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A B S T R A C T

Several industries locate a pre-assigned number of facilities in order to determine a transportation way for
optimizing the objective functions simultaneously. The multi-objective transportation-p-facility location problem
is an optimization based model to integrate the facility location problem and the transportation problem under
the multi-objective environment. This study delineates the stated formulation in which we need to seek the
locations of p-facilities in the Euclidean plane, and the amounts of transported products so that the total
transportation cost, transportation time, and carbon emission cost from existing sites to p-facilities will be
minimized. In fact, variable carbon emission under carbon tax, cap and trade regulation is considered due to the
locations of p-facilities and the amounts of transported flow. Thereafter, a hybrid approach is improved based on
an alternating locate-allocate heuristic and the neutrosophic compromise programming to obtain the non-
dominated solution. Additionally, the performance of our findings are evaluated by an application example.
Furthermore, a sensitivity analysis is incorporated to explore the resiliency of the designed model. Finally,
conclusions and further research areas conclude the paper.

1. Introduction

The facility location problem (FLP) is a crucial integrant of strategic
planning for a wide spectrum of the public as well as the private sector.
In fact, it deals with locating facilities among existing sites with the goal
of optimizing the economic criteria (e.g., transportation cost, trans-
portation time, carbon emission cost and good service). The traditional
FLP is described by four given sets, (i) a set of existing sites with ca-
pacity, (ii) a set of weights associated with the existing site, (iii) a set of
potential facility sites with demand, and (iv) a set of objective func-
tions. It can be cataloged into different categories depending on the
assumptions. Industrial organizations locate assembly plants and de-
pots. Warehouses are situated by the retailers. The performance of the
manufacturing, productivity, and marketing of goods is dependent on
the location of the facilities. Moreover, the government also selects the
location of hospitals, offices, schools, fire stations, etc. Everywhere, the
quality of service is dependent on the location of the facilities. The FLP
was studied by several researchers. A few of them are depicted here.
Farahani, SteadieSeifi, and Asgari (2010) made a comprehensive survey
of the facility location problems in a multi-criteria environment. Then,
Bieniek (2015) presented a note on the FLP where the demands follow
the arbitrary distribution. Later, Chen, He, and Wu (2016) solved a
single FLP with random weights. Moreover, the FLP can be applied in a

broad area of transportation networks, supply chain management, plant
location problem, and green logistics such as Misk̆ović, Stanimirović,
and Grujicĭć (2017), Melo, Nickel, and Saldanha-da-Gama (2009), Amin
and Baki (2017), Saif and Elhedhli (2016), and Harris, Mumford, and
Naima (2014).

In the real scenario, the transportation problem (TP) plays a vital role
in global competition for minimizing transportation cost, time and
providing service. Generally, the classical TP consists of three major
components: (a) a set of all sources, (b) a set of all destinations, and (c)
single-objective function as total transportation cost. Mainly, in the TP,
homogeneous goods are sent from sources to destinations, and the total
transportation cost is directly proportional to the amount of goods to be
transported. It was the first introduced by Hitchcock (1941). However,
the traditional TP is not sufficient for handling real-life application
problems. Due to this reason, the multi-objective environment is in-
troduced here on the TP in which the objectives are conflicting and non-
commensurable in nature. In fact, the multi-objective TP (MOTP) was
analyzed by so many researchers in different environments. Some
works are annexed here. Mahapatra, Roy, and Biswal (2013) solved a
multi-choice stochastic TP where the supply and demand parameters
follow extreme value distribution. Thereafter, Sabbagh, Ghafari, and
Mousavi (2015) proposed a hybrid approach for the balanced TP.
Maity, Roy, and Verdegay (2016) discussed a MOTP with cost reliability
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in an uncertain environment. Later on, Roy, Maity, Weber, and Gök
(2017) described a MOTP where cost, demand, and supply parameters
are in multi-choice nature. And they solved the problem using two
approaches multi-choice goal programming and conic scalarizing
function.

The FLP and TP are the core components of a tactical transportation
planning system. Determining the best locations for the facilities (i.e.,
plants, depots, warehouses, offices, fire stations, railway stations, etc.)
and minimizing the total transportation cost from existing sites to fa-
cilities can significantly affect the transportation planning system.
Cooper (1972) first made a connection between the FLP and TP, and
was also known as the transportation-location problem. Later, he
(1978) studied the problem under stochastic environment. Recently,
Carlo, David, and Salvat (2017) extended the problem with an un-
known number of facilities. Afterward, several researchers made con-
nections among the FLP and TP in many different ways. Klibi, Lasalle,
Martel, and Ichoua (2010) studied a location-transportation problem
delineated by multiple demand periods, multiple transportation op-
tions, and a stochastic demand. Gabrel, Lacroix, Murat, and Remli
(2014) illustrated a robust location transportation problems under un-
certain demands. Recently, Jaafari and Delage (2017) presented a ca-
pacitated fixed-charge multi-period location-transportation problem.

A fast-flowing of transportation emerges tremendous amounts of
carbon, which is the fundamental explanation for global warming. To
control carbon emanations, the government endorses several policies
among all tax, cap and trade policy (TCTP) is widely accepted. Under
TCTP, the companies are firstly allowed some emission cap with the
usual tax basis from the government, and subsequently, they can also
trade (i.e., buy or sell) the emission cap in the carbon trading market.
This type of study was implemented by many scholars such as
Benjaafar, Li, and Daskin (2013), Wu, Jin, Shi, and Shyu (2017), Dua,
Tang, and Song (2016), Cao, Xu, Wu, and Zhang (2017), Turken,
Carrillo, and Verter (2017) and Elhedhli and Merrick (2012). Here, we
consider variable carbon emission as it depends on the locations of
facilities as well as the amounts of transported items. This concept is
totally new which did not incorporate by the researcher(s).

From Table 1, we trace a gap for making a connection among the
FLP, MOTP and carbon emission under TCTP. To fill the gap concretely,
here, we flourish a formulation by integrating the FLP and TP in the
light of a multi-objective optimization environment. Therefore, we refer
to the proposed problem as the multi-objective transportation-p-facility
location problem (MOT-p-FLP). In the MOT-p-FLP, one has to ask the
locations of p-facilities in the Euclidean plane and the amounts of
transported goods simultaneously with three objective functions. We
believe that the proposed formulation will be more applicable than the

traditional FLP and MOTP. In fact, it will be useful to the models of
transportation systems, emergency services, and online-shopping sys-
tems.

