ) is weight. The decision matrix is  hk m n

B b


 , where 

hkb  is a MVNN that represents the assessment of alternative hA  ( 1, 2 ,h m ， ) with the criterion kC  

( 1, 2k n ， ， ). The standardization is calculated below: 

 

~ ~

1

~ ~

~ ~

1

( ( , )) ,

( (1 ) )

0, = ,

( ( , )) ,
( (1 ) )

hk k hk k

hk hk k

hk k hk k

p
d b b b b

p p

b b b

p
d b b b b

p p




  




  






 



 

 
  


  (20) 
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~
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~
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,

( )

hk
hk

m

hk

h

b
b

b






  (21) 

where 
~

hkb  denotes the prospect value, 
~

kb  denotes the reference point value of criterion kC , 
~

( , )hk kd b b  

denotes the distance between evaluation value and reference point, 
*

hkb  is the standardized form of 
~

hkb ,

* *

hkB b     is the standardized decision matrix.  

  Before we conduct the MULTIMOORA method, the weights of criteria should be obtained. Firstly, for 

each criterion, the optimistic and pessimistic evaluation values are represented as follows: Optimistic values: 

1 2( , , , )nB b b b     and pessimistic values: 
1 2( , , , )nB b b b    . Then, according to the distance 

measure represented in Definition 7, we can get the distances between evaluation value of each criterion and 

optimistic/pessimistic values.  

 
1 1

( , ), ( , ).
m m

k hk k j hk kh h
d d b b d d b b   

 
     (22) 

Based on the TOPSIS method, the dispersion measure of criterion kC  can be obtained below: 

 .k
k

k k

d
e

d d



 



  (23) 

  Finally, the criterion weight can be obtained according to dispersion measure. 

 

1

.k
k n

kk

e
q

e





  (24) 

(1) The improved multi-valued neutrosophic- prospect theory (IMVN-PT)-ratio system method 

  The comprehensive evaluation value of each scheme is derived from the following equation: 

 
* * *

1 1

,
g n

h k hk k hk

k k g

y q b q b
  

     (25) 

where g  and n g  represents the number of benefit and cost criterion, respectively. 

  The best alternative can be obtained by the following formula: 

  * *max .RS h h
h

A A y   (26) 

(2) The IMVN-PT-reference point method 

Firstly, each optimal reference point of criterion is obtained below: 

 

*

*

*

max ,
.

min ,

hk
h

k

hk
h

b k g
r

b k g

 


 


  (27) 
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Then, comprehensive evaluation value of each scheme is derived from the following formula: 

 * * *max ,h k k hk
k

z q r b    (28) 

  Finally, the best alternative can be obtained as follows: 

  * *min .RP h h
h

A A z   (29) 

(3) The IMVN-PT-full multiplicative form method  

  The comprehensive evaluation value of hA  can be obtained as follows: 

 

*

* 1

*

1

( )
.

( )

k

k

g q

hkk
h n q

hkk g

b
u

b



 





  (30) 

  The best alternative can be obtained as follows: 

  * *max .FMF h h
h

A A u   (31) 

  Based on the dominance theory, the final ranks can be collected from the above three parts of 

MULTIMOORA method.  

4. Solution framework for MVN-MCGDM problem      

Considering that the evaluation information are described by MVNNs, let 1 2{ , , , }mA A A A  be the set of 

schemes,  1 2, , , lD D D D  be a set of decision-makers, the weights of decision-makers are expressed by 

1 2

1

( , , , ), [0,1] 1
l

l k k

k

and     


   . The criteria are expressed by 1 2{ , , , }nC C C C . 

1 2( , , , )nQ q q q  represents the importance of the criteria, satisfying  0,1 ( 1,2, , )kq k n   and 

1kq  . We assume that the decision matrix is 
r r

hk m n
B b


    , where = , ,r

hk hk hk hkb T I F  is a MVNN that 

represents the assessment of scheme hA  ( 1, 2 ,h m ， ) under the criterion jC  ( 1, 2k n ， ， ) obtained 

from decision-maker rD . 