Nowadays, the parameters of the MOT-p-FLP are conflicting and
imprecise nature due to lack of proper information. In fact, this type of
mathematical formulation is difficult to tackle by traditional ap-
proaches. To overcome this situation, Zadeh (1965) introduced the
fuzzy set (FS). Thereafter, Zimmermann (1978) incorporated fuzzy
programming to solve a multi-objective linear programming problem.
But, there is a drawback of the FS, it could not manage the certain case
of uncertainty. Because of that, the intuitionistic fuzzy set (IFS) was de-
veloped by Atanassov (1986) as a generalization of the FS. The IFS was
applied in a multi-objective optimization problem like Roy,
Ebrahimnejad, Verdegay, and Das (2018). Although the FS and IFS deal
with all types of fuzzy uncertainty, still they cannot handle the in-
determinate situation. For instance, a survey is done on a particular
statement, then there are a few who said the possibility of the statement
is true 0.7, the statement is false 0.4, and the statement is not sure 0.3.
This issue is beyond the scope of the FS and IFS, and thus dealing with a
kind of indeterminate situations of uncertain information indeed be-
comes a true challenge. Based on this instance, the neutrosophic set, an
extended form of the FS and IFS was developed by Smarandache
(1999). It provides a more general structure and suitable form to deal
with the mentioned uncertainties. The neutrosophic set is formulated
based on logic in which elements are represented by three degrees,
explicitly, truth degree, indeterminacy degree, and falsity degree.

The main contributions of this study are as follows:

• An integrated nonlinear optimization model based on the FLP and
MOTP is introduced.
• The model finds the decision regarding the assignment from mul-
tiple existing facilities to multiple potential facilities in the con-
tinuous planner surface with a hyperbolic approximation of
Euclidean distance.
• The total transportation cost, total transportation time and total
carbon emission cost are considered.
• The impact of variable carbon emission under TCTP due to trans-
portation is also incorporated, a major contribution in the modern
age.
• An improved hybrid approach is followed to find the optimal solu-
tion of the MOT-p-FLP.
• The nature of the obtained optimal solution is also studied.

The outline of this study is as follows: In the next section, the pro-
posed problem is formulated. Section 3 presents the methodology of a

Table 1
Some remarkable research works related to FLP, TP and carbon emission.

References FLP Transportation cost Transportation time Carbon emission cost Cap & trade policy Solution methods

Klibi et al. (2010) Yes Yes – – – Hierarchical heuristic
Elhedhli and Merrick (2012) Yes Yes – Yes – Lagrangian relaxation
Mahapatra et al. (2013) – Yes – – Generalized reduced gradient
Harris et al. (2014) Yes Yes – Yes – Proposed evolutionary algorithm
Gabrel et al. (2014) Yes Yes – – – Cutting plane algorithm
Sabbagh et al. (2015) – Yes – – – Proposed algorithm
Maity et al. (2016) – Yes – – – Fuzzy multi-choice goal programming
Saif and Elhedhli (2016) Yes Yes – – – Lagrangian heuristic
Dua et al. (2016) – – – Yes Yes Classical approach
Turken et al. (2017) Yes – – Yes Yes Exact algorithm
Roy et al. (2017) – Yes – – – Conic scalarization
Wu et al. (2017) Yes Yes – Yes – Classical approach
Cao et al. (2017) – – – Yes Yes Stackleberg game
Jaafari and Delage (2017) Yes Yes – – – Row generation algorithm
Misk̆ović et al. (2017) Yes Yes – – – Proposed memetic algorithm
Carlo et al. (2017) Yes Yes – – – Decomposition heuristic, Simulated annealing
Roy et al. (2018) – Yes Yes – – Intuitionistic fuzzy programming
This investigation Yes Yes Yes Yes Yes Proposed hybrid algorithm
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hybrid approach along with its pros and cons. Then, Section 4 explores
the non-dominated nature of the compromise solution. Moreover, the
effectiveness of the stated model and the approach are evaluated with
an example in Section 5. In Section 6, the obtained results for two cases
are discussed. The sensitivity of the stated model is investigated in
Section 7. Thereafter, Section 8 depicts the important managerial in-
sights. At last, conclusions and future research directions based on our
study are provided.

2. Mathematical description

In this section, we first define the proposed problem, i.e., MOT-p-
FLP. Thereafter, the mathematical formulation is introduced on the
following premises and notations. Moreover, the connection between
the MOT-p-FLP and a MOTP, and some basic definitions are presented.

2.1. Problem background

Here, a logistical problem is inspected from an economical and
environmental point of view. Our proposed problem deals with a
transportation network which consists of multiple existing sites or
sources, potential facility sites or demand points, and products are
transported from existing sites to potential facility sites. The main aim
is to minimize the total transportation cost, time, and carbon emission
cost under TCTP by locating the potential facility sites simultaneously.
Besides the transportation cost and time, the following postures are also
handled in our model: (i) variable carbon emissions under TCTP, (ii)
weights of conveyances which affect the transportation cost and carbon
emission cost, (iii) weights of obstacles in the path which are reflected
in transportation time, (iv) selling cost as a reward to reduce carbon
emission, and (v) penalty cost to avoid unnecessary carbon discharges.
Fig. 1 illustrates the structure of the MOT-p-FLP network.

Assume that there are three existing sites S S,1 2, and S3 and four
potential facility sites D D D, ,1 2 3, and D4. In fact, the supply and de-
mand of the corresponding sites are also known. Moreover, the loca-
tions of S S,1 2, and S3 are provided. But, the locations of D D D, ,1 2 3, and
D4 are not known in the Euclidean plane. Consequently, the dotted lines
denote the product flow by conveyances (i.e., T T T, ,1 2 3, and T4) from
S S,1 2, and S3 to D D D, ,1 2 3, and D4, respectively. Furthermore, the ob-
stacle is designated by B1. In this situation, the decision maker has to
seek the optimal locations of the potential facility sites with mentioned
objective functions.