The solution framework is shown in Figure 1 which is at the end of this paper, and the detailed steps are 

stated below: 

Step 1: Tidy up original data. 

Gather and transform the evaluation information into MVNNs, then, normalize the decision matrix of each 

decision-maker based on following equation.  
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,

,
,

hk k

hk c

hk

if C is a benefit criteria
b

else


 


  (32) 

where 
c

hk  is the complement of hk , satisfying ,1 ,c

hk hk hk hkF I T   . 

Step 2: Obtain the collective decision matrix by IGMVNWHM operator.  

According to Eq. (14), we can aggregate decision matrix rB  of each decision-maker into a collective 

decision matrix [ ]hk m nCB b  . 

Step 3: Calculate the ranking result by IMVN-PT-MULTIMOORA method. 

Step 3.1: Conduct the IMVN-PT-ratio system method. 

Based on the distance measure and Eq. (22)-(24), we can obtain the weights of criteria Q . Then, utilizing 

Eq. (20)-(21), we can derive the prospect value and the reference point. Finally, the ranking result can be 

obtained by Eq. (25)-(26).  

Step 3.2: Conduct the IMVN-PT-reference point method. 

According to Eq. (27)-(29), the ranking result can be obtained. 

Step 3.3: Conduct the IMVN-PT-full multiplicative form method. 

According to Eq. (30)-(31), the ranking result can be obtained. 

Step 4: Calculate the final ranking result. 

The dominance theory is employed to collect three ranking results of MULTIMOORA method. 

5. Case study 

The following case applies the IMVN-PT-MULTIMOORA method to deal with the MCGDM problem of 

selecting an appropriate scheme for subway construction. This case demonstrates the validity and advantages 

of the proposed method by sensitive analysis and comparative analysis.  

Owing to improvements in quality of life, and a great deal of families possess their own cars, the problem 

of traffic jams is becoming prominent. The subway has some advantages, such as convenience, speediness 

and punctuality. When a subway system needs to be constructed, the government invites a group of experts 

to select one from four alternatives denoted as 1 2 3 4, , ,A A A A . Considering the limited knowledge of each 

expert, we choose several experts to form an expert group  1 2 3 4 5, , , ,D D D D D D . In addition, the selected 

experts need not only good professional knowledge but also rich practical experience. The information of 

experts is shown in Table 1. Based on literature review [59, 60] and consulting some experts in this field, the 

following factors need to be considered: technology level ( 1C ), environmental conditions ( 2C ), the risk of 
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public intervention (
3C ), and force of supervision (

4C ).  

5.1 Steps of the proposed method 

Step 1: Tidy up original data. 

Firstly, in order to prevent the personal opinions of experts from being influenced by other experts in the 

process of scheme evaluation. All construction plans will be sent to experts by email. At the same time, in 

order to make the evaluation results as accurate as possible, some background information should be 

provided to the expert group. Then, evaluation information is obtained from experts. Next, the evaluation 

information about each scheme under criterion is transformed into MVNNs, as shown in Table 2-Table 6. 

Then, each evaluation matrix from expert is normalized according to Eq. (32). The normalized evaluation 

matrix is represented as 4 4[ ] ( , 1, 2 3, 4)r

hkB b h k  ， .  

Step 2: Obtain the collective decision matrix by IGMVNWHM operator. 

According to Eq. (14), we can aggregate evaluation matrix rB  of each decision-maker to obtain a 

collective evaluation matrix [ ]hk m nCB b   where 1s t  . The weight vector of experts is subjectively 

determined, which is represented as (0.1, 0.2, 0.2, 0.25, 0.25)  .  

The final collective evaluation matrix is presented in Table 7. 

Step 3: Calculate the ranking result by IMVN-PT-MULTIMOORA method. 

Step 3.1: Conduct the IMVN-PT-ratio system method. 