2.2. Notations and assumptions

The following notations and assumptions are employed to formulate
the model.

m: number of existing facility sites.

p: number of potential facility sites.
k: number of objective functions.
ai: availability at ith existing facility site = …i m( 1, 2, , ).
bj: demand at jth potential facility site = …j p( 1, 2, , ).
ei: in a location problem, the decision maker may put more im-
portant of the existing facility site, expressed as weight. Therefore,
with each ith existing site, we associate a weight ei.
tij: there may be some obstacles (e.g., railway level crossing, bridge
crossing, broken-down, etc.) of the path from ith site to jth site
which are affected the transportation time. These will be designated
as tij.

ij:there may be used different type of conveyances to transport the
goods from ith site to jth site. Depend on their machine perfor-
mance, we assign the weight ij.
:tax for each unit product that emit carbon.
:carbon trading (buying) cost per unit item.
:carbon trading (selling) cost per unit item.
C:emission cap (i.e., limited capacity of carbon emission permit).
Pc:penalty cost per unit emitted in excess of the cap.
u v( , )i i :coordinates of the ith existing facility site = …i m( 1, 2, , ).
x y( , )j j :coordinates of the jth potential facility site = …j p( 1, 2, , ).

wij:amount of flow to be transported from ith existing facility site to
jth potential facility site.
w: = … = …w i m j p{( ): subject to the constraints ( 1, 2, , ; 1, 2, , )}ij .
wB: = … = …w i m j p( : 1, 2, ; 1, 2, , )ij

B , the optimal feasible solution.
F: × Wp2 , where x y( , ) p2 and w W , the feasible set.
Z:objective function vector.
S:neutrosophic set.
Tr :truth membership.
In:indeterminacy membership.
Fa:falsity membership.
Lk:lower value of the kth objective function.
Uk:upper value of the kth objective function.
:transportation cost function per unit flow from an existing facility

site to a potential facility site depends on weight of conveyances.
:time function per unit item from an existing facility site to a po-

tential facility site depends on obstacle of path.
:average carbon emission function per unit product from an ex-

isting facility site to a potential facility site depends on weight of
conveyances.
•Type of transportation cost function is a hyperbolic approxima-
tion of Euclidean distance in two-dimensional space

= + +u v x y u x v y( ( , ; , ) ( ) ( ) )i i j j i j i j ij
2 2 .

•Transportation time function is a hyperbolic approximation of
Euclidean distance in two-dimensional space

= + +u v x y u x v y t( ( , ; , ) ( ) ( ) )i i j j i j i j ij
2 2 .

•The carbon emission function is a hyperbolic approximation of
Euclidean distance in two-dimensional space

= + +u v x y u x v y( ( , ; , ) ( ) ( ) )i i j j i j i j ij
2 2 .

Fig. 1. Network for the multi-objective transportation-p-facility location problem.
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•Facilities are capacitated.
•No relationship exists between potential facility sites.
•The opening costs of new potential facility sites are ignored.
•The solution space is continuous.
•The parameters are deterministic.
•The potential facility sites are located in the Euclidean plane.
•The potential facility sites are assumed as points.
•Transportation cost, transportation time, and average carbon
emissions are directly proportional to the amount of transported
goods.

2.3. Model identification

Herein, a mathematical formulation is incorporated in light of the
FLP and MOTP. In fact, this model asks transportation amounts and
optimal locations for the facilities simultaneously. The mathematical
formulation of the MOT-p-FLP under TCTP can be stated as follows:

Model 1

=
= =

Z e w u v x yminimize ( , ; , )x y w
i

m

j

p

i ij i i j j1( , , )
1 1 (2.1)

=
= =

Z e w u v x yminimize ( , ; , )x y w
i

m

j

p

i ij i i j j2( , , )
1 1 (2.2)

=

+

= =

= =
+

= =
+

( )
( )

Z w u v x y

P w u v x y C
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( , ; , )
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m
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c i
m
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p

ij i i j j

i
m
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p

ij i i j j

3( , , ) 1 1

1 1

1 1 (2.3)

= …
=

w a i msubject to ( 1, 2, , ),
j

p
ij i1 (2.4)

= …
=

w b j p( 1, 2, , ),
i

m
ij j1 (2.5)

w i j0 , ,ij (2.6)

=
=

a b .
i

m
i

j

p

j1
1 (2.7)

Where

The objective function (2.1) aims to seek optimal locations for p-
facilities, which minimizes the total transportation cost. The objective
function (2.2) indicates to minimize the total transportation time by
determining the optimal locations for p-facilities. The objective function
(2.3) intents to minimize the total carbon emission cost under TCTP by
locating the optimal locations for the p-facilities. Constraints (2.4) en-
force that the total amounts of each existing site which cannot surpass
its availability. Constraints (2.5) ensure that the total items of each
potential site fulfill its desired demand. Constraints (2.6) are non-

negativity conditions. Finally, constraints (2.7) suggest the feasibility
condition.

The objective function (2.3) demonstrates that, depending on the
cap, there are two feasible regions. Case 1 occurs when

= =C w u v x y( , ; , )i
m

j
p

ij i i j j1 1 . And the second one is occurred when

= =C w u v x y( , ; , )i
m

j
p

ij i i j j1 1 .
Case 1: This case can be represented by the following model:
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= =C w u v x y
subject to the constraints (2.4) (2.7),
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Case 2: The following model is described for case 2:
Model 1.2
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= =C w u v x y
subject to the constraints (2.4) (2.7),

( , ; , ).i
m

j
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ij i i j j1 1 (2.11)

2.4. Connection between the MOT-p-FLP and MOTP

The functions (i.e., , and ) are only dependent on the locations
of the potential facility sites. In fact, if we fix the location of potential
sites by finding optimal locations, then the functions should be con-
verted into constant functions. Consequently, we designate x y( , )j j for
the optimal locations, =e u v x y c( , ; , )i i i j j ij for the unit transportation
cost from ith source to jth demand point, =e u v x y t( , ; , )i i i j j ij as the

=
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= =
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unit transportation time from ith source to jth demand point, and
=u v x y d( , ; , )i i j j ij for the unit carbon emission for transportation of

product flow from ith source to jth destination. Henceforth, Model 1 is
read as follows:

Model 2

=
= =

Z w c wminimize ( )
i

m

j

p

ij ij1
1 1 (2.12)

=
= =

Z w t wminimize ( )
i

m

j

p

ij ij2
1 1 (2.13)

= + + +
= =

Z w P d w P Cminimize ( ) ( ) ( )c
i

m

j

p

ij ij c3
1 1 (2.14)

subject to the constraints (2.4) (2.7),

which is the well-known form of a MOTP.

2.5. Basic definitions

Here, some basic definitions related to the solution method of MOT-
p-FLP are presented.

Definition 1. (Ideal solution)
An ideal solution of the MOT-p-FLP is the one which minimizes

each of the objective function simultaneously, i.e.,
= =Z x y w Z x y w k( , , ) min ( , , ), 1, 2, 3k x y w F k( , , ) .

Definition 2. (Anti-ideal solution)
The anti-ideal solution of the MOT-p-FLP is

= =Z x y w Z x y w k( , , ) max ( , , ), 1, 2, 3k
A A A

x y w F k( , , ) .

Definition 3. (Non-dominated solution)
A solution x y w F( , , )N N N yields a non-dominated solution

(otherwise called Pareto-optimal solution, efficient or non-inferior so-
lution) of Model 1 iff there is no other solution x y w F( , , ) such that

=
<

Z x y w Z x y w k
Z x y w Z x y w k

( , , ) ( , , ) for 1, 2, 3 and
( , , ) ( , , ) for at least one .

k k
N N N

k k
N N N

Definition 4. (Compromise solution)

A non-dominated solution x y w F( , , )N N N is said to be the
compromise solution of the MOT-p-FLP iff

x y w x y wZ Z( , , ) ( , , )N N N
x y w F( , , ) , where indicates the minimum.

The ideal, anti-ideal, non-dominated and compromise solutions are
described graphically in Fig. 2.

Definition 5. (Neutrosophic set)
Let D be a universal set and s D. A neutrosophic set S in D is

defined by three membership functions respectively, truth T s( )r ,
indeterminacy I s( )n and falsity F s( )a , and denoted by =S

s T s I s F s s D{( , ( ), ( ), ( )): }r n a , where.

(i) T s D I s D( ): [0, 1], ( ): [0, 1]r n and F s D( ): [0, 1]a ,
(ii) + +T s I s F s0 sup( ( )) sup( ( )) sup( ( )) 3r n a .

3. Methodology

In this section, a hybrid approach is presented to solve the proposed
MOT-p-FLP. Thereafter, the advantages and disadvantages of the stated
approach are also discussed.

3.1. Hybrid approach

Herein, a hybrid approach is developed based on an alternating lo-
cate-allocate (Loc-Alloc) heuristic (Cooper, 1964), and the neutrosophic
compromise programming (NCP) (Rizk-Allah, Hassanien, & Elhoseny,
2018). Our hybrid approach comprises two parts. In the first part, three
single objective transportation-p-facility location problems (T-p-FLPs) are
solved by an alternating Loc-Alloc heuristic, and in the second part, the
compromise non-dominated solution for the MOT-p-FLP is received by
the NCP.

Alternating Loc-Alloc heuristic: The proposed heuristic is again
divided into two parts. In Part 1, the heuristic seeks the initial lo-
cations, and in Part 2, it finds the optimum locations. Here, at first,
the locations are placed for p-facilities from m-existing sites. If

<p m, we generate all possible combinations of the m-existing sites
taken p at a time. For each combination, the existing sites are to be
considered as potential facility sites, and other existing sites are
designated depending on which potential facility sites have the
smallest distance. Finally, all designated distances are summed up. In
fact, this phenomenon is repeated for all combinations. Therefore,
the final initial potential locations for three distance functions are
the combinations with the minimum sum of distances. With these
final allocations, the distances between p-facilities and m-existing
locations for three distance functions are easily computed. When

=p m, the case is trivial and we easily get the distances between
them. However, if >p m, we introduce a new heuristic concept to
resolve this issue. Initially, we choose the m facility allocations as m
existing sites randomly and allocate the remaining p m( ) facilities
in some Euclidean points with large coordinates such that the dis-
tances of those coordinates become very large numbers from facil-
ities. Then, we easily compute the distances between p-facilities and
m-existing sites and a large positive number is assigned for such
distances which cannot be calculated. Now, it is already assumed
that the distances are connected with cost, time and carbon emission
functions per unit commodity from the ith site to the jth site. We take
these distances as the cost, time and carbon emission coefficients.
Then the problem converts into three classical transportation pro-
blems. Utilizing the initial potential location x y( , )j

I
j
I , we solve these

problems individually:
Model 3

= = =Z e w u v x yminimize ( , ; , )
subject to the constraints (2.4) (2.7).

w i
m

j
p

i ij i i j
I

j
I

1( ) 1 1

Model 4

= = =Z e w u v x yminimize ( , ; , )
subject to the constraints (2.4) (2.7).

w i
m

j
p

i ij i i j
I

j
I

2( ) 1 1

Fig. 2. The solution concept of a multi-objective optimization.
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Model 5

=

+

= =

= =
+

= =
+

( )
( )

Z w u v x y

P w u v x y C

C w u v x y

minimize ( , ; , )

( , ; , )

( , ; , )

subject to the constraints (2.4) (2.7).

w i
m

j
p

ij i i j
I

j
I

c i
m

j
p

ij i i j
I

j
I

i
m

j
p

ij i i j
I

j
I

3( ) 1 1

1 1

1 1

From Model 3 and Model 4, we can easily find optimal feasible
solutions w( )B . But, to find the optimal feasible solution of Model 5, we
split the model into two parts as Model 5.1 and Model 5.2, respectively.
They are given as follows:

Model 5.1

= + = =

= =

Z w u v x y C

C w u v x y

minimize ( ) ( , ; , )
subject to the constraints (2.4) (2.7),

( , ; , ).

w i
m

j
p

ij i i j
I

j
I

i
m

j
p

ij i i j
I

j
I

3( ) 1 1

1 1

Model 5.2

= + = =

= =

Z P w u v x y P C

C w u v x y

minimize ( ) ( , ; , )
subject to the constraints (2.4) (2.7),

( , ; , ).

w c i
m

j
p

ij i i j
I

j
I

c

i
m

j
p

ij i i j
I

j
I

3( ) 1 1

1 1

Thereafter, we solve Model 5.1 & Model 5.2 to extract the feasible
solutions which lead the optimal solutions of these models. Then, we
compare the solutions to find the optimal solution for Model 5.
However, if one of them (Model 5.1 and Model 5.2) has the feasible
solution (and the other has no feasible solution) then the optimal so-
lution of the corresponding model is the optimal solution of Model 5.
Employing these optimal feasible solutions w( )B , we minimize objective
functions as the optimal solutions are arisen (see Appendix A). The
iterative formula (see Appendix B) are used to minimize objective
functions. Hence, x y w( , , ) l( ) is the local optimal (ideal) solution for the
lth single objective T-p-FLP, where =l 1, 2, 3.