Firstly, the optimistic values of each criterion is determined.  

           

           

( 0.850,0.860 , 0.150 , 0.100 , 0.860,0.878 , 0.100,0.110 , 0.100 ,

0.884 , 0.319 , 0.237,0.246 , 0.844,0.870 , 0.200 , 0.100 )

B 
 and  

           

           

( 0.456,0.475 , 0.100 , 0.100 , 0.423,0.436 , 0.100 , 0.200 ,

0.630,0.651 , 0.401 , 0.287 , 0.450,0.475 , 0.100 , 0.279 )

B 
. 

Then, according to the distance measure represented in Definition 7, we can get the distances between 

evaluation value of each criterion and optimistic/pessimistic values. In this paper, we assume =1 . 

1 2 3 40.382, 0.384, 0.148 0.419.d d d and d         

1 2 3 40.457, 0.453, 0.234 0.454.d d d and d         

Thus, the weights of criteria are obtained below: 

(0.255, 0.258, 0.217, 0.270)Q  . 
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  According to the investigation and experiment of Kalneman and Tversky [61]. We set 

0.88, 2.25, 0.61, 0.69.          The ranking result is shown in Table 8. 

Step 3.2: Conduct the IMVN-PT-reference point method. 

According to Eq. (27)-(29), the ranking result is shown in Table 8. 

Step 3.3: Conduct the IMVN-PT-full multiplicative form method. 

According to Eq. (30)-(31), the ranking result is presented below. 

Step 4: Calculate the final ranking result. 

Based on the dominance theory, the final ranking result is 1 3 2 4A A A A .  

5.2 Influence of the parameter 

To obtain the effect of distinct parameter   on the result of this decision-making process , we conduct 

this analysis.  

Firstly, we let   vary from 1 to 3. Then, the results of IMVN-PT-ratio system, IMVN-PT-reference 

point and IMVN-PT-full multiplicative form method are shown in Table 9. Finally, we graph the results in 

Figure 2-Figure 4.  

From Table 9 and Figure 2-Figure 4, we can find that the results obtained by three parts of 

IMVN-PT-MULTIMOORA method decrease with the increase of parameter  . The ranking results has not 

changed with the change of parameter  . The optimal alternative is always 1A . In Figure 2, with the 

change of parameter  , the numerical result of 1A  is larger than that of 3A  at first, and then smaller than 

that of 3A . In addition, the gap of numerical results between 1A  and 3A  decrease with the parameter   

increase in Figure 3 and Figure 4. On this basis, we take a test on the parameter  , when the value of 

parameter   is close to 34, 3A  is optimal alternative. This means that when the decision-makers are more 

and more sensitive to the loss, the optimal alternative is more inclined to 3A . It also proves that it is 

necessary to introduce prospect theory into multi-criteria decision-making. 

5.3 Comparative analysis  

5.3.1 Validity of the proposed method 

Given that the proposed method connects HM aggregation operator, prospect theory and MULTIMOORA 

method, we can select some existing methods based on these theories and methods.  

In the method presented by Li et al. [62], some single-valued neutrosophic number HM operators, 
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including the NNIGWHM and NNIGWGHM operators, are presented to integrate criterion values. Then, 

schemes will be ranked based on the values of the score and accuracy functions.  

Tian et al. [48] presented an improved MULTIMOORA method for MCDM problem based on the 

closeness coefficient of TOPSIS and variation coefficient method. In addition, they defined distance measure 

for neutrosophic linguistic sets.   

In order to conduct the method proposed by the above researchers, MVNNs should be transformed into 

SVNNs. We can derive SVNNs by calculating the average values of all possible truth-membership, 

indeterminacy-membership and falsity-membership degrees in MVNNs. For example, 

     0.2,0.3 , 0.3,0.5 , 0.4,0.5a   can be transformed into 1 0.25,0.4,0.45a  . 

The ranking results obtained by Li et al. [62], Tian et al. [48] and the proposed method are shown in Table 

10. 