NCP: Here, a payoff table with entries
=Z Z x y w l k(( , , ) ), , 1, 2, 3lk k

l( ) are calculated for non-dominated
solution of the MOT-p-FLP. Afterwards, the upper (Uk) and lower (Lk)
bounds for each objective function are estimated as follows:

=U Z Z Zmax{ , , }k k k k1 2 3 and = =L Z k, 1, 2, 3k kk . Consequently, the
upper and lower values for the neutrosophic environment are computed
as

= =
= + =

= = +

U U L L
U L q U L L L

U U L L q U L

, , for truth membership,
( ), ,

for indeterminacy membership,
, ( ), for falsity membership.

k
T

k k
T

k

k
I

k
T

k k
T

k
T

k
I

k
T

k
F

k
T

k
F

k
T

k k
T

k
T

r r

n r r r n r

a r a r r r

where qk and qk are tolerance variables, choose by the decision maker
for falsity and indeterminacy membership functions. The membership
functions for neutrosophic environment can be constructed as follows:

=T Z x y w

Z x y w L

L Z x y w U

Z x y w U

( ( , , ))

1 ( , , ) ,

1 ( , , ) ,

0 ( , , ) .
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r r

r

=I Z x y w
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L Z x y w U
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1 ( , , ) ,

1 ( , , ) ,

0 ( , , ) .
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n n

n
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Z x y w U

L Z x y w U

Z x y w L

( ( , , ))

1 ( , , ) ,

1 ( , , ) ,

0 ( , , ) .
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U Z x y w
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As the objective functions are conflicting in nature, hence,
= =U L U L,k

T
k
T

k
I

k
Ir r n n and U Lk

F
k
Fa a are not possible for any

=x y w k( , , ) ( 1, 2, 3)k k k .
The neutrosophic model for the MOT-p-FLP can be stated as follows:
Model 6 (For Case 1)

+ +

=

= =

µ

T Z x y w F Z x y w µ I Z x y w

C w u v x y
µ µ

q U L
q U L

µ k

maximize
minimize
maximize
subject to ( ( , , )) , ( ( , , )) , ( ( , , ))

,
the constraints (2.4) (2.7),

( , ; , ),
, , 3,
0 ,
0 ,

, , [0, 1], 1, 2, 3.

rk k ak k nk k

i
m

j
p

ij i i j j

k k k

k k k

1 1

where µ, and represent the global degree of satisfaction, in-
determinacy and dissatisfaction of a solution, respectively.

Model 7 (For Case 2)

+ +

=

= =

µ

T Z x y w F Z x y w µ I Z x y w

C w u v x y
µ µ

q U L
q U L

µ k
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minimize
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subject to ( ( , , )) , ( ( , , )) , ( ( , , ))

,
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, , 3,
0 ,
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, , [0, 1], 1, 2, 3.
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1 1

Thereafter, the simplified neutrosophic model of the MOT-p-FLP can
be represented to derive the compromise non-dominated solution as
follows:

Model 8 (For Case 1)

+
+
+

+ +
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Z x y w U L U
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Z x y w U L µ L
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µ µ
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Model 9 (For Case 2)
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3.2. Advantages of the proposed approach

In this subsection, we explore the main advantages of our hybrid
approach.

• The main advantage of the hybrid approach is to give a general
structure for dealing with the indeterminacy uncertainties in avail-
able data. Moreover, it does not require trade-offs or complicated
parameters or any other reference directions from the decision
maker. In fact, the employ of the approach guarantees a solution
that maximizes the global degree of satisfaction and dissatisfaction,
and minimizes indeterminacy level, and truly, it is a non-dominated
optimal solution.
• The information about the data of the MOT-p-FLP is not precisely
defined, the mathematical formulation of our approach has the
capability to manipulate vague ideas like the number of objective
functions and constraints.
• The stated approach provides a simple mathematical structure
which makes easier for understanding and using. In fact, it always
gives a compromise solution within a relatively short computational
time for small scale entries.

3.3. Disadvantages of our approach

The main limitation of our approach is that it cannot deal with the
fixed-charge cost for route selection or vehicle. If the fixed-charge cost
is incurred, then the continuous structure of the problem will be lost.
Furthermore, we have used the C++ programming language for the
iterations and optimization solver for the NCP. Therefore, if an algo-
rithm is specially designed for this complex structure might yields result
faster, and is certainly necessary to solve large scale instances.

4. Analysis of non-dominated solution

Here, we first demonstrate that if x y w( , , ) is a non-dominated
solution of the MOT-p-FLP, then x y( , ) is a non-dominated solution of
the unconstrained multi-objective FLPs of Eqs. (2.1), (2.2) and (2.8) or
Eqs. (2.1), (2.2) and (2.10), where =w w .

Lemma 1. Let x y w( , , ) is a non-dominated solution of the MOT-p-
FLP of Eqs. (2.1), (2.2) and (2.8). Then x y( , ) is a non-dominated
solution of the multi-objective FLP:
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2( , )
1 1

3( , )
1 1

Proof. This lemma can be proved by the method of indirect proof
(i.e., contradiction). Let x y( ¯, ¯) be a solution such that

=Z x y w Z x y w k( ¯, ¯, ) ( , , ) for ( 1, 2, 3)k k , and <Z x y w Z x y w( ¯, ¯, ) ( , , )k k

for at least one k. Again x y w( ¯, ¯, ) is a feasible solution of the
problem, then there is a contradiction to a non-dominated solution of
x y w( , , ). This ends the lemma. □

Lemma 2. Let x y w( , , ) is a non-dominated solution of the MOT-p-
FLP of Eqs. (2.1), (2.2) and (2.10). Then x y( , ) is a non-dominated
solution of the multi-objective FLP:
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Proof. It can be easily proved by similar way. □

Lemma 3. Let x y w µ( , , , , , ) be an optimal solution of Model 8,
then it should be also a non-dominated solution x y w( , , ) of Model
1.1.

Proof. Let the contrary be true. Then there is a solution x y w F( ¯, ¯, ¯ )
such that < =Z x y w Z x y w k k( ¯, ¯, ¯ ) ( , , ) , 1, 2, 3k k . Now µ, and

are the optimal values of Model 8, then

+ < +

=
+ < +

=
<

=

Z x y w U L Z x y w U L

U k
Z x y w U L Z x y w U L

U k
Z x y w U L µ Z x y w U L µ

L k

( ¯, ¯, ¯ ) ( ) ( , , ) ( )

, 1, 2, 3,
( ¯, ¯, ¯ ) ( ) ( , , ) ( )

, 1, 2, 3,
( ¯, ¯, ¯ ) ( ) ( , , ) ( )

, 1, 2, 3.

k k
T

k
T

k k
T

k
T

k
T

k k
I

k
I

k k
I

k
I

k
I

k k
F

k
F

k k
F

k
F

k
F

r r r r

r

n n n n

n

a a a a

a

Henceforth, there exist > > >µ µ, , and an l {1, 2, 3}
such that

+ =
+
+ =
+

=

Z x y w U L U
Z x y w U L U k l
Z x y w U L U
Z x y w U L U k l
Z x y w U L µ L
Z x y w U L µ L k l

( ¯, ¯, ¯ ) ( ) ,
( ¯, ¯, ¯ ) ( ) , ,
( ¯, ¯, ¯ ) ( ) ,
( ¯, ¯, ¯ ) ( ) , ,
( ¯, ¯, ¯ ) ( ) ,
( ¯, ¯, ¯ ) ( ) , ,

l l
T

l
T

l
T

k k
T

k
T

k
T

l l
I

l
I

l
I

k k
I

k
I

k
I

l l
F

l
F

l
F

k k
F

k
F

k
F

r r

r r

n n n

n n n

a a a

a a a

which contradict that x y w µ( , , , , , ) is an optimal solution of
Model 8. This completes the proof of lemma. □

Lemma 4. Let x y w µ( , , , , , ) be an optimal solution of Model 9,
then it should be also a non-dominated solution x y w( , , ) of Model
1.2.

Proof. The proof is left to the reader. □

5. Experimental example

Herein, a real-life based example is presented to validate our model
and methodology. In the example, an industrial association wishes to
start a few new firms with the aim of minimizing the total transporta-
tion cost, time and carbon emission cost under tax, cap and trade
policy. The association has 4 existing firms: S S S, ,1 2 3 and S4, and they
want to establish 3 new firms: D D,1 2 and D3. They transport goods by
conveyances. In fact, we consider the weights of the conveyances de-
pend on the machine performance which is reflected in transportation
and carbon emission cost. Thereafter, the obstacles of the paths are also
appraised in transportation time to become the problem more realistic.
Under TCTP, the industrial association is allocated a carbon emission
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cap C. When they emit less (more) than the cap C, then they can sell
(buy) the extra permit in (from) the carbon trading market. Moreover, if
the firms emit more than the cap, then they have to pay extra cost as a
penalty to reduce carbon emission. Hypothetical data of real-life sce-
narios are created. Here, we take carbon tax = 0.3, carbon buying cost
from the trade market = 0.5, carbon selling cost = 0.7 and penalty
cost =P 0.9c . The availability of S S S, ,1 2 3 and S4 and the demand of the
firms D D,1 2, and D3 are known. Moreover, the locations and the
weights of the plants S S S, ,1 2 3 and S4 are also provided. Table 2 re-
presents the locations and weights of the existing firms. The supply,
demand and non-negative weights are given in Table 3.

Two special cases are considered for TCTP.
Case 5.1: First, when the carbon cap is =C 800.

5.1. Performance of the hybrid approach

The steps for solving the proposed MOT-p-FLP are as follows:
Step 1. At first, three initial potential locations are picked up from

Table 2 for three plants. Thereafter, four cases are appeared which are
shown in Tables 4–7.

Step 2. Now, the distances (i.e., for each individual distance func-
tion) are estimated among assigned initial potential locations and the
rest site for each case. Thereafter, the smallest distance is chosen for
each individual distance function from the said four cases. The final
initial potential locations are Case 5.1.4 for the first distance function,
Case 5.1.3 for the 2nd distance function, and Case 5.1.4 for the 3rd
distance function.

Step 3. The distances between existing and initial locations of plants
are calculated, and the distances are considered as a cost, time and
average carbon emission coefficients. The coefficients are as follows:

Cost coefficients c( )ij :
= = = = = =
= = = =

c c c c c c c
c c c

4.745, 0, 4.595, 2.691, 1.531, 0,
8.094, 7.688, 6.001, 0

11 12 13 21 22 23 31

32 33 41

,

= =c c3.166, 5.38242 43 .
Time coefficients t( )ij :

= = = = =
= = = = =

t t t t t t
t t t t

5.763, 4.749, 0.164, 1.500, 2.691,
1.532, 0.218, 8.094, 7.685, 4.047

11 12 13 21 22 23

31 32 33 41

,

= =t t0.155, 3.16542 43 .
Carbon emission coefficients d( )ij :

= = = = =
= = = = =
= =

d d d d d d
d d d d d

d

15.817, 0, 15.313, 26.912, 15.310,
0, 20.236, 19.219, 15.003, 0,
15.830, 26.909

11 12 13 21 22 23

31 32 33 41 42

43

.

Step 4. Thereafter, the LINGO 17.0 iterative scheme is employed to
obtain the individual optimal feasible solution as follows:

For Model 3: = = = = =w w w w w60, 10, 30, 25, 5,12 22 23 31 33
=w 2541 with all other =w 0ij and =Z 247.6761 .
For Model 4: = = = = =w w w w w25, 35, 20, 20, 30,12 13 21 22 31
=w 2542 with all other =w 0ij and =Z 218.7512 .
For Model 5:
For Model 5.1: = = = = =w w w w w60, 5, 35, 25, 5,12 22 23 31 32
=w 2541 with all other =w 0ij , and =Z 118.5453 .
For Model 5.2: = = = = =w w w w w2.548, 57.451, 12.548, 27.452, 22.452,11 12 22 23 31

= =w w7.548, 2533 41 with all other =w 0ij , and =Z 2403 . Therefore, the
optimal solution of Model 5 is the optimal solution corresponding to
Model 5.1.

Step 5. The C++ programming language is explored for executing
our model as a single objective function to get the individual optimal
potential locations for the plants. The respective optimal potential lo-
cations are as follows:

= =

=

x y x y x y( , ) (17.065, 24.568), ( , ) (5.000, 10.000), ( , )

(2.458, 25.000)
1 1

(1)
2 2

(1)
3 3

(1),

= =

=

x y x y x y( , ) (16.907, 25.000), ( , ) (5.613, 10.040), ( , )

(5.000, 10.000)
1 1

(2)
2 2

(2)
3 3

(2),

= =x y x y( , ) (18.512, 14.918), ( , ) (5.000, 10.000)1 1
(3)

2 2
(3) and

=x y( , ) (2.000, 25.000)3 3
(3) .

Step 6. Using the obtained solutions, we compute the upper and
lower values for each objective function and they are as follows:

= =U Lmax{153.021, 157.550, 268.432}, 153.0211 1 ;
= =U Lmax{168.263, 157.136, 283.457}, 157.1362 2 ;
= =U Lmax{195.02, 489.503, 118.856}, 118.8563 3 .

Step 7. Upper and lower bounds based on the NCP are calculated for
each objective function:

For Z x y w( , , )1 :
= = = =U U L L268.432, 153.021T T

1 1 1 1r r ,

= + = + = =U L q U L q L L( ) 153.021 115.411 , 153.021I T T T I T
1 1 1 1 1 1 1 1

n r r r n r ,

Table 2
Locations and weights of the existing firms.

Position u v( , )i i Weight e( )i

S1 (5, 10) 0.3
S2 (2, 25) 0.1
S3 (17, 25) 0.4
S4 (20, 5) 0.2

Table 3
Pay-off table t( , )ij ij .