5.3.2 Advantages of the proposed method 

Ji et al. [52] defined the operations of MVNSs and comparison methods. At the same time, some 

aggregation operators are presented to solve MCDM problems. To show the advantages of proposed method, 

we select WA and WG operators in this paper as an example. The results of this comparison will be shown in 

Table 11. 

Pranab et al. [63] presented a novel TOPSIS-based approach for MCGDM problem in single-valued 

neutrosophic environments. In this paper, the authors obtain the evaluation information by linguistic terms. 

Then, an objective method is used to obtain the weight vector of each decision-maker. 

Ji et al. [64] defined the projection measure of MVNNs, then, presented a projection-based TODIM 

method and applied it into personnel selection.  

Based on the above, we conduct a comparison, the results of which are presented in Table 11.  

Table 11 indicates that 1A  is always the best construction scheme for subways, while the worst scheme is 

4A  or 2A . The proposed method produced the same ranking as the WA operator and TOPSIS method. At the 

same time, rankings derived from the proposed method have little difference with the WG operator and 

projection-based TODIM method. From Table 11, we can also conclude that our method is more reasonable 

than the WA, WG operators, TOPSIS and projection-based TODIM method. The reasons are as follows. 

Although the WA operator produced the same ranking as the proposed method, the proposed method 

considers the interactions of the inputs. The WG operator also did not consider the interactions of the inputs. 

The TOPSIS and projection-based TODIM method ignore the bounded rationality of decision-makers. The 
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proposed method utilizes IGMVNWHM operator to aggregate the assessments of all experts. Then, the 

collective decision matrix is input into the IMVN-PT-MULTIMOORA method to deal with practical 

problems better.  

6. Conclusion  

To address fuzzy and uncertain information in the process of selecting construction schemes for subways, 

MVNNs, HM operator, prospect theory and MULTIMOORA method in this decision-making problem are 

related. In this paper, we firstly introduced some basic concepts and theorems about MVNSs, HM operator. 

Then, the IGMVNWHM operator based on HM operator is presented. It considers the interactions among 

inputs. Subsequently, the new distance measure is defined between two MVNNs. Then, motived by TOPSIS 

and the variation coefficient method, we propose an improved MULTIMOORA method. Considering that 

decision-makers are not completely rational, we introduce the prospect theory into this method. Finally, a 

solution framework to select construction schemes for subways in multi-valued neutrosophic environments is 

developed. In addition, an application example is introduced to prove the validity and advantages of the 

proposed method. At the same time, we analyzed the rankings as the parameters changed. 

The contributions and innovations of this paper are described as follows. First, MVNNs were used to 

present assessments of construction schemes for subways. Second, IGMVNWHM operator is introduced, 

which considers the interactions of inputs. Third, a new distance measure is defined between two MVNNs. 

Fourth, an IMVN-PT-MULTIMOORA method is presented.  

In the future, the IGMVNWHM operator can be employed in other neutrosophic environments, such as 

probabilistic multi-valued neutrosophic sets. At the same time, we can explore other methods to solve 

multi-valued neutrosophic evaluation information problems. 
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Figure 1. Solution framework for MVN-MCGDM problem. 
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Figure 2. Results obtained by IMVN-PT-ratio system method. 

 

Figure 3. Results obtained by IMVN-PT-reference point method. 
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Figure 4. Results obtained by IMVN-PT-full multiplicative form method. 

 

Table 1. Information of experts. 

Experts Education Positional titles 
Employment 

position 
Working years 

Expert 1 M.S. Engineer Project manager 12 

Expert 2 M.S. Engineer Technical manager 15 

Expert 3 Ph.D. Senior engineer Economic manager 15 

Expert 4 Ph.D. Senior engineer Risk manager 18 

Expert 5 Ph.D. Senior engineer General manager 20 

 

Table 2. Evaluation information collected from expert 1. 