D1 D2 D3 Supply (ai)

S1 (0.0, 0.2) (0.7, 0.0) (0.3, 0.5) 60
S2 (0.1, 0.3) (0.2, 0.4) (0.7, 0.0) 40
S3 (0.3, 0.5) (0.5, 0.4) (0.2, 0.1) 30
S4 (0.0, 0.0) (0.6, 0.6) (0.4, 0.1) 25
Demand (bj) 50 70 35

Table 4
Case 5.1.1.

Position Weight

D1 (5, 10) 0.3
D2 (2, 25) 0.1
D3 (17, 25) 0.4

Table 5
Case 5.1.2.

Position Weight

D1 (2, 25) 0.1
D2 (17, 25) 0.4
D3 (20, 5) 0.2

Table 6
Case 5.1.3.

Position Weight

D1 (17, 25) 0.4
D2 (20, 5) 0.2
D3 (5, 10) 0.3

Table 7
Case 5.1.4.

Position Weight

D1 (20, 5) 0.2
D2 (5, 10) 0.3
D3 (2, 25) 0.1
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= = = + = +U U L L q U L q268.432, ( ) 153.021 115.411F T F T T T
1 1 1 1 1 1 1 1

a r a r r r .
For Z x y w( , , )2 :

= = = =U U L L283.457, 157.136T T
2 2 2 2r r ,

= + = + = =U L q U L q L L( ) 157.361 126.321 , 157.361I T T T I T
2 2 2 2 2 2 2 2

n r r r n r ,

= = = + = +U U L L q U L q283.457, ( ) 157.361 126.321F T F T T T
2 2 2 2 2 2 2 2

a r a r r r .
For Z x y w( , , )3 :

= = = =U U L L489.503, 118.856T T
3 3 3 3r r ,

= + = + = =U L q U L q L L( ) 118.856 370.647 , 118.856I T T T I T
3 3 3 3 3 3 3 3

n r r r n r ,

= = = + = +U U L L q U L q489.503, ( ) 118.856 370.647F T F T T T
3 3 3 3 3 3 3 3

a r a r r r .
Step 8. Using the LINGO 17.0 iterative scheme, we solve the sim-

plified neutrosophic model (Model 8). The optimal compromise solu-
tion of the above MOT-p-FLP is as follows: =w 50,11

= = = = = = =w w w w w w w w10, 0, 0, 5, 35, 0, 30,12 13 21 22 23 31 32 33
= = = = = = = = =w w w q q q q q q0, 0, 25, 0, 0.3, 0.21, 1,41 42 43 1 3 2 1 3 2
= = = = = =µ x y x y0.80, 0.699, 0, 0.699, ( , ) (5, 10), ( , ) (16.380,1 1 2 2

= = = =x y Z Z Z22.108), ( , ) (2, 25), 187.713, 184.191, 230.2693 3 1 2 3 .
Case 5.2: Furthermore, consider the carbon cap as =C 675. Here,

Steps 1 to 4 are exactly same with Case 5.1. Since, the feasible solution
of Model 5.1 does not exist, therefore, we take the solution of Model 5.2
as Model 5. The optimal solution of Model 5 is as follows:

= = = = = =w w w w w w60, 5, 35, 25, 5, 2512 22 23 31 32 41 with all
other =w 0ij , and =Z 205.1593 .

Step 5. Using C++ programming, we obtain the individual optimal
potential locations for the plants. The respective optimal potential lo-
cations are as follows:

= =
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x y x y x y( , ) (17.065, 24.568), ( , ) (5.000, 10.000), ( , )

(2.458, 25.000)
1 1

(1)
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3 3
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x y x y x y( , ) (16.907, 25.000), ( , ) (5.613, 10.040), ( , )

(5.000, 10.000)
1 1

(2)
2 2

(2)
3 3

(2),

= =x y x y( , ) (18.512, 14.918), ( , ) (5.000, 10.000)1 1
(3)

2 2
(3) and

=x y( , ) (2.000, 25.000)3 3
(3) .

Step 6. Thereafter, we calculate upper and lower bounds and they
are as follows:

= =U Lmax{153.021, 157.550, 268.432}, 153.0211 1 ;
= =U Lmax{168.263, 157.136, 283.457}, 157.1362 2 ;
= =U Lmax{262.515, 483.378, 205.392}, 205.3923 3 .

Then, using Step 7, we obtain the optimal compromise solution of
the proposed problem. And the solution is as follows:

= = = = = = =
= = = = = = = =

= = = = = =

= = =

= = =

w w w w w w w w
w w w w q q q q

q q µ x y

x y x y Z

Z Z

50, 10, 0, 0, 5, 35, 0,
30, 0, 0, 25, 0, 1.239,

1.234, 0.699, 0, 0.699, ( , )

(5, 10), ( , ) (16.380, 22.108), ( , ) (2, 25),

187.713, 184.191, 288.952

11 12 13 21 22 23 31 32

33 41 42 43 1 2 3 1

2 3 1 1

2 2 3 3 1

2 3

.

6. Computational results and discussion

An application example is provided to analyze the proposed model
with the help of the hybrid approach. The approach first finds the initial
locations, optimal feasible solutions, optimal locations, ideal solutions
(individual minimum), and anti-ideal solutions (individual maximum),
and then we determine the upper and lower bounds for truth, in-
determinacy, and falsity. Thereafter, the neutrosophic models for two
cases of the MOT-p-FLP are formulated to derive optimal compromise
solutions. The obtained results of the example show that the total
transportation cost, delivery time and the optimal locations of the firms
are same in both cases. But under TCTP, the total carbon emission cost
is varied. In fact, we analyze that when the cap is larger than the total
emission, the carbon emission cost decreases as they sell the extra

permit in the trade market. For that reason, the industrial organizations
will make more profit. Again when the cap is less than a threshold, the
carbon emission cost increases as they have to buy carbon emission
permits from others, as well as they have to pay also the penalty cost
which minimized the profit of firms. Thereafter, TCTP can affect to
adjust the carbon emissions due to transportation at the same time to
the green environment.The steps of the objective functions and optimal
facilities locations for the given example are depicted in Figs. 3 and 4.
The alternating Loc-Alloc heuristic approach is coded in C++ and
conducted using a code-block compiler, and the NCP is coded in the
LINGO 17.0 iterative scheme on a Lenovo z580 computer with
2.50 GHz Intel (R) Core (TM) i5-3210M CPU with 4 GB RAM. The
computational results are compared with Linux terminal on a computer
with Intel(R) Core (TM) i3-4130 CPU @3.40 GHz with 4 GB RAM.

7. Sensitivity analysis

In this section, we investigate the resiliency of optimal compromise
solutions in the MOT-p-FLP by varying the parameters. For the MOT-p-
FLP, the difficulty arises when the range of parameters are chosen after
small changes for which the optimal solution remains optimal. In fact,
the complexity increases when the number of variables and constraints
are in large size. Due to this reason, a simple procedure is adopted to
evaluate the sensitivity of the proposed problem with the fact that the
basic variables stay the same (as basic variables) but their values will be
replaced. The effective range of the parameters in the MOT-p-FLP are
computed by the following steps:

Step 1. Fix the basic variables for a given optimal solution of the
MOT-p-FLP, received from the hybrid approach.

Step 2. Replace the value of each parameter one at a time in the
successive trial, and keeping the others unaltered. Thereafter, solve the
corresponding the MOT-p-FLP.

Step 3. Proceed Step 2 until the solution appears for the MOT-p-FLP:
either “no feasible solution” or “change the basic variable in optimal
solution”.

Step 4. Compute the range of each parameter by Step 3.
Sensitivity analysis for supply and demand parameters:
Let ai be changed to =a i( 1, 2, 3, 4)i and bj be altered to
=b j( 1, 2, 3)j . Utilizing the stepwise procedure from above, the values

of ai and bj are easily calculated, which shown in Tables 8 and 9. Note
that the range of the other parameters in the MOT-p-FLP are resolved in
a similar way.

8. Managerial insights

The fact that MOT-p-FLP is an especially application-based region,
makes it essential to receive deep insights into the characteristics of
optimal solutions. Herein, we gather information about the optimal
solutions derived when employing Model 1 into two sub-problems.
Observing the outcomes, the management’s discretion can easily pick
the optimal solution between two sub-problems. A brief discussion of
the effect of carbon emission under TCTP is depicted. From that dis-
cussion, the managements can easily decide the optimal potential fa-
cility sites so that they can easily reach the sites with minimum trans-
portation cost, transportation time and carbon emission. There is an
analysis of carbon tax, cap and trade policy in emission, from that the
managements can decide which case emits the least amount of carbon
emission. As a result, they can balance between their profits and green
environment, which may gain reputation in the global market. On the
other hand, the machine performance of the conveyances is displayed
in transportation cost and emission. In case the machine performance is
good, then the total transportation cost along with carbon emission will
be reduced. For that reason, the managements can easily choose which
type of conveyances are better for transporting goods. Again, the time
for obstacles of the paths is also considered in transportation time, so
that the managements can calculate the more accurate transportation
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time which improves their services to the customers. A sensitivity
analysis is provided to show which range of the parameter is more
appropriate for the managements. Finally, we can say that the men-
tioned formulation will be effective for the managements to seek

optimal potential sites to transport with minimum cost, time and
carbon emission.

9. Conclusions and future research directions

This study has been presented a practical formulation for planning
and transportation system with the objectives of minimizing the total
transportation cost, total transportation time, and total carbon emission
cost under TCTP on the entire transportation chain, and at the same
time it also asks the potential facility sites along with the amounts of
transported goods simultaneously. To the best of authors’ knowledge,
the problem of designing an MOT-p-FLP, considering variable carbon
emission under TCTP, has not been studied before. Additionally, we
have improved a hybrid approach to solve the proposed problem in an
effective way. The stated formulation and improved hybrid approach
have been tested by a real-life based example. Thereafter, the effect of
variable carbon emissions under TCTP is investigated by two special
cases. In fact, we explore the optimal decision to reduce carbon emis-
sion for companies under TCTP. Therefore, the nature of the obtained
compromise solution is analyzed by four lemmas. Lastly, the sensitivity
analysis has been given to check the resiliency of the parameters in the
MOT-p-FLP. Moreover, our formulation can be utilized in other in-
dustrial applications like the manufacturing of plants, green supply

Fig. 3. Graphical representation of the proposed hybrid approach for example.

Fig. 4. The existing and optimal potential facilities in example.

Table 8
The range of supply and demand parameters for Case 5.1.

Real values of ai and bj Changing values of ai and bj

=a 601 a60 118.51
=a 402 a40 65.32
=a 303 <a30 3
=a 254 <a25 4
=b 501 b10.2 501
=b 702 b39.1 702
=b 353 b0.1 353

Table 9
The range of supply and demand parameters for Case 5.2.

Real values of ai and bj Changing values of ai and bj

=a 601 a60 94.91
=a 402 a40 64.92
=a 303 a30 503
=a 254 <a25 4
=b 501 b22.5 501
=b 702 b54 702
=b 353 < b 353
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chain model, production-inventory system, financial and further ap-
plications. We must underscore that in association with this investiga-
tion, there are other lines of research work of absolute significance and
importance that we have not raised because they are outside the ob-
jectives initially set; however, in future investigation, one can analyze
the MOT-p-FLP with neutrosophic parameters, and discuss the effect of
variation in solution of the MOT-p-FLP. Another scope is to consider our
model in the stochastic environment, then one may perform the sta-
tistical inference analysis using nonparametric hypothesis testing.
Similarly, the possibilities of using Genetic Programming, Monte Carlo
Method (Klibi et al., 2010) Simboloc Regression, techno-economic
(cost) analysis and payback period are the interesting lines to be in-
vestigated in a forthcoming paper(s). In fact, researchers can then
compare the study with our proposed study. Furthermore, interested

scientists can analyze our model in different uncertain environments,
e.g., type-2 fuzzy sets, intuitionistic fuzzy sets, rough sets or grey
numbers. Besides, one may consider the membership functions as hy-
perbolic, exponential, etc., instead of linear membership functions for
solving the MOT-p-FLP. In addition, researchers may employ the dif-
ferent types of distance functions such as rectangular distance, signed
distance, Hausdorff distance, etc. The incorporation of fixed-charge
costs in the MOT-p-FLP can be more realistic research modification. In
this regard, a line of study that we design to explore in the future is the
application of meta-heuristic algorithms to solve such problems.
Nature-motivated metaheuristic algorithms, such as Particle Swarm
Optimization, Genetic Algorithm, Simulated Annealing, etc. seem faster
to successfully solve these problems with large scale entries and will be
the fields for future research works.

Appendix A

Theorem 1.

(i) The objective function = = =Z e w u v x y( , ; , )x y i
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j
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i ij
B

i i j j1( , ) 1 1 is convex on p2 .
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i ij
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i i j j2( , ) 1 1 is convex on p2 .
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Proof.

(i) We know that a function Z1 is convex on an area iff the related Hessian matrix of Z1 is positive semidefinite on that area (Rockafellar, 1970).
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Henceforth, Z x y1( , ) is convex on p2 . □
(ii) The proof is left to the reader. □
(iii) The proof is left to the reader. □

Appendix B

Iterative formula:
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