 1C  2C  3C  4C  

1A       0.8,0.9 , 0.2 , 0.1       0.9 , 0.1 , 0.1       0.4 , 0.8 , 0.7       0.8 , 0.2 , 0.1  

2A       0.6,0.7 , 0.3 , 0.3       0.6 , 0.3 , 0.1       0.2 , 0.6 , 0.7       0.6 , 0.1 , 0.2  

3A       0.7 , 0.2 , 0.1       0.8 0.1 0.2， ，       0.2,0.3 , 0.7 , 0.9       0.7 , 0.2 , 0.2  

4A       0.5 , 0.1 , 0.1       0.4,0.5 , 0.1 , 0.2       0.2 , 0.7 , 0.6       0.5 , 0.1 , 0.3  

 

Table 3. Evaluation information collected from expert 2. 

 1C  2C  3C  4C  

1A       0.8 , 0.1 , 0.1       0.8,0.9 , 0.1 , 0.1       0.4 , 0.8 , 0.7       0.9 , 0.2 , 0.1  

2A       0.7 , 0.3 , 0.3       0.6 , 0.2 , 0.1       0.2 , 0.6 , 0.6       0.6 , 0.1,0.2 , 0.2  

3A       0.8 , 0.2 , 0.1       0.8 0.1 0.1， ，       0.3 , 0.6 , 0.8       0.7 , 0.2 , 0.1  

4A       0.5 , 0.1 , 0.1       0.4 , 0.1 , 0.2       0.3 , 0.7 , 0.6       0.5 , 0.1 , 0.3  

 

Table 4. Evaluation information collected from expert 3. 

 1C  2C  3C  4C  
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1A       0.9 , 0.2 , 0.1       0.9 , 0.1,0.2 , 0.1       0.2 , 0.8 , 0.6,0.7       0.9 , 0.2 , 0.1  

2A       0.7 , 0.3 , 0.3       0.6,0.7 , 0.3 , 0.1       0.2 , 0.6 , 0.7       0.6 , 0.1 , 0.2  

3A       0.6,0.7 , 0.2 , 0.1       0.7 0.1 0.2， ，       0.3 , 0.7 , 0.9       0.7 , 0.2 , 0.1  

4A       0.4,0.5 , 0.1 , 0.1       0.4 , 0.1 , 0.2       0.2 , 0.7 , 0.6       0.5 , 0.1 , 0.2  

 

Table 5. Evaluation information collected from expert 4. 

 1C  2C  3C  4C  

1A       0.9 , 0.1 , 0.1       0.8 , 0.1 , 0.1       0.2 , 0.5 , 0.6       0.8 , 0.2 , 0.1  

2A       0.6 , 0.3 , 0.3       0.6 , 0.3 , 0.1       0.2,0.3 , 0.6 , 0.7       0.6 , 0.2 , 0.3  

3A       0.7 , 0.2 , 0.1       0.8 0.1 0.2， ，       0.2 , 0.7 , 0.9       0.7,0.8 , 0.2 , 0.2  

4A       0.5 , 0.1 , 0.1       0.5 , 0.1 , 0.2       0.2 , 0.7 , 0.6       0.4 , 0.1 , 0.3  

 

Table 6. Evaluation information collected from expert 5. 

 1C  2C  3C  4C  

1A       0.8 , 0.2 , 0.1       0.9 , 0.1 , 0.1       0.2 , 0.4 , 0.6       0.8,0.9 , 0.2 , 0.1  

2A       0.6 , 0.3 , 0.3       0.6 , 0.3 , 0.1       0.2 , 0.6 , 0.7       0.6 , 0.1 , 0.2  

3A       0.8 , 0.2 , 0.1       0.8 0.2 0.2， ，       0.2 , 0.7 , 0.9       0.8 , 0.2 , 0.2  

4A       0.4 , 0.1 , 0.1       0.4 , 0.1 , 0.2       0.2 , 0.7 , 0.6       0.4,0.5 , 0.1 , 0.3  

 

Table 7. Collective evaluation matrix. 

 1C  2C  3C  4C  

1A  

 

 

 

0.850,0.860 ,

0.150 ,

0.100

 

 

 

 

0.860,0.878 ,

0.100,0.110 ,

0.100

 

 

 

 

0.630,0.651 ,

0.401 ,

0.287

 

 

 

 

0.844,0.870 ,

0.200 ,

0.100
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2A  

 

 

 

0.641,0.651 ,

0.300 ,

0.300

 

 

 

 

0.600,0.621 ,

0.279 ,

0.123

 

 

 

 

0.682 ,

0.400 ,

0.2,0.224

 

 

 

 

0.600 ,

0.122,0.141 ,

0.224

 

3A  

 

 

 

0.732,0.748 ,

0.200 ,

0.100

 

 

 

 

0.782

0.123

0.177

，

，  

 

 

 

0.884 ,

0.319 ,

0.237,0.246

 

 

 

 

0.728,0.754 ,

0.200 ,

0.156

 

4A  

 

 

 

0.456,0.475 ,

0.100 ,

0.100

 

 

 

 

0.423,0.436 ,

0.100 ,

0.200

 

 

 

 

0.600 ,

0.300 ,

0.218

 

 

 

 

0.450,0.475 ,

0.100 ,

0.279

 

 

Table 8. Ranking results obtained by proposed method. 

 
IMVN-PT-ratio system 

method 

IMVN-PT-reference point 

method 

IMVN-PT-full multiplicative 

form method 

 
Calculating 

result 
Rank 

Calculating 

result 
Rank  

Calculating 

result 
Rank  

1A   0.125 1 0 1 0.426 1 

2A   -0.374 3 0.186 3 -0.653 4 

3A   0.164 2 0.047 2 0.241 2 

4A   -0.805 4 0.324 4 -0.162 3 

 

Table 9. Results obtained by different values of  . 

  1A  2A  3A  4A  

1   

*

iy  0.361 -0.292 0.319 -0.672 

*

iz  0 0.244 0.086 0.354 

*

iu  0.716 -0.471 0.352 -0.103 

Ranking 1 3 2 4 

1.5   

*

iy  0.230 -0.343 0.235 -0.759 

*

iz  0 0.216 0.066 0.344 
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*

iu  0.563 -0.568 0.295 -0.139 

Ranking 1 3 2 4 

2   

*

iy  0.152 -0.367 0.182 -0.795 

*

iz  0 0.195 0.052 0.330 

*

iu  0.463 -0.629 0.256 -0.156 

Ranking 1 3 2 4 

2.5   

*

iy  0.102 -0.379 0.148 -0.812 

*

iz  0 0.179 0.043 0.318 

*

iu  0.395 -0.673 0.228 -0.166 

Ranking 1 3 2 4 

3   

*

iy  0.068 -0.387 0.124 -0.822 

*

iz  0 0.168 0.036 0.309 

*

iu  0.345 -0.708 0.207 -0.171 

Ranking 1 3 2 4 

 

Table 10. Ranking results derived from different methods. 

Method Ranking 

NNIGWHM operator 

(presented by Li et al. [59]) 
1 3 4 2A A A A  

NNIGWGHM operator 

(presented by Li et al. [59]) 
1 3 4 2A A A A  

MULTIMOORA method 

 (presented by Tian et al. [46]) 
1 3 4 2A A A A  

The proposed method 1 3 4 2A A A A  

 

Table 11. Ranking results obtained by different methods. 

Method Final ranking 
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WA operator (presented by Ji et al. [52]) 1 3 2 4A A A A  

WG operator (presented by Ji et al. [52]) 1 3 4 2A A A A  

TOPSIS method (presented by Pranab et al. [63])  1 3 2 4A A A A  

Projection-based TODIM method 

(presented by Ji et al. [64]) 
1 3 4 2A A A A  

The proposed method  1 3 2 4A A A A  

 


